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Abstract

In this note we describe Boolean functions f(x1,22,...,%,) whose
Fourier coefficients are concentrated on the lowest two levels. We show
that such a function is close to a constant function or to a function
of the form f = x or f = 1 — z. This result implies a “stability”
version of a classical discrete isoperimetric result and has an application
in the study of neutral social choice functions. The proofs touch on
interesting harmonic analysis issues.

1 Introduction

A fundamental result in extremal combinatorics asserts that for every subset
A of the discrete cube Q, = {0,1}" the number of edges from A to its
compliment it at least min(|A[,2" — | A]). The only examples of equality are
A=0,A; ={(z1,22,...,25) € Qy : z; =0, for some j,1 < j <n and their
complements. The precise minimum of the number of edges from A to its
complement as a function of |A| is also known, see Hart (1976). The main
result of this paper is that if

the number of edges between A and its complement is “close” to |A|
then the set A is “close” to the examples described above. Equivalently,
we describe Boolean functions whose Fourier transform is concentrated on
the lowest two levels. This result touches on interesting issues in harmonic
analysis and is used in Kalai (2001), to derive a “stability” version of Arrow’s
theorem for neutral social choice functions. We will use the terminology of
Kalai (2001). Our main result is:

Theorem 1.1. If f is a Boolean function, ||f||3 = p and if Yis)>1 P(S) <46
then either p < K'6 or p > 1 — K'§ or ||f(z1,22,--.,%n) — zi]|3 < K& for



some i or || f(x1,Ta,...,2n) — (1 —x;)||3 < K6 for some i. Here, K' and K
are absolute constants.

For A C Q, let E(A) denotes the number of edges between A and its
complement in €2,,.

Corollary 1.2. There exists an absolute constant K with the following prop-
erty. Let A C Q, and suppose that |A| < 2"~1. If E(A) < (1+¢)-|A| then
for some i, 1 <i<nP(AAA;) <K .e or P(AAA;) < K -e.

Suppose that |[A] < 277! and let p = ||Xallo = |A|/2"7!. Let I(A) =
E(A)/2"71. I(A) is refered to as the total influence of A, as the average
sensitivity of A and as the edge boundary or edge-expansion constant of A.
It is well known that if f = X4,

I(4) =4 " F(8)18].
SC[n]

Since Y- gcn),540 F2(S) = 2p, we obtain that E(A4) < |A| with equality only

~

of p =1/2 and f(S) = 0 if |[S| > 1. By the same argument we see how
Theorem 1.1 implies Corollary 1.2. Corollary 1.2 complements a result by
Friedgut (1998). Friedgut showed that if I(.S) is bounded from above by a
constant K then f = X4 is close to a “Junta” namely to a function which
depends on a bounded number of variables. We show here that if I(A4) < 1+€
then X4 is close to “dictatorship”.

We describe now briefly how Theorem 1.1 is applied in [6]. We consider
a society consisting of n individuals, which is faced with a finite set of
alternatives. A profile is a list of n linear orders, which we think of as the list
of preferences of each individual. A social choice function is a function which
given such profile, yields an asymmetric relation on the alternatives. We
think of a social choice function as a method with which the society makes
a decision between each two alternatives, based on the preferences of each
individual. The social choice (i.e. the value of the social choice function)
is called rational if it is an order relation on the alternatives. Social choice
functions are assumed to be independent of irrelevant alternatives, i.e. for
every two alternatives ¢ and b the society’s choice between a and b depends
only on the individual preferences between these two alternatives. A social
choice function is called a dictatorship if it depends only on the preferences of
one particular individual (such an individual is called a dictator. Note that
a dictator might be ill fortuned in the sense that the society always chooses
the exact opposite of his preference). Finally, a social choice function is
called neutral if it is invariant under permutations of the alternatives.



In [6] Theorem 1.1 is applied to show that if the outcome of a neutral
social choice function for random profiles is almost surely rational then the
social choice is approximately a dictatorship:

Theorem 1.3. There exists an absolute constant K such that the following
assertion holds. For every e > 0 and for every neutral social choice function,
if the probability that the social choice is irrational is less than € then there
is an individual such that for every pair of alternatives the probability that
the social choice is different from his choice is less that K - .

We refer to [6] for a proof of Theorem 1.3. We also refer to [6] and the
references therein for a detailed description of related concepts and results
concerning the social choice problem.

We will present two proofs for Theorem 1.1:

2 Proofl

2.1 Reduction to weighted majority

The proof is based on a reduction to the case of weighted majority functions
followed by a further reduction to an auxiliary result Proposition 2.2. A
simple proof of Proposition 2.2 based on a recent theorem by Konig, Schiitt
and Tomczak-Jaegermann (2000) gives best estimates for large values of 4.
We present a completely elementary proof which gives best results for small
values of §.

First, we state the following simple proposition:

Proposition 2.1. Let t1,ts,...,t, be real numbers such that > 2 =p > 0.
Put t = (t1,t2,...,tn) and T = Y t;. For a Boolean function f let Uy(f) =

S f{i})ti. Then Ui(f) attains its mazimum value when f is the following
weighted majority function: f(S) =1 iff > ,.qti <T/2.

Proof: The proof follows at once from the following simple relation:

Uf) = 27"f(S) (Zti —Zm) = > 2 (T—2Zti> £(8).
SC[n] SCln]

i¢S ieS i€S

In order to maximize U;(f) we need to set f(S) =1 when T'— 2"
positive and f(S) =0 when T'— 2}, t; is negative. [
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It follows from Proposition 2.1 that if g is an arbitrary Boolean function
then >, f({i})g({i}) attained is maximum when f is a weighted majority
function.

Remark: Proposition 2.1 can be extended to identify the Boolean functions
with maximum inner product with ) agug. This may have some further
applications. R

We now return to the proof of Theorem 1.1. Let t; = f({i}), i =
1,2,...,nand t = (t1,12,...,t,). Consider now the vector 7 = (Tg : S C [n])
of length 2™ whose entries are given by

Ts = (th - Zh) .
i¢S i€S
Note that
2
TiE=2 Y (zti —zti) ST <p—r
SC[n] \i€S i¢Ss
Note also that

]' —n
Ui(f) < 3 Z 2 th’ - Zti =T < ITllz =
SC[n] i¢s i€S
o\ 1/2
1 n p—p?
=3 22 (Zti—ZtZ) <
SCln] ¢S €S

In order that
Ui(f) > (1 =) (p — 1%,
and unless p is close to 0 or 1, we need that p is close to 1/2 and that the
2-norm of the vector 7 is close to its 1-norm.

Recall the following elementary fact: If v = (a1,a9,...,ay) is a vector
(say positive) such that ||v||2 = 1 and ||v||; > 1 — §, then the variance of
ai,...,a, is at most 24.

It follows that the vector 7T is at a distance of at most 26 from a vector
S such that the absolute value of its coordinates are the same.

At this point it remains to show that this can only occur if for the original
vector ¢ all coordinates but one are close to zero.

Proposition 2.2. Let v = (a1, a9, ...,a,) be a unit vector of length n and
suppose that a1 > ay > ag... > 0. Consider all the 2™ sums S(e) =
e1ag + €2a2 + ... + enayn, where €; is +1 or -1. If the variance of |S(e)| is
smaller than &, then a; > 1 — K'§.



2.2 Proposition 2.2: first proof

We begin by giving a short proof of Proposition 2.2 which is based on a recent
result of Konig, Schiitt and Tomczak-Jaegermann (2000). Later we present
a self-contained proof of the proposition which gives a better estimate for
K' for small §. Konig, Schiitt and Tomczak-Jaegermann’s theorem can be
stated as follows:

Theorem 2.3. Let ay,a9,...,a, be real numbers and let E be the expected
value of the 2" expressions |e1a1 +egag + - - - + epay| where each €; is +1 or

-1. Then
NE Jad (2.1)
T 15?5)% %

Recall that the expectation of S(g)? is 1 and therefore the variance V of
|S(e)| is (1 — E?) = (1 — E)(1 + E). Using Theorem 2.3 we obtain

1—E:1—\/g+\/g—E2(1—\/g>(1—al).

This completes the proof of Proposition 2.2.

This result can be further improved as follows: By Szarek’s inequality
(Khinchine’s inequality with best constant. See Szarek (1976) or Latala and
Oleszkiewicz (1994) for a short proof), E > 1/4/2. On the other hand, if we
define X = ageg + ... + ayeyp, then since X is symmetric,

X - X
E:]E|a181+X|:IE(|a1€1+ |+ lares ‘) > ay.

2

Hence,

V> (1—\/%) (1—ay) (1—I—max{%,a1}) >
> (1—@) max{(l—a%), (1+%) (1—a1)},

and this yields our theorem with the best constants that we managed to
obtain for large §.

Remark: It is worth noting that Theorem 2.3 implies that Var(S?) ~
(ES?)Var(|S|) where the constants of equivalence are independent of n and



ai,...,an, (this can be viewed as a second-order Khinchine inequality and
it would be interesting to derive similar statements for other powers of S).
In order to prove this, note that the inequality Var(X?) > (EX?)Var(X)
holds for any non-negative random variable X with finite fourth moment.
Indeed, we can assume that EX2? = 1 and by Hélders inequality:

1 =EX? =EX:+5 < (EX)?/?(EX")V/2.
Hence, EX* > 1/(EX)? so that

(EX)? + EX* > (EX)? + (]E)1()2 _

1 2
—24 (EX - —) >2
(= ax) 22

which gives that EX* — 1 > 1 — (EX)? as required. To prove the reverse
inequality assume that ES? = 1, in which case:

Var( 52 (Zazsz) —1—Za +62a - —1=

i#]

—5(1—Za><51—a1)<10(1—a1)

On the other hand, we have seen that Var(|S|) > (1 — /2/7)(1 — @?) so
that:

Var(S?) < - (ES%)Var(|S]).

We do not know what the best constants are in the above inequalities.

2.3 Proposition 2.2: An elementary proof

We now give an elementary proof with better estimates for K’ as long as §
is sufficiently small. We continue to use the notation X = ases + ...+ aney.
We begin by noting that the following identity holds:

E = a + E(|X] — a1)1{x|>a,}-

Indeed, using the fact that X and e; are independent and the fact that X
is symmetric, we obtain:

1 1
E =FElaie1 + X| = 5JE|X +a1| + §]E|X —a1| =EX —a1]| =



=E(X —a1)l{x>a} + Ela1 — X)1{xcq,} =
=EX|1{x>0} + a1P(X] <a1) =
= a1 + E(|X] —a1)1{x >a,}-
By the Chernoff bound, for every u > 0:

_ X1 u

1 2
<2exp( 1 lga)
1

E<a +E|X|1{|X\2a1} =

Now,

o0
—a +/ P(X]| > u)du <
ai

[e's) 1 2
<a1—|—2/ exp( 1 1ga1>du—

—a1+4\/1—a / ”2dv§

1/(2 1 af)

/ v 2
<al+4 1—01/ me d’U

1/(2y/1-a3

Finally:

4(1 — a? 1
52V:1—E221—a%[1+wexp(—1- a
a

This directly implies that:

a1 Z 1—%—0((52).



3 Proof I1

This proof relies on the Bonamie-Beckner inequality.

Lemma 3.1. Let f: {0,1}" — {0,1} . Assume that

Y P =e

|T|>1

Then there exists © and D;, which is a linear function of x;, such that

17496
If - Dil2 < (1 T ) .

1/4 —¢
Proof: First, as pointed out to us by Guy Kindler, we may assume with-
out loss of generality that f is balanced, i.e. that Pr(f = 1) = 1/2. To see

this let f(z) = f(z1,...,%,) and define a Boolean function g(z1,...,Zn,y)
as follows:

9(33,0) = f(w)ag(xa 1) =1- f(l - LE)
where 1—z is the vector (1—z1,...1—z,). Clearly g is balanced, Z|5\>1 G%(8) =
21851 hatf?(S) and if g = D; then f ~ D;. Let

=Y f(Tur

TI<1

and

L= f(T)ur.

|T|>1

(S and L stand for small and large) and let
R=S5-8.

We will show that since S is close to being Boolean, R is typically close to
0, and we will deduce some information on the Fourier coefficients of f. It
is straightforward to compute the Fourier coefficients of R: First note that
from the orthogonality of L and S we have

E(S?) + E(I?) = E(f?) = 1/2.

Hence
E(S*) =1/2—¢



and
E(S)=1/2.

Therefore, N
R(0) = E(R) = —«.

Next, for any 4 ﬁ(z) = 0. Finally, for i # j
R(ij) = 2] () ()-

This yields
R=—e+2)  f(i)f(j)uy.

Lemma 3.2.
E(R?) < 8748e.

Corollary 3.3. There exists i such that P(z) >1/4— (1 + (11/7;1366)) .
Clearly this corollary implies Lemma 3.1: We know that f(0) = 1 /2 and

A~

that Y f(T)?* = 1/2, hence
I = 1724 Flil = 3 70 < (14 )

T#i,0

Proof of corollary: Since E(R?) = 3" R(T)? we have by summing only

over the sets {ij}
3" P0)12() < 8748e.

On the other hand, since

E(S*) =J0)2+>_ fl)?=1/2—¢

we have R
Y fi)=1/4-c

Hence, if maXP(i) =4
(1/4 —€)? <2-8748¢ + (1/4 — €)d

which gives the desired bound on §.



Proof of Lemma 3.2 : The proof consists of two parts: first we
will show that typically R obtains values close to 0. Then we will use
a hypercontractive estimate due to Beckner and Bonami to bound higher
moments of R in terms of its second moment showing that its tail decays
fast enough.

Lemma 3.4. Let 0 < o < 1/4 be a constant to be chosen later. Let
p = Prob(|R| > «).
Then
 l6e
PS5
We defer the proof of this lemma for the moment.

Lemma 3.5. )

2 a
E(R) < 1—36v€/a

Choosing the optimal value of a (which is 544/€¢) immediately proves
Lemma 3.2. So, to finish the proof we now present the proofs of Lemmas
3.4 and 3.5.
Proof of Lemma 3.4: Recall that S = f — L and that E(L?) = e. Using
the fact that f2 = f yields

R=(f-L)?—(f-L)=L?+ L1 - 2f).

A simple analysis of the different possible cases shows that if |L| < a/4,
then |R| < a. Hence by Markov’s inequality

16
Pr[|R| > o] < Pr[L? > o?/16] < a—;

O

Proof of Lemma 3.5: For convenience of notation let X = E(R?)
and Y = E(R*). We now need some information on the relative values of
X and Y. To this end we use a powerful hypercontractive estimate proven
independently by Beckner and Bonami.

Lemma 3.6 (Beckner (1975), Bonami (1970)). Let f: {0,1}" — R be
a function that is a linear combination of {ur : |T| < k}. Let p > 2. Then

1£1lp < (Vo = DFIflle.

10



In our particular case, taking p = 4 and k = 2 gives
Y <81X%
Using this we obtain

X =E(R* = (1 -p)BE(R*|R? < o®) + pE(R*|R?* > o?) <

(1-p)e® +pVE(RR? > ?) <

Y
(1—1’)0424‘10“5 <

(1-p)a?+ /p9X <
4y/e

o? + Vx.
[0

This yields
2

a
X< ——F.
~— 1-361/¢/

O
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