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ABSTRACT. The Lipschitz extension modulus e(M) of a metric space M is the infimum over those L ∈ [1,∞]
such that for any Banach space Z and any C ⊆ M, any 1-Lipschitz function f : C → Z can be extended to
an L-Lipschitz function F : M → Z. Johnson, Lindenstrauss and Schechtman proved (1986) that if X is an
n-dimensional normed space, then e(X) ≲ n. In the reverse direction, we prove that every n-dimensional
normed space X satisfies e(X) ≳ nc , where c > 0 is a universal constant. Our core technical contribution
is a geometric structural result on stochastic clustering of finite dimensional normed spaces which implies
upper bounds on their Lipschitz extension moduli using an extension method of Lee and the author (2005).
The separation modulus of a metric space (M,dM) is the infimum over those σ ∈ (0,∞] such that for any
∆ > 0 there is a distribution over random partitions of M into clusters of diameter at most ∆ such that for
every two points x, y ∈M the probability that they belong to different clusters is at most σdM(x, y)/∆. We
obtain upper and lower bounds on the separation moduli of finite dimensional normed spaces that relate
them to well-studied volumetric invariants (volume ratios and projection bodies). Using these connections,
we determine the asymptotic growth rate of the separation moduli of various normed spaces. If X is an n-
dimensional normed space with enough symmetries, then our bounds imply that its separation modulus is
equal to vr(X∗)

p
n up to factors of lower order, where vr(X∗) is the volume ratio of the unit ball of the dual of

X. We formulate a conjecture on isomorphic reverse isoperimetric properties of symmetric convex bodies
(akin to Ball’s reverse isoperimetric theorem (1991), but permitting a non-isometric perturbation in addition
to the choice of position) that can be used with our volumetric bounds on the separation modulus to obtain
many more exact asymptotic evaluations of the separation moduli of normed spaces. Our estimates on
the separation modulus imply asymptotically improved upper bounds on the Lipschitz extension moduli
of various classical spaces. In particular, we deduce an improved upper bound on e(ℓn

p ) when p > 2 that

resolves a conjecture of Brudnyi and Brudnyi (2005), and we prove that e(ℓn∞) ≍p
n, which is the first time

that the growth rate of e(X) has been evaluated (as dim(X) →∞) for any finite dimensional normed space X.
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1. INTRODUCTION

Our core technical contribution is a geometric structural result (stochastic clustering) for subsets of fi-
nite dimensional normed spaces. It provides new links between nonlinear questions in metric geometry
and volumetric issues in convex geometry. An unexpected aspect of our statement is that it contradicts
an impossibility result of the well-known work [CCG+98] by Charikar, Chekuri, Goel, Guha and Plotkin in
the computer science literature, thus leading to bounds that were previously thought to be impossible.
This is reconciled in Section 1.7, where we explain the source of the error in [CCG+98].

The aforementioned link opens up a vista that allows one to apply the extensive literature on the linear
theory to important and well-studied nonlinear questions. It also raises new fundamental issues within
the linear theory that we will only begin to address here. So, in order to fully explain both the history and
the ideas and their consequences, we will start with a quick overview of some of our main results that
assumes familiarity with standard concepts in the respective areas. We will then present a gradual and
complete introduction to our work that specifies all of the necessary background.

1.1. Brief highlights of main results. Associate to every separable complete metric space (M,dM) two
bi-Lipschitz invariants e(M),SEP(M) ∈ (0,∞] called, respectively, the Lipschitz extension modulus of M
and the separation modulus of M, that are defined as follows. The Lipschitz extension modulus of M
is the infimum over those L ∈ (0,∞] such that for every Banach space Z and every subset C ⊆M, every
1-Lipschitz function f : C→ Z can be extended to a Z-valued L-Lipschitz function that is defined on all
of M. The separation modulus of M is the infimum over those σ ∈ (0,∞] such that for any ∆> 0 there is
a distribution over random partitions1 of M into clusters of diameter at most ∆ such that for every two
points x, y ∈M the probability that they belong to different clusters is at most σdM(x, y)/∆.

The question of estimating the Lipschitz extension modulus received great scrutiny over the past cen-
tury; see Section 1.3 for an indication of (a small part of) the extensive knowledge on this topic. The sepa-
ration modulus was introduced by Bartal in the mid-1990s and received a lot of attention in the computer
science literature due to its algorithmic applications; see Section 1.7.3 for the history. Its connection to
Lipschitz extension was found by Lee and the author [LN04a, LN05], who proved that e(M)≲ SEP(M).

By a well-known theorem of Johnson, Lindenstrauss and Schechtman [JLS86], every normed space X
satisfies e(X) =O(dim(X)). Here we obtain a power-type lower bound on e(X) in terms of dim(X).

Theorem 1. There is a universal constant c > 0 such that e(X)⩾ dim(X)c for every normed space X.

Theorem 1 improves over the previously best-available bound e(X) ⩾ ec
p

logdim(X); see Remark 97 for
the history of this question. Despite substantial efforts, the asymptotic growth rate (as dim(X) →∞) of
e(X) was not previously known (even up to lower order factors) for any sequence of normed spaces.

Theorem 2. For every n ∈Nwe have2 e
(
ℓn∞

)≍p
n.

The previously best-known upper bound on e(ℓn∞) was nothing better than the aforementioned gen-
eral O(n) bound of [JLS86]. Theorem 2 is just one instance of our asymptotically improved upper bounds
on the Lipschitz extension moduli of many normed spaces of interest; we get e.g. the best-known bound
when X = ℓn

p for any p > 2. Nevertheless, currently ℓn∞ is essentially3 the only normed space whose Lips-
chitz extension modulus is known up to lower order factors (by Theorem 2), and the same question even
for the Euclidean space ℓn

2 remains a longstanding open problem; see Section 1.3 for more on this.

1We are suppressing here measurability issues that are addressed in Section 1.7 and Section 3.1.
2We use the following conventions for asymptotic notation, in addition to the usual O(·),o(·),Ω(·) notation. Given a,b > 0, by

writing a ≲ b or b ≳ a we mean that a ⩽C b for some universal constant C > 0, and a ≍ b stands for (a ≲ b)∧(b ≲ a). If we need
to allow for dependence on parameters, we indicate it by subscripts. For example, in the presence of an auxiliary parameter q ,
the notation a ≲q b means that a ⩽C (q)b, where C (q) > 0 may depend only on q , and similarly for a ≳q b and a ≍q b.

3The proof of Theorem 2 artificially gives more such spaces, e.g. ℓn∞⊕ℓn
2 , or ℓn∞⊕X for any normed space X with dim(X)⩽

p
n.
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All of the upper bounds on the Lipschitz extension modulus that we obtain herein use the upper
bound on the separation modulus that appears in Theorem 3 below. This theorem also contains a new
lower bound on the separation modulus, which we will see shows that in several cases of interest our
results are a sharp evaluation of the asymptotic growth rate of the separation modulus.4

Theorem 3. Let X = (Rn ,∥ ·∥X) and Y = (Rn ,∥ ·∥Y) be normed spaces whose unit balls satisfy BY ⊆ BX. Then

vr(X∗)
p

n ≲ SEP(X)≲
diamX* (ΠBY)

voln(BY)
. (1)

In the left hand side of (1), vr(X∗) is the volume ratio [Sza78, STJ80] of the dual X∗, i.e., it is the n’th root
of the ratio of the volume of BX* and maximal volume of an ellipsoid that is contained in BX* . In the right
hand side of (1), ΠBY is the projection body [Pet67] of BY, and diamX* (·) denotes diameter with respect
to the metric on Rn that is induced by X∗. We will recall the definition of a projection body later5 and it
suffices to mention now that the mapping K 7→ΠK , which is of central importance in convex geometry
(see [BL88, Lut93, Gar06, Sch14] for an indication of the extensive literature on this topic), associates to
every convex body K ⊆Rn a convex bodyΠK ⊆Rn that encodes isoperimetric properties of K .

A key contribution of Theorem 3 is the role of the auxiliary normed space Y, which appears despite the
fact that we are interested in the separation modulus of X. By substituting Y = X into the right hand side
of (1) one does get a meaningful estimate, and in particular the resulting bound is O(n), i.e., (1) implies
the bound of [JLS86]. However, we will see that by introducing a suitable perturbation Y of X, the second
inequality in (1) can sometimes be significantly stronger than the special case Y = X. We will exploit this
powerful degree of freedom heavily; its geometric significance is discussed in Section 1.4.

The previously best-known upper and lower estimates on the separation moduli of normed spaces are
due to [CCG+98], where it was proved that SEP(ℓn

1 ) ≍ n and SEP(ℓn
2 ) ≍p

n. By bi-Lipschitz invariance,
this implies that any n-dimensional normed space X satisfies

n

dBM(ℓn
1 ,X)

≲ SEP(X)≲ dBM
(
ℓn

2 ,X
)p

n, (2)

where dBM(·, ·) denotes the Banach–Mazur distance. Both of the bounds in (2) can be inferior to those
that follow from Theorem 3. For example, suppose that n = m2 for some m ∈N and consider X = ℓm∞(ℓm

1 ).
Then, dBM(X,ℓn

1 ) ≍ dBM(X,ℓn
2 ) ≍p

n by the work [KS89] of Kwapień and Schütt. Therefore in this case (2)
becomes

p
n ≲ SEP(X)≲ n, while we will see that (1) implies that SEP(X) ≍ n3/4.

The following corollary collects examples of applications of Theorem 3 that we will deduce herein.

Corollary 4 (examples of consequences of Theorem 3). The following statements hold for any n ∈N.

• For any p ⩾ 1, the separation modulus of ℓn
p satisfies

SEP
(
ℓn

p

)≍ n
max

{
1
2 , 1

p

}
. (3)

More generally, let (E,∥·∥E) be any n-dimensional normed space with a 1-symmetric basis e1, . . . ,en .
Then, SEP(E) is equal to the following quantity up to lower order factors:

∥e1 + . . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)
.

4Our approach also pertains to subsets of normed spaces, e.g. we will prove that for any p ∈ [1,∞], n ∈N and r ∈ {1, . . . ,n},
the separation modulus of the set of n-by-n matrices of rank at most r , equipped with the Schatten–von Neumann-p norm,
is equal up to lower order factors to max{

p
r ,r 1/p }

p
n, which is new even in the Euclidean (Hilbert–Schmidt) setting p = 2.

However, for the purpose of this initial overview we will restrict attention to bounds for the entire space X.
5By [Lud02, Lud05] the mapping that assigns a convex body K ⊆Rn to its projection bodyΠK is characterized axiomatically

as the unique (up to scaling) translation-invariant SLn (R)-contravariant Minkowski valuation.
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• For any p ⩾ 1, the separation modulus of the Schatten von-Neumann trace class Sn
p on Mn(R) is

SEP
(
Sn

p

)= n
max

{
1, 1

2+ 1
p

}
+o(1) = dim

(
Sn

p

)max
{

1
2 , 1

4+ 1
2p

}
+o(1)

. (4)

More generally, let (E,∥·∥E) be any n-dimensional normed space with a 1-symmetric basis e1, . . . ,en

and denote its unitary ideal by SE = (Mn(R),∥ ·∥SE ). Then, SEP(SE) is equal to the following quan-
tity up to lower order factors:

∥e1 + . . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)p
n.

• For any p, q ⩾ 1, the separation modulus of the ℓn
p (ℓn

q ) norm on Mn(R) is

SEP
(
ℓn

p (ℓn
q )

)≍ n
max

{
1, 1

p + 1
q , 1

2+ 1
p , 1

2+ 1
q

}
= dim

(
ℓn

p (ℓn
q )

)max
{

1
2 , 1

2p + 1
2q , 1

4+ 1
2p , 1

4+ 1
2q

}
. (5)

• For any p, q ⩾ 1, the separation modulus of Mn(R) equipped with the operator norm ∥ · ∥ℓn
p→ℓn

q

from ℓn
p to ℓn

q is equal to the following quantity up to lower order factors:
n

3
2− 1

min{p,q} if p, q ⩾ 2,

n
1
2+ 1

max{p,q} if p, q ⩽ 2,
n if p ⩽ 2⩽ q,

nmax
{

1, 1
q − 1

p + 1
2

}
if q ⩽ 2⩽ p.

• For any p, q ⩾ 1, the separation modulus of the projective tensor product ℓn
p⊗̂ℓn

q , i.e., the norm on
Mn(R) whose unit ball is the convex hull of {(xi y j ) ∈Mn(R); (x1, . . . , xn) ∈ Bℓn

p
∧ (y1, . . . , yn) ∈ Bℓn

q
},

is equal to the following quantity up to lower order factors:{
n

3
2 if max{p, q}⩾ 2,

n1+ 1
max{p,q} if max{p, q}⩽ 2.

All of the results in Corollary 4 are new, except for the range 1⩽ p ⩽ 2 of (3), which is due to [CCG+98].
The range p ∈ (2,∞] of (3) is SEP(ℓn

p ) ≍p
n, which is incompatible with the statement SEP(ℓn

p ) ≍ n1−1/p

of [CCG+98]. We will explain the reason why the latter assertion of [CCG+98] is erroneous in Remark 77.
The wealth of knowledge that is available on the volumetric quantities that appear in (1) leads to new

estimates that relate the separation modulus of an n-dimensional normed space X to classical invariants
of X. We will derive several such results herein, without attempting to be encyclopedic. As a noteworthy
example, we will deduce from the first inequality in (1) that if BX is a polytope with ρn vertices, then

SEP(X)≳
n√
logρ

. (6)

We will also deduce that if T2(X) denotes the type 2 constant of X (see (78) or the survey [Mau03]), then

SEP(X)≳max
{√

dim(X),T2(X)2
}

. (7)

We will see that both (6) and (7) are sharp for the entire range of the relevant parameters (e.g. in the two
extremes, the case X = ℓn

1 corresponds toρ =O(1) and T2(X) ≍p
n in (6) and (7), respectively, and the case

when X is O(1)-isomorphic to ℓn
2 corresponds to logρ ≍ n and T2(X) =O(1) in (6) and (7), respectively).

1.1.1. A conjectural isomorphic reverse isoperimetric phenomenon. The lower bound on SEP(X) in The-
orem 3 is not always sharp. Indeed, consider X = ℓn

1 ⊕ℓn
2 for which SEP(X) ≍ n yet vr(X∗)

p
dim(X) ≍ n3/4.

It could be, however, that the upper bound on SEP(X) in Theorem 3 is optimal for every X.

Question 5. Is it true that the separation modulus of any normed space X = (Rn ,∥ · ∥X) is bounded above
and below by universal constant multiples of the minimum of diamX* (ΠBY)/voln(BY) over all the normed
spaces Y = (Rn ,∥ ·∥Y) that satisfy BY ⊆ BX?
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See Remark 23 for an explanation why the minimum that is described in Question 5 is affine invariant,
which is necessary for Question 5 to make sense, since the separation modulus is a bi-Lipschitz invariant.

For sufficiently symmetric spaces, we expect that the lower bound on SEP(X) in Theorem 3 is sharp.

Conjecture 6. Every finite dimensional normed space X with enough symmetries satisfies

SEP(X) ≍ vr(X∗)
√

dim(X). (8)

The notion of having enough symmetries was introduced in [GG71]; its definition is recalled in Sec-
tion 1.6.2. We prefer to formulate Conjecture 6 using this notion at the present introductory juncture
even though weaker requirements are needed for our purposes because it is a standard assumption in
Banach space theory and it suffices for all of the most pressing applications that we have in mind.

The upper bound on SEP(X) in (8) implies by [LN05] that e(X) ≲ vr(X∗)
p

dim(X), which would be a
valuable Lipschitz extension theorem due to the fact that estimating the volume ratio is typically tractable
given the variety of tools and extensive knowledge that are available in the literature. For example, Mil-
man and Pisier [MP86] proved (improving by lower-order factors over a major theorem of Bourgain and
Milman [BM85, BM87]; see also [Mil87]), that any finite dimensional normed space X satisfies

vr(X)≲C2(X)
(
1+ logC2(X)

)
, (9)

where C2(X) is the cotype 2 constant of X (see (78) or the survey [Mau03]). Therefore, if (8) holds, then

e(X)≲C2(X)
(
1+ logC2(X)

)√
dim(X), (10)

which would be a remarkable generalization of the bound e(ℓn
2 )≲

p
n of [LN05].

We expect that Theorem 3 already implies Conjecture 6, as expressed in the following conjecture which
would yield a positive answer to Question 5 for normed spaces with enough symmetries.

Conjecture 7. If X = (Rn ,∥ · ∥X) is a normed space with enough symmetries, then there is a normed space
Y = (Rn ,∥ ·∥Y) that satisfies BY ⊆ BX and diamX* (ΠBY)/voln(BY)≲ vr(X∗)

p
n.

As an illustrative example of Conjecture 7, consider X = ℓn∞. Then vr((ℓn∞)∗) = vr(ℓn
1 ) = O(1). One can

compute thatΠBℓn∞ = 2n−1Bℓn∞ . Hence, diamℓn
1

(ΠBℓn∞)/voln(Bℓn∞) ≍ n, so taking Y = ℓn∞ in Theorem 3 only
gives the bound SEP(ℓn∞) ≲ n. However, we will later see that there exists a normed space Y = (Rn ,∥ · ∥Y)
with BY ⊆ Bℓn∞ for which diamℓn

1
(ΠBY)/voln(BY) ≲

p
n. More generally, we will prove that Conjecture 7

(hence also Conjecture 6, by Theorem 3) holds for any normed space for which the standard basis ofRn is
1-symmetric, and we will also see that Conjecture 7 holds up to a logarithmic factor for its unitary ideal.

The minimization in Question 5 can be viewed as a shape optimization problem [HP18] that could
potentially be approached using calculus of variations. Given an origin-symmetric convex body K ⊆Rn ,
it asks for the minimum of the affine invariant functional L 7→ outradiusK ◦(ΠL)/voln(L) over all origin-
symmetric convex bodies L ⊆ K , where for any two origin-symmetric convex bodies A,B ⊆Rn we denote
the minimum radius of a dilate of A that circumscribes B by outradiusA(B) = min{r ⩾ 0 : B ⊆ r A}, and
K ◦ = {y ∈ Rn : supx∈K 〈x, y〉⩽ 1} is the polar of K . Conjecture 7 asserts that if K has enough symmetries,
then this minimum is bounded above and below by universal constant multiples of vr(K ◦)

p
n.

The minimization problem in Question 5 also has an isoperimetric flavor. As such, its investigation
led us to formulate the following conjectural twist of Ball’s reverse isoperimetric phenomenon [Bal91c],
which we think is a fundamental geometric open question and it would be valuable to understand it even
without its consequences that we derive herein.

The isoperimetric quotient of a convex body K ⊆Rn is defined (see [Had57, page 269] or [Sch89]) to be

iq(K ) = voln−1(∂K )

voln(K )
n−1

n

. (11)
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Using this notation, the classical Euclidean isoperimetric theorem states that

iq(K )⩾ iq
(
Bℓn

2

)= n
p
π

Γ
(n

2 +1
) 1

n

≍p
n, (12)

The following theorem of Ball [Bal91c] shows that a judicious choice of the scalar product on Rn ensures
that the isoperimetric quotient of a convex body can also be bounded from above.

Theorem 8 (Ball’s reverse isoperimetric theorem [Bal91c]). For every n ∈ N and every origin-symmetric
convex body K ⊆Rn there exists a linear transformation S ∈ SLn(R) such that iq(SK )⩽ 2n = iq([−1,1]n).

We expect that in the isomorphic regime (i.e., permitting non-isometric O(1) perturbations), origin-
symmetric convex bodies have asymptotically better reverse isoperimetric properties than what is guar-
anteed by Theorem 8. In fact, we conjecture that if in addition to passing from K to SK for some
S ∈ SLn(R), a O(1)-perturbation of SK is allowed, then the isoperimetric quotient can be decreased to
be of the same order of magnitude as that of the Euclidean ball.

Conjecture 9 (isomorphic reverse isoperimetry). There exists a universal constant c > 0 with the following
property. For every n ∈N and every origin-symmetric convex body K ⊆ Rn , there exist a linear transfor-
mation S ∈ SLn(R) and an origin-symmetric convex body L ⊆Rn with cSK ⊆ L ⊆ SK and iq(L)≲

p
n.

Conjecture 9 can be restated analytically as the assertion that any n-dimensional normed space is at
Banach–Mazur distance O(1) from a normed space whose unit ball has isoperimetric quotient O(

p
n).

We will prove that Conjecture 9 holds when K is the unit ball of ℓn
p for any p ∈ [1,∞] and n ∈N, and we

will also see that Conjecture 9 holds up to lower-order factors for any Schatten–von Neumann trace class.
The requirement L ⊇ cSK of Conjecture 9 implies that n

√
voln(L) ⩾ c n

√
voln(K ). So, the following

weaker conjecture is implied by Conjecture 9; we will prove it for any 1-unconditional body.

Conjecture 10 (weak isomorphic reverse isoperimetry). For every n ∈N and every origin-symmetric con-
vex body K ⊆ Rn there exist a linear transformation S ∈ SLn(R) and an origin-symmetric convex body
L ⊆ SK that satisfies n

√
voln(L)≳ n

√
voln(K ) and iq(L)≲

p
n.

In Section 1.6 we will elucidate the relation between the task of bounding from above the rightmost
quantity in (3) and isomorphic reverse isoperimetry. While Conjecture 9 is the strongest version of the
isomorphic reverse isoperimetric phenomenon that we expect holds in full generality, we will see that it
would suffice to prove its weaker variant Conjecture 10 for the purpose of using Theorem 3. In particular,
consider the following symmetric version of Conjecture 10, which we will prove in Section 1.6 implies
Conjecture 7 (hence, using Theorem 3, it also implies Conjecture 6).

Conjecture 11 (symmetric version of Conjecture 10). For every n ∈N, if X = (Rn ,∥ · ∥X) is a normed space
with enough symmetries whose isometry group is a subgroup of the orthogonal groupOn ⊆GLn(R), then
there is a normed space Y = (Rn ,∥ ·∥Y) with BY ⊆ BX and n

√
voln(BY)≳ n

√
voln(BX) such that iq(BY)≲

p
n.

The only difference between Conjecture 10 and Conjecture 11 is that if we impose the further require-
ment that K is the unit ball of a normed space with enough symmetries whose isometry group consists
only of orthogonal matrices, then we are naturally conjecturing that S can be taken to be the identity
matrix, i.e., there is no need to change the standard Euclidean structure on Rn .

We will prove Conjecture 11 for various spaces, including ℓn
p (ℓn

q ) for any p, q ⩾ 1 and n ∈ N, and any
finite dimensional space with a 1-symmetric basis. Also, we will show that Conjecture 11 holds up to a
factor of O(

√
logn) for any unitarily invariant norm on Mn(R). In general, an argument that was shown

to us by B. Klartag and E. Milman and is included in Section 7 (see also Section 1.6.3) shows that Conjec-
ture 10 and Conjecture 11 hold up to a factor of O(logn). We will see that these results lead to Corollary 4,
and in general we will deduce that Conjecture 7, and hence, thanks to Theorem 3, also Conjecture 6, hold
up to lower order factors. Thus, we will obtain the following theorem.
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Theorem 12. SEP(X) ≍ vr(X∗)dim(X)
1
2+o(1) for any normed space X with enough symmetries.

Assuming Conjecture 11, it is possible to compute the exact asymptotic growth rate of the separation
moduli of several important matrix spaces. For example, if Conjecture 11 holds for Sn∞, then we will see
that the o(1) term in (4) could be removed altogether, i.e.,

∀(p,n) ∈ [1,∞]×N, SEP
(
Sn

p

)≍ n
max

{
1, 1

2+ 1
p

}
. (13)

Also, assuming Conjecture 11 the lower order factors in the last two statements of Corollary 4 could be
removed, namely we will see that Conjecture 11 implies that the separation modulus of Mn(R) equipped
with the operator norm ∥ ·∥ℓn

p→ℓn
q

from ℓn
p to ℓn

q satisfies

SEP
(
Mn(R),∥ ·∥ℓn

p→ℓn
q

)≍


n
3
2− 1

min{p,q} if p, q ⩾ 2,

n
1
2+ 1

max{p,q} if p, q ⩽ 2,
n if p ⩽ 2⩽ q,

nmax
{

1, 1
q − 1

p + 1
2

}
if q ⩽ 2⩽ p,

(14)

and the separation modulus of the projective tensor product ℓn
p⊗̂ℓn

q satisfies

SEP
(
ℓn

p⊗̂ℓn
q

)≍{
n

3
2 if max{p, q}⩾ 2,

n1+ 1
max{p,q} if max{p, q}⩽ 2.

(15)

Remark 173 describes ramifications of these conjectural statements to norms of algorithmic importance.

Roadmap. The rest of the Introduction effectively restarts the description of the present work, with many
more details/definitions/background/ideas of proofs, than what we have included above. We organized
the introductory material in this way since this work pertains to multiple mathematical disciplines, in-
cluding Banach spaces, convex geometry, nonlinear functional analysis, metric embeddings, extension
of functions, and theoretical computer science. The backgrounds of potential readers are therefore var-
ied, so even though the above overview achieves the goal of presenting the main results quickly, it in-
evitably includes terminology that is not familiar to some. The aforementioned organizational choice
makes the ensuing discussion accessible. Additional background can be found in the monographs [LT77,
MS86, TJ89] (Banach space theory), [BL00] (nonlinear functional analysis), [Mat02, Ost13] (metric em-
beddings), [BB12] (extension of functions), as well as the references that are cited throughout.

While the ensuing extended introductory text is not short, it achieves more than merely a description
of the results, history, concepts and methods: It also contains groundwork that is needed for the subse-
quent sections. Thus, reading the Introduction will lead to a thorough conceptual understanding of the
contents, leaving to the remaining sections considerations that are for the most part more technical.

We will start by focusing on the classical Lipschitz extension problem because it is more well known
than the stochastic clustering issues that lead to most of our new results on Lipschitz extension, and also
because it requires less technicalities (e.g. a suitable measurability setup) than our subsequent treatment
of stochastic clustering. Throughout the Introduction (and beyond), we will formulate conjectures and
questions that are valuable even without the links to Lipschitz extension and clustering that are derived
herein. After the Introduction, the rest of this work will be organized thematically as follows. Section 2
is devoted to proofs of our various lower bounds, namely impossibility results that rule out the exis-
tence of extensions and clusterings with certain properties. Section 3 and Section 4 deal with positive
results about random partitions. Specifically, Section 3 is of a more foundational nature as it describes
the concepts, basic constructions, and proofs of measurability statements that are needed for later appli-
cations in the infinitary setting (of course, measurability can be ignored for statements about finite sets).
Section 4 analyses in the case of normed spaces a periodic version of a commonly used randomized par-
titioning technique called iterative ball partitioning, and computes optimally (up to universal constant
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factors) the probabilities of its separation and padding events. Section 5 shows how to pass from ran-
dom partitions to Lipschitz extension, by adjusting to the present setting the method that was developed
in [LN05]. Section 5 also contains further foundational results on Lipschitz extension, as well questions
and conjectures that are of independent interest. Section 6 contains a range of volume and surface area
estimates that are needed in conjunction with the theorems of the preceding sections in order to deduce
new Lipschitz extension and stochastic clustering results for various normed spaces and their subsets.
Section 7 proves that Conjecture 10 and Conjecture 11 hold up to a factor of O(logn), and also shows that
the approach that leads to this result cannot fully resolve Conjecture 11.

1.2. Basic notation. Given a metric space (M,dM), a point x ∈M and a radius r ⩾ 0, the corresponding
closed ball is denoted BM(x,r ) = {y ∈M : dM(y, x) ⩽ r }. If (X,∥ · ∥X) is a Banach space (in this work, all
vector spaces are over the real scalars unless stated otherwise), then denote by BX the unit ball centered
at the origin. Under this notation we have BX = BX(0,1) and BX(x,r ) = x + r BX for every x ∈ X and r ⩾ 0.

If (M,dM), (N,dN) are metric spaces and ψ : M→N, then for C⊆M the Lipschitz constant of ψ on C

is denoted ∥ψ∥Lip(C;N) ∈ [0,∞]. Thus, if C contains at least two points, then

∥ψ∥Lip(C;N)
def= sup

x,y∈C
x ̸=y

dN

(
ψ(x),ψ(y)

)
dM(x, y)

.

In the special case N =Rwe will use the simpler notation ∥ψ∥Lip(C;R) = ∥ψ∥Lip(C).
If (X,∥·∥X), (Y,∥·∥Y) are isomorphic Banach spaces, then their Banach–Mazur distance dBM(X,Y) is the

infimum of the products of the operator norms ∥T ∥X→Y and ∥T −1∥Y→X over all possible linear isomor-
phisms T : X → Y. The (bi-Lipschitz) distortion of a metric space (M,dM) into a metric space (N,dN),
denoted c(N,dN)(M,dM) or cN(M) if the underlying metrics are clear from the context, is the infimum
over those D ∈ [1,∞] for which there exists a mapping φ :M→N and (a scaling factor) λ> 0 such that

∀x, y ∈M, λdM(x, y)⩽ dN

(
φ(x),φ(y)

)
⩽DλdM(x, y). (16)

Fix n ∈N. Throughout what follows, Rn will be always be endowed with its standard Euclidean struc-
ture, i.e., with the scalar product 〈x, y〉 = x1 y1 + . . .+ xn yn for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn . Given
z ∈ Rn ∖ {0}, the orthogonal projection onto its orthogonal hyperplane z⊥ = {x ∈ Rn : 〈x, z〉 = 0} will be
denoted Projz⊥ :Rn →Rn . For 0 < s ⩽ n, the s-dimensional Hausdorff measure of a closed subset A ⊆Rn

is denoted vols(A). Integration with respect to the s-dimensional Hausdorff measure is indicated by dx.
If 0 < vols(A) <∞ and f : A →R is continuous, then write

�
S f (x)dx = vols(A)−1

�
A f (x)dx.

Given a normed space (X,∥ ·∥X) and p ∈ [1,∞], ℓn
p (X) is the vector space Xn equipped with the norm

∀x = (x1, . . . , xn) ∈ Xn , ∥x∥ℓn
p (X) =

(∥x1∥X + . . .+∥xn∥X
) 1

p ,

where for p =∞ this is understood to be ∥x∥ℓn∞(X) = max j∈{1,...,n} ∥x j∥X. It is common to use the simpler
notation ℓn

p = ℓn
p (R) and we write as usual Sn−1 = ∂Bℓn

2
. The Schatten–von Neumann trace class Sn

p is the

(n2-dimensional) space of all n by n real matrices Mn(R), equipped with the norm that is defined by

∀T ∈Mn(R), ∥T ∥Sn
p
=

(
Tr

(
(T T ∗)

p
2
)) 1

p =
(

Tr
(
(T ∗T )

p
2
)) 1

p
,

where ∥T ∥Sn∞ = ∥T ∥ℓn
2 →ℓn

2
is the operator norm of T when it is viewed as a linear operator from ℓn

2 to ℓn
2 .

1.3. Lipschitz extension. As we recalled in Section 1.1, one associates to every metric space (M,dM)
a bi-Lipschitz invariant6, called the Lipschitz extension modulus of (M,dM) and denoted e(M,dM) or
e(M) if the metric is clear from the context, by defining it to be the infimum over those K ∈ [1,∞] with
the property that for every nonempty subset C ⊆ M, every Banach space (Z,∥ · ∥Z) and every Lipschitz
function f : C→ Z there is a mapping F : M → Z that extends f , i.e., F (x) = f (x) whenever x ∈ C, and

6The assertion that e(M) is a bi-Lipschitz invariant refers to the fact that the definition immediately implies that if (N,dN)
is another metric space into which (M,dM) admits a bi-Lipschitz embedding, then e(M)⩽ cN(M)e(N).
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∥F∥Lip(M,Z) ⩽ K ∥ f ∥Lip(C,Z); see Figure 1. All of the ensuing extension theorems hold for a larger class
of target metric spaces that need not necessarily be Banach spaces, including Hadamard spaces and
Busemann nonpositively curved spaces [BH99], or more generally spaces that posses a conical geodesic
bicombing (see e.g. [DL15]). This greater generality will be discussed in Section 5, but we prefer at this
introductory juncture to focus on the more classical and highly-studied setting of Banach space targets.

M

F

))
C
?�

IdC→M

OO

f // Z

FIGURE 1. Given K ⩾ 1, the assertion that the Lipschitz extension modulus of a metric space
M satisfies e(M) < K means that for all subsetsC⊆M, all Banach spaces Z and all 1-Lipschitz
mappings f : C→ Z, there is a K -Lipschitz mapping F : M→ Z such that the above diagram
commutes, where IdC→M :C→M is the formal inclusion.

When (X,∥ · ∥X) is a finite dimensional normed space, the currently best-available general bounds on
the quantity e(X) in terms of dim(X) are contained the following theorem.

Theorem 13. There is a universal constant c > 0 such that for any finite dimensional normed space X,

dim(X)c ≲ e(X)≲ dim(X). (17)

The bound e(X)≲ dim(X) in (17) is a famous result of Johnson, Lindenstrauss and Schechtman [JLS86],
which they proved by cleverly refining the classical extension method of Whitney [Whi34]; different
proofs of this estimate were found by Lee and the author [LN05] as well as by Brudnyi and Brudnyi [BB06]
(see also the discussion in the paragraph following equation (37) below). It remains a major longstanding
open problem to determine whether or not the bound of [JLS86] could be improved to e(X) = o(dim(X)).

The new content of Theorem 13 is the lower bound on e(X), which improves over the previously known
bound e(X) ⩾ exp(c

√
logdim(X)); see Remark 97 for the history of this question. It is a very interesting

open problem to determine the supremum over those c for which Theorem 13 holds.7 More generally,
it is natural to aim to evaluate the precise power-type behavior of e(X) as dim(X) → ∞ for specific (se-
quences of) finite dimensional normed spaces X. However, prior to the present work and despite many
efforts over the years, this was not achieved for any finite dimensional normed space whatsoever.

Theorem 14 (restatement of Theorem 2). For every n ∈Nwe have e
(
ℓn∞

)≍p
n.

The bound e(ℓn∞) ≳
p

n follows from a combination of [BB05, Theorem 4] and [BB07a, Theorem 1.2].
The new content of Theorem 14 is the the upper bound e(ℓn∞) ≲

p
n (and, importantly, the extension

procedure that leads to it; see below). The previously best-known upper bound on e(ℓn∞) was the afore-
mentioned O(n) estimate of [JLS86]. The question of evaluating the asymptotic behavior of e(ℓn

p ) as
n →∞ for each p ∈ [1,∞] is natural and longstanding; it was stated in [BB05, Problem 2] and reiterated
in [BB07b, Section 4], [BB07a, Problem 1.4] and [BB12, Problem 8.14]. Theorem 14 answers this question
when p =∞. The upper bound on e(ℓn∞) of Theorem 14 is a special case of a general extension criterion
that provides the best-known Lipschitz extension results in other settings (including for ℓn

p when p > 2),
but we chose to state it separately because it yields the first (and currently essentially only) family of
normed spaces for which the growth rate of their Lipschitz extension moduli has been determined.

7Our proof of the lower bound on e(X) of Theorem 13 shows that this supremum is at least 1
12 ; see equation (140).
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Remark 15. It is meaningful to study extension of θ-Hölder functions for any 0 < θ⩽ 1. Namely, one can
analogously define the θ-Hölder extension modulus of a metric space (M,dM), denoted eθ(M). Alterna-
tively, this notion falls into the above Lipschitz-extension framework because one can define

eθ(M)
def= e

(
M,dθ

M

)
. (18)

The results that we obtain herein also yield improved estimates on θ-Hölder extension moduli; see Corol-
lary 139. However, when θ < 1 we never get a matching lower bound (the reason why we can do better in
the Lipschitz regime θ = 1 is essentially due to the fact that Lipschitz functions are differentiable almost
everywhere). For example, in the setting of Theorem 14 we get the upper bound

∀θ ∈ (0,1], eθ
(
ℓn
∞

)
≲ n

θ
2 , (19)

but the best lower bound on eθ(ℓn∞) that we are at present able to prove is

eθ
(
ℓn
∞

)
≳ nmax

{
θ
4 , θ2 +θ2−1

}
=

{
n

θ
4 if 0⩽ θ⩽

p
65−1

8 ,

n
θ
2 +θ2−1 if

p
65−1

8 ⩽ θ⩽ 1.
(20)

We conjecture that eθ(ℓn∞) ≍θ n
θ
2 , but proving this for θ < 1 would likely require a genuinely new idea.

Question 16. Despite its utility in many cases, the extension method that underlies Theorem 14 does not
yield improved bounds for some important spaces, including notably ℓn

1 and ℓn
2 . Thus, determining the

asymptotic behavior of e(ℓn
1 ) and e(ℓn

2 ) as n →∞ remains a tantalizing open question. Specifically, the
currently best-known bounds on e(ℓn

1 ) are
p

n ≲ e
(
ℓn

1

)
≲ n, (21)

where the first inequality in (21) is due to Johnson and Lindenstrauss [JL84] and the second inequality
in (21) is the aforementioned general upper bound of [JLS86] on the Lipschitz extension modulus of any
n-dimensional normed space. The currently best-known bounds in the Hilbertian setting are

4
p

n ≲ e
(
ℓn

2

)
≲

p
n, (22)

where the first inequality in (22) is due to Mendel and the author [MN13] (a different proof of this lower
bound on e(ℓn

2 ) follows from [Nao21b]), and the second inequality in (22) is from [LN05].

By the bi-Lipschitz invariance of the Lipschitz extension modulus, the second inequality in (22) im-
plies the following bound from [LN05], which holds for every finite dimensional normed space X.

e(X)≲ dBM
(
X,ℓdim(X)

2

)√
dim(X). (23)

This refines the upper bound on e(X) in (17) because dBM(X,ℓdim(X)
2 )⩽

p
dim(X) by John’s theorem [Joh48].

Remark 17. In the context of the aforementioned question if the bound e(X) ≲ dim(X) of [JLS86] is op-
timal, by (23) we see that e(X) = o(dim(X)) unless the Banach–Mazur distance between X and Euclidean
space is of order

p
dim(X). Structural properties of such spaces of extremal distance to Euclidean space

have been studied in [MW78, Pis79, Bou82, JS82a, ATTJ05]; see also chapters 6 and 7 of [TJ89]. In par-
ticular, the Mil′man–Wolfson theorem [MW78] asserts that this holds if and only if X has a subspace of
dimension k = k(dim(X)) whose Banach–Mazur distance to ℓk

1 is O(1), where limn→∞ k(n) =∞.

As dBM(ℓn
p ,ℓn

2 ) ≍ n|p−2|/(2p) for all n ∈N and p ∈ [1,∞] (see [JL01, Section 8]), it follows from (23) that

e
(
ℓn

p

)
≲

{
n

1
p if p ∈ [1,2],

n1− 1
p if p ∈ [2,∞].

(24)

(24) was the previously best-known upper bound on e(ℓn
p ), and here we improve it for every p > 2.

Theorem 18. For every n ∈N and every p ∈ [1,∞] we have e
(
ℓn

p

)
≲ n

max
{

1
2 , 1

p

}
.
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Theorem 14 is the case p =∞ of Theorem 18. We do not know if Theorem 18 is optimal (perhaps up
to lower order factors) as n →∞ for fixed p ∈ [2,∞), but we conjecture that this is indeed the case, which
would resolve [BB05, Problem 2]. The currently best-known lower bound on e(ℓn

p ) for every p ∈ [1,∞] is

e
(
ℓn

p

)
≳


n

1
p − 1

2 if 1⩽ p ⩽ 4
3 ,

4
p

n if 4
3 ⩽ p ⩽ 2,

n
1

2p if 2⩽ p ⩽ 3,

n
1
2− 1

p if 3⩽ p ⩽∞.

(25)

A lower bound on e(ℓn
p ) that coincides with (25) when p ∈ [1,4/3] ∪ [3,∞] is stated in Corollary 8.12

of [BB12], but [BB12, Corollary 8.12] is weaker than (25) when 4/3 < p < 3. The reason for this is that the
lower bound of [MN13] on e(ℓn

2 ) that appears in (22) was not available when [BB12] was written, but (25)
for 4/3 < p < 3 follows quickly by combining the first inequality in (22) with [FLM77]; see Remark 2.4.

Remark 19. Theorem 18 resolves negatively a conjecture that A. Brudnyi and Y. Brudnyi posed as Conjec-
ture 5 in [BB05]. They conducted a comprehensive study of the linear extension problem for real-valued
Lipschitz functions, where one considers for a metric space (M,dM) a quantity λ(M) which is defined
the same as e(M), but with the further requirements that the function f is real-valued and that the ex-
tended function F depends linearly on f . Namely, λ(M) is the infimum over those K ∈ [1,∞] such that
for every C⊆M there is a linear operator ExtC : Lip(C) → Lip(M) that assigns to every Lipschitz function
f :C→R a function ExtC f :M→R satisfying ExtC f (s) = f (s) for every s ∈C, and

∥ExtC f ∥Lip(M) ⩽K ∥ f ∥Lip(C).

They also considered a natural variant of this quantity when M= X is a Banach space, denoted λconv(X),
which is defined almost identically to λ(X) except that now the subset C is only allowed to be any convex
subset of X rather than a subset of X without any additional restriction. Conjecture 5 in [BB05] states that

∀(p,n) ∈ [1,∞]×N, λ
(
ℓn

p

)≍p λconv
(
ℓn

p

)p
n. (26)

Theorem 18 implies that this conjecture is false for every p ∈ (2,∞]. Indeed, the asymptotic behavior of
λconv(ℓn

p ) was evaluated in [BB07b, Theorem 2.19], where it was shown that

∀p ∈ [1,∞], λconv
(
ℓn

p

)≍ n
∣∣ 1

2− 1
p

∣∣
.

Consequently, λconv(ℓn
p )
p

n ≍ n1− 1
p when p > 2. Next, in [BB07a] a quantity ν(M) was associated to a

metric space (M,dM) by defining it almost identically to the definition of e(M), except that the target
Banach space Z is allowed to be any finite dimensional Banach space rather than any Banach space
whatsoever. By definition ν(M) ⩽ e(M), but actually λ(M) = ν(M) thanks to [BB07a, Theorem 1.2] (see
the work [AP20] of Ambrosio and Puglisi for more on this “linearization phenomenon”). Using these
results in combination with Theorem 18, we see that for every p ∈ (2,∞], as n →∞ we have

λ
(
ℓn

p

)= ν(
ℓn

p

)
⩽ e

(
ℓn

p

)
≲

p
n = o

(
n1− 1

p

)
.

Thus, λ(ℓn
p ) = o

(
λconv(ℓn

p )
p

n
)

as n →∞ for any p > 2, in contrast to the conjecture (26) of [BB05].

Prior to passing to the general Lipschitz extension theorem that underlies the new results that were
described above, we will further illustrate its utility by stating one more concrete application. For each
p ∈ [1,∞] and n ∈ N, if k ∈ {1, . . . ,n}, then let (ℓn

p )⩽k denote the subset of Rn consisting of those vectors
with at most k nonzero coordinates, equipped with the metric that is inherited from ℓn

p .

Theorem 20. For every p ∈ [1,∞], every n ∈N and every k ∈ {1, . . . ,n} we have e
(
(ℓn

p )⩽k
)
≲ k

max
{

1
p , 1

2

}
.
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Theorem 18 is the special case k = n and p ⩾ 2 of Theorem 20. If 1⩽ p ⩽ 2 and k = n, then Theorem 20
is the estimate (24), which is the best-known upper bound on e(ℓn

p ) for p in this range. However, for
general k ∈ {1, . . . ,n} Theorem 20 yields a refinement of (24) in the entire range p ∈ [1,∞] which does not
seem to follow from previously known results. In particular, the case p = 2 of Theorem 20 becomes

e
(
(ℓn

2 )⩽k
)
≲

p
k. (27)

Even though (27) concerns a Euclidean setting, its proof relies on a construction that employs a multi-
scale partitioning scheme using balls of an auxiliary metric onRn that differs from the ambient Euclidean
metric. The utility of such a non-Euclidean geometric reasoning despite the Euclidean nature of the
question being studied is discussed further in Section 1.4.

1.4. A volumetric upper bound on the Lipschitz extension modulus. We will prove that Theorem 20
(hence also its special cases Theorem 14 and Theorem 18) is a consequence of Theorem 21 below, which
is a Lipschitz extension theorem for subsets of finite dimensional normed spaces in terms of volumes of
hyperplane projections of their unit balls. Throughout what follows, for dealing with volumetric notions
we will adhere to the following conventions. Given n ∈ N, when we say that X = (Rn ,∥ · ∥X) is a normed
space we mean that the underlying vector space is Rn and that ∥ · ∥X : Rn → [0,∞) is a norm on Rn . This
is, of course, always achievable by fixing any scalar product on an n-dimensional normed space. While
the ensuing statements hold in this setting, i.e., for an arbitrary identification of X with Rn , a judicious
choice of such an identification is beneficial; the discussion of this important matter is postponed to
Section 1.6.2 because it is not needed for the initial description of the main results. We will continue
using the notation BX = {x ∈ Rn : ∥x∥X ⩽ 1} for the unit ball of X. Also, given C⊆ Rn we denote by CX the
metric space consisting of the set C equipped with the metric that is inherited from ∥·∥X. This notation is
important for us because we will crucially need to simultaneously consider more than one norm on Rn .

Theorem 21. Suppose that n ∈N and that X = (Rn ,∥ ·∥X) and Y = (Rn ,∥ ·∥Y) are two normed spaces. Then,
for every C⊆Rn we have the following upper bound on the Lipschitz extension modulus of CX.

e(CX)≲
(

sup
x,y∈C
x ̸=y

∥x − y∥X

∥x − y∥Y

)
sup

x,y∈C
x ̸=y

(voln−1
(
Proj(x−y)⊥BY

)
voln(BY)

·
∥x − y∥ℓn

2

∥x − y∥X

)
. (28)

We will next discuss the geometric meaning of Theorem 21 and derive some of its consequences,
including Theorem 20. Firstly, by homogeneity the case C=Rn of (28) becomes

e(X)≲
(

sup
y∈∂BY

∥y∥X
)

sup
x∈∂BX

(
voln−1

(
Projx⊥BY

)
voln(BY)

∥x∥ℓn
2

)
. (29)

The quantity supy∈∂BY
∥y∥X in (29) is the norm ∥Idn∥Y→X of the identity matrix Idn ∈Mn(R) as an operator

from Y to X. Alternatively, supy∈∂BY
∥y∥X = diamX(BY)/2, where for each C ⊆ Rn we denote its diameter

with respect to the metric that X induces by diamX(C) = supx,y∈C ∥x − y∥X.
Given a convex body K ⊆Rn , letΠ∗K ⊆Rn be the polar of the projection body of K , which is defined to

be the unit ball of the norm ∥ ·∥Π*K on Rn that is given by setting

∀x ∈Rn ∖ {0}, ∥x∥Π*K
def= 1

2

�
∂K

∣∣〈x, NK (y)〉∣∣dy = voln−1
(
Projx⊥K

)∥x∥ℓn
2

, (30)

where NK (y) ∈ Sn−1 denotes the unit outer normal to ∂K at y ∈ ∂K (which is uniquely defined almost
everywhere with respect to the surface-area measure on ∂K ), and the final equality in (30) is the Cauchy
projection formula (see e.g. [Gar06, Appendix A]). The projection bodyΠK of K is the polar ofΠ∗K . These
important notions were introduced by Petty [Pet67]. When X = (Rn ,∥ · ∥X) is a normed space let Π∗X be
the normed space whose unit ball isΠ∗BX. LetΠX = (Π∗X)∗ be the normed space whose unit ball isΠBX.

By substituting (30) into (29) we get the following interpretation of our bound on e(X) in terms of ana-
lytic and geometric properties of projection bodies; it is worthwhile to state it as a separate corollary even
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though it is only a matter of notation because of its intrinsic interest and also because these alternative
viewpoints were useful for guiding some of the subsequent considerations.

Corollary 22. Any two normed spaces X = (Rn ,∥ ·∥X),Y = (Rn ,∥ ·∥Y) satisfy

e(X)≲
diamX(BY)diamΠ*Y(BX)

voln(BY)
≍ ∥Idn∥Y→X∥Idn∥X→Π*Y

voln(BY)

= ∥Idn∥X→Y∥Idn∥ΠY→X*

voln(BY)
≍ diamX(BY)diamX* (ΠBY)

vol(BY)
.

(31)

The penultimate step in (31) is duality (the norm of an operator equals the norm of its adjoint) and
the final quantity in (31) relates Theorem 21 to the second estimate in Theorem 3.

Remark 23. Corollary 22 has the right affine invariance. For S ∈ SLn(R) let SX = (Rn ,∥·∥SX) be the normed
space whose unit ball is SBX; equivalently, ∥x∥SX = ∥S−1x∥X for every x ∈Rn . Then X and SX are isometric
as metric spaces, so e(SX) = e(X). We have (SX)∗ = (S∗)−1X∗ (by definition), and Π(SBY) = (S∗)−1ΠBY

by [Pet67]. From this we see that diam(SX)* (ΠBSY) = diamX* (ΠBY). Thus, the minimum of the right hand
side of (31) over all normed spaces Y = (Rn ,∥ ·∥Y) is also invariant under the action of SLn(R).

The special case of Theorem 21 in which the normed space Y coincides with the given normed space
X is in itself a nontrivial bound on the Lipschitz extension modulus. Examining this special case first will
help elucidate how the idea arose to introduce an auxiliary space Y that may differ from X, and why this
can yield stronger estimates. If X = Y, then the bound (28) becomes

e(CX)≲ sup
x,y∈C
x ̸=y

(voln−1
(
Proj(x−y)⊥BX

)
voln(BX)

·
∥x − y∥ℓn

2

∥x − y∥X

)
. (32)

Correspondingly, the bound (29) becomes

e(X)≲ sup
z∈∂BX

(
voln−1

(
Projz⊥BX

)
voln(BX)

∥z∥ℓn
2

)
= diamΠ*X(BX)

voln(BX)
. (33)

Even these weaker estimates suffice to obtain new results, e.g. we will see that this is so if 2⩽ p =O(1) and
X = ℓn

p . However, as we will soon explain, (33) does not imply an upper bound on ℓn∞ that is better than
the aforementioned general bound of [JLS86]. Despite this shortcoming of (32) and (33) relative to (28),
it is worthwhile to state these special cases of Theorem 21 separately because they are simpler than (28)
and hence perhaps somewhat easier to remember. Moreover, a naïve way to enhance the applicability
of (32) is to leverage the fact that the Lipschitz extension modulus is a bi-Lipschitz invariant, so that

e(CX)⩽ ∥Idn∥Lip(CY,CX)∥Idn∥Lip(CX,CY)e(CY).

Consequently, by estimating e(CY) through (32) we formally deduce from (32) that

e(CX)≲
(

sup
x,y∈C
x ̸=y

∥x − y∥X

∥x − y∥Y

)(
sup

x,y∈C
x ̸=y

∥x − y∥Y

∥x − y∥X

)
· sup

x,y∈C
x ̸=y

(voln−1
(
Proj(x−y)⊥BY

)
voln(BY)

·
∥x − y∥ℓn

2

∥x − y∥Y

)
. (34)

We do not see how to deduce Theorem 18 and Theorem 20 from (34). However, we will show that (34)
suffices for proving Theorem 14 (as well as some other results that will be presented later). In summary,
even the case of Theorem 21 in which the auxiliary space Y coincides with X is valuable, but Theorem 21
does not follow from merely combining its special case Y = X with bi-Lipschitz invariance.

Given a normed space X = (Rn ,∥ ·∥X) and z ∈Rn ∖ {0}, the quantity

1

n
voln−1

(
Projz⊥BX

)∥z∥ℓn
2

(35)
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is equal to the volume of the cone

Conez (BX)
def= conv

(
{z}∪Projz⊥BX

)⊆Rn (36)

whose base is the (n−1)-dimensional convex setProjz⊥BX ⊆ z⊥ and whose apex is z. In (36) and through-
out what follows, conv(·) denotes the convex hull. Thus, the estimate (33) can be restated as follows.

e(X)≲ n sup
z∈∂BX

voln
(
Conez (BX)

)
voln(BX)

. (37)

Through (37) we see that the geometric interpretation of the “bad spaces” X for (33) is that these are the
spaces that have a “pointy direction” z ∈ ∂BX for which the volume of the cone Conez (BX) is a significant
fraction of the volume of BX. Examples will be presented next, but note first that a short geometric
argument (see the proof of [GNS12, Lemma 5.1]) shows that voln(Conez (BX)) ⩽ voln(BX)/2, so the right
hand side of (37) is at most n/2. Hence, (33) is a refinement of the classical bound e(X)≲ n of [JLS86].

Nevertheless, a “vanilla” application of (33) does not yield an asymptotically better estimate than that
of [JLS86] even when X = ℓn∞. Indeed, Bℓn∞ = [−1,1]n and a simple argument (see [CF86]) shows that

∀z ∈Rn ∖ {0},
voln−1

(
Projz⊥ [−1,1]n

)
voln([−1,1]n)

=
∥z∥ℓn

1

2∥z∥ℓn
2

. (38)

So, by considering the all 1’s vector z = 1{1,...,n} ∈ ∂Bℓn∞ we see that for X = ℓn∞ the right hand side of (33) is
at least n/2. The right hand side of (33) is at least n/2 when X = ℓn

1 , as seen by taking z = (1,0, . . . ,0) ∈ ∂Bℓn
1

.
Such “problematic" directions z ∈ ∂BX can sometimes be the overwhelming majority of ∂BX. Consider
Ball’s counterexample [Bal91b] to the Shepard Problem [She64], which states that for any n ∈N there is a
normed space X = (Rn ,∥ · ∥X) such that voln(BX) = 1 yet voln−1(Projz⊥BX) ≳

p
n for every z ∈ Sn−1. Since

voln(Bℓn
2

)⩽ (3/
p

n)n while voln(BX) = 1, the proportion of those z ∈ ∂BX for which ∥z∥ℓn
2
⩾

p
n/4 tends to

1 as n →∞ (exponentially fast). Any such z satisfies ∥z∥ℓn
2

voln−1(Projz⊥BX)/voln(BX)≳ n.
These obstacles can sometimes be overcome by perturbing the given normed space X prior to invok-

ing (33), i.e., by using of Theorem 21 with a suitably chosen auxiliary normed space Y = (Rn ,∥ · ∥Y). In
particular, since by Hölder’s inequality ∥ · ∥ℓn

2
⩽ n1/2−1/p∥ · ∥ℓn

p
when p ⩾ 2, Theorem 18 follows from a

substitution of the space Yn
p of Theorem 24 below into Theorem 21 (with X = ℓn

p ), or even into (34).

Theorem 24. For any n ∈N and p ∈ [1,∞] there is a normed space Yn
p = (Rn ,∥ ·∥Yn

p
) that satisfies

∀x ∈Rn ∖ {0}, ∥x∥Yn
p
≍ ∥x∥ℓn

p
and

voln−1
(
Projx⊥BYn

p

)
voln

(
BYn

p

) ≲ n
1
p . (39)

The case p =∞ of Theorem 24 implies Theorem 20 through an application of Theorem 21. Indeed, fix
p ⩾ 1 and n ∈ N. Suppose that x, y ∈ (ℓn

p )⩽k for some k ∈ {1, . . . ,n}. Then x − y has at most 2k nonzero
coordinates. Therefore, if Yn∞ is as in Theorem 24, then by Hölder’s inequality we have

(2k)
−max

{
1
2− 1

p ,0
}
∥x − y∥ℓn

2
⩽ ∥x − y∥ℓn

p
⩽ (2k)

1
p ∥x − y∥ℓn∞ ≍ k

1
p ∥x − y∥Yn∞ . (40)

Theorem 20 follows by substituting these bounds and the case p =∞ of (39) into (28). Observe that we
would have obtained the weaker bound e((ℓn

p )⩽k )≲ k1/p+1/2 if we used (34) instead of (28).

If p =O(1), then one can take Yn
p = ℓn

p in Theorem 24. In fact, the direction z ∈ Sn−1 at which

max
z∈Sn−1

voln−1
(
Projz⊥Bℓn

p

)
(41)

is attained was determined by Barthe and the author in [BN02]. This result implies that

∀p ⩾ 1, max
z∈Sn−1

voln−1
(
Projz⊥Bℓn

p

)
voln(Bℓn

p
)

≍ n
1
p
√

min{p,n}. (42)
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As [BN02] computes (41) exactly, the implicit constant factors in (42) can be evaluated, but in the present
context such precision is of secondary importance. While (42) follows from [BN02] (see the deduction
in [Nao17a]), we will give a self-contained proof of (42) in Section 6 as a special case of a more general
result that we will use for other purposes as well. In the range q ∈ (2,∞), a different approach to com-
puting (41) was found in [KRZ04]. Earlier methods for estimating (41) with worse lower order factors are
due to [Sch89] and [Mül90]; the latter is an adaptation of an idea (used for related purposes) in [Bou87].

For each k ∈ {1, . . . ,n}, by applying (28) with Y = ℓn
q for some q ⩾ p, using (42) with p replaced by q , and

optimizing the resulting bound over q , one obtains a result that matches Theorem 20 up to unbounded
lower order factors. More precisely, the best that one can get with this approach (up to universal constant
factors) is when q = max{2log(n/k), p} if p ⩽ log(2k). If p ⩾ log(2k), then use (28) with Y = ℓn

log(2k).

Theorem 24 provides an auxiliary space Y for which a use of (28) removes the above lower order factors,
and yields a sharp result when p =∞ (we conjecture that it is sharp for any p ⩾ 2). Regardless of whether
we apply (28) with the space Y = Yn∞ of Theorem 24 or with Y = ℓn

q for a suitable choice of q ⩾ p, we have
seen that without using an auxiliary space Y ̸= ℓn

p in (28) we do not come close to such results.
Even though in Theorem 21 we are interested in extending functions that are Lipschitz in the metric

that is induced by the given norm ∥ · ∥X, the underlying reason for the bounds of Theorem 21 is a parti-
tioning scheme (to be described below) that iteratively carves out balls in the metric that is induced by
the auxiliary norm ∥·∥Y. So, the perturbation of X into Y amounts to exhibiting a Lipschitz extension op-
erator through the use of a multi-scale construction that utilizes geometric shapes that differ from balls
in the ambient metric. This strategy is feasible because the quantity e(CX) in the left hand side of (32)
is a bi-Lipschitz invariant, while the volumes that appear in the right hand side of (32) scale exponen-
tially in n. Hence, by passing to an equivalent norm one could hope to reduce the right hand side of (32)
significantly, while not changing the left hand side of (32) by too much.

This perturbative approach is decisively useful for X = ℓn∞. When one unravels the ensuing proofs, the
upper bound on e(ℓn∞) of Theorem 14 arises from a multi-scale construction of an extension operator
(using a gentle partition of unity [LN05]) that utilizes a partition of space that is obtained by iteratively
removing sets of the form x+r BYn∞ , where Yn∞ is as in Theorem 24. If one carries out the same procedure
while using balls of the intrinsic metric of ℓn∞ (namely, hypercubes x + r [−1,1]n in place of x + r BYn∞ ,
which look like hypercubes with “rounded corners”), then only the weaker bound e(ℓn∞)≲ n is obtained.
We already mentioned that such a phenomenon even occurs in the proof of the Euclidean estimate (27).

The following two examples describe further uses of Theorem 21; we will work out several more later.

Example 25. In the forthcoming work [NS21a], the author and Schechtman prove (for an application to
metric embedding theory) the following asymptotic evaluation of the maximal volumes of hyperplane
projections of the unit balls of the Schatten–von Neumann trace classes.

∀q ⩾ 1, max
A∈Mn (R)∖{0}

voln2−1
(
ProjA⊥BSn

q

)
voln2

(
BSn

q

) ≍ n
1
2+ 1

q
√

min{q,n}. (43)

Upon substitution into Theorem 21, this yields the following new estimates on the Lipschitz extension
moduli of Schatten–von Neumann trace classes, which holds for every p ⩾ 1 and every integer n ⩾ 2.

e
(
Sn

p

)
≲

{
n

1
2+ 1

p if p ∈ [1,2],
n

√
min{p, logn} if p ∈ [2,∞].

(44)

Indeed, by Hölder’s inequality ∥·∥Sn
2
⩽ n

max
{

0, 1
2− 1

p

}
∥·∥Sn

p
, so (44) for p ⩽ logn follows from a substitution

of these point-wise bounds and (43) when q = p into the case X = Y = Sn
p of Theorem 21. The case

p ⩾ logn of (44) follows from the same reasoning using (43) when q = logn and Theorem 21 for X = Sn
p

and Y = Sn
q , since in this case dBM(Sn

p ,Sn
q ) ≲ 1. Note that, since dim(Sn

p ) = n2, for every p ∈ [1,∞] the
bound on e(Sn

p ) in (44) is o(dim(Sn
p )), i.e., it is asymptotically better than what follows from [JLS86].
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More generally, given p ⩾ 1, an integer n ⩾ 2 and r ∈ {3, . . . ,n}, let (Sn
p )⩽r be the set of n by n matrices of

rank at most r , equipped with the metric inherited from Sn
p . Then, (44) has the following strengthening.

e
(
(Sn

p )⩽r
)
≲ r

max
{

1
p , 1

2

}p
n ·

{ √
max

{
log

(n
r

)
, p

}
if p ⩽ logr,√

logn if p ⩾ logr.
(45)

To justify (45), apply Theorem 21 with X = Sn
p and Y = Sn

q for some q ⩾ p while using (43), and optimize
the resulting bound over q . Specifically, since for any A,B ∈ (Sn

p )⩽r the matrix A −B has at most 2r
nonzero singular values, by Hölder’s inequality we have

∥A−B∥Sn
2
⩽ (2r )

max
{

0, 1
2− 1

p

}
∥A−B∥Sn

p
and ∥A−B∥Sn

p
⩽ (2r )

1
p − 1

q ∥A−B∥Sn
q

.

In combination with (43), we therefore get the following bound from (28).

e
(
(Sn

p )⩽r
)
≲

(
sup

A,B∈(Sn
p )⩽r

A ̸=B

∥A−B∥Sn
p

∥A−B∥Sn
q

)
sup

A,B∈(Sn
p )⩽r

A ̸=B

(
n

1
2+ 1

q
p

q
∥A−B∥Sn

2

∥A−B∥Sn
p

)
≲ r

1
p − 1

q n
1
2+ 1

q
p

qr
max

{
1
2− 1

p ,0
}
. (46)

The q ⩾ p that minimizes the right hand side of (46) is max{2log(n/r ), p}, yielding (45) when p ⩽ logr . If
p ⩾ logr , then ∥A−B∥Sn

p
≍ ∥A−B∥Sn

logr
for every A,B ∈ (Sn

p )⩽r , so (45) reduces to its special case p = logr .

We conjecture that it is possible to replace the logarithmic factor in (45) by a universal constant, i.e.,

e
(
(Sn

p )⩽r
)
≲ r

max
{

1
p , 1

2

}p
n. (47)

As we will see in Section 1.6, Conjecture 26 below is equivalent to the symmetric isomorphic reverse
isoperimetry conjecture (see Conjecture 46) for Mn(R) equipped with the operator norm, which is an
especially interesting special case of this much more general conjectural phenomenon; by reasoning as
we did in the above deduction of Theorem 20 from (the special case p =∞ of) Theorem 24 (recall the
discussion immediately following (40)), a positive answer to Conjecture 26 would imply (47).

Conjecture 26. For every n ∈N there exists a normed space Y = (Mn(R),∥·∥Y) such that for every nonzero
n by n matrix A ∈Mn(R)∖ {0} we have ∥A∥Y ≍ ∥A∥Sn∞ and voln2−1(ProjA⊥BY)≲ voln2 (BY)

p
n.

Example 27. Since the ℓn∞(ℓn∞) norm on Mn(R) is isometric to ℓn2

∞ , by Theorem 24 there is a normed
space Y = (Mn(R),∥ ·∥Y) that satisfies ∥A∥ℓn∞(ℓn∞) ⩽ ∥A∥Y ≲ ∥A∥ℓn∞(ℓn∞) for every A ∈Mn(R), and

max
A∈Mn (R)∖{0}

voln2−1
(
ProjA⊥BY

)
voln2 (BY)

=O(1).

By Hölder’s inequality, for every p, q ∈ [1,∞] and A ∈Mn(R) we have

∥A∥ℓn
p (ℓn

q ) ⩽ n
1
p + 1

q ∥A∥ℓn∞(ℓn∞) ⩽ n
1
p + 1

q ∥A∥Y and ∥A∥ℓn
2 (ℓn

2 ) ⩽ n
max

{
1
2− 1

p ,0
}
+max

{
1
2− 1

q ,0
}
∥A∥ℓn

p (ℓn
q ).

Therefore, Theorem 21 gives the Lipschitz extension bound

e
(
ℓn

p (ℓn
q )

)
≲ n

1
p + 1

q +max
{

1
2− 1

p ,0
}
+max

{
1
2− 1

q ,0
}
= n

max
{

1, 1
p + 1

q , 1
2+ 1

p , 1
2+ 1

q

}
. (48)

As in the case of ℓn
p , we get (48) if p, q =O(1) by using Theorem 21 with Y = X = ℓn

p (ℓn
p ), but otherwise we

need to work with an auxiliary space Y ̸= X as above. Specifically, in Section 6 we will prove the following
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asymptotic evaluation of the maximal volume of hyperplane projections of the unit ball of ℓn
p (ℓn

q ):

max
A∈Mn (R)∖{0}

voln2−1
(
ProjA⊥Bℓn

p (ℓn
q )

)
voln2

(
Bℓn

p (ℓn
q )

) ≍



n if n ⩽min{
p

p, q},
p

qn
1
2+ 1

q if q ⩽ n ⩽
p

p,p
p if

p
p ⩽ n ⩽min{p, q},

p
pqn

1
q − 1

2 if max{
p

p, q}⩽ n ⩽ p,

n
1
2+ 1

p if p ⩽ n ⩽ q,
p

qn
1
p + 1

q if n ⩾max{p, q}.

(49)

The intricacy of (49) is perhaps unexpected, though it is nonetheless sharp in all of the six ranges (de-
pending on the relative locations of p, q,n and, somewhat curiously,

p
p) that appear in (49). By reason-

ing analogously to the discussion following (42), one can prove a bound on e(ℓn
p (ℓn

q )) that matches (48)
up to lower order factors by applying Theorem 21 with Y = ℓn

r (ℓn
s ) and then optimizing over r, s ⩾ 1. For

the sole purpose of this application, only the range n ⩾max{p, q} of (49) is needed. However, results such
as (49) have geometric interest in their own right for all of the possible values of the relevant parameters.
We will actually prove a version of (49) for ℓn

p (ℓm
q ) even when n ̸= m; the case of rectangular matrices is

independently interesting, but we will also use it elsewhere (see Remark 55 below).

Problem 28. Determine the exact maximizers of volumes of hyperplane projections of the unit balls of
Sn

p and ℓn
p (ℓn

q ), i.e., for which A ∈Mn(R)∖ {0} are the maxima in (43) and (49) attained.

1.5. A dimension-independent extension theorem. In the preceding sections we stated all of the ex-
tension theorems using the traditional setup that aims to extend a Lipschitz function to a function that
is Lipschitz with respect to the given metric. However, all of our new (positive) extension theorems are a
consequence of Theorem 29 below, which is a nonstandard Lipschitz extension theorem.

Theorem 29 asserts that if X = (Rn ,∥·∥X) is a normed space and f is a 1-Lipschitz function from a subset
of Rn to a Banach space Z, then f can be extended to a Z-valued function that is defined on all of Rn and
is O(1)-Lipschitz with respect to the metric that is induced on Rn by the norm ||| · ||| = 2∥ · ∥Π*X/voln(BX),
i.e., a suitable rescaling of the norm whose unit ball is the polar projection body of BX. This rescaling
ensures that ||| · ||| dominates ∥ ·∥X; indeed, by an elementary geometric argument (see Remark 111),

∀x ∈Rn , ∥x∥X ⩽
2∥x∥Π*X

voln(BX)
⩽ n∥x∥X. (50)

Thus, the conclusion of Theorem 29 that the extended function is Lipschitz with respect to ||| · ||| is less
stringent than the traditional requirement that it should be Lipschitz with respect to ∥·∥X, but Theorem 29
has the feature that the upper bound on the Lipschitz constant is independent of the dimension.

Theorem 29. Fix n ∈N, a normed space X = (Rn ,∥ ·∥X) and a Banach space (Z,∥ ·∥Z). Suppose that C⊆Rn

and f :C→ Z is 1-Lipschitz with respect to the metric that is induced by ∥·∥X, i.e., ∥ f (x)− f (y)∥Z ⩽ ∥x−y∥X

for every x, y ∈C. Then, there exists F :Rn → Z that coincides with f on C and satisfies

∀x, y ∈Rn , ∥F (x)−F (y)∥Z ≲
∥x − y∥Π*X

voln(BX)
.

To see how Theorem 29 implies Theorem 21, denote (in the setting of the statement of Theorem 21):

M = sup
x,y∈C
x ̸=y

(∥x − y∥X

∥x − y∥Y

)
and M ′ = sup

x,y∈C
x ̸=y

(voln−1
(
Proj(x−y)⊥BY

)
voln(BY)

·
∥x − y∥ℓn

2

∥x − y∥X

)
. (51)

Thus, every x, y ∈C satisfy ∥x−y∥X ⩽ M∥x−y∥Y and, recalling (30), also ∥x−y∥Π*Y/voln(BY)⩽ M ′∥x−y∥X.
Let (Z,∥·∥Z) be any Banach space and consider an arbitrary subset C′ ⊆C. If f :C′ → Z is 1-Lipschitz with
respect to the metric that is induced by ∥ · ∥X, then f /M is 1-Lipschitz with respect to the metric that is
induced by Y. By Theorem 29 (with X replaced by Y, C replaced by C′, f replaced by f /M) we therefore
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see that there exists F : Rn → Z (for Theorem 21 we only need F to be defined on C) that extends F and
satisfies ∥F (x)−F (y)∥Z ≲ M∥x − y∥Π*Y/voln(BY)⩽ M M ′∥x − y∥X for all x, y ∈C. This coincides with (28).

Remark 30. Given p ⩾ 1, consider what happens when we apply Theorem 29 to the space Yn
p of Theo-

rem 24. We get that for any C⊆Rn and any Banach space Z, if f : C→ Z is 1-Lipschitz with respect to the
ℓn

p metric, then f can be extended to F : Rn → Z that is O(n1/p )-Lipschitz with respect to the Euclidean
metric. When p < 2, the Lipschitz assumption on f is less stringent than requiring it to be O(1)-Lipschitz
with respect to the Euclidean metric, but we then get an extension F that is O(n1/p )-Lipschitz with re-
spect to the Euclidean metric; this upper bound on the Lipschitz constant of F is asymptotically larger
than the O(

p
n) bound that we would get if f were assumed to be 1-Lipschitz with respect to the Eu-

clidean metric and we applied the second inequality in (22), but we get it while requiring less from f . In
particular, when p = 1 we see that any Z-valued function on a subset ofRn that is 1-Lipschitz with respect
to the ℓn

1 metric can be extended to a Z-valued function defined on all of Rn whose Lipschitz constant
with respect to the Euclidean metric is O(n), while an application of [JLS86] will give an extension that is
O(n)-Lipschitz with respect to the ℓn

1 metric. On the other hand, if p > 2, then the Lipschitz assumption
on f is more stringent than requiring it to be O(1)-Lipschitz with respect to the Euclidean metric, but we
then get an extension F that is O(n1/p )-Lipschitz with respect to the Euclidean metric, which is asymp-
totically better than the O(

p
n) bound from (22). In particular, when p = ∞ we see that any Z-valued

function on a subset ofRn that is 1-Lipschitz with respect to the ℓn∞ metric can be extended to a Z-valued
function on all of Rn whose Lipschitz constant with respect to the Euclidean metric is O(1).

1.6. Isomorphic reverse isoperimetry. All of the applications that we found for Theorem 21 proceed by
bounding the volumes of hyperplane projections of BY that appear in right hand side of (28) by

MaxProj(BY)
def= max

z∈Sn−1
voln−1

(
Projz⊥BY

)
. (52)

Thus, it follows from (29) that for any two normed spaces X = (Rn ,∥ ·∥X),Y = (Rn ,∥ ·∥Y) with BY ⊆ BX,

e(X)≲
MaxProj(BY)

voln(BY)
diamℓn

2
(BX). (53)

While there could conceivably be an application of (29) that is more refined than (53), in this section
we will investigate the ramifications of bounding MaxProj(BX) as a way to use Theorem 21. This will
relate to the isomorphic reverse isoperimetric phenomena that we conjectured in Section 1.1.1.

Any origin-symmetric convex body L ⊆Rn satisfies

MaxProj(L)≳
voln−1(∂L)p

n
. (54)

Indeed, this follows immediately from the following classical Cauchy surface area formula (see e.g. equa-
tion 5.73 in [Sch14]) by bounding the integrand by its maximum.

voln−1(∂L) = 2
p
πΓ

(n+1
2

)
Γ
(n

2

)  
Sn−1

voln−1
(
Projz⊥L

)
dz ≍p

n

 
Sn−1

voln−1
(
Projz⊥L

)
dz. (55)

Remark 31. Using (54), Theorem 24 implies that Conjecture 9 (isomorphic reverse isoperimetry) holds
(with S the identity mapping) when K = Bℓn

p
for any p ⩾ 1 and n ∈N. Indeed, let Yn

p be the normed space
from Theorem 24. By the first inequality in (40) we have

voln
(
BYn

p

) 1
n ≍ voln

(
Bℓn

p

) 1
n ≍ n− 1

p , (56)

where the last equivalence in (56) is a standard computation (e.g. [Pis89, page 11]). By (54) and (56), the
second inequality in (40) implies that the isoperimetric quotient of BYn

p
is O(

p
n). So, Conjecture 9 holds

for K = Bℓn
p

if we take L to be a rescaling by a universal constant factor of BYn
p

so that L ⊆ K .
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Thanks to (54), if we set K = BX and L = BY in (53), then the right hand side of (53) satisfies

MaxProj(L)

voln(L)
diamℓn

2
(K )≳

voln−1(∂L)p
nvoln(L)

diamℓn
2

(K ) = iq(L)p
n

·
diamℓn

2
(K )

voln(L)
1
n

≳
diamℓn

2
(K )

voln(K )
1
n

, (57)

where we recall notation (11) for the isoperimetric quotient iq(·) and the last step uses the isoperimetric
theorem (12) and the assumption L ⊆ K . The following proposition explains what it would entail for one
to be able to reverse (57) after an application of a suitable linear transformation; in particular, it shows
that one can find S ∈ SLn(R) and an origin-symmetric convex body L ⊆ SK such that

MaxProj(L)

voln(L)
diamℓn

2
(SK )≲

diamℓn
2

(SK )

voln(K )
1
n

if and only if Conjecture 10 on weak isomorphic reverse isoperimetry holds for K .

Proposition 32. The following two statements are equivalent for every n ∈N, every origin-symmetric con-
vex body K ⊆Rn and every α> 0.

(1) There exist a linear transformation S ∈ SLn(R) and an origin-symmetric convex body L ⊆ SK with

MaxProj(L)

voln(L)
voln(K )

1
n ≲α. (58)

(2) There exist a linear transformation S ∈ SLn(R) and an origin-symmetric convex body L ⊆ SK that
satisfies n

√
voln(L)⩾β n

√
voln(K ) and iq(L)⩽ γ

p
n for some β≳ 1/α and γ≲α with γ/β≲α.

Proof. For the implication (1) =⇒ (2) denote β= n
√

voln(L)/ n
√

voln(K ) and γ= iq(L)/
p

n. Then

α
(58)
≳

MaxProj(L)

voln(L)
voln(K )

1
n

(54)
≳

voln−1(∂L)

voln(L)
p

n
voln(K )

1
n = γ

β
.

Since by the isoperimetric theorem (12) we have γ≳ 1, it follows from this thatβ≳ 1/α, and since L ⊆ SK
and S ∈ SLn(R), we have voln(L)⩽ voln(K ), so β⩽ 1 and it also follows from this that γ≲α.

For the implication (2) =⇒ (1), fix T ∈ SLn(R) with voln−1(∂T L) = min{voln−1(∂T ′L) : T ′ ∈ SLn(R)},
i.e., T L is in its minimum surface area position [Pet61]. By definition, voln−1(∂T L) ⩽ voln−1(∂L) and by
Proposition 3.1 in the work [GP99] of Giannopoulos and Papadimitrakis combined with (54) we have

MaxProj(T L) ≍ voln−1(∂T L)p
n

.

Consequently, if L satisfies part (2) of Proposition 32, then

MaxProj(T L)

voln(T L)
voln(K )

1
n ≍ voln−1(∂T L)

voln(T L)
p

n
voln(K )

1
n ⩽

voln−1(∂L)

voln(T L)
p

n
voln(K )

1
n = iq(L)p

n

(
voln(K )

voln(L)

) 1
n

⩽
γ

β
≲α.

It follows that (1) holds with S replaced by T S ∈ SLn(R) and L replaced by T L ⊆ T SK . □

Since when α≲ 1 in Proposition 32 the assertion of its part (2) coincides with Conjecture 10, it follows
that Conjecture 10, and a fortiori Conjecture 9, imply that for any normed space X = (Rn ,∥ · ∥X) there is
S ∈ SLn(R) such that e(X) is at most a universal constant multiple of diamℓn

2
(SBX)/ n

√
voln(BX). Indeed,

this follows by applying Theorem 21 to the normed spaces X′ = (Rn ,∥ · ∥X′) and Y = (Rn ,∥ · ∥Y) whose unit
balls are SBX and L, respectively, where S and L are as in part (1) of Proposition 32 for K = BX, while
noting that e(X′) = e(X) since X′ is isometric to X. We record this conclusion as the following corollary.

Corollary 33. If Conjecture 10 holds for a normed space X = (Rn ,∥ ·∥X), then there is S ∈ SLn(R) such that

e(X)≲
diamℓn

2
(SBX)

voln(BX)
1
n

. (59)
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The upshot of Corollary 33 is that the right hand side of (59) involves only Euclidean diameters and
n’th roots of volumes, which are typically much easier to estimate than extremal volumes of hyperplane
projections. This comes at the cost of having to find the auxiliary linear transformation S ∈ SLn(R), but we
expect that in concrete settings it will be simple to determine S. Moreover, in all of the specific examples
of spaces for which we are interested (at least initially) in estimating their Lipschitz extension modulus,
S should be the identity mapping. We will discuss this matter and its consequences in Section 1.6.2.

Remark 34. There is a degree of freedom that the above discussion does not exploit. Let X = (Rn ,∥·∥X) be a
normed space. By (31), we know that e(X) is bounded from above by a constant multiple of the minimum
of diamΠ*Y(BX)/voln(BY) over all the normed spaces Y = (Rn ,∥ · ∥Y) for which BY ⊆ BX. By (53), to control
this minimum it suffices to estimate the minimum of MaxProj(BY)/voln(BY) over all such Y, which relates
to isomorphic reverse isoperimetric phenomena. But, we could also take a normed space W = (Rm ,∥·∥W)
for m ⩾ n such that BW ∩Rn = BX (we need that W contains an isometric copy of X), estimate either
of the two minima above for the super-space W, and then use e(X) ⩽ e(W). Thus, it would suffice to
embed X into a larger normed space that exhibits good isomorphic reverse isoperimetry. Our conjectures
imply that such an embedding step is not needed, namely we expect that the desired isomorphic reverse
isoperimetric property holds for X. Nevertheless, it could be that by finding a suitable super-space W one
could bound e(X) while circumventing the difficulty of proving Conjecture 10 for X. For example, if X is a
subspace of ℓm∞ for some m =O(n), then by Theorem 14 we know that e(X) ≲

p
n, but this is because we

know that ℓm∞ has the desired isomorphic reverse isoperimetric property, and it is not clear how to prove
it for X itself. It is also unclear how to construct for a given normed X a super-space W that could be used
as above. We leave the exploration of this possibility for future research.

1.6.1. A spectral interpretation, reverse Faber–Krahn and the Cheeger space of a normed space. We will
henceforth quantify the extent to which Conjecture 10 holds through the following condition:

iq(L)p
n

(
voln(K )

voln(L)

) 1
n = voln(K )

1
np

n

(
voln−1(∂L)

voln(L)

)
⩽α. (60)

The factors iq(L)/
p

n and (voln(K )/voln(L))1/n that appear in the left hand side of (60) are at least a pos-
itive universal constant (by, respectively, the isoperimetric theorem and the assumed inclusion L ⊆ K ),
so (60) implies that n

√
voln(L) ≳ α−1 n

√
voln(K ) and iq(L) ⩽ α

p
n. Thus, if α = O(1), then (60) is equiva-

lent to the conclusion of Conjecture 10. However, even though Conjecture 10 expresses our expectation
that (60) is always achievable with α = O(1) upon a judicious choice of the Euclidean structure on Rn ,
in lieu of Conjecture 10 it would still be valuable to obtain (60) with α unbounded but slowly growing.
In such a situation, the bi-parameter quantification that we used in part (2) of Proposition 32 contains
more geometric information than (60), but below we will work with (60) in order to simplify the ensuing
discussion; this suffices for our purposes because (60) is what shows up in all of the applications herein
(per the proof Proposition 32) since they all proceed by bounding the right hand side of (53) from above.

Alter and Caselles proved [AC09] that for every convex body K ⊆ Rn there is a unique measurable set
A ⊆ K , which we call the Cheeger body of K and denote ChK , satisfying Per(A)/voln(A) ⩽ Per(B)/voln(B)
for every measurable B ⊆ K with voln(B) > 0, where Per(·) denotes perimeter in the sense of Caccioppoli
and de Giorgi; this notion is covered in [AFP00] but we do not need to recall its definition here since the
perimeter of a convex body coincides with the (n −1)-dimensional Hausdorff measure of its boundary.
It was proved in [AC09] that ChK is convex and its boundary is C 1,1. Further information on this remark-
able theorem can be found in [AC09], where ChK is characterized in terms of the mean curvature of its
boundary through the work [ACC05] of Alter, Caselles and Chambolle (see also the precursor [CCN07] by
Caselles, Chambolle and Novaga which obtained these statements under stronger assumptions on K ).
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Beyond the fact that it allows us to use the notation ChK and call it the Cheeger body of K , the afore-
mentioned uniqueness statement will be used substantially in the ensuing reasoning. It implies in par-
ticular that if K is origin-symmetric, then so is ChK . Consequently, if X = (Rn ,∥ · ∥X) is a normed space,
then ChBX is the unit ball of a normed space that we denote by ChX and call the Cheeger space of X.

For a convex body K ⊆Rn , let λ(K ) be the smallest Dirichlet eigenvalue of the Laplacian on K , namely
it is the smallest λ> 0 for which there is a nonzero functionϕ : K →R that is smooth on the interior of K ,
vanishes on the boundary of K , and satisfies∆ϕ=−λϕ on the interior of K ; see e.g. [PS51, CH53, Cha84]
for background on this classical topic. If X = (Rn ,∥ ·∥X) is a normed space, then we denote λ(X) =λ(BX).

The quantity h(K ) = voln−1(∂ChK )/voln(ChK ) is called the Cheeger constant of K ; it relates to λ(K ) by

2

π

√
λ(K )⩽ h(K ) = voln−1(∂ChK )

voln(ChK )
⩽ 2

√
λ(K ). (61)

It is important for our purposes that the constants appearing in (61) are independent of the dimension n.
The second inequality in (61) is the Cheeger inequality for the Dirichlet Laplacian on Euclidean domains.
Cheeger’s proof of it for compact Riemannian manifolds without boundary appears in [Che70] and that
proof works mutatis mutandis in the present setting; see its derivation in e.g. the appendix of [LW97].
The first inequality in (61) can be called the Buser inequality for the Dirichlet Laplacian on convex Eu-
clidean domains, since Buser proved [Bus82] its analogue for compact Riemannian manifolds without
boundary that have a lower bound on their Ricci curvature. In our setting, this reverse Cheeger inequal-
ity is more recent, namely it was noted for planar convex sets by Parini [Par17] and in any dimension by
Brasco [Bra20]. It can be justified quickly using the convexity of K and its Cheeger body ChK as follows.
By a classical theorem of Pólya we have λ(K ) ⩽ π2(voln−1(∂K )/voln(K ))2/4 (Pólya proved this for planar
convex sets, but in [JS82b] Joó and Stachó carried out Pólya’s approach for convex bodies in Rn for any
n ∈N). Therefore, λ(K )⩽λ(ChK )⩽π2(voln−1(∂ChK )/voln(ChK ))2/4 =π2h(K )2/4, since ChK is convex.

Let jn/2−1,1 be the smallest positive zero of the Bessel function Jn/2−1; see Chapter 4 of [AAR99] for a
treatment of Bessel functions and their zeros, though here we will only need to know that jn/2−1,1 ≍ n
(see [Tri49] for more precise asymptotics). By classical computations (see e.g. equation 1.29 in [Hen06]),

λ
(
Bℓn

2

)= j 2
n
2 −1,1.

The Faber–Krahn inequality [Fab23, Kra26] (see also e.g. [PS51, Cha84]) asserts that λ(K ) is at least the
first Dirichlet eigenvalue of a Euclidean ball whose volume is the same as the volume of K . Thus,

λ(K )voln(K )
2
n ⩾λ

(
Bℓn

2

)
voln

(
Bℓn

2

) 2
n = j 2

n
2 −1,1voln

(
Bℓn

2

) 2
n ≍ n,

where we used the straightforward fact that λ(r K ) =λ(K )/r 2 for every r > 0.
Observe that (61) can be rewritten as follows for every convex body K ⊆Rn .

2

π

(
λ(K )voln(K )

2
n

n

) 1
2

⩽
iq(ChK )p

n

(
voln(K )

voln(ChK )

) 1
n

⩽ 2

(
λ(K )voln(K )

2
n

n

) 1
2

.

Hence, for every α> 0 we have

iq(ChK )p
n

(
voln(K )

voln(ChK )

) 1
n

≲α ⇐⇒ λ(K )voln(K )
2
n ≲α2n. (62)

Since ChK is convex, the convex body L ⊆ K that minimizes the left hand side of (60) is equal to ChK . We
therefore see that Conjecture 35 below is equivalent to Conjecture 10. Furthermore, if one of these two
conjectures hold for a matrix S ∈ SLn(R), then the same matrix would work for the other conjecture.

Conjecture 35 (reverse Faber–Krahn). For any origin-symmetric convex body K ⊆Rn there exists a volume-
preserving linear transformation S ∈ SLn(R) such that

λ(SK )vol(K )
2
n ≍ n.
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This spectral interpretation of Conjecture 10 is useful for multiple purposes, including the following
lemma whose proof appears in Section 6.1. For its statement, as well as throughout the ensuing discus-
sion, recall that a basis x1, . . . , xn of an n-dimensional normed space (X,∥ · ∥X) is a 1-unconditional basis
of X if ∥ε1a1x1 + . . .+εn an xn∥X = ∥a1x1 + . . .+an xn∥X for every choice of scalars a1, . . . , an ∈ R and signs
ε1, . . . ,εn ∈ {−1,1}. When we say that X = (Rn ,∥ · ∥X) is an unconditional normed space, we mean that the
standard (coordinate) basis e1, . . . ,en of Rn is a 1-unconditional basis of X.

Lemma 36 (closure of Conjecture 10 under unconditional composition). Fix n ∈N and m1, . . . ,mn ∈N.
Let X1 = (Rm1 ,∥ · ∥X1 ), . . . ,Xn = (Rmn ,∥ · ∥Xn ) be normed spaces. Also, let E = (Rn ,∥ · ∥E) be an unconditional
normed space. Define a normed space X = (Rm1 × . . .×Rmn ,∥ ·∥X) by

∀x = (x1, . . . , xn) ∈Rm1 × . . .×Rmn , ∥x∥X
def= ∥∥(∥x1∥X1 , . . . ,∥xn∥Xn

)∥∥
E. (63)

Suppose that there exist α> 0, linear transformations S1 ∈ SLm1 (R), . . . ,Sn ∈ SLmn (R), and normed spaces
Y1 = (Rm1 ,∥ ·∥Y1 ), . . . ,Yn = (Rmn ,∥ ·∥Yn ) such that

∀k ∈ {1, . . . ,n}, BYk ⊆ Sk BXk and
iq

(
BYk

)
p

mk

(
volmk

(
BXk

)
volmk

(
BYk

) ) 1
mk

⩽α. (64)

Then, there exist a normed space Y = (Rm1 × . . .×Rmn ,∥ ·∥X) and S ∈ SL(Rm1 × . . .×Rmn ) such that

BY ⊆ SBX and
iq(BY)p

m1 + . . .+mn

(
volm1+...+mn (BX)

volm1+...+mn (BY)

) 1
m1+...+mn

≲α. (65)

Since (64) with α = O(1) is immediate when n0 = 1, Lemma 36 establishes Conjecture 10 for when K
is the unit ball of an unconditional normed space X = (Rn ,∥ · ∥X). This holds, in particular, for X = ℓn

p ,
though we will prove in Section 6.1 that the stronger conclusion of Conjecture 9 holds in this case (recall
Remark 31). Lemma 36 also shows that Conjecture 10 holds for, say, X = ℓn

p (ℓm
q ); we expect that the

reasoning of Section 6.1 could be adapted to yield Conjecture 9 for these spaces as well, but we did
not attempt to carry this out. Other spaces that satisfy (64) with α slowly growing will be presented in
Section 1.6.2; upon their substitution into Lemma 36, more examples for which Conjecture 10 holds up
to lower-order factors are obtained (of course, we are conjecturing here that it holds for any space).

Remark 37. Say that a normed space X = (Rn ,∥ ·∥X) is in Cheeger position if

∀S ∈ SLn(R),
voln−1(∂ChBX)

voln(ChBX)
⩽

voln−1(∂ChSBX)

voln(ChSBX)
.

Observe that if X is in Cheeger position, then its Cheeger space ChX is in minimum surface area position,
namely, voln−1(∂ChBX) ⩽ voln−1(∂SChBX) for every S ∈ SLn(R). Indeed, SChBX ⊆ SBX, so by the defini-
tion of the Cheeger body of SBX we have voln−1(∂SChBX)/voln(ChBX) ⩾ voln−1(∂ChSBX)/voln(ChSBX).
At the same time, voln−1(∂ChSBX)/voln(ChSBX) ⩾ voln−1(∂ChBX)/voln(ChBX) by the definition of the
Cheeger position, so voln−1(∂SChBX) ⩾ voln−1(∂ChBX). This shows that in the proof of the implication
(2) =⇒ (1) of Proposition 32, if we worked with L = ChSK , then there would be no need to introduce the
additional linear transformation T ∈ SLn(R). It would be worthwhile to study the Cheeger position for
its own sake even if it weren’t for its connection to reverse isoperimetry. In particular, we do not know if
the converse of the above deduction holds, namely whether it is true that if ChX is in minimum surface
area position, then X is in Cheeger position. We also do not know if the Cheeger position is unique up
to orthogonal transformation (as is the case for the minimum surface area position [GP99]); we did not
investigate these matters since they are not needed for the present purposes, but we expect that the char-
acterisations of the Cheeger body in [AC09] would be relevant here. One could also define that a normed
space X = (Rn ,∥ · ∥X) is in Dirichlet position if λ(X) ⩽ λ(SX) for every S ∈ SLn(R). It is unclear how the
Cheeger position relates to the Dirichlet position and it would be also worthwhile to study the Dirich-
let position for its own sake. By (61), working with either the Cheeger position or the Dirichlet position
would be equally valuable for the reverse isoperimetric questions in which we are interested here.
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1.6.2. Symmetries and positions. Thus far we considered an arbitrary scalar product on an n-dimensional
normed space through which we identified its underlying vector space structure with Rn . However, the
Lipschitz extension modulus is insufficiently understood for “very nice” normed spaces (including even
the Euclidean space ℓn

2 ) that belong to a natural class of normed spaces that have a canonical identifica-
tion with Rn . It therefore makes sense to first focus on this class.

For a finite dimensional normed space (X,∥ · ∥X), let Isom(X) be the group of all of the isometric auto-
morphism of X, i.e., all the linear operators U : X → X that satisfy ∥Ux∥X = ∥x∥X for every x ∈ X. We will
denote the Haar probability measure on the compact group Isom(X) by hX.

Definition 38. We say that a finite dimensional normed space (X,∥ · ∥X) is canonically positioned if any
two Isom(X)-invariant scalar products on X are proportional to each other. In other words, if 〈·, ·〉 : X×X →R

and 〈·, ·〉′ : X×X → R are scalar products on X such that 〈Ux,U y〉 = 〈x, y〉 and 〈Ux,U y〉′ = 〈x, y〉′ for every
x, y ∈ X and every U ∈ Isom(X), then there necessarily exists λ ∈R such that 〈·, ·〉′ =λ〈·, ·〉.

Any finite dimensional normed space X has at least one scalar product 〈·, ·〉 : X×X →R that is invariant
under Isom(X), as seen e.g. by averaging any given scalar product 〈·, ·〉0 on X with respect hX, i.e., defining

∀x, y ∈ X, 〈x, y〉 def=
�
Isom(X)

〈Sx,Sy〉0 dhX(S).

Definition 38 concerns those spaces X for which such an invariant scalar product is unique up to rescal-
ing, so there is (essentially, i.e., up to rescaling) no arbitrariness when we identify X with Rdim(X).

Example 39. The class of n-dimensional canonically positioned normed spaces (X,∥ · ∥X) includes those
with a basis e1, . . . ,en such that for any distinct i , j ∈ {1, . . . ,n} there are a permutation π ∈ Sn with π(i ) = j
and a sign vector ε = (ε1, . . . ,εn) ∈ {−1,1}n with εi = −ε j such that Tπ,Sε ∈ Isom(X), where we denote
Tπx = ∑n

i=1 aπ(i )ei and Sεx = ∑n
i=1 εi ai ei for x = ∑n

i=1 ai ei ∈ X with a1, . . . , an ∈ R. Indeed, let 〈·, ·〉 be a
scalar product on X that is Isom(X)-invariant. For every distinct i , j ∈ {1, . . . ,n}, if π ∈ Sn and ε ∈ {−1,1}n

are as above, then 〈ei ,ei 〉 = 〈eπ(i ),eπ(i )〉 = 〈e j ,e j 〉 while 〈ei ,e j 〉 = 〈εi ei ,ε j e j 〉 =−〈ei ,e j 〉, so 〈ei ,e j 〉 = 0.

Example 39 covers all of the spaces for which we think that it is most pressing (given the current state
of knowledge) to understand their Lipschitz extension modulus, including normed spaces (E,∥ · ∥E) that
have a 1-symmetric basis, i.e., a basis e1, . . . ,en ∈ E such that ∥∑n

i=1 εi aπ(i )ei∥E = ∥∑n
i=1 ai ei∥E for every

(ε,π) ∈ {−1,1}n ×Sn . In particular, ℓn
p , and more generally Orlicz and Lorentz spaces (see e.g. [LT77]), are

canonically positioned. We will use below the common convention that a normed space (Rn ,∥ ·∥) is said
to be symmetric if it is 1-symmetric with respect to the standard (coordinate) basis e1, . . . ,en of Rn .

Example 39 also includes matrix norms X = (Mn(R),∥ · ∥X) that remain unchanged if one transposes a
pair of rows or columns, or changes the sign of an entire row or a column, such as Sn

p . More generally,
if E = (Rn ,∥ · ∥E) is a symmetric normed space, then its unitary ideal SE = (Mn(R),∥ · ∥SE ) is canonically
positioned (see e.g. [Bha97]), where for T ∈Mn(R) one denotes its singular values by s1(T ) ⩾ . . . ⩾ sn(T )
and defines ∥T ∥SE = ∥(s1(T ), . . . , sn(T ))∥E. More examples of such matrix norms are projective and injec-
tive tensor products (see e.g. [Rya02]) of symmetric spaces, where if X = (Rn ,∥ ·∥X) and Y = (Rm ,∥ ·∥Y) are
normed spaces, then their projective tensor product X⊗̂Y is the norm on Mn×m(R) =Rn ⊗Rm whose unit
ball is the convex hull of {x ⊗ y : (x, y) ∈ BX ×BY}, and their injective tensor product X⊗̌Y is the dual of
X∗⊗̂Y∗ (equivalently, X⊗̌Y is isometric to the operator norm from X∗ to Y; see e.g. [DFS08, Section 1.1]).

Henceforth, when we will say that a normed space X = (Rn ,∥·∥X) is canonically positioned it will always
be tacitly assumed that the standard scalar product 〈·, ·〉 on Rn is Isom(X)-invariant, i.e., Isom(X) is a
subgroup of the orthogonal group On ⊆ Mn(R). This is equivalent to the requirement that for every
symmetric positive definite matrix T ∈Mn(R), if TU =U T for every U ∈ Isom(X), then there is λ ∈ (0,∞)
such that T =λIdn . Indeed, any scalar product 〈·, ·〉′ :Rn ×Rn →R is of the form 〈x, y〉′ = 〈T x, y〉 for some
symmetric positive definite T ∈Mn(R) and all x, y ∈ Rn , and using the Isom(X)-invariance of 〈·, ·〉 we see
that 〈·, ·〉′ is Isom(X)-invariant if and only if T commutes with all of the elements of Isom(X).
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Remark 40. A symmetry assumption that is common in the literature is enough symmetries. A normed
space (X,∥ · ∥X) is said [GG71] to have enough symmetries if any linear transformation T : X → X must be
a scalar multiple of the identity if T commutes with every element of Isom(X). By the above discussion,
if X has enough symmetries, then X is canonically positioned. The converse implication does not hold,
i.e., there exist normed spaces that are canonically positioned but do not have enough symmetries. For
example, let Rotπ/2 ∈O2 be the rotation by 90 degrees and let G be the subgroup of O2 that is generated
by Rotπ/2. Thus, G is cyclic of order 4. Let X = (R2,∥·∥X) be a normed space with Isom(X) =G ; the fact that
there is such a normed space follows from the general result [GL79, Theorem 3.1] of Gordon and Loewy
on existence of norms with a specified group of isometries, though in this particular case it is simple to
construct such an example (e.g. the unit ball of X can be taken to be a suitable non-regular octagon).
Since Isom(X) is Abelian, the matrix Rotπ/2 commutes with all of the elements of Isom(X) yet it is not a
multiple of the identity matrix, so X does not have enough symmetries. Nevertheless, X is canonically
positioned. Indeed, suppose that T ∈M2(R) is a symmetric matrix that commutes with Rotπ/2. Then,
Rotπ/2 preserves any eigenspace of T , which means that any such eigenspace must be {0} or R2. But
T is diagonalizable over R, so it follows that T = λId2 for some λ ∈ R. If n is even, then one obtains
such an n-dimensional example by considering ℓn/2∞ (X). However, a representation-theoretic argument
due to Emmanuel Breuillard (private communication; details omitted) shows that if n is odd, then any
n-dimensional normed space has enough symmetries if and only if it is canonically positioned.

The following lemma is important for us even though it is an immediate consequence of the (major)
theorem of [AC09] that the Cheeger body of a given convex body in Rn is unique (recall Section 1.6.1).

Lemma 41. Let X = (Rn ,∥ · ∥X) be a normed space such that Isom(X) ⩽On is a subgroup of the orthogonal
group. Then the isometry group of its Cheeger space ChX satisfies

Isom(ChX) ⊇ Isom(X).

Consequently, if X is canonically positioned, then also ChX is canonically positioned.

Proof. For any U ∈ Isom(X) we have voln−1(∂U ChBX)/voln(U ChBX) = voln−1(∂ChBX)/voln(ChBX), since
U ∈On , and also U ChBX ⊆U BX = BX. Hence (by definition), U ChBX is a Cheeger body of BX, so by the
uniqueness of the Cheeger body we have U ChBX = ChBX. Therefore, U ∈ Isom(ChX). □

The following corollary is a quick consequence of Lemma 41.

Corollary 42. Let E = (Rn ,∥ · ∥E) be a symmetric normed space. Then, its Cheeger space ChE is also sym-
metric and there exists a (unique) symmetric normed space χE = (Rn ,∥·∥χE) such that the Cheeger space of
the unitary ideal SE is the unitary ideal of χE, i.e., ChSE = SχE.

Proof. The assertion that ChE is symmetric coincides with the requirement that Isom(ChE) contains the
group {−1,1}n⋊Sn = {TεSπ : (ε,π) ∈ {−1,1}n×Sn}⩽On , where we recall the notation of Example 39. Since
we are assuming that Isom(E) ⊇ {−1,1}n ⋊ Sn , this follows from Lemma 41. Next, for every U ,V ∈ On

define RU ,V : Mn(R) → Mn(R) by (A ∈ Mn(R)) 7→ U AV . Since Isom(SE) contains {RU ,V : U ,V ∈ On}, by
Lemma 41 so does Isom(ChSE). A normed space (Mn(R),∥·∥) that is invariant under RU ,V for all U ,V ∈On

is the unitary ideal of a symmetric normed space F = (Rn ,∥·∥F); see e.g. [Bha97, Theorem IV.2.1]. This F is
unique (consider the values of ∥·∥SF on diagonal matrices), so we can introduce the notation F =χE. □

The same reasoning as in the proof of Corollary 42 shows that if E = (Rn ,∥ · ∥E) is an unconditional
normed space, then so is ChE. Thus, the space Y in Lemma 36 when X1 = . . . = Xn = R that satisfies (65)
can be taken to unconditional, as seen by an inspection of the proof of Lemma 36 (specifically, the oper-
ator S in (65) that arises in this case is diagonal, so SE is also unconditional and we can take Y = ChSE).

Problem 43. We associated above to every symmetric normed space E = (Rn ,∥·∥E) two symmetric normed
spaces ChE = (Rn ,∥·∥ChE) and χE = (Rn ,∥·∥χE). It would be valuable to understand these auxiliary norms
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onRn , and in particular how they relate to each other. By the definition of the Cheeger body, its convexity
and uniqueness, ChE is the unique minimizer of the functional

F 7→ voln−1
(
∂BF

)
voln

(
BF

) =
�
∂BF

1dx�
BF

1dx
(66)

over all symmetric normed spaces F = (Rn ,∥·∥F) with BF ⊆ BE; denote the set of all such F by Sym(⊆ BE).
In contrast to (66), χE is the unique minimizer of the functional

F 7→
�
∂BF

∏
1⩽i< j⩽n |x2

i −x2
j |dx�

BF

∏
1⩽i< j⩽n |x2

i −x2
j |dx

(67)

over the same domain Sym(⊆ BE). To justify (67), observe first that by Corollary 42 we know that χE is
the unique minimizer of the following functional over Sym(⊆ BE):

F 7→ voln2−1
(
∂BSF

)
voln2

(
BSF

) = lim
ε→0+

�(
BSF+εBSn

2

)
∖BSF

1dx

ε
�

BF
1dx

. (68)

We claim that for every F ∈Sym(⊆ BE) and ε> 0,(
BSF +εBSn

2

)
∖BSF =

{
A ∈ Mn(R) : s(A)

def= (
s1(A), . . . , sn(A)

) ∈ (
BF +εBℓn

2

)
∖BF

}
, (69)

where we denote the singular values of A ∈Mn(R) by s1(A)⩾ . . .⩾ sn(A). Indeed, if A belongs to the right
hand side of (69), then ∥s(A)∥F > 1 and s(A) = x+ y for x, y ∈Rn that satisfy ∥x∥F ⩽ 1 and ∥y∥ℓn

2
⩽ ε. Write

A =U DV , where D ∈Mn(R) is the diagonal matrix whose diagonal is the vector s(A) ∈Rn , and U ,V ∈On .
Let D(x),D(y) ∈Mn(R) be the diagonal matrices whose diagonals equal x, y , respectively. By noting that
∥A∥SF = ∥s(A)∥F > 1 and A =U DxV +U D yV , where ∥U D(x)V ∥SF ⩽ 1 and ∥U D(y)V ∥Sn

2
⩽ ε, we conclude

that A belongs to the left hand side of (69). The reverse inclusion is less straightforward. If A belongs to
the left hand side of (69), then ∥A∥SF > 1 and A = B +C , where B ,C ∈Mn(R) satisfy ∥B∥SF = ∥s(B)∥F ⩽ 1
and ∥C∥Sn

2
⩽ ε. By an inequality of Mirsky [Mir60] we have ∥s(A)− s(B)∥ℓn

2
⩽ ∥A −B∥Sn

2
= ∥C∥Sn

2
⩽ ε.

Hence s(A) = s(B)+(s(A)−s(B)) ∈ (BF+εBℓn
2

)∖BF, i.e., A belongs to the right hand side of (69). With (69)
established, since membership of a matrix A in either BF or (BF+εBℓn

2
)∖BF depends only on s(A), by the

Weyl integration formula [Wey39] (see [AGZ10, Proposition 4.1.3] for the formulation that we are using),�(
BSF+εBSn

2

)
∖BSF

1dx
�

BF
1dx

=

�(
BF+εBℓn

2

)
∖BF

∏
1⩽i< j⩽n |x2

i −x2
j |dx

�
BF

∏
1⩽i< j⩽n |x2

i −x2
j |dx

.

Thus (67) follows from (68). Analysing the functional in (67) seems nontrivial but likely tractable using
ideas from random matrix theory. It would be especially interesting to treat the case E = ℓn∞. While we
have a reasonably good understanding of the (isomorphic) geometry space Chℓn∞, its noncommutative
counterpart χℓn∞ is still mysterious and understanding its geometry is closely related to Conjecture 10
(and likely also Conjecture 9) in the important special case of the operator normSn∞; see also Remark 171.

If X = (Rn ,∥·∥X) is canonically positioned and µ is a Borel measure on Rn that is Isom(X)-invariant, i.e.,
µ(U A) =µ(A) for every U ∈ Isom(X) and every Borel subset A ⊆Rn , then consider the scalar product

∀x, y ∈Rn , 〈x, y〉′ def=
�
Rn
〈x, z〉〈y, z〉dµ(z).

For every U ∈ Isom(X) and x, y ∈Rn we have

〈Ux,U y〉′ =
�
Rn
〈Ux, z〉〈U y, z〉dµ(z) =

�
Rn
〈x,U−1z〉〈y,U−1z〉dµ(z) =

�
Rn
〈x, z〉〈y, z〉dµ(z) = 〈x, y〉′,
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where the second step uses the Isom(X)-invariance of 〈·, ·〉, and the third step uses the Isom(X)-invariance
of µ. Hence 〈x, y〉′ = λ〈x, y〉 for some λ ∈ R and every x, y ∈ Rn . By considering the case x = y of this
identity and integrating over x ∈ Sn−1 one sees that necessarily nλ= �

Rn ∥z∥2
ℓn

2
dµ(z). Hence,

∀x, y ∈Rn ,

�
Rn
〈x, z〉〈y, z〉dµ(z) =

�
Rn ∥z∥2

ℓn
2

dµ(z)

n
〈x, y〉. (70)

By establishing (70) we have shown that if X = (Rn ,∥ · ∥X) is a canonically positioned normed space,
then any Isom(X)-invariant Borel measure on Rn is isotropic [GM00, BGVV14] (the converse also holds,
i.e., X is canonically positioned if and only if every Isom(X)-invariant Borel measure onRn is isotropic). In
particular, let σX be the measure on Sn−1 that is given by σX(A) = voln−1({x ∈ ∂BX : NX(x) ∈ A}) for every
measurable A ⊆ Sn−1, where for x ∈ ∂BX the vector NX(x) ∈ Sn−1 is the (almost-everywhere uniquely
defined) unit outer normal to ∂BX at x, i.e., recalling (30), we use the simpler notation NBX = NX. In other
words,σX is the image under the Gauss map of the (n−1)-dimensional Hausdorff measure on ∂BX. Then,
σX is Isom(X)-invariant because every U ∈ Isom(X) is an orthogonal transformation and NX ◦U =U ◦NX

almost everywhere on ∂BX. By [Pet61], this implies that X is in its minimum surface area position (recall
the proof of Proposition 32), so MaxProj(BX) ≍ voln−1(∂BX)/

p
n by [GP99, Proposition 3.1].

The following corollary follows by substituting the above conclusion into Theorem 21.

Corollary 44. Suppose that n ∈N and that X = (Rn ,∥·∥X) and Y = (Rn ,∥·∥Y) are two n-dimensional normed
spaces. Suppose also that Y is canonically positioned and BY ⊆ BX. Then,

e(X)≲
voln−1(∂BY)diamℓn

2
(BX)

voln(BY)
p

n
.

The assumption in Corollary 44 that Y is canonically positioned can be replaced by the requirement
MaxProj(BY)≲ voln−1(∂BY)/

p
n, which is much less stringent. In particular, by [GP99, Proposition 3.1] it

is enough to assume here that BY is in its minimum surface area position; see also Section 6.2.
We will denote the John and Löwner ellipsoids of a normed space X = (Rn ,∥ · ∥X) by JX and LX, re-

spectively; see [Hen12]. Thus, JX ⊆ Rn is the ellipsoid of maximum volume that is contained in BX and
LX ⊆Rn is the ellipsoid of minimum volume that contains BX. Both of these ellipsoids are unique [Joh48].
The volume ratio vr(X) of X and external volume ratio evr(X) of X are defined by

vr(X)
def=

(
voln(BX)

voln(JX)

) 1
n

and evr(X)
def=

(
voln(LX)

voln(BX)

) 1
n

. (71)

By the Blaschke–Santaló inequality [Bla17, San49] and the Bourgain–Milman inequality [BM87],

evr(X) ≍ vr(X∗). (72)

By the above discussion, we can quickly deduce the following theorem that relates the Lipschitz ex-
tension modulus of a canonically positioned space to volumetric and spectral properties of its unit ball.

Theorem 45. Suppose that n ∈N and that X = (Rn ,∥ ·∥X) is a canonically positioned normed space. Then,

e(X)≲
diamℓn

2
(BX)

p
n

√
λ(X) ≍ evr(X)

√
λ(X)voln(BX)

2
n ≍ vr(X∗)

√
λ(X)voln(BX)

2
n . (73)

In fact, the minimum of the right hand side of (53) over all the normed spaces Y = (Rn ,∥ ·∥Y) with BY ⊆ BX

is bounded above and below by universal constant multiples of diamℓn
2

(BX)
p
λ(X)/n.

Proof. By Lemma 41 the Cheeger space ChX is canonically positioned. So, by Corollary 44 with Y = ChX,

e(X)≲
voln−1(∂ChBY)diamℓn

2
(BX)

voln(ChBY)
p

n

(61)
≲

diamℓn
2

(BX)
p

n

√
λ(X).

This proves the first inequality in (73). The final equivalence in (73) is (72). To prove the rest of (73), let
rmin = min{r > 0 : r Bℓn

2
⊇ BX} denote the radius of the circumscribing Euclidean ball of BX. We claim
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that rminBℓn
2
=LX. Indeed, for every U ∈ Isom(X) ⊆On the ellipsoid ULX contains BX and has the same

volume as LX, so because the minimum volume ellipsoid that contains BX is unique [Joh48], it follows
that ULX = LX. Hence, the scalar product that corresponds to LX is Isom(X)-invariant and since X is
canonically positioned, this means that LX is a multiple of Bℓn

2
. Now,

voln(BX)
1
n evr(X)

(71)= voln
(
rminBℓn

2

) 1
n ≍ rminp

n
=

diamℓn
2

(BX)

2
p

n
.

The above reasoning shows that the minimum of the right hand side of (53) over all the normed spaces
Y = (Rn ,∥·∥Y) with BY ⊆ BX is at most a universal constant multiple of diamℓn

2
(BX)

p
λ(X)/n (take Y = ChX).

In the reverse direction, for any such Y by (54) with L = BY we have

MaxProj(BY)

voln(BY)
≳

voln−1(∂BY)

voln(BY)
p

n
⩾

voln−1(∂ChBX)

voln(ChBX)
p

n

(61)
⩾

2
p
λ(X)

π
p

n
,

where the penultimate step follows from the definition of the Cheeger body ChBX. □

It is natural to expect that if X = (Rn ,∥ · ∥X) is a canonically positioned normed space, then in Conjec-
ture 9 for K = BX holds with S the identity matrix and with L being the unit ball of a canonically positioned
normed space. We formulate this refined special case of Conjecture 9 as the following conjecture.

Conjecture 46. Fix n ∈N and a canonically positioned normed space X = (Rn ,∥ · ∥X). Then, there exists a
canonically positioned normed space Y = (Rn ,∥ ·∥Y) with ∥ ·∥Y ≍ ∥·∥X and iq(BY)≲

p
n.

Theorem 47 below shows that Conjecture 46 holds if X = ℓn
p for any p ⩾ 1 and infinitely many dimen-

sions n ∈N; specifically, it holds if n satisfies the mild arithmetic (divisibility) requirement (74) below. An
obvious question that this leaves is to prove Conjecture 46 for X = ℓn

p and arbitrary (p,n) ∈ [1,∞]×N. We
expect that this question is tractable by (likely nontrivially) adapting the approach herein, but we did not
make a major effort to do so since obtaining Conjecture 46 for such a dense set of dimensions n suffices
for our purposes (the bi-Lipschitz invariants that we consider can be estimated from above for any n ∈N
since the requirement (74) holds for some N ∈ N∩ [n,O(n)] and ℓn

p embeds isometrically into ℓN
p ). In

Section 6 we will prove Theorem 47, and deduce Theorem 24 from it. Recall Remark 31, which explains
that Conjecture 9 when K is the unit ball of ℓn

p follows (with S the identity matrix) from Theorem 24.
Thus, we do know that a body L as in Conjecture 9 exists for all the possible choices of p ⩾ 1 and n ∈N,
and (74) is only relevant to ensure that L is the unit ball of a canonically positioned normed space.

Theorem 47. Fix n ∈N and p ⩾ 1. Conjecture 46 holds for X = ℓn
p if the following condition is satisfied.

∃m ∈N, m | n and max{p,2}⩽m ⩽ ep . (74)

The following conjecture is a variant of Conjecture 11.

Conjecture 48. Fix n ∈N and a canonically positioned normed space X = (Rn ,∥·∥X). There exists a normed
space Y = (Rn ,∥ ·∥Y) with BY ⊆ BX yet n

√
voln(BY)≳ n

√
voln(BX) such that iq(BY)≲

p
n.

Conjecture 46 requires Y to be canonically positioned while Conjecture 48 does not. The reason for
this is that if any normed space Y satisfies the conclusion of Conjecture 48, then also the Cheeger space
ChX of X satisfies it (this is so because the convex body L that minimizes the second quantity in (60) is,
by definition, the Cheeger body of K = BX), and by Lemma 41 the Cheeger space of X inherits from X the
property of being canonically positioned. This use of the uniqueness of the Cheeger body will be impor-
tant below. By (62), Conjecture 48 is equivalent to the following symmetric version of Conjecture 35.

Conjecture 49. If X = (Rn ,∥ ·∥X) is a canonically positioned normed space, then λ(X)vol(BX)
2
n ≍ n.

The following corollary is a substitution of Conjecture 49 into Theorem 45.
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Corollary 50. If Conjecture 48 (equivalently, Conjecture 49) holds for a canonically positioned normed
space X = (Rn ,∥ ·∥X), then the right hand side of (53) when Y = ChX is O(evr(X)

p
n). Consequently,

e(X)≲ evr(X)
p

n ≍ vr(X∗)
p

n. (75)

It is worthwhile to note that by [Bal89], the rightmost quantity in (75) is maximized (over all possible
n-dimensional normed spaces) when X = ℓn

1 , in which case we have evr(ℓn
1 )
p

n ≍ n.

Remark 51. We currently do not have any example of a normed space X = (Rn ,∥ ·∥X) for which (75) prov-
ably does not hold. If (75) were true in general, or even if it were true for a restricted class of normed
spaces that is affine invariant and closed under direct sums, such as spaces that embed into ℓ1 with dis-
tortion O(1), then it would be an excellent result. When one leaves the realm of canonically positioned
spaces, (75) acquires a self-improving property8 as follows. Suppose that X is in Löwner position, i.e.,
LX = Bℓn

2
. Fix m ∈N and consider the (n +m)-dimensional space X′ = X⊕∞ ℓm

2 . If (75) holds for X′, then

e(X)⩽ e(X′)≲ evr(X′)
√

dim(X′)≲

(
voln+m

(
Bℓn+m

2

)
voln(BX)volm

(
Bℓm

2

)) 1
n+m p

n +m

=
(

voln(LX)

voln(BX)

) 1
n+m

(
voln+m

(
Bℓn+m

2

)
voln

(
ℓn

2

)
volm

(
Bℓm

2

)) 1
n+m p

n +m ≍ evr(X)
n

n+m n
n

2(n+m) m
m

2(n+m) .

(76)

The value of m that minimizes the right hand side of (76) is m ≍ n log(evr(X)+1), for which (76) becomes

e(X)≲
√

n log
(
evr(X)+1

)
. (77)

As evr(X)⩽
p

n by John’s theorem, (77) gives e(X)≲
√

n logn, which would be an improvement of [JLS86].
Also, by (9) the bound (77) gives e(X)≲

√
n log(C2(X)+1), which is better than the conjectural bound (10).

Here and throughout, for 1 ⩽ p ⩽ 2 ⩽ q the (Gaussian) type-p and cotype-q constants [MP76] of a Ba-
nach space (X,∥ · ∥X), denoted Tp (X) and Cq (X), respectively, are the infimum over those T ∈ [1,∞] and
C ∈ [1,∞], respectively, for which the following inequalities hold for every m ∈N and every x1, . . . , xm ∈ X,
where the expectation is with respect to i.i.d. standard Gaussian random variables g1, . . . ,gm .

1

C

( m∑
j=1

∥x j∥q
X

) 1
q

⩽

(
E

[∥∥∥ m∑
j=1

g j x j

∥∥∥2

X

]) 1
2

⩽ T

( m∑
j=1

∥x j∥p
X

) 1
p

. (78)

This observation indicates that it might be too optimistic to expect that (75) holds in full generality, but it
would be very interesting to understand the extent to which it does. Obvious potential counterexamples
are ℓn

1 ⊕ℓm
2 ; if (75) holds for these spaces, then e(ℓn

1 )≲
√

n logn by the above reasoning (with m ≍ n logn),
which would be a big achievement because the best-known bound remains e(ℓn

1 )≲ n from [JLS86].

Lemma 52 below, whose proof appears in Section 6.1, shows that Conjecture 48 holds for a class of
normed space that includes any normed spaces with a 1-symmetric basis, as well as, say, ℓn

p (ℓm
q ) for any

n,m ∈N and p, q ⩾ 1. Other (related) examples of such spaces arise from Lemma 150 below.

Lemma 52. Let X = (Rn ,∥·∥X) be an unconditional normed space. Suppose that for any j ,k ∈ {1, . . . ,n} there
is a permutation π ∈ Sn with π( j ) = k such that ∥∑n

i=1 aπ(i )ei∥X = ∥∑n
i=1 ai ei∥X for every a1, . . . , an ∈ R.

Then, Conjecture 48 holds for X. Therefore, we have λ(X)voln(BX)2/n ≍ n and e(X)≲ evr(X)
p

n.

By [STJ80, Theorem 2.1], any unconditional normed space X = (Rn ,∥ · ∥X) satisfies vr(X) ≲ C2(X)
p

n,
where C2(X) is the cotype-2 constant of X (this is an earlier special case of (9) in which the logarithmic
term is known to be redundant). Hence, if X satisfies the assumptions of Lemma 52, then we know that

e(X)≲C2(X∗)
p

n. (79)

8We recommend checking that the analogous stabilization argument does not lead to a similar self-improvement phenom-
enon in Conjecture 9, Conjecture 10 and Corollary 33; the computations in Section 4 of [MPS12] are relevant for this purpose.
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By combining [Bal91c, Theorem 6] and (72), for any p ∈ [1,∞], if a normed space X = (Rn ,∥·∥X) is isomet-
ric to a quotient of Lp (equivalently, the dual of X is isometric to a subspace of Lp/(p−1)), then

evr(X)≲ evr
(
ℓn

p
p−1

)
≍ min

{
n

1
p − 1

2 ,1
}

.

Consequently, if X = (Rn ,∥ ·∥X) satisfies the assumptions of Lemma 52 and is also a quotient of Lp , then

e(X)≲ n
max

{
1
2 , 1

p

}
. (80)

Both (79) and (80) are generalizations of Theorem 18.
Lemma 53 below, whose proof appears in Section 6.3, shows that the unitary ideal of any n-dimensional

normed space with a 1-symmetric basis (in particular, any Schatten–von Neumann trace class), satisfies
Conjecture 48 up to a factor of O(

√
logn). Upon its substitution into Lemma 150 below, more such ex-

amples are obtained.

Lemma 53. Let E = (Rn ,∥·∥E) be a symmetric normed space. Conjecture 48 holds up to lower order factors
for its unitary ideal SE. More precisely, there is a normed space Y = (Mn(R),∥ ·∥Y) such that BY ⊆ BSE and

voln2 (BY)
1

n2 ≍ voln2

(
BSE

) 1
n2 and n ≲ iq(BY)≲ n

√
logn. (81)

Therefore, we have

n2 ≲λ
(
SE

)
voln2

(
BSE

) 2
n2 ≲ n2 logn and e(SE)≲ evr(SE)n ≍ evr(E)n.

For the final assertion of Lemma 53, the fact that evr(SE) ≍ evr(E) follows by combining Proposition 2.2
in [Sch82], which states that vr(SE) ≍ vr(E), with (72) and the dualityS∗E = SE* (e.g. [Sim79, Theorem 1.17]).

The proof of Lemma 53 also shows (see Remark 171 below) that if we could prove Conjecture 48 for
Sn∞, then it would follow that SE satisfies Conjecture 48 for any symmetric normed space E = (Rn ,∥ · ∥E),
i.e., the logarithmic factor in (81) could be replaced by a universal constant.

By substituting Lemma 53 into Corollary 50 and using volume ratio computations of Schütt [Sch82],
we will derive in Section 6.3 the following proposition.

Proposition 54. If E = (Rn ,∥ ·∥E) is a symmetric normed space, then

e(E)≲ diamℓn
2

(
BE

)∥e1 + . . .+en∥E and e
(
SE

)
≲ diamℓn

2

(
BE

)∥e1 + . . .+en∥E

√
n logn.

The following remark sketches an alternative approach towards Conjecture 9 when K is the hypercube
[−1,1]n that differs from how we will prove Theorem 24. It yields the desired result up to a lower order fac-
tor that grows extremely slowly; specifically, it constructs an origin-symmetric convex body L ⊆ [−1,1]n

for which [−1,1]n ⊆ exp(O(log∗n))L and iq(L) = exp(O(log∗n)). Here, for each x ⩾ 1 the quantity log∗x is
defined to be the k ∈N such that tower(k−1)⩽ x < tower(k) for the sequence {tower(i )}∞i=0 that is defined
by tower(0) = 1 and tower(i +1) = exp(tower(i )). We think that this approach is worthwhile to describe
despite the fact that it falls slightly short of fully establishing Conjecture 9 for [−1,1]n due to its flexibility
that could be used for other purposes, as well as due to its intrinsic interest.

Remark 55. Fix n ∈N and q ⩾ 1. Since the n’th root of the volume of the unit ball of ℓn
q is of order n−1/q

and ℓn
q is in minimum surface area position, we can restate (42) as

iq
(
Bℓn

q

)≍ min
{p

qn,n
}

. (82)
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In particular, for Y = ℓn
q with q = logn, we have ∥ · ∥Y ≍ ∥ ·∥ℓn∞ and iq(Y) ≲

√
n logn, which already comes

close to the conclusion of Conjecture 9. We can do better using the following evaluation of the isoperi-
metric quotient of the unit ball of ℓn

p (ℓm
q ), which holds for every n,m ∈N and p, q ⩾ 1.

iq
(
Bℓn

p (ℓm
q )

)≍


nm m ⩽min
{ p

n , q
}

,
n
p

qm q ⩽m ⩽ p
n ,p

pnm p
n ⩽m ⩽min{p, q},p

pqn max
{ p

n , q
}
⩽m ⩽ p,

m
p

n p ⩽m ⩽ q,p
qnm m ⩾max{p, q}.

(83)

We will prove (83) in Section 6. Note that when m = 1 this yields (82). The case n = m of (83) is equivalent
to (49) since ℓn

p (ℓm
q ) is canonically positioned (it belongs to the class of spaces in Example 39) and using a

simple evaluation of the volume of its unit ball (see (316) below). The range of (83) that is most pertinent
for the present context is m ⩾max{p, q}, which has the feature that the factor that multiplies the quantity

p
nm =

√
dim

(
ℓn

p (ℓm
q )

)
is O(

p
q) and there is no dependence on p. This can be used as follows. Suppose that n = ab for a,b ∈N

satisfying a ≍ n/logn and b ≍ logn. Identify ℓn∞ with ℓa∞(ℓb∞). If we set Y = ℓa
p (ℓb

q ) for p = log a ≍ logn

and q = logb ≍ loglogn, then ∥·∥Y ≍ ∥·∥ℓn∞ , while iq(BY) ≍√
n loglogn by (83). By iterating we get that for

infinitely many n ∈N there is a normed space Y = (Rn ,∥·∥Y) for which ∥·∥Y ⩽ ∥·∥ℓn∞ ⩽ exp(O(log∗n))∥·∥Y

and iq(BY) = exp(O(log∗n)). Even though the set of n ∈ N for which this works is not all of N, it is quite
dense in N per Lemma 162 below. This will allow us to deduce that a space Y with the above properties
exists for every n ∈N; see Section 6.1 for the details.

Remark 56. Recalling Remark 37, Conjecture 10 is equivalent to the assertion that if a normed space
X = (Rn ,∥·∥X) is in Cheeger position, then voln(ChBX)1/n ≳ voln(BX)1/n and iq(ChBX)≲

p
n. Since ChX is

in minimum surface area position when X is in Cheeger position (as explained in Remark 37), the proof
of Proposition 32 shows that Conjecture 10 implies that if X is in Cheeger position, then

e(X)≲
diamℓn

2
(BX)

voln(BX)
1
n

(84)

In fact, the right hand side of (53) is at most the right hand side of (84) for a suitable choice of normed
space Y = (Rn ,∥ ·∥Y), specifically for Y = ChX. The discussion in Section 1.6.2 was about establishing (84)
when X is canonically positioned (conceivably that assumption implies that X is in Cheeger position or
close to it, which would be a worthwhile to prove, if true). Even though, as we explained earlier, given the
current state of knowledge, understanding the Lipschitz extension problem for canonically positioned
spaces is the most pressing issue for future research, it would be very interesting to study if (84) holds in
other situations. For examples, we pose the following two natural questions.

Question 57. Does (84) hold if the normed space X = (Rn ,∥ ·∥X) is in minimum surface area position?

The extent to which ΠX is close to being in minimum surface area position when X is in minimum
surface area position seems to be unknown. Therefore, the connection between Question 58 below and
Question 57 is unclear, but even if there is no formal link between these two questions, both are natural
next steps beyond the setting of canonically positioned normed spaces.

Question 58. Let Z = (Rn ,∥ ·∥Z) be a normed space in minimum surface area position. Does (84) hold for
the normed space X =ΠZ whose unit ball is the projection body of BX?

If Z = (Rn ,∥ ·∥Z) is a normed space in minimum surface area position, then

diamℓn
2

(ΠBZ)

voln(ΠBZ)
1
n

≍p
n. (85)
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Indeed, because Z is in minimum surface area position, we have voln(ΠBZ)1/n ≍ voln−1(∂BZ)/n by [GP99,
Corollary 3.4], and also MaxProj(BZ) ≍ voln−1(∂BZ)/

p
n by combining [GP99, Proposition 3.1] and (54).

We can therefore justify (85) using these results from [GP99] and duality as follows.

diamℓn
2

(ΠBZ)

voln(ΠBZ)
1
n

≍
n∥Idn∥ΠZ→ℓn

2

voln−1(∂BZ)
=

n∥Idn∥ℓn
2 →Π*Z

voln−1(∂BZ)
= n maxz∈Sn−1 ∥z∥Π*Z

voln−1(∂BZ)
(30)= nMaxProj(BZ)

voln−1(∂BZ)
≍p

n.

By this observation, a positive answer to Question 58 would show that e(ΠZ)≲
p

n for any normed space
Z = (Rn ,∥ · ∥Z). Indeed, if we take S ∈ SLn(R) such that SZ is in minimum surface area position, then
by [Pet67] we know that ΠZ and ΠSZ are isometric, so e(ΠZ) = e(ΠSZ). As the class of projection bodies
coincides with the class of zonoids [Bol69, SW83], which coincides with the class of convex bodies whose
polar is the unit ball of a subspace of L1, we have thus shown that a positive answer to Question 58 would
imply the following conjecture (which would simultaneously improve (23) and generalize Theorem 18).

Conjecture 59. For any normed space X = (Rn ,∥ ·∥X) we have e(X)≲ cL1 (X∗)
p

n.

Note that Conjecture 59 is consistent with the estimate e(X)≲ evr(X)
p

n that has been arising thus far.
Indeed, if X∗ is isometric to a subspace of L1 (it suffices to consider only this case in Conjecture 59 by a
well-known differentiation argument; see e.g. [BL00, Corollary 7.10]), then we have the bound evr(X)≲ 1
which can be seen to hold by combining (72) with (9), since C2(X∗)⩽C2(L1)≲ 1.9

Relating e(X) to evr(X) is valuable since the Lipschitz extension modulus is for the most part shrouded
in mystery, while the literature contains extensive knowledge on volume ratios (we have already seen sev-
eral examples of such consequences above, and we will derive more later). Section 6.3 contains examples
of volume ratio evaluations for various canonically positioned normed spaces. Through their substitu-
tion into Corollary 50, they illustrate how our work yields a range of new Lipschitz extension results, some
of which are currently conjectural because they hold assuming Conjecture 48 for the respective spaces;
specifically, consider the Lipschitz extension bounds that correspond to using (14) and (15) with [LN05].

1.6.3. Intersection with a Euclidean ball. Fix an integer n ⩾ 2 and a canonically positioned normed space
X = (Rn ,∥ · ∥X). A natural first attempt to prove Conjecture 48 for X is to consider the normed space
Y = (Rn ,∥·∥Y) such that BY = BX∩r Bℓn

2
for a suitably chosen r > 0 (equivalently, ∥x∥Y = max{∥x∥X,∥x∥ℓn

2
/r }

for every x ∈Rn). However, we checked with G. Schechtman that this fails even when X = ℓn∞. Specifically,
if the n’th root of the volume of Bℓn∞ ∩ (r Bℓn

2
) is at least a universal constant, then necessarily r ≳

p
n, but

∀s > 0, iq
(
Bℓn∞ ∩ (s

p
nBℓn

2
)
)
≳s n. (86)

A justification of (86) appears in Section 7 below. In terms of the quantification (60) of Conjecture 48 that
is pertinent to the applications that we study herein, we will also show in Section 7 that

min
r>0

iq
(
Bℓn∞ ∩ (r Bℓn

2
)
)

p
n

(
voln(Bℓn∞)

voln
(
Bℓn∞ ∩ (r Bℓn

2
)
)) 1

n

≍
√

logn, (87)

where the minimum in the right hand side of (87) is attained at some r > 0 that satisfies r ≍√
n/logn.

Even though the above bounds demonstrate that it is impossible to resolve Conjecture 48 by intersect-
ing with a Euclidean ball, this approach cannot fail by more than a lower-order factor; the reasoning that
proves this assertion was shown to us by B. Klartag and E. Milman in unpublished private communica-
tion that is explained with their permission in Section 7. Specifically, we have the following proposition.

9Alternatively, evr(X)≲ 1 can be justified by writing X =ΠZ for some normed space Z = (Rn ,∥·∥Z) (using [Bol69, SW83]), and
then applying the bound (85) that we derived above (this even demonstrates that the external volume ratio ofΠZ is O(1) when Z
is in minimum surface area position rather when Z is in Löwner position). Actually, the sharp bound evr(X)⩽ evr(ℓn∞) holds, as
seen by combining [Bal91c, Theorem 6] with Reisner’s theorem [Rei86] that the Mahler conjecture [Mah39] holds for zonoids.
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Proposition 60. For any normed space X = (Rn ,∥ · ∥X) there exist a matrix S ∈ SLn(R) and a radius r > 0
such that for L = (SBX)∩(r Bℓn

2
) ⊆ SBX we have iq(L)≲

p
n and n

√
voln(L)≳ n

√
voln(BX)/K (X), where K (X) is

the K -convexity constant of X. If X is canonically positioned, then this holds when S is the identity matrix.

For Proposition 60, the K -convexity constant of X is an isomorphic invariant that was introduced by
Maurey and Pisier [MP76]; we defer recalling its definition to Section 7 since for the discussion here it
suffices to state the following bounds that relate K (X) to quantities that we already encountered. Firstly,

K (X)≲ log
(
dBM(ℓn

2 ,X)+1
)
≲ logn, (88)

The first inequality in (88) is a useful theorem of Pisier [Pis80a, Pis80b]. The second inequality in (88)
follows from John’s theorem [Joh48], though for this purpose it suffices to use the older Auberbach lemma
(see [Ban93, page 209] and [Day47, Tay47]). By [Pis80b] (see also e.g. [JS01, Lemma 17]) the rightmost
quantity in (88) can be reduced if X is a subspace of L1, namely we have

K (X)≲ cL1 (X)
√

logn. (89)

Secondly, K (X) relates to the notion of type that we recalled in (78) through the following bounds:

T1+ c
K (X)2

(X)
1
2 ≲K (X)⩽ min

p∈(1,2]
e(C Tp (X))

p
p−1

, (90)

The qualitative meaning of (90) is that the K -convexity constant of a Banach space is finite if and only if
it has type p for some p > 1; this is a landmark theorem of Pisier (the ‘if’ direction is due to [Pis82] and
the ‘only if’ direction is due to [Pis73]). Since in our setting X is finite dimensional (dim(X) = n ⩾ 2), such
a qualitative statement is vacuous without its quantitative counterpart (90). The first inequality in (90)
can be deduced from [Pis83] (together with the computation of the implicit dependence on p in [Pis83]
that was carried out in [HLN16, Lemma 32]). The second inequality in (90) follows from an examination
of the proof in [Pis82]. We omit the details of both deductions as they would result in a (quite lengthy
and tedious) digression. It would be very interesting to determine the best bounds in the context of (90).

Proposition 60 combined with (88) implies that Conjecture 10 holds up to a logarithmic factor in the
sense that for every integer n ⩾ 2, any origin-symmetric convex body K ⊆Rn admits a matrix S ∈ SLn(R)
and an origin-symmetric convex body L ⊆ SK such that

iq(L)p
n

(
voln(K )

voln(L)

) 1
n

≲ logn. (91)

Furthermore, by (89) the logn in (91) can be replaced by
√

logn if K is the unit ball of a subspace of L1

(equivalently, the polar of K is a zonoid), and by the second inequality in (90) if p > 1, then the logn in (91)
can be replaced by a dimension-independent quantity that depends only on p and the type-p constant
of the norm whose unit ball is K . Also, Corollary 33 holds with the right hand side of (59) multiplied
by logn, and the reverse Faber–Krahn inequality of Conjecture 35 holds up to a factor of (logn)2, i.e.,
for any origin-symmetric convex body K ⊆ Rn there is S ∈ SLn(R) such that λ(SK )vol(K )2/n ≲ n(logn)2.
If X = (Rn ,∥ · ∥X) is a canonically positioned normed space, then it follows that for a suitable choice of
normed space Y = (Rn ,∥ · ∥Y) the right hand side of (28), and hence also e(X) by Theorem 21, is at most a
universal constant multiple of evr(X)

p
n logn, and also n ≲λ(X)voln(BX)2/n ≲ n(logn)2.

1.7. Randomized clustering. All of the new upper bounds on Lipschitz extension moduli that we stated
above rely on a geometric structural result for finite dimensional normed spaces (and subsets thereof).
Beyond the application to Lipschitz extension, this result is of value in its own right because it yields an
improvement of a basic randomized clustering method from the computer science literature.

The link between random partitions of metric spaces and Lipschitz extension was found in [LN05]. We
will adapt the methodology of [LN05] to deduce the aforementioned Lipschitz extension theorems from
our new bound on randomized partitions of normed spaces. In order to formulate the corresponding
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definitions and results, one must first set some groundwork for a notion of a random partition of a metric
space, whose subsequent applications necessitate certain measurability requirements.

A framework for reasoning about random partitions of metric spaces was developed in [LN05], but we
will formulate a different approach. The reason for this is that the definitions of [LN05] are in essence
the minimal requirements that allow one to use at once several different types of random partitions for
Lipschitz extension, which leads to definitions that are more cumbersome than the approach that we
take below. Greater simplicity is not the only reason why we chose to formulate a foundation that differs
from [LN05]. The approach that we take is easier to implement, and, importantly, it yields a bi-Lipschitz
invariant, while we do not know if the corresponding notions in [LN05] are bi-Lipschitz invariants (we
suspect that they are not, but we did not attempt to construct examples that demonstrate this). The Lip-
schitz extension theorem of [LN05] is adapted accordingly in Section 5, thus making the present article
self-contained, and also yielding simplification and further applications. Nevertheless, the key geomet-
ric ideas that underly this use of random partitions are the same as in [LN05].

Obviously, there are no measurability issues when one considers finite metric spaces (in our setting,
finite subsets of normed spaces). The ensuing measurability discussions can therefore be ignored in the
finitary setting. In particular, the computer science literature on random partitions focuses exclusively
on finite objects. So, for the purpose of algorithmic clustering, one does not need the more general
treatment below, but it is needed for the purpose of Lipschitz extension.
1.7.1. Basic definitions related to random partitions. Let (M,dM) be a metric space. Suppose thatP⊆ 2M

is a partition of M. For x ∈M, denote by P(x) ⊆M the unique element of P to which x belongs. The sets
{P(x)}x∈M are often called the clusters ofP. Given∆> 0, one says thatP is∆-bounded if diamM(P(x))⩽∆
for every x ∈M, where diamM(S) = sup{dM(x, y) : x, y ∈ S} denotes the diameter of ∅ ̸= S ⊆M.

Suppose that (Z,F) is a measurable space, i.e., Z is a set and F ⊆ 2Z is a σ-algebra of subsets of Z.
Recall (see [Jac68] or the convenient survey [Wag77]) that if (M,dM) is a metric space, then a set-valued
mapping Γ :Z→ 2M is said to be strongly measurable if for every closed subset E ⊆M we have

Γ−(E)
def= {

z ∈Z : E ∩Γ(z) ̸=∅
} ∈F. (92)

Throughout what follows, when we say that P is a random partition of a metric space (M,dM), we
mean the following (formally, the objects that we will be considering are random ordered partitions into
countably many clusters). There is a probability space (Ω,Prob) and a sequence of set-valued mappings{

Γk :Ω→ 2M
}∞

k=1
.

We write Pω = {Γk (ω)}∞k=1 for each ω ∈Ω and require that the mapping ω 7→Pω takes values in partitions

of M. We also require that for every fixed k ∈N, the set-valued mapping Γk :Ω→ 2M is strongly measur-
able, where the σ-algebra on Ω is the Prob-measurable sets. Given ∆> 0, we say that P is a ∆-bounded
random partition of (M,dM) if Pω is a ∆-bounded partition of (M,dM) for every ω ∈Ω.

Remark 61. Recall that when we say that X = (Rn ,∥ · ∥X) is a normed space we mean that the underlying
vector space isRn , equipped with a norm ∥·∥X :Rn → [0,∞). By doing so, we introduce a second metric on
X, i.e.,Rn is also endowed with the standard Euclidean structure that corresponds to the norm ∥·∥ℓn

2
. This

leads to ambiguity when we discuss ∆-bounded partitions of X for some ∆> 0, as there are two possible
metrics with respect to which one could bound the diameters of the clusters. In fact, a key aspect of our
work is that it can be beneficial to consider another auxiliary norm ∥·∥Y onRn , as in e.g. Theorem 21, thus
leading to three possible interpretations of ∆-boundedness of a partition of Rn . To avoid any confusion,
we will adhere throughout to the convention that when we say that a partition P of X is ∆-bounded we
mean exclusively that all the clusters of P have diameter at most ∆with respect to the norm ∥ ·∥X.

1.7.2. Iterative ball partitioning. Fix∆ ∈ (0,∞). Iterative ball partitioning is a common procedure to con-
struct a ∆-bounded random partition of a metric probability space. We will next describe it to clarify at
the outset the nature of the objects that we investigate, and because our new positive partitioning results
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are solely about this type of partition. Thus, our contribution to the theory of random partitions is a sharp
understanding of the performance of iterative ball partitioning of normed spaces, and, importantly, the
demonstration of the utility of its implementation using balls that are induced by a suitably chosen aux-
iliary norm rather than the given norm that we aim to study. On the other hand, our impossibility results
rule out the existence of any random partition whatsoever with certain desirable properties.

The iterative ball partitioning method is a ubiquitous tool in metric geometry and algorithm design.
To the best of our knowledge, it was first used by Karger, Motwani and Sudan [KMS98] and the aforemen-
tioned work [CCG+98] in the context of normed spaces, and it has become very influential in the context
of general metric spaces due to its use in that setting (with the important twist of randomizing the radii)
by Calinescu, Karloff and Rabani [CKR05]. To describe it, suppose that (M,dM) is a metric space and
that µ is a Borel probability measure on M. Let {Xk }∞k=1 be a sequence of i.i.d. points sampled µ. Define

inductively a sequence {Γk }∞k=1 of random subsets of M by setting Γ1 = BM(X1,∆/2) and

∀k ∈ {2,3, . . . , }, Γk def= BM

(
Xk ,

∆

2

)
∖

k−1⋃
j=1

BM

(
X j ,

∆

2

)
.

By design, diamM(Γk )⩽∆. Under mild assumptions onM andµ that are simple to check, Γk will have
the measurability properties that we require below andP= {Γk }∞k=1 will be a partition ofM almost-surely.
While initially the clusters of P are quite “tame,” e.g. they start out as balls in M, as the iteration proceeds
and we discard the balls that were used thus far, the resulting sets become increasingly “jagged.” In
particular, even when the underlying metric space (M,dM) is very “nice,” the clusters of P need not be
connected; see Figure 2. Nevertheless, we will see that such a simple procedure results in a random
partition with probabilistically small boundaries in sense that will be described rigorously below.

FIGURE 2. A schematic depiction of (randomized) iterative ball partitioning of a bounded
subset of R2, where R2 is equipped with a norm whose unit ball is a regular hexagon. The cen-
ters of the above hexagons are chosen independently and uniformly at random from a large
region that contains the given subset of R2. At each step of the iteration, a new hexagon ap-
pears, and it carves out a new cluster which consists of the part of the hexagon that does not
intersect any of the clusters that have been formed in the previous stages of the iteration. The
first few clusters that are formed by this procedure are typically hexagons, but at later stages
the clusters become more complicated and less “round.” In particular, they can eventually be-
come disconnected, as exhibited by the region that is shaded black above.
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In the present setting, the metric space that we wish to partition is a normed space X = (Rn ,∥·∥X), so it
is natural to want to use the Lebesgue measure onRn in the above construction. Since this measure is not
a probability measure, we cannot use the above framework directly. For this reason, we will in fact use a
periodic variant of iterative ball partitioning of X by adapting a construction that was used in [LN05].

1.7.3. Separation and padding. Fix ∆> 0. Let P be a ∆-bounded random partition of a metric space M.
As a random “clustering” of M into pieces of small diameter, P yields a certain “simplification” of M. For
such a simplification to be useful, one must add a requirement that it “mimics” the geometry of M in
a meaningful way. The literature contains multiple definitions that achieve this goal, leading to appli-
cations in both algorithms and pure mathematics. We will not attempt to survey the literature on this
topic, quoting only the definitions of separating and padded random partitions, which are the simplest
and most popular notions of random partitions of metric spaces among those that have been introduced.

Definition 62 (separating random partition and separation modulus). Let (M,dM) be a metric space. For
σ,∆> 0, a ∆-bounded random partition P of (M,dM) is σ-separating if

∀x, y ∈M, Prob
[
P(x) ̸=P(y)

]
⩽
σ

∆
dM(x, y). (93)

The separation modulus10 of (M,dM), denoted SEP(M,dM) or simply SEP(M) if the metric is clear from
the context, is the infimum over thoseσ> 0 such that for every∆> 0 there exists aσ-separating∆-bounded
random partition of (M,dM). If no such σ exists, then write SEP(M,dM) =∞. Similarly, for n ∈ N, the
size-n separation modulus of (M,dM), denoted SEPn(M,dM) or simply SEPn(M) if the metric is clear
from the context, is the infimum over those σ > 0 such that for every S ⊆M with |S|⩽ n and every ∆ > 0
there exists a σ-separating ∆-bounded random partition of (S,dM). In other words,

SEPn(M,dM)
def= sup

S⊆M|S|⩽n

SEP(S,dM).

While the notions that we presented in Definition 62 are standard (see below for the history), it will be
beneficial for us (e.g. for proving Theorem 29) to introduce the following terminology.

Definition 63 (separation profile). Let (M,dM) be a metric space. We say that a metric d :M×M→ [0,∞)
on M is a separation profile of (M,dM) if for every ∆> 0 there exists a ∆-bounded random partition P∆
of (M,dM) that is defined on some probability space (Ω∆,Prob∆) such that

∀x, y ∈M, d(x, y)⩾ sup
∆∈(0,∞)

∆Prob∆
[
P∆(x) ̸=P∆(y)

]
. (94)

So, the separation modulus of (M,dM) is the infimum over those σ> 0 for which σdM is a separation
profile of (M,dM). Definition 63 would make sense for functions d : M×M → [0,∞) that need not be
metrics on M, but we prefer to deal only with separation profiles of (M,dM) that are metrics on M so as
to be able to discuss the Lipschitz condition with respect to them; observe that the right hand side of (94)
is a metric on M, so any such function is always at least (point-wise) a metric that is a separation profile
of (M,dM). If d :M×M→ [0,∞) is a separation profile of (M,dM), then d(x, y)⩾ dM(x, y) for all x, y ∈M
because diamM(PdM(x,y)−ε(x)) ⩽ dM(x, y)−ε< dM(x, y) for any 0 < ε< dM(x, y), so we necessarily have
y ∉PdM(x,y)−ε(x) (deterministically) and therefore

d(x, y)⩾ (dM(x, y)−ε)ProbdM(x,y)−ε
[
PdM(x,y)−ε(x) ̸=PdM(x,y)−ε(y)

]= dM(x, y)−ε. (95)

Definition 64 (padded random partition and padding modulus). Let (M,dM) be a metric space. For
δ,p,∆> 0, a ∆-bounded random partition P of (M,dM) is (p,δ)-padded if

∀x ∈M, Prob
[

BM

(
x,
∆

p

)
⊆P(x)

]
⩾ δ. (96)

10In [Nao17a] we called the same quantity the “modulus of separated decomposability.”
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Denote byPADδ(M,dM), or simplyPADδ(M) if the metric is clear from the context, the infimum over those
p > 0 such that for every ∆ > 0 there exists a (p,δ)-padded ∆-bounded random partition P of (M,dM). If
no such p exists, then write PADδ(M,dM) =∞. For every n ∈N, denote

PADn
δ (M,dM)

def= sup
S⊆M|S|⩽n

PADδ(S,dM).

See Section 3 for a quick justification why the above definition of random partition implies that the
events that appear in (93) and (96) are indeed Prob-measurable.

Qualitatively, condition (93) says that despite the fact that P decomposes M into clusters of small di-
ameter, any two nearby points are likely to belong to the same cluster. Condition (96) says that every
point in M is likely to be “well within” its cluster (its distance to the complement of its cluster is at least a
definite proportion of the assumed upper bound on the diameter of that cluster). Both of these require-
ments express the (often nonintuitive) property that the “boundaries” that the random partition induces
are “thin” in a certain distributional sense, despite the fact that each realization of the partition consists
only of small diameter clusters that can sometimes be very jagged. Neither of the above two definitions
implies the other, but it follows from [LN03] that if P is a (p,δ)-padded ∆-bounded random partition of
(M,dM), then there exits a random partition P′ of (M,dM) that is (2∆)-bounded and (4p/δ)-separating.

Separating and padded random partitions were introduced in the articles [Bar96, Bar99] of Bartal,
which contained decisive algorithmic applications and influenced a flurry of subsequent works that
obtained many more applications in several directions. Other works considered such partitions im-
plicitly, with a variety of applications; see the works of Leighton–Rao [LR88], Awerbuch–Peleg [AP90],
Linial–Saks [LS91], Alon–Karp–Peleg–West [AKPW91], Klein–Plotkin–Rao [KPR93] and Rao [Rao99]. The
nomenclature of Definition 62 and Definition 64 comes from [GKL03, LN03, LN04a, LN05, KLMN05].

By [Bar96], for every metric space (M,dM) and every integer n ⩾ 2, we have SEPn(M) ≲ logn. It was
observed by Gupta, Krauthgamer and Lee [GKL03] that [Bar96] also implicitly yields the padding bound
PADn

0.5(M)≲ logn. It was proved in [Bar96] that both of these estimates are sharp.
Random partitions of normed spaces were first studied by Peleg and Reshef [PR98] for applications to

network routing and distributed computing. The aforementioned work [CCG+98] improved and gener-
alized the bounds of [PR98], and influenced later works; see e.g. [LN05], and the work [AI06] of Andoni
and Indyk. Similar partitioning schemes appeared implicitly in earlier work [KMS98] on algorithms for
graph colorings based on semidefinite programming.

1.7.4. From separation to Lipschitz extension. As we already explained, the connection between random
partitions and Lipschitz extension was found in [LN05]. Here we will use the following theorem to deduce
Theorem 29. It implies in particular the bound

e(M)≲ SEP(M) (97)

of [LN05] and its proof is an adaptation of the ideas of [LN05] to both the present setup (extension to a
function that is Lipschitz with respect to a different metric) and our different measurability requirements
from the random partitions; we stress, however, that even though we cannot apply [LN05] directly as a
“black box,” the geometric ideas that underly the proof of Theorem 65 are the same as those of [LN05].

Theorem 65. Suppose that d is a separation profile of a locally compact metric space (M,dM). For every
Banach space (Z,∥·∥Z) and every subset C⊆M, if f :C→ Z is 1-Lipschitz with respect to the metric dM, i.e.,
∥ f (x)− f (y)∥Z ⩽ dM(x, y) for every x, y ∈M, then there is F : M→ Z that extends f and is O(1)-Lipschitz
with respect to the metric d, i.e., ∥F (x)−F (y)∥Z ≲ d(x, y) for every x, y ∈M.

1.7.5. Bounds on the separation and padding moduli of normed spaces. To facilitate the ensuing discus-
sion of upper and lower bounds on the separation and padding moduli of (subsets of) normed spaces,
we will first record two of their rudimentary properties. Firstly, the following lemma formally expresses
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the aforementioned advantage of the definitions in Section 1.7.3 over those of [LN05], namely that the
moduli SEP(·) and PADδ(·) are bi-Lipschitz invariants; its straightforward proof appears in Section 3.

Lemma 66 (bi-Lipschitz invariance of separation and padding moduli). Let (M,dM) be a complete metric
space that admits a bi-Lipschitz embedding into a metric space (N,dN). Then

SEP(M,dM)⩽ c(N,dN)(M,dM)SEP(N,dN), (98)

and

∀δ ∈ (0,1), PADδ(M,dM)⩽ c(N,dN)(M,dM)PADδ(N,dN). (99)

Secondly, we have the following tensorization property whose simple proof appears in Section 3. For
s ∈ [1,∞] and metric spaces (M1,dM1 ), (M,dM2 ), the metric dM1⊕sM2 :M1×M2 → [0,∞) on the Cartesian
product M1 ×M2 is defined by setting for every (x1, x2), (y1, y2) ∈M1 ×M2,

dM1⊕sM2

(
(x1, x2), (y1, y2)

) def= (
dM(x1, y1)s +dN(x2, y2)s) 1

s . (100)

With the usual convention that when s = ∞ the right hand side of (100) is equal to the maximum of
dM(x1, y1) and dN(x2, y2). The metric space (M1 ×M2,dM1⊕sM2 ) is will be denoted M1 ⊕s M2.

Lemma 67 (tensorization of separation and padding moduli). For any s ∈ [1,∞] and δ1,δ2 ∈ (0,1), any
two metric spaces (M1,dM1 ) and (M2,dM2 ) satisfy

SEP(M1 ⊕s M2)⩽ SEP(M1)+SEP(M2), (101)

and

PADδ1δ2 (M1 ⊕s M2)⩽
(
PADδ1 (M1)s +PADδ2 (M2)s) 1

s . (102)

The following theorem shows that the bi-Lipschitz invariant PADδ(·) is not sufficiently sensitive to
distinguish substantially between normed spaces, as its value is essentially independent of the norm.

Theorem 68. For every n ∈N, every normed space X = (Rn ,∥ ·∥X) satisfies

∀δ ∈ (0,1),
1

1− n
p
δ
⩽

1

2
PADδ(X)⩽

1+ n
p
δ

1− n
p
δ

. (103)

Therefore, PADδ(X) ≍ max
{

1, dim(X)
log(1/δ)

}
for every finite dimensional normed space X and δ ∈ (0,1).

As we explained above, in the setting of Theorem 68 the fact that PAD0.5(X) =O(n) is well-known. We
will prove the upper bound on PADδ(X) that appears in (103), i.e., with sharp dependence on both n and
δ, in Section 4.1. The fact that PAD0.5(X) is at least a universal constant multiple of n was proved in the
manuscript [LN03]. Because [LN03] is not intended for publication, we will prove the lower bound on
PADδ(X) that appears in (103) in Section 2.6, by following the reasoning of [LN03] while taking more care
than we did in [LN03] in order to obtain sharp dependence on δ in addition to sharp dependence on n.

In contrast to Theorem 68, the separation modulus of a finite dimensional normed space can have dif-
ferent asymptotic dependencies on its dimension. Indeed, SEP(ℓn

2 ) ≍p
n and SEP(ℓn

1 ) ≍ n by [CCG+98],
so using Lemma 66 we see that every normed space X = (Rn ,∥ ·∥X) satisfies the a priori bounds

n

dBM(ℓn
1 ,X)

≲ SEP(X)≲ dBM(ℓn
2 ,X)

p
n, (104)

which we already quoted in the above overview as (2).
Giannopoulos proved [Gia95] that every n-dimensional normed space X satisfies dBM(ℓn

1 ,X)≲ n5/6, so
the first inequality in (104) implies that SEP(X) ≳ 6

p
n. Alternatively, the fact that SEP(X) ⩾ nc for some

universal constant c > 0 follows from by combining Theorem 1 with (97). Actually, we always have

SEP(X)≳
p

n, (105)
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which coincides with the first half of (7). Observe that (105) cannot follow from a “vanilla” application of
the first inequality in (104) by Szarek’s work [Sza90]. In fact, the first inequality of (104) must sometimes
yield a worse power type dependence on n than in (105), because Tikhomirov proved in [Tik19] that there
is a normed space X = (Rn ,∥ ·∥X) that satisfies dBM(ℓn

1 ,X)⩾ na for some universal constant a > 1/2.
Nevertheless, we can prove (105) by the following a “hereditary” application of (104). Bourgain and

Szarek [BS88] and independently Ball (see [BS88, Remark 7], [Sza91, Remark 7], [TJ89, page 138]) proved
(relying on the Bourgain–Tzafriri restricted invertibility principle [BT87]) that there is m ∈ {1, . . . ,n} with
m ≍ n such that cX(ℓm

1 ) ≲
p

n (in fact, by [BS88] any 2n-dimensional normed space has Banach–Mazur
distance O(

p
n) from ℓn

1 ⊕ℓn
2 ). Therefore, by (98) we have SEP(X)≳ SEP(ℓm

1 )/cX(ℓm
1 ) ≍ m/cX(ℓm

1 )≳
p

n.
The second half of (7) is the following lower bound on SEP(X) in terms of the type 2 constant of X.

SEP(X)≳ T2(X)2. (106)

We will prove (106) in Section 2.2 using Talagrand’s refinement [Tal92] of Elton’s theorem [Elt83], by the
same hereditary use of (104), namely showing that there is m ∈ {1, . . . ,n} for which m/cX(ℓm

1 )≳ T2(X)2.

Remark 69. It is impossible to improve (7) for all the values of the relevant parameters, as seen by con-
sidering X = ℓn−m

2 ⊕2 ℓ
m
1 for each m ∈ {1, . . . ,n}. Indeed, since in this case T2(X) ≍p

m,

SEP(X)
(101)
⩽ SEP

(
ℓn−m

2

)+SEP
(
ℓm

1

)≍p
n −m +m ≍p

n +k ≍ max
{√

dim(X),T2(X)2
}

.

Thanks to (72), the following theorem is a restatement of the lower bound on SEP(X) in Theorem 3.

Theorem 70. For every n ∈N, any normed space X = (Rn ,∥ ·∥X) satisfies SEP(X)≳ evr(X)
p

n.

As evr(X)⩾ 1 (by definition), Theorem 70 implies (105), via a proof that differs from the above reason-
ing. Also, Theorem 70 is stronger than the first inequality in (104) because evr(ℓn

1 ) ≍p
n, and hence

evr(X)
p

n ⩾
evr(ℓn

1 )

dBM(ℓn
1 ,X)

p
n ≍ n

dBM(ℓn
1 ,X)

.

We will prove Theorem 70 in Section 2.5 by adapting to the setting of general normed spaces the strategy
that was used in [CCG+98] to treat ℓn

1 . The volumetric lower bound on SEP(X) of Theorem 70 is typically
quite easy to use and it often leads to estimates that are better than the first inequality in (104).

For example, by [Sch82, Proposition 2.2] the Schatten–von Neumann trace class Sn
p satisfies

∀p ⩾ 1, evr
(
Sn

p

)≍ n
max

{
1
p − 1

2 ,0
}
. (107)

By substituting (107) into Theorem 70 we get that

∀1⩽ p ⩽ 2, SEP(Sn
p )≳ n

1
p − 1

2

√
dim

(
Sn

p
)≍ n

1
p + 1

2 . (108)

An upper bound that matches (108) is a consequence of the second inequality in (104) as follows

SEP
(
Sn

p

)
≲ dBM

(
Sn

p ,ℓn2

2

)√
dim

(
Sn

p
)= dBM

(
Sn

p ,Sn
2

)
n = n

1
p + 1

2 .

We therefore have

∀1⩽ p ⩽ 2, SEP
(
Sn

p

)≍ n
1
p + 1

2 .

At the same time, the first inequality in (104) does not imply (108) since by a theorem of Davis (which
was published only in the monograph [TJ89]; see Theorem 41.10 there), for every 1⩽ p ⩽ 2 we have

dBM
(
ℓn2

1 ,Sn
p

)≍ n. (109)

So, the first inequality in (104) only implies the weaker lower bound SEP(Sn
p ) ≳ n. Of course, this rules

out a “vanilla” use of (104) and a hereditary application of (104) as we did above could conceivably lead
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to (108), i.e., there could be m ∈ {1, . . . ,n} such that m/cSn
p

(ℓm
1 ) is at least the right hand side of (108). How-

ever, this possibility seems to be unlikely, as it would mean that the following conjecture has a negative
answer, which would entail finding a remarkable (and likely valuable elsewhere) subspace of Sn

p .

Conjecture 71. Fix 1⩽ p ⩽ 2 and 0 < δ⩽ 1. If n,m ∈N satisfy m ⩾ δn2, then

dBM(ℓm
1 ,X)≳p,δ n

for every m-dimensional subspace X of Sn
p .

Thus, (109) is the case δ = 1 of Conjecture 71, which asserts that the same asymptotic lower bound
persists if we consider subspaces of Sn

p of proportional dimension rather than Sn
p itself. Conjecture 71 is

attractive in its own right, but it also implies that (108) does not follow from a hereditary application of
the first inequality in (104). To see this, suppose for contradiction that there were m ∈ {1, . . . ,n} such that

m

cSn
p

(ℓm
1 )

≳p n
1
p + 1

2 . (110)

By Rademacher’s differentiation theorem [Rad19] there is an m-dimensional subspace X of Sn
p satisfying

cSn
p

(ℓm
1 ) = dBM(ℓm

1 ,X)≳
dBM(ℓm

1 ,ℓm
2 )

dBM(Sn
p ,Sn

2 )
=

p
m

n
1
p − 1

2

. (111)

By contrasting (111) with (110) we deduce that necessarily m ≳p n2, so an application of Conjecture 71
gives m/cSn

p
(ℓm

1 )≲p n, which contradicts (110) since p < 2.

Remark 72. The Löwner ellipsoid of ℓn∞(ℓn
1 ) is

p
nBℓn

2 (ℓn
2 ), and Bℓn∞(ℓn

1 ) = (Bℓn
1

)n . Consequently,

evr
(
ℓn
∞(ℓn

1 )
)
n = n

(
(πn)

n2

2 /Γ
(n2

2 +1
)

2n2 /(n!)n

) 1
n2

≍ n
3
2 .

Therefore, Theorem 70 gives

SEP
(
ℓn
∞(ℓn

1 )
)
≳ n

3
2 . (112)

We will soon see that (112) is optimal, though unlike the above discussion for Sn
p when 1 ⩽ p ⩽ 2, this

does not follow from the second inequality in (104) because by [KS89],

dBM
(
ℓn2

2 ,ℓn
∞(ℓn

1 )
)≍ dBM

(
ℓn2

1 ,ℓn
∞(ℓn

1 )
)≍ n. (113)

(113) also shows that (112) does not follow from the first inequality in (104). It seems that the method
used in [KS89] to prove (113) is insufficient for proving that (112) does not follow from a hereditary appli-
cation of the first inequality in (104). Analogously to Conjecture 71, we conjecture that this is impossible,
which is a classical-sounding question about Banach–Mazur distances of independent interest.

Before passing to a description of our upper bounds on the separation modulus, we formulate the
following corollary of Theorem 70 on the separation modulus of norms whose unit ball is a polytope; it
restates the lower bound (6) and establishes its optimality.

Theorem 73. Fix n ∈N and a normed space X = (Rn ,∥ · ∥X). Suppose that BX is a polytope that has exactly
ρn vertices (note that necessarily ρ⩾ 2, since BX is origin-symmetric). Then

SEP(X)≳
n√
logρ

. (114)

Moreover, this bound cannot be improved in general.
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As an example of a consequence of Theorem 73, let G = (Rn ,∥ · ∥G) be a Gluskin space [Glu81], i.e. it
is a certain random norm on Rn whose unit ball has O(n) vertices; see the survey [MTJ03] for extensive
information about this important construction and its variants. The expected Banach–Mazur distance
between two independent copies of G is at least cn for some universal constant c > 0, so the expected
Banach–Mazur distance between G and ℓn

1 is at least
p

cn. Thus, the first inequality in (104) only shows

that SEP(G) ≳
p

n in expectation, while Theorem 73 shows that in fact SEP(G) ≳ n/
√

logn. It would be
interesting to determine the growth rate of E[SEP(G)]. In particular, can it be that E[SEP(G)]≳ n?

Proof of Theorem 73. By applying a linear isometry of X we may assume that Bℓn
2

is the Löwner ellipsoid
of BX. Since BX is a polytope with ρn vertices that is contained in Bℓn

2
, we have

n
√

voln(BX)≲

√
logρ

n

by a result of Maurey [Pis81] (see also [Car85, BF87, CP88, Glu88, BLM89, BP90, Kyr00] and the expository
treatments in [Bal01, BGVV14]). Hence, evr(X)≳

√
n/logρ, so (114) follows from Theorem 70.

Consider the following (dual of an) example of Figiel and Johnson [FJ80]. Fix m ∈N. Let Z = (Rm ,∥·∥Z)
be a normed space with dBM(ℓm

2 ,Z) ≲ 1 such that BZ is a polytope of eO(m) vertices; e.g. BZ can be taken
to be the convex hull of a net of Sm−1. For k ∈N, let X = ℓk

1 (Z). So, dim(X) = km and BX is a polytope of
2keO(m) vertices. Thus (114) becomes SEP(X) ≳ k

p
m. At the same time, since dBM(ℓm

2 ,Z) ≲ 1 we have

dBM(ℓkm
2 ,X)≲

p
k, so by (104) in fact SEP(X)≲

p
k ·pkm = k

p
m, i.e., (114) is sharp in this case. □

Theorem 29 follows from Theorem 65 thanks to the following randomized partitioning theorem.

Theorem 74. For every n ∈N and every normed space X = (Rn ,∥ ·∥X), the metric d that is defined by

∀x, y ∈Rn , d(x, y) = 4∥x − y∥Π*X

voln(BX)
.

is a separation profile for X.

To illustrate Theorem 74, fix 1 ⩽ p ⩽∞ and apply it when X is the space Yn
p of Theorem 24. By using

Theorem 74 we see that for every ∆> 0 there is a random partition P of Rn with the following properties.

(1) For every x ∈Rn we have diamℓn
p

(
P(x)

)
⩽∆.

(2) For every x, y ∈Rn we have

Prob
[
P(x) ̸=P(y)

]
≲

∥x − y∥Π*Yn
p

voln(BYn
p

)

(30)∧(39)
≲

n
1
p

∆
∥x − y∥ℓn

2
. (115)

In comparison to the O(
p

n)-separating partition of ℓn
2 from [CCG+98], when p < 2 the above random

partition has smaller clusters in the sense that their diameter in the ℓn
p metric is at most∆, which is more

stringent than the requirement that their Euclidean diameter is at most ∆. This improved control on the
size of the clusters comes at the cost that in the probabilistic separation requirement (115) the quantity
that multiplies the Euclidean distance increases from O(

p
n) to O(n1/p ). When p > 2 this tradeoff is re-

versed, i.e., we get an asymptotic improvement in the separation guarantee (115) at the cost of requiring
less from the cluster size, namely the diameter of each cluster is now guaranteed to be small in the ℓn

p
metric rather than the more stringent requirement that it is small in the Euclidean metric.

Theorem 75 below follows from Theorem 74 the same way we deduced Theorem 21 from Theorem 29.

Theorem 75. Fix n ∈N and two normed spaces X = (Rn ,∥ ·∥X),Y = (Rn ,∥ ·∥Y). Every closed C⊆Rn satisfies

SEP(CX)⩽ 4

(
sup

x,y∈C
x ̸=y

∥x − y∥X

∥x − y∥Y

)
sup

x,y∈C
x ̸=y

(voln−1
(
Proj(x−y)⊥(BY)

)
voln(BY)

·
∥x − y∥ℓn

2

∥x − y∥X

)
. (116)
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Proof of Theorem 75 assuming Theorem 74. Let M , M ′ be as in (51). By Theorem 74 applied to Y, for every
∆> 0 there is a random partition P of Rn that is (∆/M)-bounded with respect to Y, i.e.,

diamX
(
P(x)

)
M

(51)
⩽ diamY

(
P(x)

)
⩽
∆

M

for every x ∈Rn , and also, recalling Definition 63, for every distinct x, y ∈Rn we have

∆

M
Prob

[
P(x) ̸=P(y)

]
⩽

4∥x − y∥Π*Y

voln(BY)
(30)=

4voln−1
(
Proj(x−y)⊥(BY)

)∥x − y∥ℓn
2

voln(BY)

(51)
⩽ 4M ′∥x − y∥X. □

The special case C = Rn of Theorem 75 coincides (with an explicitly stated constant factor) with the
upper bound on SEP(X) in Theorem 3, since under the normalization BY ⊆ BX we have

SEP(X)
(30)∧(116)

⩽ 4
supz∈∂BX

∥z∥Π*Y

voln(BY)
= 4

∥Idn∥X→Π*Y

voln(BY)
= 4

∥Idn∥ΠY→X*

voln(BY)
= 2

diamX* (ΠBY)

voln(BY)
.

Also, Theorem 75 is stronger than the second inequality in (104) because by applying a linear isometry of
X we may assume without loss of generality that ∥x∥X ⩽ ∥x∥ℓn

2
⩽ dBM(ℓn

2 ,X)∥x∥X for all x ∈ Rn , in which
case the special case C=Rn and Y = ℓn

2 of (116) implies that

SEP(X)⩽
4voln−1

(
Bℓn−1

2

)
voln

(
Bℓn

2

) dBM(ℓn
2 ,X) = 4π

n−1
2 Γ

(n
2 +1

)
π

n
2 Γ

(n−1
2 +1

) dBM(ℓn
2 ,X) = 2

3
2 +o(1)p

π
dBM(ℓn

2 ,X)
p

n.

The right hand side of (116) coincides (up to a universal constant factor) with the right hand side
of (28), so all of the upper bounds for the Lipschitz extension modulus that we derived in the previous
sections from Theorem 21 hold for the separation modulus, by Theorem 75. For the separation modulus,
we get several lower bounds from Theorem 70 that either provably match our upper bounds up to lower
order factors, or match them assuming our conjectural isomorphic reverse isoperimetry. We will next
spell out some of those consequences on randomized clustering of high dimensional norms.

Theorem 76. For every p ⩾ 1, n ∈N and k,r ∈ {1, . . . ,n} we have

SEP
(
(ℓn

p )⩽k
)≍ k

max
{

1
p , 1

2

}
, (117)

and

r
max

{
1
p , 1

2

}p
n ≲ SEP

(
(Sn

p )⩽r
)
≲ r

max
{

1
p , 1

2

}p
n ·

{ √
max

{
log

(n
r

)
, p

}
if p ⩽ logr,√

logn if p ⩾ logr.
(118)

Moreover, if Conjecture 48 holds for X = Sn
p , then in fact

SEP
(
(Sn

p )⩽r
)≍ r

max
{

1
p , 1

2

}p
n. (119)

Proof. The deduction of the upper bounds on the separation modulus in (117) and (118) from Theo-
rem 75 are identical, respectively, to the ways we deduced Theorem 20 and (45) from Theorem 21.

For the first inequality in (117), since (ℓn
p )⩽k contains an isometric copy of ℓk

p , we have

SEP
(
(ℓn

p )⩽k
)
⩾ SEP

(
ℓk

p

)
≳

k

dBM
(
ℓk

p ,ℓk
1

) (104)≍ k

k
max

{
1− 1

p , 1
2

} = k
min

{
1
p , 1

2

}
,

where the asymptotic evaluation of dBM(ℓk
p ,ℓk

q ) for all p, q ⩾ 1 is due Gurarĭı, Kadec′ and Macaev [GKM66].
For the first inequality in (118), use the fact that (Sn

p )⩽r contains an isometric copy of Sr×n
p , which is

the Schatten–von Neumann trace class on the r -by-n real matrices Mr×n(R), whose norm is given by

∀A ∈ Mr×n(R), ∥A∥Sr×n
p

=
(

Tr
(
(A A∗)

p
2
)) 1

p
. (120)
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We then have the following rectangular version of (107) whose derivation is explained in Remark 170.

evr
(
Sr×n

p

)≍ r
max

{
1
p − 1

2 ,0
}
. (121)

The desired lower bound on SEP((Sn
p )⩽r ) is now an application of Theorem 70. □

Remark 77. Theorem 3.3 in [CCG+98] asserts that SEP(ℓn
p ) ≍ nmax{1/p,1−1/p} for every p ⩾ 1. If p ⩾ 2,

then this means that it was previously thought that SEP(ℓn
p ) ≍ n1−1/p , which is of course incompatible

with the case k = n of (117) for every p > 2. While [CCG+98] provides a complete proof of SEP(ℓn
p ) ≍ n1/p

when 1 ⩽ p ⩽ 2, in the range p > 2 the assertion SEP(ℓn
p ) ≍ n1−1/p in [CCG+98] is justified through the

use of a result from reference [14] in [CCG+98], which is cited there as a “personal communication” with
P. Indyk (dated April 1998). This reference was never published; after discovering the improved estimate
of Theorem 76, we confirmed with Indyk that it was indeed flawed.

Corollary 78. Conjecture 48 implies Conjecture 6. Namely, if Conjecture 48 holds for a canonically posi-
tioned normed space X = (Rn ,∥ ·∥X), then

SEP(X) ≍ evr(X)
p

n ≍ vr(X∗)
p

n. (122)

In particular, if X satisfies the assumptions of Lemma 52 (e.g. if X is symmetric), then (122) holds. Further-
more, if E = (Rn ,∥ ·∥E) is a symmetric normed space, then SEP(SE) = evr(E)n1+o(1). More precisely,

evr(E)n ≲ SEP(SE)≲ evr(E)n
√

logn. (123)

Proof. The lower bound on SEP(X) in (122) is Theorem 70 (thus, it requires neither Conjecture 48 nor X
being canonically positioned). The matching upper bound on SEP(X) in (122) follows from Corollary 50
and the fact that by Theorem 75 the separation modulus of any (not necessarily canonically positioned)
normed space X = (Rn ,∥ · ∥X) is bounded from above by the right hand side of (53). The rest of the asser-
tions of Corollary 78 follow from Lemma 52 and Lemma 53. □

By incorporating Proposition 60 into the same reasoning as in the justification of Corollary 78, we also
deduce the following stronger version of Theorem 12.

Theorem 79. If X = (Rn ,∥ ·∥X) is a canonically positioned normed space, then

evr(X)
p

n ≲ SEP(X)≲K (X)evr(X)
p

n
(88)
≲ evr(X)

p
n logn.

Section 6.3 contains volume ratio computations that show how Corollary 78 and Theorem 79 imply
Corollary 4, as well as the conjectural (i.e., conditional on the validity of Conjecture 48 for the respective
spaces) asymptotic evaluations (14) and (15), and several further results of this type. Most of the volume
ratio computations in Section 6.3 rely on the available literature (notably Schütt’s work [Sch82]), with a
few new twists that are perhaps of independent geometric/probabilisitic interest (e.g. Lemma 172).

1.7.6. Dimension reduction. Fix n ∈ N and a metric space (M,dM). Recall that in Definition 62 we de-
noted by SEPn(M,dM) the supremum over all the separation moduli of subsets of M of size at most n.
In [CCG+98] it was shown that SEPn(ℓ2)≲

√
logn. Indeed, this follows from the Johnson–Lindenstrauss

dimension reduction lemma [JL84], which asserts that any n-point subset of ℓ2 can be embedded with
O(1) distortion into ℓm

2 with m ≲ logn, combined with the proof in [CCG+98] that SEP(ℓm
2 )≲

p
m.

One might expect that the optimal bounds that we know for SEP(ℓn
p ) in the entire range p ∈ (1,∞) also

translate to improved bounds on SEPn(ℓp ). The term “improved” is used here to mean any upper bound
of the form op (logn) as n →∞, since the benchmark general result is the aforementioned upper bound
SEPn(M,dM) ≲ logn from [Bar96], which holds for any n-point metric space (M,dM). This bound is
sharp in general [Bar96], so (because every n-point metric space embeds isometrically into ℓn∞) we can-
not hope to get a better bound on SEPn(ℓ∞) despite the fact that we obtained here an improved upper
bound on SEP(ℓn∞).
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The obstacle is that when p ∈ [1,∞]∖{2} no bi-Lipschitz dimension reduction result is known for finite
subsets of ℓp , and poly-logarithmic bi-Lipschitz dimension reduction is impossible if p ∈ {1,∞}; the case
p =∞ is due to Matoušek [Mat96] (see also [Nao17b, Nao21a]) and the case p = 1 is due to Brinkman and
Charikar [BC05] (see also [LN04b, Reg13, NPS20, NY21]). When p ∈ [1,∞]∖ {1,2,∞} remarkably nothing
is known, i.e., neither positive results nor impossibility results are available for bi-Lipschitz dimension
reduction, and it is a major open problem to make any progress in this setting; see [Nao18] for more on
this area. Despite this obstacle, we have the following theorem that treats the range p ∈ [1,2].

Theorem 80. For every p ∈ (1,2] and n ∈Nwe have

(logn)
1
p ≲ SEPn(ℓp )≲

(logn)
1
p

p −1
.

The lower bound on SEPn(ℓp ) of Theorem 80 can be deduced from [CCG+98]; see Section 4.2 for the
details. An upper bound ofSEPn(ℓp )≲p (logn)1/p was obtained when p ∈ (1,2] in the manuscript [LN03].
As [LN03] is not intended for publication, a proof of the upper bound on SEPn(ℓp ) that is stated in The-
orem 80 is included in Section 4.2, where we perform the argument with more care than the way we ini-
tially did it in [LN03], so as to obtain the best dependence on p that is achievable by this approach. Nev-
ertheless, we conjecture that the dependence on p in Theorem 80 could be removed altogether, though
this would likely require a substantially new idea.

Conjecture 81. The dependence on p in Theorem 80 can be improved to SEPn(ℓp )≲ (logn)
1
p .

So, if p ⩽ 1+c(logloglogn)/ loglogn for some universal constant c > 0, then Theorem 80 does not im-
prove asymptotically over SEPn(ℓp ) ≲ logn, while Conjecture 81 would imply that SEPn(ℓp ) = o(logn)
if and only if limn→∞(p −1)loglogn =∞.

For fixed p ∈ (2,∞), at present we do not see how to obtain an upper bound on SEPn(ℓp ) of the form
op (logn) as n →∞. We state this separately as an interesting and challenging open question.

Question 82. Is it true that for every n ∈ N and p ∈ (2,∞) we have limn→∞SEPn(ℓp )/ logn = 0? More

ambitiously, is it true that SEPn(ℓp )≲p
√

logn?

Note that SEPn(X) ≳
√

logn for any infinite-dimensional normed space X, because by Dvoretzky’s
theorem [Dvo61] we have cX(ℓm

2 ) = 1 for every m ∈N, and therefore SEPn(X)⩾ SEPn(ℓ2) ≍√
logn.

1.8. Consequences in the linear theory. Even though the purpose of the present article was to investi-
gate the nonlinear invariants e(·) and SEP(·), by relating them to volumetric quantities and other linear
invariants of Banach spaces (such as type and cotype), we arrive at consequences that have nothing to do
with nonlinear issues. In this section, we will give a flavor of such consequences, though we will not be
exhaustive since it would be more natural to pursue them separately for their own right in future work.

Denote the Minkowski functional of an origin-symmetric convex body K ⊆ Rn by ∥ · ∥K , i.e., it is the
norm on Rn whose unit ball is equal to K . The following theorem coincides with the second inequality
in (1) upon a straightforward application of duality as we did in (31); this formulation is intended to
highlight how we are bounding a convex-geometric quantity by a bi-Lipschitz invariant.

Theorem 83 (nonsandwiching between a convex body and its polar projection body). Fix n ∈ N and
α,β ∈ (0,∞). Let K ,L ⊆Rn be symmetric convex bodies with voln(L) = 1. Suppose that

αL ⊆ K ⊆βΠ∗L. (124)

Then,
β

α
≳ SEP

(
Rn ,∥ ·∥K

)
. (125)
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Since the separation modulus of a metric space is at least the separation modulus of any of its subsets,
by combining (125) with the first inequality in (1) we see that the sandwiching hypothesis (124) implies
the following purely volumetric consequence for every linear subspace V ⊆Rn .

β

α
≳ evr

(
K ∩V

)p
n ≍ vr

(
ProjVK ◦)pn. (126)

In particular, using evr(ℓn
1 ) ≍p

n, we record separately the following special case of (126).

Corollary 84 (nonsandwiching of the cross-polytope). Fix n ∈ N and α,β ∈ (0,∞). If L ⊆ Rn is a convex
body of volume 1 that satisfies αL ⊆ Bℓn

1
⊆βΠ∗L, then necessarily β/α≳ n.

The geometric meaning of Theorem 83 when L = K is spelled out in the following corollary.

Corollary 85 (every origin-symmetric convex body admits a large cone). For every n ∈ N, every origin-
symmetric convex body K ⊆Rn has a boundary point z ∈ ∂K that satisfies

voln
(
Conez (K )

)
voln(K )

≳
1

n
SEP

(
Rn ,∥ ·∥K

)
. (127)

To see that Corollary 85 coincides with the case L = K of Theorem 83, simply recall the definition of
the polar projection bodyΠ∗K in (30), while also recalling that for z ∈Rn ∖{0} we denote the cone whose
base is Projz⊥(K ) ⊆ z⊥ and whose apex is z by Conez (K ), and the volume of Conez (K ) is given in (35).

A substitution of (105) into Corollary 85 shows that any origin-symmetric convex body K ⊆ Rn has a
boundary point z ∈ ∂K that satisfies

voln
(
Conez (K )

)
voln(K )

≳
1p
n

. (128)

It seems (based on inquiring with experts in convex geometry) that the classical-looking geometric state-
ment (128) did not previously appear in the literature. However, in response to our inquiry Lutwak found
a different proof of (128) which in addition shows that the best possible constant in (128) is 1/

p
2π. More

precisely, we have the following proposition, whose proof (which relies on classical Brunn–Minkowski
theory, unlike the indirect way by which we found (128)), is included in Section 2.7 (this proof is a re-
structuring of the proof that Lutwak found; we thank him for allowing us to include it here).

Proposition 86 (Lutwak). For every n ∈N, any origin symmetric convex body K ⊆Rn satisfies

max
z∈∂K

voln
(
Conez (K )

)
voln(K )

⩾
Γ

(n
2

)
2
p
πΓ

(n+1
2

) ⩾ 1+ 1
4np

2πn
. (129)

Moreover, the first inequality in (129) holds as equality if and only if K is an ellipsoid.

A substitution of (106) into Corollary 85 yields the following geometric inequality.

Corollary 87. Fix n ∈N and suppose that K ⊆Rn is an origin-symmetric convex body. There is a boundary
point z ∈ ∂K such that the following inequality holds for every x1, . . . , xn ∈ K .

voln
(
Conez (K )

)
voln(K )

≳
1

n

 
Sn−1

∥∥∥ n∑
i=1

θi xi

∥∥∥2

K
dθ. (130)

By combining [TJ79] with Lemma 101 below, the maximum of the right hand side of (130) over all pos-
sible x1, . . . , xn ∈ K is bounded above and below by universal constant multiples of T2(Rn ,∥·∥K )2/n (recall
the definition (78) of the type-2 constant), so Corollary 87 is indeed a substitution of (106) into (127).

Returning to Corollary 85, recall that both the cross-polytope Bℓn
1

and the hypercube [−1,1]n are ex-
amples of extremal symmetric convex bodies K ⊆Rn that have a boundary point z ∈ ∂K for which the vol-
ume of Conez (K ) is a universal constant proportion of the volume of K (the Euclidean ball is an example
of a convex body that is not extremal in this regard). But, there is a difference between the cross-polytope
and the hypercube in terms of the stability of this property. Specifically, there is an origin-symmetric
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convex body K ⊆ [−1,1]n ⊆ O(1)K such that for every z ∈ ∂K the left hand side of (127) is at most a uni-
versal constant multiple of 1/

p
n. In contrast, the following proposition shows that the extremality of

maxz∈∂Bℓn
1

voln(Conez (Bℓn
1

))/voln(Bℓn
1

) (up to constant factors) persists under O(1) perturbations.

Proposition 88. Fix n ∈N and α,β ∈ (0,∞). Suppose that K ⊆Rn is an origin-symmetric convex body that
satisfies αK ⊆ Bℓn

1
⊆βK . Then there exists a boundary point z ∈ ∂K such that

voln
(
Conez (K )

)
voln(K )

≳
α

β
. (131)

Proposition 88 is a direct consequence of Corollary 85, the bi-Lipschitz invariance of the modulus of
separated decomposability, and the lower bound SEP(ℓn

1 )≳ n of [CCG+98].

The following proposition is an application in a different direction of the results that we described in
the preceding sections.

Proposition 89. If (E,∥ · ∥E) is a finite dimensional normed space with a 1-symmetric basis, then every
subspace X of E satisfies

evr(X)
√

dim(X)≲ evr(E)
√

dim(E). (132)

Proposition 89 holds becauseSEP(E)≲ evr(E)
p

dim(E) by Corollary 78, whileSEP(X)≳ evr(X)
p

dim(X)
by Theorem 70, so (132) follows fromSEP(X)⩽ SEP(E). This justification shows that Proposition 89 holds
for a class of spaces that is larger than those that have a 1-symmetric basis, and Conjecture 6 would imply
that Proposition 89 holds when E is any canonically positioned normed space.

Nevertheless, Proposition 89 fails to hold without any further assumption on the normed space E. For
example, the computation in Remark 51 shows that for any n,m ∈Nwith n ⩾ 2 and m ≍ n logn, the space
E = ℓn

1 ⊕ℓm
2 satisfies evr(E)

p
dim(E)≲

√
n logn while its subspace X = ℓn

1 satisfies evr(X)
p

dim(X) ≍ n.
Proposition 89 shows that if E has a 1-symmetric basis, then among the linear subspaces X of E the

invariant evr(X)
p

dim(X) is maximized up to universal constant factors at X = E. The fact we are multi-
plying here the external volume ratio of X by the square root of its dimension is an artifact of our proof
and it would be interesting to understand what correction factors allow for such a result to hold:

Question 90. Characterize (up to universal constant factors) those A : [1,∞) → [1,∞) with the property
that for any n ⩾ 1 we have evr(X)A(k) ⩽ evr(E)A(n) for every normed space (E,∥ · ∥E) of dimension at
most n that has a 1-symmetric basis, every k ∈ {1, . . . ,n}, and every k-dimensional subspace X of E.

Proposition 89 shows that if A(n) ≍p
n, then A : [1,∞) → [1,∞) has the properties that are described in

Question 90. At the same time, no A : [1,∞) → [1,∞) with A(n) =O(1) can be as in Question 90. Indeed,
for any such A consider the symmetric normed space E = ℓn∞. There is a universal constant η > 0 such
that any normed space X with dim(X) ⩽ η logn is at Banach–Mazur distance at most 2 from a subspace
of ℓn∞.11 In particular, this holds for X = ℓm

1 when m ∈N satisfies m ⩽ η logn, so we get that

A(η logn)
√

logn ≍ evr
(
ℓm

1

)
A(η logn)⩽ 2evr

(
ℓn
∞

)
A(n) ≍ A(n). (133)

So, A(n)≳
√

logn and by iterating (133) one gets the slightly better lower bound A(n)≳
√

(logn) loglogn,
as well as A(n)≳

√
(logn)(loglogn) logloglogn and so forth, yielding in the end the estimate

A(n)⩾

(∏log∗n
k=1 log[k]n

) 1
2

eO(log∗n)
, (134)

11This assertion is standard, here is a quick sketch. Take a δ-net N of the unit sphere of X∗ for a sufficiently small universal
constant δ > 0 and consider the embedding x 7→ (x∗(x))x∗∈N from X to ℓ∞(N). Since log |N| ≍ dim(X), this gives a distortion
2-embedding (say, for d = 1/10) of X into ℓn∞ provided logn is at least a sufficiently large universal constant multiple of dim(X).
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where for k ∈N∪ {0} we denote the k’th iterant of the logarithm by log[k], i.e., log[0]x = x for x > 0, and

log[k]x > 0 =⇒ log[k+1]x = log
(

log[k]x
)
. (135)

There is no reason to expect that the lower bound (134) is close to being optimal, but in combination
with Proposition 89 it does show that the answer to Question 90 is likely nontrivial.

These considerations lead to the following open-ended question. The literature contains results show-
ing that ℓn

p maximizes certain geometric invariants (e.g. Banach–Mazur distance to ℓn
2 [Lew78], or vol-

ume ratio [Bal91c]) among all the n-dimensional subspaces or quotients of Lp . Is there an analogous
theory in the spirit of (132) in the much more general setting of spaces that have a 1-symmetric basis?
This could be viewed as a symmetric space variant of the classical work of Lewis [Lew78, Lew79]. An in-
teresting step in this direction can be found in [TJ80]; specifically, see [TJ80, Theorem 1.2], which could
be relevant to Question 90 through the approach of [Bal91c, Section 2].
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Handel and Elisabeth Werner for helpful discussions and suggestions.

2. LOWER BOUNDS

In this section we will prove the impossibility results that were stated in the Introduction. Throughout
what follows, all Banach spaces will be tacitly assumed to be separable. Given a Banach space X, its
Banach–Mazur distance to a Hilbert space will be denoted dX ∈ [1,∞], i.e., dX = dBM(X,H) where H is a
Hilbert space with either dim(H) = dim(X) when dim(X) <∞, or H = ℓ2 when X is infinite dimensional.
By a classical result of Enflo [Enf70, Theorem 6.3.3] (see also [BL00, Corollary 7.10]) we have dX = c2(X).

2.1. Proof of Theorem 13. Recall that the (Gaussian) type 2 and cotype 2 constants of a Banach space
(X,∥ · ∥X), denoted T2(X) and C2(X), respectively, are the infimum over those T ∈ [1,∞] and C ∈ [1,∞],
respectively, for which the following inequalities hold for every m ∈N and every x1, . . . , xm ∈ X:

1

C 2

m∑
j=1

∥x j∥2
X ⩽ E

[∥∥∥ m∑
j=1

g j x j

∥∥∥2

X

]
⩽ T 2

m∑
j=1

∥x j∥2
X, (136)

where henceforth g1,g2, . . . will always denote i.i.d. standard Gaussian random variables. The following
theorem of Kwapień [Kwa72] is fundamental (see also [Pis86, Theorem 3.3] or [TJ89, Theorem 13.15]).

Theorem 91. Every Banach space (X,∥ ·∥X) satisfies dX ⩽ T2(X)C2(X).

We will use Theorem 91 to estimate the following quantity, which in turn will be used to get the best
bound that we currently have on the constant c that appears in the lower bound on e(X) of Theorem 13.

Definition 92 (Lindenstrauss–Tzafriri constant). Suppose that (X,∥ · ∥X) is a Banach space. Define LT(X)
to be the infimum over those K ∈ [1,∞] such that for every closed linear subspace V ⊆ X there exists a
projection Proj : X↠V from X onto V whose operator norm satisfies ∥Proj∥X→X ⩽K .

So, the Lindenstrauss–Tzafriri constant of a Hilbert space equals 1, and Sobczyk proved [Sob41] that

∀n ∈N, LT
(
ℓn

1

)≍ LT
(
ℓn
∞

)≍p
n. (137)
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We chose the nomenclature of Definition 92 in reference to the famous solution [LT71] by Lindenstrauss
and Tzafriri of the complemented subspace problem, which asserts that if (X,∥ · ∥X) is a Banach space for
which LT(X) <∞, then X is isomorphic to a Hilbert space, i.e., dX <∞. Moreover, if X is infinite dimen-
sional, then it was shown in [LT71] that dX ≲ LT(X)4. This dependence was improved in [KM73] by Kadec
and Mitjagin, who established the following theorem, which is the currently best-known bound in the
Lindenstrauss–Tzafriri theorem (see also [Fig77, Pis88, Pis96, AK06, Kal08] for subsequent improvements
of the implicit universal constant factor and further generalizations).

Theorem 93. Every infinite dimensional Banach space (X,∥ ·∥X) satisfies dX ≲ LT(X)2.

When dim(X) < ∞ the question of bounding dX by a function of LT(X) was left open in [LT71]. This
question, which was eventually solved by Figiel, Lindenstrauss and Milman [FLM77, Theorem 6.7], turned
out to be significantly more subtle than its infinite dimensional counterpart. The currently best-known
estimate is due to Tomczak-Jaegermann [TJ89, Theorem 29.4], who proved the following theorem.

Theorem 94. Every finite dimensional Banach space (X,∥ ·∥X) satisfies dX ≲ LT(X)5.

The proof of Theorem 94 is achieved in [TJ89] through an interesting combination of the proof of the
Lindenstrauss–Tzafriri theorem [LT71] with the finite dimensional machinery of [FLM77] and Milman’s
Quotient of Subspace Theorem [Mil85].

The following theorem is a link between the Lindenstrauss–Tzafriri constant and Lipschitz extension.

Theorem 95. Every Banach space (X,∥ ·∥X) satisfies e(X)⩾ LT(X).

Proof. By Remark 97, if dim(X) = ∞, then e(X) = ∞, so we may assume that dim(X) < ∞. Fix L > e(X)
and let V ⊆ X be a linear subspace of X. Then, the identity mapping from V to V can be extended to an
L-Lipschitz mapping ρ : X → V. In other words, ρ is an L-Lipschitz retraction from X onto V. By a classical
theorem of Lindenstrauss [Lin64] (see also its elegant alternative proof by Pełczyńsky in [Peł68, page 61]),
there is a projection of norm at most L from X onto V. This proves that LT(X)⩽ L. □

The following theorem is the lower bound e(ℓn
2 ) ≳ 4

p
n of [MN13] that we already quoted in (22), in

combination with the bi-Lipschitz invariance of the Lipschitz extension modulus.

Theorem 96. For every n ∈N, any normed space X = (Rn ,∥ ·∥X) satisfies e(X)≳
4pn
dX

.

Remark 97. The question whether e(ℓ2) is finite or infinite was open for quite some time: It was first
stated in print in [JLS86, page 137], and it was also posed by Ball in [Bal92, page 170] (Ball conjectured
that e(ℓ2) =∞). We answered it in [Nao01] by proving that limn→∞ e(ℓn

2 ) =∞. Due to Dvoretzky’s theo-
rem [Dvo61] this implies that e(X) is at least an unbounded function of dim(X) for any normed space X,
and in particular e(X) =∞ if dim(X) =∞. A rate at which e(ℓn

2 ) tends to ∞ was not specified in [Nao01],
but the reasoning of [Nao01] was inspected quantitatively in [LN05, Remark 5.3], yielding an explicit
lower bound that depends on an auxiliary parameter, and it was noted in [BB07a] that an optimization
over this parameter yields the estimate e(ℓn

2 ) ≳ 8
p

n. A further improvement from [MN13] (whose proof
refines ideas of Kalton [Kal04, Kal12]) was the aforementioned estimate e(ℓn

2 ) ≳ 4
p

n (a different proof of
this bound follows from [Nao21b]), which is the currently best-known lower bound on e(ℓn

2 ). By Mil-
man’s sharpening [Mil71] of Dvoretzky’s theorem [Dvo61], it follows that every normed space X satisfies
e(X) ≳ 4

√
logn. As we explained in Section 1.3, the bound e(ℓn∞) ≳

p
n is classical (specifically, by substi-

tuting (137) into Theorem 95). In combination with the Alon–Milman theorem [AM83] (see also [Tal95]),
the fact that both e(ℓn

2 ) = nΩ(1) and e(ℓn∞) = nΩ(1) formally implies that

e(X)⩾ eη
p

logn

for some universal constant η> 0 and every n-dimensional normed space X, which was the best-known
general lower bound on the Lipschitz extension modulus prior to Theorem 1.
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The above results imply as follows the lower bound on e(X) of Theorem 13. By combining Theorem 94
and Theorem 95, we have e(X)≳ 5

√
dX. In combination with Theorem 96, it therefore follows that

e(X)≳max

{ 4
p

n

dX
, 5
√
dX

}
⩾ 24

p
n, (138)

where the last step follows from elementary calculus and holds as equality when dX = n5/24.
We will derive a better lower bound on e(X) than (138) through the following theorem which improves

over the power of LT(X) in Theorem 94, showing that in the finite dimensional setting one can come close
(up to logarithmic factors) to the infinite dimensional bound of Theorem 93; see also Remark 102 below.

Theorem 98. For every integer n ⩾ 2, any n-dimensional Banach space (X,∥ ·∥X) satisfies

dX ≲ LT(X)2(logn)3. (139)

Assuming Theorem 138, reason analogously to (138) while using (139) in place of Theorem 94 to get

e(X)≳max

{
4
p

n

dX
,

√
dX

(logn)3

}
⩾

n
1

12

(logn)2 , (140)

where equality holds in the final step of (140) if and only if dX = 6
p

n(logn)2.
Prior to proving Theorem 98, we will record the following two standard lemmas that will be used in its

proof; both will be established in correct generality that also treats infinite dimensional Banach spaces
even though here we will need them only in the finite dimensional setting (the infinite dimensional for-
mulations are relevant to the discussion in Remark 102).

Lemma 99. For every Banach space (X,∥ ·∥X) we have LT(X∗)⩽ LT(X)+1.

Proof. We may assume that LT(X) <∞. Then X is reflexive (even isomorphic to Hilbert space), by [LT71].
Fix a closed linear subspace W of X∗ and denote its pre-annihilator by

⊥W
def= ⋂

x∗∈W

{
x ∈ X : x∗(x) = 0

}⊆ X.

Suppose that K > LT(X). By the definition of LT(X) there exists Proj : X → X that is a projection from X
onto ⊥W whose operator norm satisfies ∥Proj∥X→X ⩽K . Observe that for every x∗ ∈ X∗ and x ∈ ⊥W,(

x∗−Proj∗x∗)
(x) = x∗(x)−x∗(Projx) = 0,

since Projx = x. This shows that(
IdX∗ −Proj∗

)
(X∗) ⊆ (⊥W)⊥ = {

x∗ ∈ X ∗ : x∗(⊥W) = {0}
}= W,

where the last step follows from the double annihilator theorem since X is reflexive and hence W is weak∗

closed in X∗. If x∗ ∈ W, then for any x ∈ X we have Proj∗x∗(x) = x∗(Projx) = 0, as Projx ∈ ⊥W. Hence
Proj∗x∗ = 0, and so IdX∗ −Proj∗ acts as the identity when it is restricted to W, i.e., IdX∗ −Proj∗ : X∗ → X∗ is
a projection from X∗ onto W. It remains to note that∥∥IdX∗ −Proj∗

∥∥
X*→X* ⩽ 1+∥∥Proj∗∥∥

X*→X* = 1+∥∥Proj∥∥X→X ⩽K +1. □

The following simple lemma shows that the Lindenstrauss–Tzafriri constant is a bi-Lipschitz invariant.

Lemma 100. Any two Banach spaces (W,∥ ·∥W) and (X,∥ ·∥X) satisfy

LT(W)⩽ cX(W)LT(X). (141)

Proof. We may assume that cX(W) < ∞ and LT(X) < ∞. By [LT71], the latter assumption implies that
X is isomorphic to a Hilbert space, and hence it is reflexive. We may therefore apply a differentiation
argument (see e.g. [BL00, Corollary 7.10]) to deduce that there is a closed subspace Y of X such that
dBM(W,Y) = cX(W). In other words, for every D > cX(W) there is a linear isomorphism T : W → Y satisfying
∥T ∥W→Y∥T −1∥Y→W < D . If V is a closed subspace of W and K > LT(X), then there is a projection Proj from
X onto T V with ∥Proj∥X→T V < K . Now, T −1ProjT is a projection from W onto V of norm less than DK . □
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The type-2 constant of a normed space (X,∥ · ∥X) is equal to its “equal norm type-2 constant,” namely
to the infimum over those T > 0 for which the second inequality in (136) holds for every m ∈N and every
choice of vectors x1, . . . , xm ∈ X that satisfy the additional requirement ∥x1∥X = . . . = ∥xm∥X; this is a well-
known result of Pisier, though it first appeared in James’ important work [Jam78], where it had a vital role.
We will likewise need to use this result, with the twist that we require a small number of unit vectors for
which the type-2 constant of X is almost attained. The classical proof of the aforementioned equivalence
between type-2 and “equal norm type-2” (page 2 of [Jam78]) increases the number of vectors potentially
uncontrollably, so we will preform the analysis more carefully in the following lemma, which shows that
one need not increase the number of vectors when passing from general vectors to unit vectors.

Lemma 101 (equal norm type 2 without increasing the number of vectors). Fix n ∈N and 0 < β⩽ 1. Let
(X,∥ ·∥X) be a normed space and suppose that there exist vectors x1, . . . , xn ∈ X∖ {0} that satisfy(

E

[∥∥∥ n∑
i=1

gi xi

∥∥∥2

X

]) 1
2

⩾βT2(X)

( n∑
i=1

∥xi∥2
X

) 1
2

. (142)

Then, there also exist unit vectors y1, . . . , yn ∈ {xi /∥xi∥X}n
i=1 ⊆ ∂BX that satisfy(

E

[∥∥∥ n∑
i=1

gi yi

∥∥∥2

X

]) 1
2

≳β2T2(X)
p

n. (143)

Proof. We may assume without loss of generality the following normalized version of assumption (142).

n∑
i=1

∥xi∥2
X = 1 and E

[∥∥∥ n∑
i=1

gi xi

∥∥∥2

X

]
⩾β2T2(X)2. (144)

For every k ∈N define a subset Ik of {1, . . . ,n} by

Ik
def=

{
i ∈ {1 . . . ,n} :

1

2k
< ∥xi∥X ⩽

1

2k−1

}
. (145)

So, {Ik }k∈N is a partition of {1, . . . ,n} as 0 < ∥xi∥X ⩽ 1 for all i ∈ {1, . . . ,n} by the first equation in (144). Write

m
def=

⌈
log2

(
3
p

n

β

)⌉
and U

def=
m⋃

k=1
Ik ×

{
1, . . . ,22(m−k)

}
. (146)

With this notation, Lemma 101 will be proven if we show that there exists S ⊆U with |S| = n such that(
E

[∥∥∥ ∑
(i , j )∈S

gi j

∥xi∥X
xi

∥∥∥2

X

]) 1
2

≳β2T2(X)
p

n, (147)

where {gi j }∞i , j=1 are i.i.d. standard Gaussian random variables.
To prove (147), observe first that by the contraction principle (see e.g. [LT91, Section 4.2]) we have(

E

[∥∥∥ ∑
(i , j )∈S

gi j

∥xi∥X
xi

∥∥∥2

X

]) 1
2

⩾

(
E

[∥∥∥ m∑
k=1

2k−1
∑

i∈Ik

22(m−k)∑
j=1

1{(i , j )∈S}gi j xi

∥∥∥2

X

]) 1
2

, (148)

where we used the fact that 1/∥xi∥X ⩾ 2k−1 for every k ∈N and i ∈ Ik (by the definition (145) of Ik ). Also,

1
(144)=

n∑
i=1

∥xi∥2
X =

∞∑
k=1

∑
i∈Ik

∥xi∥2
X

(145)
⩽

∞∑
k=1

|Ik |
22k−2

⩽
4
∑m

k=1 22(m−k)|Ik |+
∑∞

k=m+1 |Ik |
22m

(146)
⩽

β2(4|U |+n)

9n
.
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This simplifies to give that |U |⩾ 2n/β2 > n. We can therefore average the right hand side of (148) over all
the n-point subsets of U a to get the following estimate.

1(|U |
n

) ∑
S⊆U|S|=n

(
E

[∥∥∥ m∑
k=1

2k−1
∑

i∈Ik

22(m−k)∑
j=1

1{(i , j )∈S}gi j xi

∥∥∥2

X

]) 1
2

⩾

(
E

[∥∥∥ m∑
k=1

2k−1
∑

i∈Ik

22(m−k)∑
j=1

(|U |−1
n−1

)(|U |
n

) gi j xi

∥∥∥2

X

]) 1
2

= n

2|U |

(
E

[∥∥∥ m∑
k=1

2k
∑

i∈Ik

22(m−k)∑
j=1

gi j xi

∥∥∥2

X

]) 1
2

= 2m−1n

|U |

(
E

[∥∥∥ m∑
k=1

∑
i∈Ik

gi yi

∥∥∥2

X

]) 1
2

≍ n
3
2

β|U |

(
E

[∥∥∥ m∑
k=1

∑
i∈Ik

gi yi

∥∥∥2

X

]) 1
2

,

(149)

where the first step of (149) uses convexity, the penultimate step of (149) uses the fact that((22(m−k)∑
j=1

gi j

)
i∈Ik

)m

k=1

and
((

2m−kgi
)

i∈Ik

)m

k=1

have the same distribution, and for the final step of (149) recall the definition (146) of m.
It follows from (148) and (149) that there must exist S ⊆U with |S| = n such that(

E

[∥∥∥ ∑
(i , j )∈S

gi j

∥xi∥X
xi

∥∥∥2

X

]) 1
2

≳
n

3
2

β|U |

(
E

[∥∥∥ m∑
k=1

∑
i∈Ik

gi xi

∥∥∥2

X

]) 1
2

. (150)

To use (150), we claim that |U |≲ n/β2. Indeed,

1
(144)=

n∑
i=1

∥xi∥2
X =

∞∑
k=1

∑
i∈Ik

∥xi∥2
X

(145)>
m∑

k=1

|Ik |
22k

(146)= |U |
22m

(146)
⩾

β2|U |
81n

.

By combining the aforementioned upper bound on the size of U with (148) and (150), we see that(
E

[∥∥∥ ∑
(i , j )∈S

gi j

∥xi∥X
xi

∥∥∥2

X

]) 1
2

≳β
p

n

(
E

[∥∥∥ m∑
k=1

∑
i∈Ik

gi yi

∥∥∥2

X

]) 1
2

.

From this, we deduce the desired estimate (147) by combining as follows the second inequality in our
assumption (144) with the triangle inequality and the definition (136) of the type-2 constant T2(X).(

E

[∥∥∥ m∑
k=1

∑
i∈Ik

gi xi

∥∥∥2

X

]) 1
2

⩾

(
E

[∥∥∥ ∞∑
i=1

gi xi

∥∥∥2

X

]) 1
2

−
(
E

[∥∥∥ ∞∑
k=m+1

∑
i∈Ik

gi xi

∥∥∥2

X

]) 1
2

(136)
⩾ βT2(X)−T2(X)

( ∞∑
k=m+1

∑
i∈Ik

∥xi∥2
X

) 1
2 (145)

⩾ βT2(X)− T2(X)
p

n

2m

(146)≍ βT2(X). □

Proof of Theorem 98. We will prove that the type 2 constant of X satisfies

T2(X)≲ LT(X)(logn)
3
2 . (151)

After (151) will be proven, we deduce Theorem 98 as follows. We first claim that the estimate (151) implies
the same upper bound on the cotype 2 constant of X. Namely, we also have

C2(X)≲ LT(X)(logn)
3
2 . (152)
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Indeed,
C2(X)⩽ T2(X∗)≲ LT(X∗)(logn)

3
2 ≲ LT(X)(logn)

3
2 , (153)

where the first step of (153) follows from a standard duality argument [MP76] (see also e.g. [MS86, Sec-
tion 9.10], [PW98, Section 4.9] or [AK06, Proposition 6.2.12]), the second step of (153) is an application
of (151) to X∗, and the third step of (153) is application of Lemma 99. The desired estimate (139) now
follows by a substitution of (151) and (152) into Theorem 91 (Kwapień’s theorem).

By [FLM77, Lemma 6.1] (see also the exposition of this fact in [JN10, page 546]) there exists an integer12

1⩽m ⩽
n(n +1)

2
(154)

and x1, . . . , xm ∈ X∖ {0} such that (
E

[∥∥∥ m∑
i=1

gi xi

∥∥∥2

X

]) 1
2

= T2(X)

( m∑
i=1

∥xi∥2
X

) 1
2

(155)

By Lemma 101, it follows that there exist y1, . . . , ym ∈ ∂BX and a universal constant 0 < γ< 1 such that

E

[∥∥∥ m∑
i=1

gi yi

∥∥∥
X

]
⩾

√
2

π

(
E

[∥∥∥ m∑
i=1

gi yi

∥∥∥2

X

]) 1
2

⩾ γT2(X)
p

m, (156)

where the first step in (156) holds by (the Gaussian version of) Kahane’s inequality [Kah64] (see e.g. [LT91,
Corollary 3.2] and specifically [LO99, Corollary 3] for the (optimal) constant that we are quoting here even
though its value is of secondary importance in the present context). If we denote

δ
def= γT2(X)p

m
, (157)

then a different way to write (156) is

E

[∥∥∥ m∑
i=1

gi yi

∥∥∥
X

]
⩾ δm. (158)

Because we ensured that y1, . . . , ym are unit vectors in X, we may use a theorem of Rudelson and Ver-
shynin [RV06, Theorem 7.4] (an improved Talagrand-style two-parameter version of Elton’s theorem; see
Remark 102), to deduce from (158) that there are two numbers 0 < s ⩽ 1 and δ≲ t ⩽ 1 that satisfy

t
p

s ≳
δ(

log
( 2
δ

)) 3
2

, (159)

such that there exists a subset J of {1, . . . ,m} whose cardinality satisfies

|J |⩾ sm, (160)

and moreover we have

∀(a j ) j∈J ∈RJ , t
∑
j∈J

|a j |≲
∥∥∥ ∑

j∈J
a j y j

∥∥∥
X
⩽

∑
j∈J

|a j |. (161)

(161) means that the Banach–Mazur distance between span({y j } j∈J ) and ℓ|J |1 is O(1/t ). Hence,

cX
(
ℓ|J |1

)
≲

1

t
. (162)

Now, the justification of (151), and hence also the proof of Theorem 98, can be completed as follows.

LT(X)
(141)
⩾

LT
(
ℓ|J |1

)
cX

(
ℓ|J |1

) (137)∧(162)
≳ t

√
|J | (160)

⩾ t
p

sm
(159)
≳

δ
p

m(
log

( 2
δ

)) 3
2

(157)= γT2(X)(
log

(
2
p

m
γT2(X)

)) 3
2

≳
T2(X)

(logn)
3
2

, (163)

12By [TJ79], if one does not mind losing a universal constant factor in (155), then one could take m = n here, but for the
purpose of the ensuing reasoning it suffices to use the much simpler result [FLM77, Lemma 6.1].
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where the final step of (163) holds because T2(X)⩾ 1 and logm ≲ logn by (154). □

Remark 102. In the proof of Theorem 98 we relied on [RV06, Theorem 7.4], which improves (in terms
of the power of the logarithm in (159)) Talagrand’s refinement [Tal92] of Elton’s theorem [Elt83] (which
is itself a major quantitative strengthening of an important theorem from [Pis73]). Continuing with the
notation of Theorem 98, Elton’s theorem is a similar statement, except that the size of the subset J is
a definite proportion of m that depends only on the parameter δ for which (158) holds, and also the
parameter t for which (161) holds depends only on δ. The asymptotic dependence on δ in Elton’s the-
orem [Elt83] was improved by Pajor [Paj83], a further improvement was obtained in [Tal92], and the
optimal dependence on δ was found by Mendelson and Vershynin in [MV03]. However, plugging this
sharp dependence into our proof of Theorem 98 shows that the classical formulation of Elton’s theorem
is insufficient for our purposes. The two-parameter formulation of Elton’s theorem that was introduced
in [Tal92] allows for the subset J to have any size through the parameter s in (160), but imposes a relation
between s and t such as (159), thus making it possible for us to obtain Theorem 98.

The only reason why the logarithmic factor in (98) occurs is our use of a Talagrand-style two-parameter
version of Elton’s theorem, for which the currently best-known bound [RV06] is (159). Thus, if (159) could
be improved to t

p
s ≳ δ, i.e., if Question 103 below has a positive answer, then the conclusion (98) of The-

orem 98 would become dX ≲ LT(X)2. This would improve Theorem 94 to match the bound of Theorem 93
which is currently known only for infinite dimensional Banach spaces. Moreover, since the resulting
bound is independent of the dimension of X, this would yield a new proof of the Lindenstrauss–Tzafriri
solution of the complemented subspace problem; the infinite dimensional statement follows formally
from its finite dimensional counterpart (e.g. [AK06, Theorem 12.1.6]), though all of the steps that led to
Theorem 98 work for any reflexive Banach space. Question 103 is interesting in its own right regardless of
the above application to the complemented subspace problem. In particular, a positive answer to Ques-
tion 103 would resolve the question that Talagrand posed in the remark right after Corollary 1.2 in [Tal92],
though we warn that he characterises this in [Tal92] as “certainly a rather formidable question.”

Question 103. Fix 0 < δ< 1 and n ∈N. Let (X,∥ · ∥X) be a Banach space and suppose that x1, . . . , xn ∈ ∂BX

satisfy E[∥∑m
i=1gi xi∥X] ⩾ δn. Does this imply that there are two numbers 0 < s, t ⩽ 1 satisfying t

p
s ≳ δ

and a subset J ⊆ {1, . . . ,n} with |J |⩾ sn such that ∥∑
j∈J a j x j∥X ⩾ t

∑
j∈J |a j | for every a1, . . . , an ∈R?

2.2. Proof of (106). Because by [CCG+98] we know that SEP(ℓn
1 ) ≍ n for every n ∈N, using bi-Lipschitz

invariance we see that in order to prove (7) it suffices to show that for every normed space X = (Rn ,∥·∥X),

∃m ∈ {1, . . . ,n},
m

cX(ℓm
1 )

⩾ T2(X)2. (164)

We will prove (164) using Talagrand’s two-parameter refinement of Elton’s theorem [Tal92] that we
discussed in Remark 102 (the aforementioned improvements over [Tal92] in [MV03, RV06] do not yield a
better bound in the ensuing reasoning. Also, the classical formulation of Elton’s theorem is insufficient
for our purposes, even if one incorporates the asymptotically sharp dependence on δ from [MV03]).
Suppose that k ∈N and x1, . . . , xk ∈ BX. Let g1, . . . ,gk be i.i.d. standard Gaussian random variables. Denote

E
def= E

[∥∥∥ k∑
j=1

g j x j

∥∥∥
X

]
.

By [Tal92, Corollary 1.2], there is a universal constant C ∈ [1,∞) and a subset S ⊆ {1, . . . ,k} satisfying

m
def= |S|⩾ E 2

C k
,

and such that

∀(a j ) j∈S ∈RS ,
E

p
C km

(
log

( eC km
E 2

))C

∑
j∈S

|a j |⩽
∥∥∥ ∑

j∈S
a j x j

∥∥∥
X
⩽

∑
j∈S

|a j |. (165)

53



Consequently,

cX
(
ℓm

1

)
⩽

p
C km

E

(
log

(eC km

E 2

))C

.

Therefore,
m

cX(ℓm
1 )

⩾
E
p

m
p

C k
(

log
( eC km

E 2

))C
⩾

eC− 1
2

2C CC+1
· E 2

k
≍ E 2

k
,

where the last step uses the fact that the minimum of the function u 7→ p
u/(log(eC ku/E 2))C on the ray

[E 2/(C k),∞) is attained at u = e2C−1E 2/(C k). It remains to choose x1, . . . , xk so that E 2/k ≍ T2(X)2. This is
possible because the equal norm type 2 constant of X equals T2(X), so there are x1, . . . , xk ∈ ∂BX for which

T2(X)
p

k ≍
(
E

[∥∥∥ k∑
j=1

g j x j

∥∥∥2

X

]) 1
2 ≍ E ,

where the last step uses Kahane’s inequality. □

2.3. Hölder extension. In this section we will prove the lower bound on eθ(ℓn∞) in (20) for every n ∈ N
and 0 < θ⩽ 1. It consists of two estimates, the first of which is

eθ(ℓn
∞)≳ n

θ
2 +θ2−1, (166)

and the second of which is
eθ(ℓn

∞)≳ n
θ
4 . (167)

We will justify (166) and (167) separately.
Note that (166) is vacuous if θ/2+θ2−1⩽ 0, i.e., if 0 < θ⩽ (

p
17−1)/2. The reason for this is that (166)

is based on a reduction to the linear theory from [NR17] (extending the approach of [JL84] to the Hölder
regime), that breaks down for functions which are too far from being Lipschitz. Specifically, for a Banach
space X and a closed subspace E of X, let λ(E;X) be the projection constant [Grü60] of E relative to X, i.e.,
it is the infimum over those λ ∈ [1,∞] for which there is a projection Proj from X onto E whose operator
norm satisfies ∥Proj∥X→E ⩽ λ. Also, let eθ(X;E) be the infimum over those L ∈ [1,∞] such that for every
C⊆ X and every f :C→ E that is θ-Hölder with constant 1, there is F : X → E that extend f and is θ-Hölder
with constant L. With this notation, it was proved in [NR17] (see equation (106) there) that

eθ(X;E)≳
λ(E;X)θ

dim(E)
1−θ

2 dim(X)θ(1−θ)c2(E)1−θ
. (168)

Using the bounds dim(E)⩽ dim(X) and c2(E)⩽
p

dim(E) (John’s theorem) in (168), we get that

eθ(X;E)≳
λ(E;X)θ

dim(X)1−θ2 . (169)

By [Sob41] there is a linear subspace E of ℓn∞ with λ(E;ℓn∞) ≍p
n, using which (169) implies (166).

Remark 104. In [NR17] it was deduced from (168) that

eθ(ℓn
1 )≳ nθ2− 1

2 . (170)

Specifically, by [Kaš77] there is a linear subspace E of ℓn
1 with c2(E) ≲ 1 and dim(E) = ⌊n/2⌋; call such E

a Kašin subspace of ℓn
1 . By [Rut65] we have λ(E;ℓn

1 ) ≍p
n, so (170) follows by substituting these param-

eters into (168). For X = ℓn∞, the poorly-complemented subspace that we used above can be taken to be
the orthogonal complement of any Kašin subspace of ℓn

1 . Such a subspace of ℓn∞ has pathological prop-
erties [FJ80]; in particular its Banach–Mazur distance to a Euclidean space is of order

p
n. So, a “vanilla”

use of (168) leads at best to (166). However, we expect that it should be possible to improve (166) to

eθ(ℓn
∞)≳ nθ2− 1

2 . (171)
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If (171) holds, then (20) improves to

eθ(ℓn
∞)≳ nmax

{
θ
4 ,θ2− 1

2

}
=

{
n

θ
4 if 0⩽ θ⩽ 1+p33

8 ,

nθ2− 1
2 if 1+p33

8 ⩽ θ⩽ 1.
(172)

For (171), it would suffice to prove the following variant of Conjecture 7 for random subspaces of ℓn∞ . Let
E be a subspace of Rn of dimension m = ⌊n/2⌋ that is chosen from the Haar measure on the Grassman-
nian. We conjecture that there is a universal constant D ⩾ 1 such that with high probability there is an
origin-symmetric convex body L ⊆ BE that satisfies MaxProj(L)/volm(L)≲ 1. If this indeed holds, then by
using it in the proof of (168) in [NR17] we can deduce (171) (specifically, replace in Lemma 20 of [NR17]
the averaging over Bℓm

2
by averaging over L; we omit the details of this adaptation of [NR17]).

Proof of (167). Fix k,m ∈N satisfying k ⩽ 2m ⩽ n/2 whose value will be specified later so as to optimize
the ensuing reasoning (see (186) below). Denote ℓ= ⌊(4m/k)⌋ and define C=C(k,m,n) ⊆ ℓn∞(C) by

C
def= {

Em(ks) : s ∈ {1, . . .ℓ}n}
,

where for every s = (s1, . . . , sn) ∈Rn we define Em(s) ∈Cn by

Em(s)
def=

n∑
j=1

e
πi
2m s j e j .

Denote the standard basis (delta masses) ofRC by {δs}s∈C. LetRC0 be the hyperplane ofRC consisting of
those (as)s∈C =∑

s∈C asδs with
∑

s∈C as = 0. Suppose that Xθ = (RC0 ,∥ ·∥Xθ
) is a normed space that satisfies

∀x, y ∈C, ∥δx −δy∥Xθ
= ∥x − y∥θℓn∞(C), (173)

and,

∀µ ∈RC0 ,
( k

m

)θ∥µ∥ℓ1(C) ≲ ∥µ∥Xθ
≲ ∥µ∥ℓ1(C). (174)

For this, Xθ can be taken to be the normed space whose unit ball is

BXθ
= conv

{
1

∥x − y∥θ
ℓn∞(C)

(δx −δy ) : x, y ∈C, x ̸= y

}
⊆RC0 , (175)

which is the maximal norm on RC0 satisfying (173). To check that (174) holds for the choice (175), note
that, as 1⩽ k ⩽ 2m, distinct x, y ∈C satisfy k/m ≲ ∥x− y∥ℓn∞(C) ≲ 1. It is simple to deduce (174) from this,
as done in [NR17, Lemma 7]. The choice (175) makes Xθ be the Wasserstein-1 space over (C,dθ), where
dθ is the θ-snowflake of the ℓn∞(C) metric, i.e., dθ(x, y) = ∥x − y∥θ

ℓn∞(C) for x, y ∈ ℓn∞(C); see Section 5.1.

By virtue of (173), if we define f :C→ Xθ by setting

∀x ∈C, f (x)
def= δx − 1

|C|
∑
y∈C

δy ,

then f is θ-Hölder with constant 1. We claim that if m ⩾π
p

n, then by (173) every F : ℓn∞(C) → Xθ satisfies

1

(4m)n

n∑
j=1

∑
s∈{1,...,4m}n

∥∥F
(
Em(s +2me j )

)−F
(
Em(s)

)∥∥
Xθ

≲
m2+θ

kθ(12m)n

∑
ε∈{−1,0,1}n

∑
s∈{1,...,4m}n

∥∥F
(
Em(s +ε)

)−F
(
Em(s)

)∥∥
Xθ

.

(176)
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Indeed, (176) follows from a substitution of (173) into the following inequality from [MN08, Remark 7.5].

1

(4m)n

n∑
j=1

∑
s∈{1,...,4m}n

∥∥F
(
Em(s +2me j )

)−F
(
Em(s)

)∥∥
ℓ1(C)

≲
m2

(12m)n

∑
ε∈{−1,0,1}n

∑
s∈{1,...,4m}n

∥∥F
(
Em(s +ε)

)−F
(
Em(s)

)∥∥
ℓ1(C).

Suppose that F : {1, . . . ,4m}n → Xθ is θ-Hölder with constant L ⩾ 1 on ({1, . . . ,4m}n ,∥ ·∥ℓn∞(C)), i.e.,

x, y ∈ {1, . . . ,4m}n , ∥F (x)−F (y)∥Xθ
⩽ L∥x − y∥θℓn∞(C).

Then, each of the summands that appear in the right hand side of (176) is at most 2L/mθ. Consequently,

1

n(4m)n

n∑
j=1

∑
s∈{1,...,4m}n

∥∥F
(
Em(s +2me j )

)−F
(
Em(s)

)∥∥
Xθ

≲
Lm2

kθn
. (177)

If F also extends f , then F (Em(s)) = f (Em(s′)) for every s ∈Nn , where s′ = (s′1, . . . , s′n) and for each u ∈N
we let u′ be an element α of {k,2k, . . . ,ℓk} for which |α−u mod (4m)| is minimized, so that s′ ∈C and

∀s ∈Nn , ∥Em(s)−Em(s′)∥ℓn∞(C) ≲
k

m
. (178)

Hence, for any j ∈ {1, . . . ,n} and s ∈ {1, . . . ,4m}n we have

2θ = ∥∥−2e
πi
2m s j e j

∥∥θ
ℓn∞(C)

= ∥Em(s +2me j )−Em(s)∥θℓn∞(C) (179)

⩽ ∥Em((s +2me j )′)−Em(s′)∥θℓn∞(C) +∥Em((s +2me j )′)−Em(s +2me j )∥θℓn∞(C) +∥Em(s′)−Em(s)∥θℓn∞(C)

⩽ ∥Em((s +2me j )′)−Em(s′)∥θℓn∞(C) +
2kθ

mθ
(180)

= ∥∥δEm ((s+2me j )′) −δEm (s′)
∥∥

Xθ
+ 2kθ

mθ
(181)

= ∥∥ f
(
Em((s +2me j )′)

)− f
(
Em(s′)

)∥∥
Xθ

+ 2kθ

mθ
(182)

= ∥∥F
(
Em((s +2me j )′)

)−F
(
Em(s′)

)∥∥
Xθ

+ 2kθ

mθ
(183)

⩽
∥∥F

(
Em(s +2me j )

)−F
(
Em(s)

)∥∥
Xθ

+∥∥F
(
Em((s +2me j )′)

)−F
(
Em(s +2me j )

)∥∥
Xθ

+∥∥F
(
Em(s′)

)−F
(
Em(s)

)∥∥
Xθ

+ 2kθ

mθ

⩽
∥∥F

(
Em(s +2me j )

)−F
(
Em(s)

)∥∥
Xθ

+L∥Em((s +2me j )′)−Em(s +2me j )∥θℓn∞(C)

+L∥Em(s′)−Em(s)∥θℓn∞(C) +
2kθ

mθ

(184)

⩽
∥∥F

(
Em(s +2me j )

)−F
(
Em(s)

)∥∥
Xθ

+ 2(L+1)kθ

mθ
, (185)

where for (179) recall the definition of Em , in (180) and (185) we used (178), in (181) we used (173),
for (182) recall the definition of f , in (183) we used the fact that F extends f and {(s + 2me j )′, s′} ⊆ C,
and in (184) we used the fact that F is θ-Hölder with constant L. By averaging this inequality over ( j , s)
chosen uniformly at random from {1, . . . ,n}× {1, . . . ,4m}n and applying (177), we conclude that

1≲
(

m2

kθn
+ kθ

mθ

)
L. (186)
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This holds whenever k,m ∈ N satisfy k ⩽ 2m ⩽ n/2 and m ⩾ π
p

n, so choose m ≍ p
n and k ≍ 4

p
n to

minimize (up to constants) the right hand side of (186) and deduce the desired lower bound L ≳ nθ/4. □

By [MN13, Lemma 6.5], for every θ ∈ (0,1] and n ∈Nwe have

eθ(ℓn
2 )≳ n

θ
4 . (187)

In combination with (167) and [AM83], this implies that there is a universal constant c > 0 such that

eθ(X)⩾ ecθ
p

logn (188)

for every n-dimensional normed space X and every θ ∈ (0,1].

Conjecture 105. For any θ ∈ (0,1] there is c(θ) > 0 such that eθ(X)⩾ dim(X)c(θ) for every normed space X.

Conjecture 105 has a positive answer when the Hölder exponent is close enough to 1. Specifically, if

0.9307777... =
p

193+1

16
< θ⩽ 1, (189)

then

eθ(X)≳
n

θ(8θ2−θ−6)
20θ−8

(logn)
3θ2

5θ−2

. (190)

Indeed, by bi-Lipschitz invariance, (187) implies the following generalization of Theorem 96.

eθ(X)≳
n

θ
4

dθX
.

Also,

eθ(X)
(168)
≳

LT(X)θ

n(1−θ)
(
θ+ 1

2

)
d1−θ

X

(139)
≳

d
θ
2
X /(logn)

3θ
2

n(1−θ)
(
θ+ 1

2

)
d1−θ

X

= d
3θ
2 −1

X

n(1−θ)
(
θ+ 1

2

)
(logn)

3θ
2

.

Therefore, in analogy to (140) we see that

eθ(X)≳max

n
θ
4

dθX
,

d
3θ
2 −1

X

n(1−θ)
(
θ+ 1

2

)
(logn)

3θ
2

 . (191)

Elementary calculus shows that (191) implies (190) in the range (189). If θ does not satisfy (189), then (191)
does not imply a lower bound eθ(X) that depends only on n and grows to ∞ with n; for such θ the best
lower bound that we know is (188). The application of (176) in the above proof of (167) can be mim-
icked using other bi-Lipschitz invariants to prove (105) for various normed spaces, such as ℓn

2 (ℓn
1 ) or Sn

1 ,
using [NS16] and [NS21b], respectively. We do not know if Conjecture 105 holds even when, say, X = ℓn

1 .

2.4. Justification of (25). In the range p ∈ [1,4/3]∪{2}∪[3,∞] the bound in (25) is a combination of [BB12,
Corollary 8.12] and [MN13, Theorem 1.17]. We need to justify (25) in the range p ∈ (4/3,3)∖{2} because it
was not previously stated in the literature. Suppose first that p ∈ (4/3,2). By [FLM77], there is k ∈ {1, . . . ,n}
with k ≍ n such that cℓn

p
(ℓk

2 ) ≍ 1. Hence,

e
(
ℓn

p

)
≳ e

(
ℓk

2

)
≳

4
p

k ≍ 4
p

n,

where the penultimate inequality follows from [MN13, Theorem 1.17]. Analogously, if q ∈ (2,3), then
by [FLM77] there is m ∈ {1, . . . ,n} with m ≍ n2/q such that cℓn

q
(ℓm

2 ) ≍ 1. We therefore have

e
(
ℓn

q

)
≳ e

(
ℓm

2

)
≳ 4

p
m ≍ n

1
2q .
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2.5. Proof of the lower bound on SEP(X) in Theorem 3. Thanks to (72), the first part of Theorem 106
below coincides with the lower bound on SEP(X) in Theorem 3, except that in (192) below we also specify
the constant factor that our proof provides (there is no reason to expect that this constant is optimal; due
to the fundamental nature of this randomized clustering problem it would be interesting to find the
optimal constant here). The second part of Theorem 106 relates to dimension reduction by controlling
the cardinality of a finite subset C of X on which the lower bound is attained. We conjecture that the
first part of (193) below could be improved to |C|1/n = O(1); an inspection of the ensuing proof suggests
that a possible route towards this improved bound is to incorporate a proportional Dvoretzky–Rogers
factorization [BS88, ST89, Gia96] in place of our use of the “vanilla” Dvoretzky–Rogers lemma [DR50].

Theorem 106. For every n ∈N, any n-dimensional normed space (X,∥ ·∥X) satisfies

SEP(X)⩾ evr(X)
2(n!)

1
2n Γ

(
1+ n

2

) 1
n

p
πn

=
p

2+o(1)

e
p
π

evr(X)
p

n. (192)

Furthermore, there exists a finite subset C of X satisfying

|C| 1
n ≲

p
n

evr(X)
and SEP(CX)≳ evr(X)

p
n. (193)

Our proof of Theorem 106 builds upon the strategy that was used in [CCG+98] to treat ℓn
1 . A combina-

torial fact on which it relies is Lemma 107 below, which is implicit in the proof of [CCG+98, Lemma 3.1].
After proving Theorem 106 while using Lemma 107, we will present a proof of Lemma 107 which is a quick
application of the Loomis–Whitney inequality [LW49]; the proof in [CCG+98] uses a result of [AKPW91]
which is proved in [AKPW91] via information-theoretic reasoning through the use of Shearer’s inequal-
ity [CGFS86]; the relation between the Loomis–Whitney inequality and Shearer’s inequality is well-known
(see e.g. [BB12]), so our proof of Lemma 107 is in essence a repackaging of the classical ideas.

Lemma 107. Fix n, M ∈N and a nonempty finite subsetΩ of Zn . Suppose that P is a random partition of
Ω that is supported on partitions into subsets of cardinality at most M, i.e.,

Prob
[

max
Γ∈P

|Γ|⩽ M
]
= 1.

Then, there exists i ∈ {1, . . . ,n} and x ∈Ω∩ (Ω−ei ) for which

Prob
[
P(x) ̸=P(x +ei )

]
⩾

1
n
p

M
− 1

n

n∑
i=1

|Ω∖ (Ω−ei )|
|Ω| . (194)

Proof of Theorem 106 assuming Lemma 107. By suitably choosing the identification of X withRn , we may
assume without loss of generality that X = (Rn ,∥ ·∥X) and Bℓn

2
is the Löwner ellipsoid of BX. Then,

evr(X) =
(voln(Bℓn

2
)

voln(BX)

) 1
n

=
p
π

Γ
(
1+ n

2

) 1
n voln(BX)

1
n

. (195)

By the Dvoretzky–Rogers lemma [DR50], there exist contact points x1, . . . , xn ∈ Sn−1 ∩∂BX that satisfy

∀k ∈ {1, . . . ,n},
∥∥Projspan(x1,...,xk−1)⊥(xk )

∥∥
ℓn

2
⩾

√
n −k +1

n
. (196)

LetΛ=Λ(x1, . . . , xn) ⊆Rn denote the lattice that is generated by x1, . . . , xn , namely

Λ=
n∑

i=1
Zxi =

{ n∑
i=1

ki xi : k1, . . . ,kn ∈Z
}

.

By (196),Λ is full-rank. Denote the fundamental parallelepiped ofΛ by Q =Q(x1, . . . , xn), i.e.,

Q =
n∑

i=1
[0,1)xi =

{ n∑
i=1

si xi : 0⩽ s1, . . . , sn < 1
}

.
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Since x1, . . . , xn ∈ BX, we have Q −Q ⊆ nBX and by (196) the volume of Q (the determinant ofΛ) satisfies

det(Λ) = voln(Q) =
n∏

k=1

∥∥Projspan{x1,...,xk−1}⊥(xk )
∥∥
ℓn

2

(196)
⩾

n∏
k=1

√
n −k +1

n
=

p
n!

n
n
2

. (197)

Fix m ∈N and σ,∆> 0. Denote Cm =Cm(x1, . . . , xn) =Λ∩ (mQ) = {
∑n

i=1 ki xi : k1, . . . ,kn ∈ {0, . . . ,m −1}}
and suppose that P isσ-separating∆-bounded random partition of Cm . The∆-boundedness of P means
that Γ−Γ⊆∆BX for every Γ⊆Cm with Prob[Γ ∈P] > 0. Recalling that Q −Q ⊆ nBX, this implies that

BX ⊇ 1

∆+n

(
(Γ+Q)− (Γ+Q)

)
. (198)

Now,
p
π

Γ
(
1+ n

2

) 1
n evr(X)

= voln(BX)
1
n ⩾

2

∆+n
voln(Γ+Q)

1
n = 2

∆+n

(|Γ|voln(Q)
) 1

n ⩾
2(n!)

1
2n

(∆+n)
p

n
|Γ| 1

n , (199)

where the first step of (199) is (195), the second step of (199) uses (198) and the Brunn–Minkowski in-
equality, the third step of (199) holds because the parallelepipeds {γ+Q : γ ∈ Γ} are disjoint, and the
final step of (199) is (197). If T ∈ GLn(R) is given by Tei = xi , then it follows from (199) that the random
partition T −1P= {T −1Γ : Γ ∈P} of T −1Cm = {0, . . . ,m −1}n satisfies the assumptions of Lemma 107 with

M = (πn)
n
2 (∆+n)n

2nΓ
(
1+ n

2

)p
n!

· 1

evr(X)n .

If we chooseΩ= {0, . . . ,m−1}n = T −1Cm in Lemma 107, then |Ω| = mn and |Ω∖(Ω−ei )| = mn−1 for every
i ∈ {1, . . . ,n}, so it follows from Lemma 107 that there exist i ∈ {1, . . . ,n} and x ∈Cm such that

Prob
[
P(x) ̸=P(x +xi )

]
⩾ evr(X)

2(n!)
1

2n Γ
(
1+ n

2

) 1
n

(∆+n)
p
πn

− 1

m
. (200)

At the same time, the left hand side of (200) is at most σ/∆, since P is σ-separating and ∥xi∥X ⩽ 1. Thus,

σ⩾ evr(X)
2∆(n!)

1
2n Γ

(
1+ n

2

) 1
n

(∆+n)
p
πn

− ∆

m
. (201)

By letting m →∞ in (201) and then letting∆→∞ in the resulting estimate, we get (192). Also, if we set
∆= n in (201), then for sufficiently large m ≍p

n/evr(X) we have SEP(Cm)≳ evr(X)
p

n, giving (193). □

We will next provide a proof of Lemma 107 whose main ingredient is the following lemma.

Lemma 108 (application of Loomis–Whitney). Fix an integer n ⩾ 2 and a finite subset Γ of Zn . For x ∈Zn

and i ∈ {1, . . . ,n}, let di (x;Γ) ∈ N∪ {0} be the number of times that the oriented discrete axis-parallel line
x +Zei transitions from Γ to Zn ∖Γ, and let g(x;Γ) be the geometric mean of d1(x;Γ), . . . ,dn(x;Γ). Thus

∀i ∈ {1, . . . ,n}, di (x;Γ)
def= ∣∣{k ∈Z : x +kei ∈ Γ ∧ x + (k +1)ei ∉ Γ}

∣∣,
and

g (x;Γ)
def= n

√
d1(x;Γ) · · ·dn(x;Γ).

Then,
1

n

n∑
i=1

|Γ∖ (Γ−ei )|⩾
( ∑

x∈Zn

g (x;Γ)
n

n−1

) n−1
n

⩾ |Γ| n−1
n . (202)

Proof. The second inequality in (202) holds because d1(x;Γ), . . . ,dn(x;Γ) ⩾ 1 for every x ∈ Γ (as |Γ| <∞),
and hence g (·;Γ)⩾ 1Γ(·) point-wise. For the first inequality in (202), observe that for each i ∈ {1, . . . ,n},

|Γ∖ (Γ−ei )| = ∑
x∈Zn

1Γ(x)1Zn∖Γ(x +ei ) = ∑
y∈Proje⊥

i
Γ

( ∑
k∈Z

1Γ(y +kei )1Zn∖Γ
(
y + (k +1)ei

))= ∑
y∈Proje⊥

i
Zn

di (y ;Γ).
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Consequently,

1

n

n∑
i=1

|Γ∖(Γ−ei )| = 1

n

n∑
i=1

∥∥∥di (·;Γ)
1

n−1

∥∥∥n−1

ℓn−1(Proje⊥
i
Zn )

⩾
n∏

i=1

∥∥∥di (·;Γ)
1

n−1

∥∥∥ n−1
n

ℓn−1(Proje⊥
i
Zn )

⩾
∑

x∈Zn

n∏
i=1

di (Proje⊥
i

x)
1

n−1 ,

where the second step is an application of the arithmetic-mean/geometric-mean inequality and the final
step is an application of the Loomis–Whitney inequality [LW49] (see [Sil73, Theorem 3] for the functional
version of the Loomis–Whitney inequality that the are using here); we note that even though this inequal-
ity is commonly stated for functions on Rn rather than for functions on Zn , its proof for functions on Zn

is identical (in fact, [LW49] proves the continuous inequality by first proving its discrete counterpart). □

Note that when n = 1 Lemma 108 holds trivially if we interpret (202) as |Γ∖(Γ−1)|⩾maxx∈Z g (x;Γ)⩾ 1,
since in this case g (x;Γ) = |Γ∖ (Γ−1)| for every x ∈Z.

The following corollary of Lemma 108 is a deterministic counterpart of Lemma 107.

Corollary 109. Fix n, M ∈N and a nonempty finite subsetΩ of Zn . Suppose that P is a partition ofΩwith

max
Γ∈P

|Γ|⩽ M . (203)

Then,

1

n

n∑
i=1

|{x ∈Ω∩ (Ω−ei ) : P(x) ̸=P(x +ei )}|⩾ |Ω|
n
p

M
− 1

n

n∑
i=1

|Ω∖ (Ω−ei )| (204)

Proof. Observe that for each fixed i ∈ {1, . . . ,n} we have

|Ω∖ (Ω−ei )|+ ∑
x∈Ω∩(Ω−ei )

1P(x) ̸=P(x+e j ) = |Ω∖ (Ω−ei )|+ ∑
x∈Ω∩(Ω−ei )

( ∑
Γ∈P

1Γ(x)1Zn∖Γ(x +ei )

)
= ∑

x∈Zn

∑
Γ∈P

1Γ(x)1Zn∖Γ(x +ei )

= ∑
Γ∈P

|Γ∖ (Γ−ei )|,

(205)

where the first step of (205) holds becauseP is a partition ofΩ and the second step of (205) holds because
1Γ(x)1Zn∖Γ(x +ei ) = 0 for every Γ⊆Ω if x ∈Zn ∖Ω, and if x ∈Ω∖ (Ω−ei ), then 1Γ(x)1Zn∖Γ(x +ei ) = 1 for
exactly one Γ ∈P (specifically, this holds for Γ=P(x) because x +ei ∈Zn ∖Ω⊆Zn ∖P(x)). Now,

1

n

n∑
i=1

|{x ∈Ω∩ (Ω−ei ) : P(x) ̸=P(x +ei )}|+ 1

n

n∑
i=1

|Ω∖ (Ω−ei )|

(205)= ∑
Γ∈P

1

n

n∑
i=1

|Γ∖ (Γ−ei )| (202)
⩾

∑
Γ∈P

|Γ| n−1
n

(203)
⩾

1
n
p

M

∑
Γ∈P

|Γ| = |Ω|
n
p

M
,

where the last step holds because P is a partition ofΩ. □

Proof of Lemma 107. Denoting p = maxi∈{1,...,n} maxx∈Ω∩(Ω−ei ) Prob[P(x) ̸=P(x + ei )], the goal is to show
that p is at least the right hand side of (194). This follows from Corollary 109 because

p|Ω|⩾ p

n

n∑
i=1

|Ω∩ (Ω−ei )|⩾ 1

n

n∑
i=1

∑
x∈Ω∩(Ω−ei )

Prob
[
P(x) ̸=P(x +ei )

]= 1

n

n∑
i=1

∑
x∈Ω∩(Ω−ei )

E
[
1P(x )̸=P(x+ei )

]
= E

[
1

n

n∑
i=1

|{x ∈Ω∩ (Ω−ei ) : P(x) ̸=P(x +ei )}|
]

(204)
⩾

|Ω|
n
p

M
− 1

n

n∑
i=1

|Ω∖ (Ω−ei )|. □
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2.6. Proof of the lower bound on PADδ(X) in Theorem 68. Fixing n ∈N, a normed space X = (Rn ,∥ · ∥X),
and δ ∈ (0,1), recalling the notation in Definition 64 we will prove here that

PADδ(X)⩾ sup
m∈N

PADm
δ (X)⩾

2

1− n
p
δ

, (206)

which gives the first inequality in (103).

Proof of (206). Suppose that 0 < ε < 1 and r > 2. Let Nε be any ε-net of r BX. Then, log |Nε| ≍ n log(r /ε)
(see e.g. [Ost13, Lemma 9.18]). Fix a (disjoint) Voronoi tessellation {Vx }x∈Nε

of r BX that is induced by Nε.
Thus, {Vx }x∈Nε

is a partition of r BX into Borel subsets such that x ∈ Vx ⊆ x +εBX for every x ∈Nε. So, for
every w ∈ r BX there is a unique net point x(w) ∈Nε such that w ∈Vx(w).

Fix p > supm∈NPAD
m
δ (X) ⩾ PADδ(Nε), and assume from now on that 0 < ε < 1/(2p) and r > 1/p−2ε

(eventually we will consider the limits ε→ 0 and r →∞). By the definition of PADδ(Nε), there exists a
probability distribution P over 1-bounded partitions of Nε such that

∀y ∈Nε, Prob
[(

y + 1

p
BX

)
∩Nε ⊆P(y)

]
⩾ δ. (207)

For every y ∈Nε define

P∗(y)
def= ⋃

z∈P(y)
Vz =

{
w ∈ r BX : x(w) ∈P(y)

}
.

Then {P∗(y)}y∈Nε
is a (finitely supported) random partition of r BX into Borel subsets.

We claim that for every y ∈Nε the following inclusion of events holds.{
w ∈Rn : w + 1−2εp

p
BX ⊆P∗(y)

}
+ 1−2εp

(1+2ε)p

(
P∗(y)−P∗(y)

)⊆P∗(y). (208)

Indeed, take any w ∈Rn such that

w + 1−2εp

p
BX ⊆P∗(y),

and also take any u, v ∈P∗(y). By the definition of P∗ we have x(u),x(v) ∈P(y). As P is 1-bounded, we
have ∥x(u)−x(v)∥X ⩽ 1. Therefore ∥u−v∥X ⩽ ∥u−x(u)∥X+∥x(u)−x(v)∥X+∥v −x(v)∥X ⩽ 1+2ε. Hence,

1−2εp

(1+2ε)p
(u − v) ∈ 1−2εp

p
BX,

so the assumption on w implies that

w + 1−2εp

(1+2ε)p
(u − v) ∈P∗(y).

This is precisely the assertion in (208). By the Brunn–Minkowski inequality, (208) gives

voln
(
P∗(y)

) 1
n ⩾ 2

1−2εp

(1+2ε)p
voln

(
P∗(y)

) 1
n +voln

({
w ∈Rn : w + 1−2εp

p
BX ⊆P∗(y)

}) 1
n

.

This simplifies to give the following estimate.

voln

({
w ∈Rn : w + 1−2εp

p
BX ⊆P∗(y)

})
⩽

(
1−2

1−2εp

(1+2ε)p

)n

voln
(
P∗(y)

)
. (209)
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Now,

voln

({
w ∈ r BX : w + 1−2εp

p
BX ⊆P∗(

x(w)
)})

= ∑
y∈Nε

voln

({
w ∈P∗(y) : w + 1−2εp

p
BX ⊆P∗(

x(w)
)})

(210)

= ∑
y∈Nε

voln

({
w ∈P∗(y) : w + 1−2εp

p
BX ⊆P∗(y)

})
(211)

⩽
(
1−2

1−2εp

(1+2ε)p

)n ∑
y∈Nε

voln
(
P∗(y)

)
(212)

=
(
1−2

1−2εp

(1+2ε)p

)n

r nvoln(BX). (213)

Here (210) holds because {P∗(y)}y∈Nε
is a partition of r BX. The identity (211) holds because, since by the

definition of P∗ we have w ∈ P∗(x(w)) for every w ∈ r BX and the sets {P∗(y)}y∈Nε
are pairwise disjoint,

if w ∈ P∗(y) for some y ∈ Nε then necessarily P∗(x(w)) = P∗(y). The estimate (212) uses (209). The
identity (213) uses once more that {P∗(y)}y∈Nε

is a partition of r BX.
We next claim that for every w ∈ (r +2ε−1/p)BX the following inclusion of events holds.{(

x(w)+ 1

p
BX

)
∩Nε ⊆P

(
x(w)

)}⊆
{

w + 1−2εp

p
BX ⊆P∗(

x(w)
)}

. (214)

Indeed, suppose that w ∈ X satisfies ∥w∥X ⩽ r +2ε−1/p and (x(w)+ (1/p)BX)∩Nε ⊆ P(x(w)). Fix any
z ∈ X such that ∥w−z∥X ⩽ (1−2εp)/p. Then we have ∥z∥X ⩽ ∥w∥X+∥w−z∥X ⩽ r , so z ∈ r BX and therefore
x(z) ∈Nε is well-defined. Now,

∥x(w)−x(z)∥X ⩽ ∥x(w)−w∥X +∥w − z∥X +∥z −x(z)∥X ⩽ ε+ 1−2εp

p
+ε= 1

p
.

Hence, our assumption on w implies that x(z) ∈P(x(w)). By the definition of P∗(x(w)), this means that
z ∈P∗(x(w)), thus completing the verification of (214). Due to (207) and (214) we conclude that

∀w ∈
(
r +2ε− 1

p

)
BX, Prob

[
w + 1−2εp

p
BX ⊆P∗(

x(w)
)]
⩾ δ. (215)

Finally,

δ
(
r +2ε− 1

p

)n
voln(BX)

(215)
⩽

�
(
r+2ε− 1

p

)
BX

Prob
[

w + 1−2εp

p
BX ⊆P∗(

x(w)
)]

dw

= E
[

voln

({
w ∈

(
r +2ε− 1

p

)
BX : w + 1−2εp

p
BX ⊆P∗(

x(w)
)})]

(213)
⩽

(
1−2

1−2εp

(1+2ε)p

)n

r nvoln(BX).

This simplifies to give the estimate

n
p
δ

(
1− 1

pr
+ 2ε

r

)
⩽ 1−2

1−2εp

(1+2ε)p
.

By letting r →∞, then ε→ 0, and then p→ supm∈NPAD
m
δ (X), the desired bound (206) follows. □
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2.7. Proof of Proposition 86. The final lower bound from the Introduction that remains to be proven is
Proposition 86. The ensuing reasoning is a restructuring of a proof that was shown to us by Lutwak.

Lemma 110. Every origin-symmetric convex body K ⊆Rn satisfies

�
Sn−1

voln−1
(
Proju⊥(K )

)
∥u∥n+1

K

du ⩾
n2Γ

(n
2

)
2
p
πΓ

(n+1
2

)voln(K )2. (216)

Equality in (216) holds if and only if K is an ellipsoid.

Before proving Lemma 110, we will explain how it implies Proposition 86.

Proof of Proposition 86 assuming Lemma 110. The following standard identity follows from integration
in polar coordinates (its quick derivation can be found, for example, on page 91 of [Pis89]).

voln(K ) = 1

n

�
Sn−1

du

∥u∥n
K

. (217)

Hence,

�
Sn−1

voln−1
(
Proju⊥(K )

)
∥u∥n+1

K

du ⩽
(�

Sn−1

du

∥u∥n
K

)
max

u∈Sn−1

voln−1
(
Proju⊥(K )

)
∥u∥K

(217)= nvoln(K )max
z∈∂K

(
∥z∥ℓn

2
voln−1

(
Projz⊥(K )

))= n2voln(K )max
z∈∂K

voln
(
Conez (K )

)
.

(218)

The desired inequality (129) follows by contrasting (218) with (216). Consequently, if there is equality
in (129), then (216) must hold as equality as well, so the characterization of the equality case in Proposi-
tion 86 follows from the characterization of the quality case in Lemma 110. □

The important Petty projection inequality [Pet71] (see also [Sch95, MM96] for different proofs, as well
as the survey [Lut93]) states that for every convex body K ⊆Rn , the affine invariant quantity

voln(K )n−1voln(Π∗K ) (219)

is maximized when K is an ellipsoid, and ellipsoids are the only maximizers of (219). Recall that the polar
projection bodyΠ∗K is given by (30), which shows in particular that voln−1(Bℓn−1

2
)Π∗Bℓn

2
= Bℓn

2
. Hence,

voln(K )n−1voln(Π∗K )⩽ voln(Bℓn
2

)n−1voln(Π∗Bℓn
2

) =
(

voln
(
Bℓn

2

)
voln−1

(
Bℓn−1

2

))n

=
(

2
p
πΓ

(n+1
2

)
nΓ

(n
2

) )n

.

At the same time, by combining (30) and (217) we have

voln(Π∗K ) = 1

n

�
Sn−1

du

voln−1
(
Proju⊥(K )

)n .

Consequently, Petty’s projection inequality can be restated as the following estimate,

�
Sn−1

du

voln−1
(
Proju⊥(K )

)n ⩽

(
2
p
πΓ

(n+1
2

)
nΓ

(n
2

) )n
n

voln(K )n−1 , (220)

together with the assertion that (220) holds as an equality if and only if K is an ellipsoid.
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Proof of Lemma 110. Observe that

voln(K ) = 1

n

�
Sn−1

(
1

voln−1
(
Proju⊥(K )

) n
n+1

)(
voln−1

(
Proju⊥(K )

) n
n+1

∥u∥n
K

)
du (221)

⩽
1

n

(�
Sn−1

du

voln−1
(
Proju⊥(K )

)n

) 1
n+1

(�
Sn−1

voln−1
(
Proju⊥(K )

)
∥u∥n+1

K

du

) n
n+1

(222)

⩽
1

n

(
2
p
πΓ

(n+1
2

)
nΓ

(n
2

) ) n
n+1 n

1
n+1

voln(K )
n−1
n+1

(�
Sn−1

voln−1
(
Proju⊥(K )

)
∥u∥n+1

K

du

) n
n+1

, (223)

where (221) is (217), in (222) we used Hölder’s inequality with the conjugate exponents 1+ 1
n and n +1,

and (223) is an application of (220). This simplifies to give the desired inequality (216). □

Remark 111. Fix n ∈N, a normed space X = (Rn ,∥·∥X) and x ∈ Sn−1. Both of the bounds in (50) follow from
elementary geometric reasoning (convexity and Fubini’s theorem). Recalling (30), the second inequality
in (50) is voln−1(Projx⊥BX) ⩽ n∥x∥Xvoln(BX)/2; its justification can be found in the proof of Lemma 5.1
in [GNS12] (this was not included in the version of [GNS12] that appeared in the journal, but it appears in
the arxiv version of [GNS12]). The rest of (50) is voln(BX)∥x∥X ⩽ 2voln−1(Projx⊥BX); since we did not find
a reference for the derivation of this simple lower bound on hyperplane projections, we will now quickly
justify it. For every u ∈Projx⊥BX let s(u) = inf{s ∈ R : u + sx ∈ BX} and t (u) = sup{t ∈ R : u + t x ∈ BX}. For
every u ∈Projx⊥BX we have u + t (u)x ∈ BX, and by symmetry also −u − s(u)x ∈ BX. Hence, by convexity

1

2

(
u + t (u)x

)+ 1

2

(−u − s(u)x
)= t (u)− s(u)

2
x ∈ BX.

By the definition of t (0), this means that (t (u)− s(u))/2 ⩽ t (0) = 1/∥x∥X. Consequently, using Fubini’s
theorem (recall that x ∈ Sn−1) we conclude that

voln(BX) =
�
Projx⊥BX

(
t (u)− s(u)

)
du ⩽

�
Projx⊥BX

2

∥x∥X
du = 2

∥x∥X
voln−1

(
Projx⊥BX

)
.

3. PRELIMINARIES ON RANDOM PARTITIONS

This section treats basic properties of random partitions, including measurability issues that we need
for subsequent applications. As such, it is of a technical/foundational nature and it can be skipped on
first reading if one is willing to accept the measurability requirements that are used in the proofs that
appear in Section 4 and Section 5.

Recall that a random partition P of a metric space (M,dM) was defined in the Introduction as follows.
One is given a probability space (Ω,Prob) and a sequence of set-valued mappings {Γk :Ω→ 2M}∞k=1 such

that for each fixed k ∈ N the mapping Γk : Ω→ 2M is strongly measurable relative to the σ-algebra of
Prob-measurable subsets of Ω, i.e., the set (Γk )−(E) = {ω ∈ Ω : E ∩Γk (ω) ̸= ∅} is Prob-measurable for
every closed E ⊆M. We require that Pω = {Γk (ω)}∞k=1 is a partition of M for every ω ∈Ω.

Definition 62 and Definition 64 (of separating and padded random partitions, respectively) assumed
implicitly that the quantities that appear in the left hand sides of equations (93) and (96) are well-defined,
i.e., that the events {P(x) ̸=P(y)} and {BM(x,r ) ⊆P(x)} are Prob-measurable for every x, y ∈M and r > 0.
This follows from the above definition, because for every closed subset E ⊆M we have{

ω ∈Ω : Pω(x) ̸=Pω(y)
}= ⋃

k,ℓ∈N
k ̸=ℓ

({
ω ∈Ω : {x}∩Γk (ω) ̸=∅

}∩{
ω ∈Ω : {y}∩Γℓ(ω) ̸=∅

})
,

and {
ω ∈Ω : E ̸⊆Pω(x)

}= ⋃
k,ℓ∈N
k ̸=ℓ

({
ω ∈Ω : {x}∩Γk (ω) ̸=∅

}∩{
ω ∈Ω : E ∩Γℓ(ω) ̸=∅

})
.
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Another “leftover” from the Introduction is the proof of Lemma 66, which asserts that the moduli of
Definition 62 and Definition 64 are bi-Lipschitz invariants. The proof of this simple but needed state-
ment is the following direct use of the definition of a ∆-bounded random partition.

Proof of Lemma 66. Fix D > c(N,dN)(M,dM). There is an embedding φ :M→N and a scaling factor λ> 0
such that (16) holds. Fix ∆ > 0 and let P be a λ∆-bounded random partition of N. Suppose that P is
induced by the probability space (Ω,Prob), i.e., there are strongly measurable mappings {Γk :Ω→ 2N}∞k=1
such that Pω = {Γk (ω)}∞k=1 for every ω ∈Ω. For every k ∈N the mapping ω 7→φ−1(Γk (ω)) ∈ 2M is strongly
measurable. Indeed, if E ⊆M is closed then, because M is complete and φ is a homeomorphism, also
φ(E) ⊆N is closed. So, {ω ∈Ω : φ(E)∩Γk (ω) ̸=∅} = {ω ∈Ω : E ∩φ−1(Γk (ω)) ̸=∅} is Prob-measurable, as
required. Therefore, if we define Qω = {φ−1(Γk (ω))}∞k=1 for ω ∈Ω, then Q is a random partition of M.

Q is ∆-bounded because for every x ∈M and u, v ∈ Q(x) we have φ(u),φ(v) ∈ P(φ(x)), and therefore
dM(u, v) ⩽ dN(φ(u),φ(v))/λ⩽ diamN(P(φ(x)))/λ⩽ ∆, using (16) and that P is λ∆-bounded. For every
x, y ∈M the events {Q(x) ̸=Q(y)} and {P(φ(x)) ̸=P(φ(y))} coincide. So, ifP isσ-separating for someσ> 0,

Prob
[
Q(x) ̸=Q(y)

]= Prob
[
P

(
φ(x)

) ̸=P
(
φ(y)

)]
⩽

σ

λ∆
dN

(
φ(x),φ(y)

) (16)
⩽

Dσ

∆
dM(x, y).

This shows that Q is (Dσ)-separating, thus establishing the first assertion (98) of Lemma 66.
Suppose that P is (p,δ)-padded for some p > 0 and 0 < δ < 1. Fix x ∈ M. Assuming that the event

{BN(φ(x),λ∆/p) ⊆P(φ(x))} occurs, if z ∈ BM(x,∆/(Dp)), then dN(φ(z),φ(x))⩽λDdM(z, x)⩽λ∆/pby (16).
Thus,φ(z) ∈ BN(φ(x),λ∆/p) and thereforeφ(z) ∈P(φ(x)), i.e., z ∈Q(x). This shows the inclusion of events
{BN(φ(x),λ∆/p) ⊆ P(φ(x))} ⊆ {BM(x,∆/(Dp)) ⊆ Q(x)}. Since P is (p,δ)-padded, it follows from this that
also Q is (Dp,δ)-padded, thus establishing the second assertion (99) of Lemma 66. □

The final basic “leftover” from the Introduction is the following simple proof of Lemma 67.

Proof of Lemma 67. Fix ∆> 0 and suppose that σ1 > SEP(M1) and σ2 > SEP(M2). Define

∆1 =∆
( σ1

σ1 +σ2

) 1
s

and ∆2 =∆
( σ2

σ1 +σ2

) 1
s
. (224)

Let P∆1 be a σ1-separating ∆1-bounded random partition of M1. Similarly, let P∆2 be a σ2-separating
∆2-bounded random partition of M2. Assume that P∆1 and P∆2 are independent random variables. Let
P∆ be the corresponding product random partition of M1 ×M2, i.e., its clusters are give by

∀(x1, x2) ∈M1 ×M2, P∆(x1, x2) =P∆1 (x1)×P∆2 (x2). (225)

By (224) we have ∆s
1 +∆s

2 =∆s , so P∆ is a ∆-bounded random partition of M1 ⊕s M2 (the required mea-
surability is immediate). It remains to note that every (x1, x2), (y1, y2) ∈M1 ×M2 satisfy

Prob
[
P∆(x1, x2) ̸=P∆(y1, y2)

]= 1−Prob
[
P∆1 (x1) =P∆1 (y1)

]
Prob

[
P∆2 (x2) =P∆2 (y2)

]
(226)

⩽ 1−
(
1− σ1dM1 (x1, y1)

∆1

)(
1− σ2dM2 (x2, y2)

∆2

)
(227)

= σ1dM1 (x1, y1)

∆1
+ σ2dM2 (x2, y2)

∆2
− σ1σ2dM1 (x1, y1)dM2 (x2, y2)

∆1∆2
(228)

⩽
((σ1

∆1

) s
s−1 +

(σ2

∆2

) s
s−1

) s−1
s (

dM1 (x1, y1)s +dM2 (x2, y2)s) 1
s (229)

= σ1 +σ2

∆
dM1⊕sM2

(
(x1, x2), (y1, y2)

)
, (230)

where (226) uses (225) and the independence of P∆1 and P∆2 , the bound (227) is an application of the
assumption that P∆1 is σ1-separating and P∆2 is σ2-separating, (229) is an application of Hölder’s in-
equality, and (230) follows from (100) and (224). This proves (101). Note that even though we dropped
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the quadratic additive improvement in (228), this does not change the final bound in (101) due to the
need to work with all possible scales ∆> 0 and all possible values of dM1 (x1, y1) and dM2 (x2, y2).

To prove (102), fix p1 >PADδ1 (M1) and p2 >PADδ2 (M2) and replace (224) by

∆1 = ∆p1(
ps

1 +ps
2

) 1
s

and ∆2 = ∆p2(
ps

1 +ps
2

) 1
s

.

This time, we choose P∆1 to be a (p1,δ1)-padded ∆1-bounded random partition of M1. Similarly, let P∆2

be a (p2,δ2)-padded ∆2-bounded random partition of M2, with P∆1 and P∆2 independent, and we again
combine them as in (225) to give the product partition P∆ of M1 ×M2. The analogous reasoning shows
that P∆ is a ((ps

1 +ps
2)1/s ,δ1δ2)-padded ∆-bounded random partition of M1 ⊕s M2. □

3.1. Standard set-valued mappings. Recall that a metric space (M,dM) is said to be Polish if it is sep-
arable and complete. Polish metric spaces are the appropriate setting for Lipschitz extension theorems
that are based on the assumption that for every ∆> 0 there is a probability distribution over ∆-bounded
partitions of M with certain properties. Indeed, a Banach space-valued Lipschitz function can always
be extended to the completion of M while preserving the Lipschitz constant, and the mere existence of
countably many sets of diameter at most ∆ that cover M for every ∆> 0 implies that M is separable.

Theorem 65 assumes local compactness. Even though this assumption is more restrictive than being
Polish, it suffices for the applications that we obtain herein because they deal with finite dimensional
normed spaces. It is, however, possible to treat general Polish metric spaces by working with a notion
of measurability of set-valued mappings that differs from the strong measurability that was assumed in
Section 1.7. We call this notion standard set-valued mappings; see Definition 112.

The requirements for a set-valued mapping to be standard are quite innocuous and easy to check. In
particular, the clusters of the specific random partitions that we will study are easily seen to be standard
set-valued mappings. It is also simple to verify that the clusters of the random partitions that we con-
struct are strongly measurable. So, we have two approaches, which are both easy to work with. We chose
to work in the Introduction with the requirement that the clusters are strongly measurable because this
directly makes the quantity SEP(·) be bi-Lipschitz invariant, and it is also slightly simpler to describe.
Nevertheless, in practice it is straightforward to check that the clusters are standard, and even though
we do not know that this leads to a bi-Lipschitz invariant (we suspect that it does not), it does lead to an
easily implementable Lipschitz extension criterion that holds in the maximal generality of Polish spaces.

Definition 112 (standard set-valued mapping). Suppose that (Z,dZ) is a Polish metric space and that
Ω⊆Z is a Borel subset of Z. Given a metric space (M,dM), a set-valued mapping Γ :Ω→ 2M is said to be
standard if the following three conditions hold.

• For every x ∈M the set {ω ∈Ω : x ∈ Γ(ω)} is Borel.
• The set GΓ = Γ−(M) = {ω ∈Ω : Γ(ω) ̸=∅} is Borel.
• For every x ∈M the mapping (ω ∈GΓ) 7→ dM(x,Γ(ω)) is Borel measurable on GΓ.

The following extension criterion is a counterpart to Theorem 65 that works in the maximal generality
of Polish metric spaces; its proof, which is an adaptation of ideas of [LN05], appears in Section 5.

Theorem 113. Let (M,dM) be a Polish metric space and fix another metric d on M. Suppose that for every
∆ > 0 there is a Polish metric space Z∆, a Borel subset Ω∆ ⊆ Z∆, a Borel probability measure Prob∆ on
Ω∆ and a sequence of standard set-valued mappings {Γk

∆ : Ω∆ → 2M}∞k=1 such that Pω∆ = {Γk
∆(ω)}∞k=1 is a

partition of M for every ω ∈Ω∆, for every x ∈M and ω ∈Ω∆ we have diamM(Pω∆(x))⩽∆, and

∀x, y ∈M, ∆Prob∆
[
ω ∈Ω∆ : Pω∆(x) ̸=Pω∆(y)

]
⩽ d(x, y). (231)

Then, for every Banach space (Z,∥ ·∥Z), every subset C⊆M and every 1-Lipschitz mapping f :C→ Z, there
exists a mapping F :M→ Z that extends f and satisfies ∥F (x)−F (y)∥Z ≲ d(x, y) for every x, y ∈M (namely,
F is Lipschitz on M with respect to the metric d). Moreover, F depends linearly on f .
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3.2. Proximal selectors. For later applications we need to know that set-valued mappings that are ei-
ther strongly measurable or standard admit certain auxiliary measurable mappings that are (perhaps
approximately) the closest point to a given (but arbitrary) nonempty closed subset of the metric space in
question. We will justify this now using classical descriptive set theory.

Lemma 114. Fix a measurable space (Ω,F). Suppose that (M,dM) is a metric space and that S ⊆M is
nonempty and locally compact. Let Γ : Ω→ 2M be a strongly measurable set-valued mapping such that
Γ(ω) is a bounded subset of M for every ω ∈ Ω. Then there exists an F-to-Borel measurable mapping
γ :Ω→ S that satisfies dM(γ(ω),Γ(ω)) = dM(S,Γ(ω)) for every ω ∈Ω for which Γ(ω) ̸=∅.

Proof. For every ω ∈Ω define a subsetΦ(ω) ⊆ S as follows.

Φ(ω)
def=

{ {
s ∈ S : dM

(
s,Γ(ω)

)= dM

(
S,Γ(ω)

)}
if Γ(ω) ̸=∅,

S if Γ(ω) =∅.

The goal of Lemma 114 is to demonstrate the existence of an F-to-Borel measurable mapping γ :Ω→ S
that satisfies γ(ω) ∈ Φ(ω) for every ω ∈ Ω. Since (S,dM) is locally compact, it is in particular Polish,
so by the measurable selection theorem of Kuratowski and Ryll-Nardzewski [KRN65] (see also [Wag77]
or [Sri98, Chapter 5.2]) it suffices to check that Φ(ω) is nonempty and closed for every ω ∈ Ω, and that
{ω ∈Ω : E ∩Φ(ω) =∅} ∈ F for every closed E ⊆ S. Since S is locally compact, every closed subset of S is
a countable union of compact subsets, so it suffices to check the latter requirement for compact subsets
of S, i.e., to show that {ω ∈Ω : K ∩Φ(ω) =∅} ∈F for every compact K ⊆ S.

Fix ω ∈ Ω. If Γ(ω) = ∅ then Φ(ω) = S is closed (since S is locally compact) and nonempty by as-
sumption. If Γ(ω) ̸= ∅ then the continuity of the mapping s 7→ dM(s,Γ(ω)) on S implies that Φ(ω) is
closed. Moreover, in this case since Γ(ω) is bounded and S is locally compact, the continuous mapping
s 7→ dM(s,Γ(ω)) attains its minimum on S, so thatΦ(ω) ̸=∅.

It therefore remains to check that {ω ∈ Ω : K ∩Φ(ω) = ∅} ∈ F for every nonempty compact K ⊊ S.
Fixing such a K , since S is locally compact and hence separable, there exist {κi }∞i=1 ⊆ K and {σ j }∞j=1 ⊆ S

that are dense in K and S, respectively. Denote GΓ = {ω ∈ Ω : Γ(ω) ̸= ∅}. Then GΓ ∈ F, because Γ is
strongly measurable. Observe that the following identity holds:{

ω ∈Ω : K ∩Φ(ω) =∅
}= {

ω ∈GΓ : ∀κ ∈ K , dM

(
κ,Γ(ω)

)> dM

(
S,Γ(ω)

)}
=

∞⋃
m=1

∞⋂
i=1

∞⋃
j=1

{
ω ∈GΓ : dM

(
κi ,Γ(ω)

)> dM

(
σ j ,Γ(ω)

)+ 1

m

}
.

(232)

The verification of (232) proceeds as follows. Since Φ(ω) ̸=∅ for every ω ∈Ω and K ̸=∅, if K ∩Φ(ω) =∅
then ω ∈ GΓ (otherwise Φ(ω) = S). This explains the first equality (232). For the second equality in (232),
note that since Γ(ω) is bounded and K is compact, infκ∈K dM(κ,Γ(ω)) is attained. Therefore the second
set in (232) is equal to A = {ω ∈ GΓ : dM(K ,Γ(ω)) > dM(S,Γ(ω))}. If ω ∈ A, then there is m ∈ N such that
dM(K ,Γ(ω)) > dM(S,Γ(ω))+2/m, implying in particular that dM(κi ,Γ(ω)) > dM(S,Γ(ω))+2/m for every
i ∈N. As {σ j }∞j=1 is dense in S, for every i ∈N there is j ∈N such that dM(κi ,Γ(ω)) > dM(σ j ,Γ(ω))+1/m.
Hence, the second set in (232) is contained in the third set in (232). For the reverse inclusion, if ω is in
third set in (232) then dM(K ,Γ(ω)) = infi∈NdM(κi ,Γ(ω)) > inf j∈NdM(σ j ,Γ(ω)) = dM(S,Γ(ω)).

By (232), it suffices to show that {ω ∈ GΓ : dM(x,Γ(ω)) > dM(y,Γ(ω))+ r } ∈ F for every fixed x, y ∈ S
and r > 0. For this, it suffices to show that for every z ∈M the mapping ω 7→ dM(z,Γ(ω)) is F-to-Borel
measurable on GΓ. Since GΓ ∈F, this is a consequence of the strong measurability of Γ, because for every
t ⩾ 0 we have {ω ∈GΓ : dM(z,Γ(ω)) > t } =⋃∞

k=1GΓ∩ {ω ∈Ω : BM(z, t +1/k)∩Γ(ω) =∅}. □

Lemma 114 is a satisfactory treatment of measurable nearest point selectors for strongly measurable
set-valued mappings, though under an assumption of local compactness. We did not investigate the
minimal assumptions that are required for the conclusion of Lemma 114 to hold. We will next treat the
setting of standard set-valued mappings without assuming local compactness.
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Let (Z,dZ) be a Polish metric space. Recall that a subset A of Z is said to be universally measurable if
it is measurable with respect to every completeσ-finite Borel measureµ onZ (see e.g. [Kec95, page 155]).
If (M,dM) is another metric space andΩ⊆Z is Borel, then a mappingψ :Ω→M is said to be universally
measurable ifψ−1(E) is a universally measurable subset ofΩ for every Borel subset E of M. Finally, recall
that A ⊆M is said to be analytic if it is an image under a continuous mapping of a Borel subset of a Polish
metric space (see e.g. [Kec95, Chapter 14] or [Jec03, Chapter 11]). By Lusin’s theorem [Luz17, Lus72] (see
also e.g. [Kec95, Theorem 21.10]), analytic subsets of Polish metric spaces are universally measurable.

Lemma 115. Let (M,dM) and (Z,dZ) be Polish metric spaces and fix a Borel subsetΩ⊆Z. Fix also ∆> 0
such that diam(M)⩾∆. Suppose that Γ :Ω→ 2M satisfies the following two properties.

(1) For every ω ∈Ω such that Γ(ω) ̸=∅ we have diamM(Γ(ω)) <∆.
(2) For every x ∈M and t ∈R the set {ω ∈Ω : Γ(ω) ̸=∅ ∧ dM(x,Γ(ω)) > t } is analytic.

Then, for every closed ∅ ̸= S ⊆M there is a universally measurable mapping γ :Ω→ S such that

∀(ω, x) ∈Ω×M, x ∈ Γ(ω) =⇒ dM

(
x,γ(ω)

)
⩽ dM(x,S)+∆.

Proof. For every ω ∈Ω, define a subsetΨ(ω) ⊆ S as follows.

Ψ(ω)
def=

{ ⋂
x∈M

{
s ∈ S : dM(x, s)⩽ 2dM

(
x,Γ(ω)

)+dM(x,S)+∆}
if Γ(ω) ̸=∅,

S if Γ(ω) =∅.
(233)

We will show that there exists a universally measurable mapping γ :Ω→ S such that γ(ω) ∈Ψ(ω) for every
ω ∈Ω. Since S is a closed subset ofM, it is Polish. Hence, by the Kuratowski–Ryll-Nardzewski measurable
selection theorem [KRN65], it suffices to prove that Ψ(ω) is nonempty and closed for every ω ∈ Ω, and
thatΨ−(E) = {ω ∈Ω : E ∩Ψ(ω) ̸=∅} is universally measurable for every closed E ⊆ S.

By design, Ψ(ω) = S is nonempty and closed if Γ(ω) = ∅. So, fix ω ∈ Ω such that Γ(ω) ̸= ∅. Then
Ψ(ω) is closed because if {sk }∞k=1 ⊆ Ψ(ω) and s ∈ M satisfy limk→∞ dM(sk , s) = 0, then for every k ∈ N
and x ∈M, since sk ∈Ψ(ω) we have dM(sk , x) ⩽ 2dM(x,Γ(ω))+dM(x,S)+∆. Hence, by continuity also
dM(s, x)⩽ 2dM(x,Γ(ω))+dM(x,S)+∆ for every x ∈M, i.e., s ∈Ψ(ω).

We will next check that Ψ(ω) ̸=∅ for every ω ∈Ω such that Γ(ω) ̸=∅. Denote εω = ∆−diamM(Γ(ω)).
By assumption (1) of Lemma 115 we have εω > 0, so we may choose sω ∈ S and yω ∈ Γ(ω) that satisfy
dM(yω, sω)⩽ dM(Γ(ω),S)+εω. We claim that sω ∈Ψ(ω). Indeed, for every x ∈M and z ∈ Γ(ω) we have

dM(x, sω)⩽ dM(x, z)+dM(z, yω)+dM(yω, sω)⩽ dM(x, z)+diamM

(
Γ(ω)

)+dM(Γ(ω),S)+εω
⩽ dM(x, z)+dM(z,S)+∆⩽ dM(x, z)+dM(x,S)+dM(x, z)+∆,

(234)

where in the penultimate step of (234) we used the fact that dM(Γ(ω),S) ⩽ dM(z,S), since z ∈ Γ(ω), and
in the final step of (234) we used the fact that the mapping p 7→ dM(p,S) is 1-Lipschitz on M. Since (234)
holds for every z ∈ Γ(ω), it follows that dM(x, sω) ⩽ 2dM(x,Γ(ω))+dM(x,S)+∆. Because this holds for
every x ∈M, it follows that sω ∈Ψ(ω).

Having checked that Ψ takes values in closed and nonempty subsets of S, it remains to show that
Ψ−(E) is universally measurable for every closed E ⊆ S. To this end, since M is separable, we may fix
from now on a sequence {x j }∞j=1 that is dense in M. Note that by the case t = 0 of assumption (2) of
Lemma 115, for every j ∈N the following set is analytic.{

ω ∈Ω : Γ(ω) ̸=∅ ∧ dM

(
x j ,Γ(ω)

)> 0
}= {

ω ∈Ω : Γ(ω) ̸=∅ ∧ x j ∉ Γ(ω)
}

.

Countable unions and intersections of analytic sets are analytic (see e.g. [Kec95, Proposition 14.4]), so
we deduce that the following set is analytic.

∞⋃
j=1

{
ω ∈Ω : Γ(ω) ̸=∅ ∧ x j ∉ Γ(ω)

}
=

{
ω ∈Ω : Γ(ω) ̸=∅ ∧ {x j }∞j=1 ̸⊆ Γ(ω)

}
= {ω ∈Ω : Γ(ω) ̸=∅},

(235)
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where for the final step of (235) observe that, since {x j }∞j=1 is dense in M, if {x j }∞j=1 were a subset of Γ(ω)

then it would follow that Γ(ω) is dense in M. This would imply that diamM(Γ(ω)) = diam(M) ⩾ ∆, in
contradiction to assumption (1) of Lemma 115. We have thus checked that the setGΓ = {ω ∈Ω : Γ(ω) ̸=∅}
is analytic, and hence by Lusin’s theorem [Luz17, Lus72] it is universally measurable. Now,

Ψ−(E)
(233)= (Ω∖GΓ)∪{

ω ∈GΓ : ∃ s ∈ E ∀x ∈M, dM(x, s)⩽ 2dM

(
x,Γ(ω)

)+dM(x,S)+∆}
.

Hence, it remains to prove that the following set is universally measurable.{
ω ∈GΓ : ∃ s ∈ E ∀x ∈M, dM(x, s)⩽ 2dM

(
x,Γ(ω)

)+dM(x,S)+∆}
= {

ω ∈GΓ : ∃ s ∈ E ∀ j ∈N, dM(x j , s)⩽ 2dM

(
x j ,Γ(ω)

)+dM(x j ,S)+∆}
,

(236)

where we used the fact that {x j }∞j=1 is dense in M.

Consider the following subset C ofΩ×E .

C
def= {

(ω, s) ∈GΓ×E : ∀ j ∈N, dM(x j , s)⩽ 2dM

(
x j ,Γ(ω)

)+dM(x j ,S)+∆}
.

The set in (236) is π1(C), where π1 :Ω×E →Ω is the projection to the first coordinate, i.e., π1(ω, s) =ω for
every (ω, s) ∈Ω×E . Since continuous images and preimages of analytic sets are analytic (see e.g. [Kec95,
Proposition 14.4]), by another application of Lusin’s theorem it suffices to show that C is analytic. We
already proved that GΓ ⊆Ω is analytic, so there is a Borel subset L of a Polish space Y and a continuous
mappingφ : L →Ω such thatφ(L) =GΓ. Denoting the identity mapping on E by IdE : E → E , sinceφmaps
L onto GΓ, the set C is the image under the continuous mapping φ× IdE of the following subset of Y×E .{

(y, s) ∈ L×E : ∀ j ∈N, dM(x j , s)⩽ 2dM

(
x j ,Γ(φ(y))

)+dM(x j ,S)+∆}
=

∞⋂
j=1

{
(y, s) ∈ L×E : dM(x j , s)⩽ 2dM

(
x j ,Γ(φ(y))

)+dM(x j ,S)+∆}
.

Hence, since continuous images and countable intersections of analytic sets are analytic, by yet another
application of Lusin’s theorem we see that it suffices to show that for every fixed x ∈M the following set
is analytic, where for every q ∈Qwe denote Aq = {(y, s) ∈ L×E : q < dM(x, s)} = L× {s ∈ E : q < dM(x, s)}.{

(y, s) ∈ L×E : dM(x, s)⩽ 2dM

(
x,Γ(φ(y))

)+dM(x,S)+∆}
= ⋂

q∈Q

((
(L×E)∖ Aq

)∪ (
Aq ∩{

(y, s) ∈ L×E : 2dM

(
x,Γ(φ(y))

)> q −dM(x,S)−∆}))
,

Since Aq is Borel for all q ∈Q, it suffices to show that the following set is analytic for every t ∈R:{
(y, s) ∈ L×E : dM

(
x,Γ(φ(y))

)> t
}=φ−1

({
ω ∈GΓ : dM

(
x,Γ(ω)

)> t
})×E .

Since a preimage under a continuous mapping of an analytic set is analytic, the above set is indeed
analytic due to assumption (2) of Lemma 115 and the fact that E is closed. □

Remark 116. The proof of Lemma 115 used the assumption diam(M) ⩾ ∆ only to deduce that the set
GΓ = {ω ∈Ω : Γ(ω) ̸=∅} is analytic from (the case t = 0 of) assumption (2) of Lemma 115. Hence, if we
add the assumption that GΓ is analytic to Lemma 115, then we can drop the restriction diam(M) ⩾ ∆

altogether. Alternatively, recalling equation (235) and the paragraph immediately after it, for the above
proof of Lemma 115 to go through it suffices to assume that Γ(ω) is not dense in M for any ω ∈Ω.

Recalling Definition 112, Lemma 115 and Remark 116 imply the following corollary. Indeed, by Re-
mark 116 we know that we can drop the assumption diam(M) ⩾∆ of Lemma 115, and when Γ is a stan-
dard set-valued mapping the sets that appears in assumption (2) of Lemma 115 are Borel.
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Corollary 117. Fix ∆ > 0. Let (M,dM) and (Z,dZ) be Polish metric spaces and fix a Borel subset Ω ⊆Z.
Suppose that Γ :Ω→ 2M is a standard set-valued mapping such that diamM(Γ(ω)) < ∆ for every ω ∈ GΓ.
Then for every closed ∅ ̸= S ⊆M there exists a universally measurable mapping γ :Ω→ S that satisfies

∀(ω, x) ∈Ω×M, x ∈ Γ(ω) =⇒ dM

(
x,γ(ω)

)
⩽ dM(x,S)+∆.

3.3. Measurability of iterative ball partitioning. The following set-valued mapping is a building block
of much of the literature on random partitions, including the present investigation. Fix a metric space
(M,dM) and k ∈N. Define a set-valued mapping Γ :Mk × [0,∞)k → 2M by

∀(⃗
x, r⃗

)= (x1, . . . , xk ,r1, . . . ,rk ) ∈Mk × [0,∞)k , Γ
(⃗
x, r⃗

) def= BM(xk ,rk )∖
k−1⋃
j=1

BM(x j ,r j ). (237)

We can think of Γ as a random subset of M if we are given a probability measure Prob on Mk × [0,∞)k .
The measure Prob can encode the geometry of (M,dM); for example, if (M,dM) is a complete doubling
metric space, then in [LN05] this measure arises from a doubling measure on M (see [VK87, LS98]). The
measure Prob can also have a “smoothing effect” through the randomness of the radii (see e.g. [Bar99,
CKR05, FRT04, LN05, MN07, NT10, ABN11, NT12]; choosing a suitable distribution over the random radii
is sometimes an important and quite delicate matter, but this intricacy will not arise in the present work.
For finite dimensional normed spaces, a random subset as in (237) was used in [CCG+98, KMS98]. Note
that given ∆ > 0, if the measure Prob is supported on the set of those (⃗x, r⃗ ) ∈ Mk × [0,∞)k for which
rk ⩽∆/2, then the mapping Γ takes values in subsets of M of diameter at most ∆.

While the definition (237) is very simple and natural, in order to use it in the ensuing reasoning we
need to know that it satisfies certain measurability requirements. Note first that the set-valued mapping
Γ in (237) automatically has the following basic measurability property: For every fixed y ∈ M the set
{(⃗x, r⃗ ) ∈Mk × [0,∞)k : y ∈ Γ(⃗x, r⃗ )} is Borel. Indeed, by definition we have{(⃗

x, r⃗
) ∈Mk × [0,∞)k : y ∈ Γ(⃗

x, r⃗
)}

=
k−1⋂
j=1

{(⃗
x, r⃗

) ∈Mk × [0,∞)k : dM(y, x j ) > r j

}
∩

{(⃗
x, r⃗

) ∈Mk × [0,∞)k : dM(y, xk )⩽ rk

}
.

In other words, the indicator mapping (⃗x, r⃗ ) 7→ 1Γ(⃗x ,⃗r )(y) is Borel measurable for every fixed y ∈M.

Lemma 118. Fix k ∈N. Suppose that (M,dM) is a Polish metric space. Let Γ :Mk × [0,∞)k → 2M be given
in (237). Then Γ−(S) = {(⃗x, r⃗ ) ∈Mk × [0,∞)k : S ∩Γ(⃗x, r⃗ ) ̸=∅} is analytic for every analytic subset S ⊆M.
Consequently, for every complete σ-finite Borel measure µ on Mk × [0,∞)k , if Fµ denotes the σ-algebra
of µ-measurable subsets of Mk × [0,∞)k , then Γ is a strongly measurable set-valued mapping from the
measurable space (Mk × [0,∞)k ,Fµ) to 2M.

Proof. Since S is analytic, there exists a Borel subset T of a Polish metric space Z and a continuous
mapping ψ : T → M such that ψ(T ) = S. Consider the following Borel subset B of the Polish space
Mk × [0,∞)k ×Z (B is Borel because it is defined using finitely many continuous inequalities).

B
def=

{
(⃗x, r⃗ , t ) ∈Mk × [0,∞)k ×T : dM(ψ(t ), xk )⩽ rk ∧ ∀ j ∈ {1, . . . ,k −1}, dM(ψ(t ), x j ) > r j

}
.

Then Γ−(S) =π(B), where π :Mk ×[0,∞)k ×Z→Mk ×[0,∞)k is the projection onto the first two coordi-
nates, i.e.,π(⃗x, r⃗ , z) = (⃗x, r⃗ ) for every (⃗x, r⃗ , z) ∈Mk×[0,∞)k×Z. Sinceπ is continuous, it follows thatΓ−(S)
is analytic. By Lusin’s theorem [Luz17, Lus72], it follows that Γ−(S) is universally measurable. In partic-
ular, if µ is a complete σ-finite Borel measure on Mk × [0,∞)k and Fµ is the σ-algebra of µ-measurable
subsets of Mk × [0,∞)k , then Γ−(E) ∈Fµ for every closed subset E ⊆M. Recalling (92), this means that Γ
is a strongly measurable set-valued mapping from the measurable space (Mk × [0,∞)k ,Fµ) to 2M. □
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Lemma 119 below contains additional Borel measurability assertions that will be used later. Its as-
sumptions are satisfied, for example, when M is a separable normed space, which is the case of interest
here. We did not investigate the maximal generality under which the conclusion of Lemma 119 holds.

In what follows, given a metric space (M,dM), for every x ∈ M and r > 0 the open ball of radius r
centered at x is denoted Bo

M
(x,r ) = {y ∈M : dM(x, y) < r }.

Lemma 119. Suppose that (M,dM) is a separable metric space such that

∀(x,r ) ∈M× (0,∞), BM(x,r ) = Bo
M

(x,r ). (238)

Fix k ∈N and let Γ :Mk × (0,∞)k → 2M be given in (237). Then the following set is Borel measurable.

GΓ =
{
(⃗x, r⃗ ) ∈Mk × (0,∞)k : Γ(⃗x, r⃗ ) ̸=∅

}
.

Also, for each y ∈M the mapping from GΓ to R that is given by (⃗x, r⃗ ) 7→ dM(y,Γ(x,r )) is Borel measurable.

Proof. Let D ⊆M be a countable dense subset of M. The assumption (238) implies that D∩Γ(⃗x, r⃗ ) is
dense in Γ(⃗x, r⃗ ) for every (⃗x, r⃗ ) ∈Mk × (0,∞)k . This is straightforward to check as follows. Fix y ∈ Γ(⃗x, r⃗ )
and δ > 0. We need to find q ∈D∩Γ(⃗x, r⃗ ) with dM(q, y) < δ. Recalling (237), since y ∈ Γ(⃗x, r⃗ ) we know
that dM(y, xk )⩽ rk , and also dM(y, x j ) > r j for every j ∈ {1, . . . ,k −1}, i.e., η> 0 where

η
def= min

{
δ,dM(y, x1)− r1, . . . ,dM(y, xk−1)− rk−1

}
.

By (238) there is z ∈ Bo
M

(xk ,rk ) with dM(z, y) < η/2. Denote

ρ
def= min

{
rk −dM(z, xk ),

1

2
η
}

.

Then ρ > 0, so the density of D in M implies that there is q ∈D with dM(q, z) < ρ. Consequently,

dM(q, y)⩽ dM(q, z)+dM(z, y) < ρ+ η

2
⩽ δ.

It remains to observe that q ∈ Γ(⃗x, r⃗ ), because dM(q, xk ) ⩽ dM(q, z)+dM(z, xk ) < ρ+dM(z, xk ) ⩽ rk and
also for every j ∈ {1, . . . ,k −1} we have

dM(q, x j )⩾ dM(y, x j )−dM(y, z)−dM(z, q) > dM(y, x j )− η

2
−ρ⩾ dM(y, x j )−η⩾ r j .

For every (⃗x, r⃗ ) ∈Mk × (0,∞)k , we have Γ(⃗x, r⃗ ) ̸=∅ if and only if D∩Γ(⃗x, r⃗ ) ̸=∅. Consequently,

GΓ =
{(⃗

x, r⃗
) ∈Mk × (0,∞)k : Γ

(⃗
x, r⃗

) ̸=∅
}
= ⋃

q∈D

{(⃗
x, r⃗

) ∈Mk × (0,∞)k : q ∈ Γ(⃗
x, r⃗

)}
.

Since D is countable and we already checked in the paragraph immediately preceding Lemma 118 that
{(⃗x, r⃗ ) ∈Mk×(0,∞)k : y ∈ Γ(⃗x, r⃗ )} is Borel measurable for every y ∈M, we get thatGΓ is Borel measurable.

Next, dM(y,Γ(⃗x, r⃗ )) = dM(y,D∩Γ(⃗x, r⃗ )) for every (⃗x, r⃗ ) ∈GΓ and y ∈M. So, for every t > 0 we have{(⃗
x, r⃗

) ∈GΓ : dM

(
y,Γ

(⃗
x, r⃗

))< t
}= ⋃

q∈D∩Bo
M

(y,t )

{(⃗
x, r⃗

) ∈Mk × (0,∞)k : q ∈ Γ(⃗
x, r⃗

)}
.

It follows that {(⃗x, r⃗ ) ∈GΓ : dM(y,Γ(⃗x, r⃗ )) < t } is Borel measurable for every t ∈R. □

Corollary 120 below follows directly from the definition of a standard set-valued mapping due to
Lemma 119 and the discussion in the paragraph immediately preceding Lemma 118.

Corollary 120. Let (M,dM) be a Polish metric space satisfying (238). Then, for every k ∈N the set-valued
mapping Γ :Mk × (0,∞)k → 2M in (237) is standard.

4. UPPER BOUNDS ON RANDOM PARTITIONS

In this section, we will prove the existence of random partitions with the separation and padding
properties that were stated in the Introduction.
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4.1. Proof of Theorem 74 and the upper bound on PADδ(X) in Theorem 68. Theorem 121 below as-
serts that every normed space X = (Rn ,∥ · ∥X) admits a random partition that simultaneously has desir-
able padding and separation properties. In the literature, such properties are obtained for different ran-
dom partitions: Separating partitions of normed spaces use iterative ball partitioning with deterministic
radii, while padded partitions also rely on randomizing the radii. At present, we do not have in mind an
application in which good padding and separation properties are needed simultaneously for the same
random partition, so it is worthwhile to note this feature for potential future use but in what follows we
will use Theorem 121 to obtain two standalone conclusions that yield upper bounds on the moduli of
padded and separated decomposability (in fact, the separation profile of Theorem 74).

Theorem 121. Fix n ∈N and a normed space X = (Rn ,∥ ·∥X). For every ∆ ∈ (0,∞) there exists a ∆-bounded
random partition P∆ of X such that for every x, y ∈Rn and every δ ∈ (0,1) we have

Prob
[
P∆(x) ̸=P∆(y)

]≍ min

{
1,

voln−1
(
Proj(x−y)⊥(BX)

)
∆voln(BX)

∥x − y∥ℓn
2

}
, (239)

and,

Prob
[
P∆(x) ⊇ 1− n

p
δ

1+ n
p
δ
· ∆

2
BX

]
= δ.

By the conventions of Remark 61, the∆-boundedness of Theorem 121 is with respect to the norm ∥·∥X,
i.e., the clusters of the random partitionP∆ have X-diameter at most∆. By the definitions in Section 1.7.1,
the notion of random partition implies that each of the clusters of P∆ is strongly measurable, but we will
see that they are also standard (recall Definition 112).

Remark 122. For every M > 0, consider the metric space L⩽M
1 = (L1,dM ) that is given by

∀ f ,∈ L1, dM ( f , g )
def= min

{
M ,∥ f − g∥L1

}
.

A useful property [MN15, Lemma 5.4] of this truncated L1 metric is cL1 (L⩽M
1 )≲ 1, i.e., L⩽M

1 embeds back
into L1 with bi-Lipschitz distortion O(1). Theorem 121 gives a different proof of this since if X = ℓn∞, then
by (38) the right hand side of (239) is equal to min{2∆,∥x−y∥1}/(2∆). At the same time, ifPω∆ = {Γk

∆(ω)}∞k=1,
then the left hand side of (239) embeds isometrically into an L1(µ) space via the embedding

( f ∈ L1) 7→
(
ω 7→ (

1Γk (ω)( f )
)∞

k=1

)
∈ L1(Prob;ℓ1).

By (30), the right hand side of (239) equals min{∆,∥x− y∥Π*X}/∆. However, the class of finite dimensional
normed spaces whose unit ball is a polar projection body coincides with [Bol69] those finite dimensional
normed spaces that embed isometrically into L1, so this does not give a new embedding result.

We will first describe the construction that leads to the random partition whose existence is asserted
in Theorem 121. This construction is a generalization of the construction that appears in the proof
Lemma 3.16 of [LN05], which itself combines a coloring argument with a generalization of the iterated
ball partitioning technique that was used in the Euclidean setting in [CCG+98, KMS98].

In the rest of this section we will work under the assumptions and notation of Theorem 121. LetΛ⊆Rn

be a lattice such that {z +BX}z∈Λ have pairwise disjoint interiors (equivalently, ∥z − z ′∥X ⩾ 2 for every
distinct z, z ′ ∈Λ) and

⋃
z∈Λ(z +3BX) =Rn (i.e., for every x ∈Rn there is z ∈Λ such that ∥x − z∥X ⩽ 3). The

existence of such a lattice follows from the work of Rogers [Rog50] (see [Zon02, Remark 6]). The constant
3 here is not the best-known (see [But72, Zon02]); we prefer to work with an explicit constant only for
notational convenience despite the fact that its value is not important in the present context.

Denote the X-Voronoi cell ofΛ, i.e., the set of points in Rn whose closest lattice point is the origin, by

V
def=

{
x ∈Rn : ∥x∥X = min

z∈Λ
∥x − z∥X

}
.

Then V⊆ 3BX and the translates {z +V}z∈Λ cover Rn and have pairwise disjoint interiors.
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Remark 123. Our choice of the above lattice is natural since it is adapted to the intrinsic geometry of
X = (Rn ,∥ · ∥X) and it leads to a simpler probability space in the construction below. Nevertheless, for the
present purposes this choice is not crucial, and one could also work with any other lattice, including Zn .
In that case, one could carry out the ensuing reasoning while adapting it to geometric characteristics
of the lattice in question (its packing radius, covering radius and the diameter of its Voronoi cell, all of
which are measured with respect to the metric induced by ∥·∥X). This requires several changes in the en-
suing discussion, resulting in slightly more cumbersome computations that incorporate these geometric
characteristics of the lattice. All of these quantities are universal constants for our choice ofΛ.

Define graph G= (Λ,EG) whose vertex set is the latticeΛ and whose edge set EG is given by

∀w, z ∈Λ, {w, z} ∈EG ⇐⇒ w ̸= z ∧ inf
a∈w+V
b∈z+V

∥a −b∥X ⩽ 10.

So, if {w, z} ∈EG and x ∈ BX then there exist u, v ∈V such that ∥(w+u)−(z+v)∥X ⩽ 10 and therefore, since
V⊆ 3BX, we have ∥w −(z+x)∥X ⩽ ∥(w+u)−(z+v)∥X+∥u∥X+∥v∥X+∥x∥X ⩽ 17. Hence z+BX ⊆ w+17BX.
It follows that if w ∈ Λ and z1, . . . , zm ∈ Λ are the distinct neighbors of w in the graph G then the balls
{zi +BX}m

i=1 have disjoint interiors (since distinct elements of the lattice Λ are at X-distance at least 2),
yet they are all contained in the ball w + 17BX. By comparing volumes, this implies that m ⩽ 17n . In
other words, the degree of the graph G is at most 17n , and therefore (by applying the greedy algorithm,
see e.g. [Bro41]) its chromatic number is at most 17n +1⩽ 52n , i.e., there is χ :Λ→ {1, . . . ,52n} such that

∀w, z ∈Λ, w ̸= z ∧ inf
a∈w+V
b∈z+V

∥a −b∥X ⩽ 10 =⇒ χ(w) ̸=χ(z). (240)

Consider the Polish space Z
def= VN × {1, . . . ,52n}N. In what follows, every ω ∈ Z will be written as

ω = (⃗x, γ⃗), where x⃗ = (x1, x2, . . .) ∈ VN and γ⃗ = (γ1,γ2, . . .) ∈ {1, . . . ,52n}N. Denote by µ the normalized
Lebesgue measure onV and by ν the normalized counting measure on {1, . . . ,52n}, i.e., for every Lebesgue
measurable A ⊆Rn and every F ⊆ {1, . . . ,52n}N we have

µ(A)
def= voln(A∩V)

voln(V)
and ν(F )

def= |F |
52n .

Henceforth, the product probability measure µN×νN on Z will be denoted by Prob.
For every k ∈N, z ∈Λ and (⃗x, γ⃗) ∈Z define a subset Γk,z (⃗x, γ⃗) ⊆Rn by

χ(z) = γk =⇒ Γk,z (⃗x, γ⃗
) def= (z +xk +BX)∖

k−1⋃
j=1

⋃
w∈Λ

χ(w)=γ j

(w +x j +BX),

χ(z) ̸= γk =⇒ Γk,z (⃗x, γ⃗
) def= ∅.

(241)

Lemma 124. For every k ∈N and z ∈Λ the set-valued mapping Γk,z :Z→ 2R
n

is both strongly measurable
and standard (where the underlying σ-algebra on Z is the Prob-measurable sets).

Proof. For every χ1, . . . ,χk ∈ {1, . . . ,52n} consider the cylinder set

C(χ1, . . . ,χk )
def=

{(⃗
x, γ⃗

) ∈Z : (γ1, . . . ,γk ) = (χ1, . . . ,χk )
}

.

Since {C(χ1, . . . ,χk ) : (χ1, . . . ,χk ) ∈ {1, . . . ,52n}k } is a partition of Z into finitely many measurable sets, it
suffices to fix from now on a k-tuple of colors χ⃗= (χ1, . . . ,χk ) ∈ {1, . . . ,52n}k and to show that the restriction
of Γk,z to C(χ1, . . . ,χk ) is both strongly measurable and standard.

Observe that for each fixed z ∈Λ and γ ∈ {1, . . . ,52n} there is at most one w ∈Λ that satisfies χ(w) = γ

and (z +V+BX)∩ (w +V+BX) ̸=∅. Indeed, if both w ∈ Λ and w ′ ∈ Λ satisfied these two requirements
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then we would have χ(w) = γ = χ(w ′) and there would exist a, a′,b,b′ ∈ V and u,u′, v, v ′ ∈ BX such that
w +a +u = z +b + v and w ′+a′+u′ = z +b′+ v ′. Hence,

inf
α∈w+V
β∈w ′+V

∥α−β∥X ⩽ ∥(w +a)− (w ′+a′)∥X = ∥(z +b + v −u)− (z +b′+ v ′−u′)∥X

⩽ ∥b∥X +∥b′∥X +∥v∥X +∥v ′∥X +∥u∥X +∥u′∥X ⩽ 3+3+1+1+1+1 = 10,

where we used the fact that b,b′ ∈V⊆ 3BX. By (240) this contradicts the fact that χ(w) =χ(w ′).
Having checked that the above w is unique, denote it by w(γ, z) ∈Λ. If there is no w ∈Λ that satisfies

χ(w) = γ and (z +V+BX)∩ (w +V+BX) ̸=∅ then let w(γ, z) ∈Λ be an arbitrary (but fixed) lattice point
such that (z +V+BX)∩ (w(γ, z)+V+BX) =∅. Observe that w(χ(z), z) = z. Under this notation, for every
x1, . . . , xk ∈V and γ1, . . . ,γk−1 ∈ {1, . . . ,52n} we have

(z +xk +BX)∖
k−1⋃
j=1

⋃
w∈Λ

χ(w)=γ j

(w +x j +BX) = (w(χ(z), z)+xk +BX)∖
k−1⋃
j=1

(w(γ j , z)+x j +BX).

Equivalently, if we denote for every y⃗= (y1, . . . ,yk ) ∈ (Rn)k ,

Θk (⃗
y
) def= (yk +BX)∖

k−1⋃
j=1

(y j +BX),

then the definition (241) can be rewritten as the assertion that the restriction of Γk,z to C(⃗χ) is the con-
stant function ∅ if χ(z) ̸= χk , while if χ(z) = χk then Γk,z (⃗x, γ⃗) = Θk (w (⃗χ, z)+ x⃗) for every (⃗x, γ⃗) ∈ C(⃗χ),
where we use the notation w (⃗χ, z) = (w(χ1, z), . . . , w(χk , z)) ∈ (Rn)k . The desired measurability of the
restriction of Γk,z to C(⃗χ) now follows from Lemma 118 and Corollary 120. □

Since the sets {z+V}z∈Λ cover Rn , for every rational point q ∈Qn we can fix from now on a lattice point
zq ∈Λ such that q ∈ zq +V. Define a subsetΩ⊆Z =VN× {1, . . . ,52n}N by

Ω
def=

∞⋂
m=1

⋂
q∈Qn

∞⋃
k=1

{(⃗
x, γ⃗

) ∈Z : χ(zq ) = γk ∧ ∥(zq +xk )−q∥X ⩽
1

m

}
. (242)

We record for ease of later use the following simple properties ofΩ.

Lemma 125. Ω is a Borel subset of Z that satisfies Prob[Ω] = 1. Furthermore, for every (⃗x, γ⃗) ∈Ω the set
{z +xk : (k, z) ∈N×Λ ∧ χ(z) = γk } is dense in Rn .

Proof. The fact that Ω is Borel is evident from its definition (242). Also, if (⃗x, γ⃗) ∈Ω, u ∈ Rn and ε ∈ (0,1),
then choose q ∈ Qn such that ∥u − q∥X < ε/2. Setting m = ⌈2/ε⌉ ∈ N, it follows from (242) that there
exists k ∈ N satisfying χ(zq ) = γk and ∥(zq + xk )− q∥X ⩽ 1/m ⩽ ε/2. By our choice of q , it follows that
∥(zq +xk )−u∥X < ε. Since this holds for every ε ∈ (0,1), the set {z+xk : (k, z) ∈N×Λ ∧ χ(z) = γk } is dense
in Rn . It remains to show that Prob[Ω] = 1. Indeed,

Prob[Z∖Ω]
(242)
⩽

∞∑
m=1

∑
q∈Qn

Prob
[ ∞⋂

k=1
Z∖

{(⃗
x, γ⃗

) ∈Z : χ(zq ) = γk ∧ ∥(zq +xk )−q∥X ⩽
1

m

}]

=
∞∑

m=1

∑
q∈Qn

lim
ℓ→∞

(
1− voln

((
q − zq + 1

m BX
)∩V

)
52nvoln(V)

)ℓ
= 0,

(243)

where for the penultimate step of (243) recall that Prob = µN×νN. For the final step of (243) one needs
to check that voln((q − zq + r BX)∩V) = voln((q + r BX)∩ (zq +V)) > 0 for every fixed q ∈Qn and r ∈ (0,∞).
This is so because zq ∈Λwas chosen so that q ∈ zq +V (and V is a convex body). □

The following lemma introduces the random partition that will be used to prove Theorem 121.
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Lemma 126. P
def= {Γk,z |Ω :Ω→ 2R

n
}(k,z)∈N×Λ is a 2-bounded random partition of X = (Rn ,∥ · ∥X), each of

whose clusters are both strongly measurable and standard set-valued mappings.

Proof. Since Ω is a Borel subset of Z, for each (k, z) ∈ N×Λ the measurability requirements for the
restriction of Γk,z to Ω follow from Lemma 124. Fix (⃗x, γ⃗) ∈ Z. Recalling (241), if Γk,z (⃗x, γ⃗) ̸= ∅, then
diamX(Γk,z (⃗x, γ⃗))⩽ diamX(z +xk +BX)⩽ 2. Note also that by (241) if Γk,z (⃗x, γ⃗) ̸=∅, then

Γk,z (⃗x, γ⃗
)= (z +xk +BX)∖

k−1⋃
j=1

⋃
w∈Λ

Γ j ,w (⃗
x, γ⃗

)
.

Hence Γk,z (⃗x, γ⃗)∩Γ j ,w (⃗x, γ⃗) =∅ for every distinct j ,k ∈N and for every w, z ∈Λ. We claim that also

Γk,z (⃗x, γ⃗)∩Γk,w (⃗x, γ⃗) =∅

for every k ∈ N and every distinct w, z ∈ Λ. Indeed, it suffices to check this under the assumption that
χ(w) =χ(z) = γk , since otherwise ∅ ∈ {Γk,z (⃗x, γ⃗),Γk,w (⃗x, γ⃗)}. So, suppose that

χ(w) =χ(z) = γk yet Γk,z (⃗x, γ⃗)∩Γk,w (⃗x, γ⃗) ̸=∅.

By (241), this implies that there are u, v ∈ BX such that w +xk +u = z +xk + v . Hence, for every α,β ∈V,

∥(w +α)− (z +β)∥X = ∥α−β+ v −u∥X ⩽ ∥α∥X +∥β∥X +∥u∥X +∥v∥X ⩽ 3+3+1+1 < 10,

where we used the fact that V⊆ 3BX. Since w and z are distinct and χ(w) = χ(z), this is in contradiction
to (240). We have thus shown that the sets {Γk,z (⃗x, γ⃗)}(k,z)∈N×Λ are pairwise disjoint.

Note that by the definition (241), for every (⃗x, γ⃗) ∈Z we have
∞⋃

k=1

⋃
z∈Λ

Γk,z (⃗x, γ⃗
)= ⋃

(k,z)∈N×Λ
χ(z)=γk

(z +xk +BX) (244)

Indeed, it is immediate from (241) that the left hand side of (244) is contained in the right hand side
of (244). If u belongs to the right hand side of (244), then let k be the minimum natural number for
which there is z ∈Λwith χ(z) = γk and u ∈ z+xk +BX. So, for all j ∈ {1, . . . ,k−1} and w ∈Λwith χ(w) = γ j

we have u ∉ w+x j +BX, and hence by (241) we have v ∈ Γk,z (⃗x, γ⃗), as required. By Lemma 125, if (⃗x, γ⃗) ∈Ω,
then {z +xk : (k, z) ∈N×Λ ∧ χ(z) = γk } is dense in Rn , and therefore the right hand side of (244) is equal
to Rn . Thus P takes values in partitions of Rn . □

Definition 127 introduces convenient notation that will be used several times in what follows.

Definition 127. If M⊆Rn is Lebesgue measurable and (k, z) ∈N×Λ, then define Hk,z
M

⊆Ω by

Hk,z
M

def= {(⃗
x, γ⃗

) ∈Ω : χ(z) = γk ∧ z +xk ∈M}
. (245)

If S,T ⊆Rn are Lebesgue measurable and (k, z) ∈N×Λ, then define Kk,z
S,T ⊆Ω by

Kk,z
S,T

def= Hk,z
S

∖
k−1⋃
j=1

⋃
w∈Λ

H
j ,w
T

. (246)

The meaning of the set in (246) is that it consists of all of those (⃗x, γ⃗) ∈Ω such that the k’th coordinate
of γ⃗ ∈ {1, . . . ,52n}N is the color of the lattice point z ∈Λ, the k’th coordinate of x⃗ ∈VN satisfies xk ∈ S− z,
and for no j ∈ {1, . . . ,k −1} and no lattice point w ∈Λ do the same assertions hold with S replaced by T.

Lemma 128. Suppose that S,T ⊆ Rn are Lebesgue measurable sets of positive volume such that S ⊆ T.
Suppose also that diamX(T)⩽ 4. Then the sets{

Kk,z
S,T

}
(k,z)∈N×Λ

75



are pairwise disjoint and

Prob
[ ∞⋃

k=1

⋃
z∈Λ

Kk,z
S,T

]
= voln(S)

voln(T)
. (247)

Proof. The definition of the product measure Prob implies that for any Lebesgue measurable M⊆Rn ,

∀( j , w) ∈N×Λ, Prob
[
H

j ,w
M

]=µ(
M−w

)
ν
(
χ(w)

)= voln
(
V∩ (M−w)

)
52nvoln(V)

= voln
(
(V+w)∩M

)
52nvoln(V)

, (248)

We claim if diamX(M)⩽ 4, then {H j ,w
M

}w∈Λ are pairwise disjoint for every fixed j ∈N. Indeed, otherwise

∃(⃗
x, γ⃗

) ∈H j ,w
M

∩H
j ,z
M

for some distinct lattice points w, z ∈Λ. Then, χ(w) = γ j =χ(z) and w +x j , z +x j ∈M. Hence,

∥w − z∥X = ∥(w +x j )− (z +x j )∥X ⩽ diamX(M)⩽ 4.

Since V⊆ 3BX, it follows that for every α,β ∈V we have

∥(w +α)− (z +β)∥X ⩽ ∥w − z∥X +∥α∥X +∥β∥X ⩽ 4+3+3 = 10,

which, by virtue of (240), contradicts the fact that w ̸= z and χ(w) =χ(z).

Since {H j ,w
M

}w∈Λ are pairwise disjoint and {w +V}w∈Λ cover Rn and have pairwise disjoint interiors,

Prob
[ ⋃

w∈Λ
H

j ,w
M

]
= ∑

w∈Λ
Prob

[
H

j ,w
M

] (248)= 1

52nvoln(V)

∑
w∈Λ

voln
(
(V+w)∩M

)= voln(M)

52nvoln(V)
. (249)

As S ⊆ T, we have diamX(S) ⩽ diamX(T) ⩽ 4. So, {Hk,z
S

}z∈Λ are pairwise disjoint for every k ∈N by the
case M= S of the above reasoning. Recalling (246), this implies that for every k ∈N and distinct w, z ∈Λ,

Kk,w
S,T ∩Kk,z

S,T =∅.

To establish that {Kk,z
S,T}(k,z)∈N×Λ are pairwise disjoint it therefore remains to check that

Kk,z
S,T∩K

j ,w
S,T =∅

for every j ,k ∈Nwith j < k and any w, z ∈Λ. This is so because if (⃗x, γ⃗) ∈Kk,z
S,T , then (⃗x, γ⃗) ∉H j ,w

T
by (246).

Therefore either χ(w) ̸= γ j or w +x j ∉T ⊇ S. Consequently,(⃗
x, γ⃗

) ∉H j ,w
S

⊇K
j ,w
S,T .

This concludes the verification of the disjointness of {Kk,z
S,T}(k,z)∈N×Λ.

Since for every k ∈N and z ∈Λ, the membership of (⃗x, γ⃗) ∈ {1+, . . . ,52n}N×VN in Hk,z
S

and Hk,z
T

depends
only on the k’th coordinates of x⃗ and γ⃗, it follows from the independence of the coordinates that

Prob
[
Kk,z
S,T

] (246)= Prob
[
Hk,z
S

⋂(k−1⋂
j=1

(
Ω∖

⋃
w∈Λ

H
j ,w
T

))]

= Prob
[
Hk,z
S

]k−1∏
j=1

(
1−Prob

[ ⋃
w∈Λ

H
j ,w
T

])
(248)∧(249)= voln

(
(V+ z)∩S

)
52nvoln(V)

(
1− voln(T)

52nvoln(V)

)k−1

.

(250)

Hence, since we already checked that {Kk,z
S,T}(k,z)∈N×Λ are pairwise disjoint,

Prob
[ ∞⋃

k=1

⋃
z∈Λ

Kk,z
S,T

]
=

∞∑
k=1

∑
z∈Λ

Prob
[
Kk,z
S,T

]
(250)= 1

52nvoln(V)

( ∑
z∈Λ

voln
(
(V+ z)∩S

)) ∞∑
k=1

(
1− voln(T)

52nvoln(V)

)k−1

= voln(S)

voln(T)
,

76



where in the final step we used once more the fact that the sets {w +V}w∈Λ cover Rn and have pairwise
disjoint interiors. This completes the verification of the desired identity (247). □

The following lemma is a computation of the probability of the “padding event” corresponding to the
random partition P, as a consequence of Lemma 128. In [MN07] a similar argument was carried out for
general finite metric spaces, but it relied on a different random partition in which the radius of the balls
is also a random variable (namely, the partition of [CKR05]). This subtlety is circumvented here by using
properties of normed spaces that are not available in the full generality of [MN07].

Lemma 129. Let P be the random partition of Lemma 126. For every ρ ∈ (0,1) and u ∈Rn we have

Prob
[

u +ρBX ⊆P(u)
]
=

(
1−ρ
1+ρ

)n

. (251)

Proof. For every k ∈N, z ∈Λ and r ∈ (0,∞) define Ek,z
u,r ,Fk,z

u,r ⊆Ω by

Ek,z
u,r

def= Hk,z
u+r BX

and Fk,z
u,r

def= Kk,z
u+(1−r )BX,u+(1+r )BX

, (252)

i.e., we are using here the notations of Definition 127 for the sets M = u + r BX, S = u + (1− r )BX and
T = u + (1+ r )BX. We claim that

∀(k, z) ∈N×Λ,
{(⃗

x, γ⃗
) ∈Ω : Γk,z (⃗x, γ⃗

)⊇ u +ρBX
}=Fk,z

u,ρ . (253)

Note that, since u+ (1−ρ)BX ⊆ u+ (1+ρ)BX and diamX(u+ (1+ρ)BX) = 2(1+ρ)⩽ 4, once (253) is proven
we could apply Lemma 128 to deduce the desired identity (251) as follows.

Prob
[

u +ρBX ⊆P(u)
]

(241)= Prob
[{(⃗

x, γ⃗
) ∈Ω : ∃(k, z) ∈N×Λ, Γk,z (⃗x, γ⃗

)⊇ u +ρBX
}]

(253)= Prob
[ ∞⋃

k=1

⋃
z∈Λ

Fk,z
u,ρ

]
(247)∧(252)= voln(u + (1−ρ)BX)

voln(u + (1+ρ)BX)
=

(
1−ρ
1+ρ

)n

.

To establish (253), suppose first that (⃗x, γ⃗) ∈Fk,z
u,ρ . By the definition of Fk,z

u,ρ we therefore know that

∀( j , w) ∈ {1, . . . ,k −1}×Λ,
(⃗
x, γ⃗

) ∈Ek,z
u,1−ρ yet

(⃗
x, γ⃗

) ∉E j ,w
u,1+ρ .

Hence, by the definition of E j ,w
u,1−ρ we know that χ(z) = γk and z + xk ∈ u + (1−ρ)BX, which (using the

triangle inequality), implies that z + xk +BX ⊇ u +ρBX. At the same time, if j ∈ {1, . . . ,k −1} and w ∈ Λ,

then by the definition of E j ,w
u,1+ρ , the fact that (⃗x, γ⃗) ∉ E

j ,w
u,1+ρ means that if χ(w) = γ j then necessarily

∥w+x j−u∥X > 1+ρ, which (using the triangle inequality) implies that (w+x j+BX)∩(u+ρBX) =∅. Hence,
the ball u+ρBX does not intersect the union of the balls {w+x j +BX : ( j , w) ∈ {1, . . . ,k−1}×Λ∧ χ(w) = γ j }.
Since χ(z) = γk , due to (241), this implies that

Γk,z (⃗x, γ⃗
)∩ (u +ρBX) = (z +xk +BX)∩ (u +ρBX) = u +ρBX,

i.e., (⃗x, γ⃗) belongs to the left hand side of (253).
To establish the reverse inclusion, suppose that Γk,z (⃗x, γ⃗) ⊇ u +ρBX. The definition (241) implies in

particular that Γk,z (⃗x, γ⃗) ⊆ z + xk +BX and that for Γk,z (⃗x, γ⃗) to be nonempty we must have χ(z) = γk . So,
we know that χ(z) = γk and z +xk +BX ⊇ u +ρBX. Assuming first that z +xk ̸= u, consider the vector

v = u + ρ

∥u − z −xk∥X
(u − z −xk ).

Then, v ∈ u+ρBX and hence also v ∈ z+xk +BX, i.e., 1⩾ ∥v −z−xk∥X = ∥u−z−xk∥X+ρ. This shows that
∥z + xk −u∥X ⩽ 1−ρ, i.e., z + xk ∈ u + (1−ρ)BX. We obtained this conclusion under the assumption that
z +xk ̸= u, but it of course holds trivially also when z +xk = u. We have thus shown that (⃗x, γ⃗) ∈Ek,z

u,1−ρ .

By the definition of Fk,z
u,ρ , it remains to check that

∀( j , w) ∈ {1, . . . ,k −1}×Λ,
(⃗
x, γ⃗

) ∉E j ,w
u,1+ρ . (254)
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Indeed, if (254) does not hold, then let jmin be the minimum j ∈ {1, . . . ,k −1} for which (⃗x, γ⃗) ∈ E j ,w
u,1+ρ for

some w ∈Λ. Hence, χ(w) = γ jmin and w +x jmin ∈ u + (1+ρ)BX. If w +x jmin ̸= u, then the vector

u + ρ

∥w +x jmin −u∥X
(w +x jmin −u)

is at X-distance ρ from u and also at X-distance |ρ−∥w + x jmin −u∥X|⩽ 1 from w + x jmin , where we used
the fact that ∥w +x jmin −u∥X ⩽ 1+ρ. This shows that (w +x jmin +BX)∩ (u +ρBX) ̸=∅ under the assump-
tion w + x jmin ̸= u, and this assertion trivially holds also if w + x jmin = u. The minimality of jmin implies
that for every j ∈ {1, . . . , jmin −1} and every w ′ ∈ Λ with χ(w ′) = γ j we have w ′+ x j ∉ u + (1+ρ)BX, i.e.,
∥w ′+x j −u∥X > 1+ρ. Hence (by the triangle inequality) we have (w ′+x j +BX)∩(u+ρBX) =∅. The defi-
nition of Γ jmin,w (⃗x, γ⃗) now shows that (u+ρBX)∩Γ jmin,w (⃗x, γ⃗) ̸=∅, and since by Lemma 126 we know that
Γ jmin,w (⃗x, γ⃗) and Γk,z (⃗x, γ⃗) are disjoint (as jmin < k), this contradicts the premise Γk,z (⃗x, γ⃗) ⊇ u +ρBX. □

The probability of the “separation event” corresponding to the random partition P is estimated in the
following lemma by using Lemma 128, together with input from Brunn–Minkowski theory.

Lemma 130. Let P be the random partition of Lemma 126. For every u, v ∈Rn we have

Prob
[
P(u) ̸=P(v)

]≍ min

{
1,

voln−1
(
Proj(u−v)⊥(BX)

)
voln(BX)

∥u − v∥ℓn
2

}
. (255)

More precisely, if we denote ψ(0) = 0 and

∀w ∈Rn ∖ {0}, ψ(w)
def= voln−1

(
Projw⊥(BX)

)
voln(BX)

∥w∥ℓn
2
= ∥w∥Π*X

voln(BX)
, (256)

then for every u, v ∈Rn we have

2eψ(u−v) −2

2eψ(u−v) −1
⩽Prob

[
P(u) ̸=P(v)

]
⩽

2ψ(u − v)

1+ψ(u − v)
. (257)

In particular, (257) implies the following more precise version of (255).

2e −2

2e −1
min

{
1,ψ(u − v)

}
⩽Prob

[
P(u) ̸=P(v)

]
⩽ 2min

{
1,ψ(u − v)

}
.

Moreover, (257) shows that Prob
[
P(u) ̸=P(v)

]= 2ψ(u − v)+O
(
ψ(u − v)2

)
as u → v.

Proof. If ∥u − v∥X > 2, then Prob[P(u) ̸=P(v)] = 1 as P is 2-bounded. As (2eψ(u−v) −2)/(2eψ(u−v) −1) < 1,
the first inequality in (257) holds. By (50) we haveψ(u−v)⩾ ∥u−v∥X/2 > 1, so 2ψ(u−v)/(ψ(u−v)+1) > 1
and hence the second inequality in (257) holds. We will therefore assume from now on that ∥u−v∥X ⩽ 2.

Denote I(u, v) = (u +BX)∩ (v +BX) and U(u, v) = (u +BX)∪ (v +BX). We claim that

∀(k, z) ∈N×Λ,
{
(⃗x, γ⃗) ∈Ω : {u, v} ⊆ Γk,z (⃗x, γ⃗)

}=Kk,z
I(u,v),U(u,v), (258)

where we recall the notation that was introduced in Definition 127. Assuming (258) for the moment, we
will next explain how to conclude the proof of Lemma 130.

Note that I(u, v) ⊆U(u, v) and diamX(U(u, v))⩽ ∥u − v∥X +2diamX(BX)⩽ 4. Hence, by Lemma 128,

Prob
[
P(u) =P(v)

] (241)= Prob
[{(⃗

x, γ⃗
) ∈Ω : ∃(k, z) ∈N×Λ, {u, v} ⊆ Γk,z (⃗x, γ⃗

)}]
(258)= Prob

[ ∞⋃
k=1

⋃
z∈Λ

Kk,z
I(u,v),U(u,v)

]
(247)= voln

(
I(u, v)

)
voln

(
U(u, v)

) = voln
(
(u +BX)∩ (v +BX)

)
2voln(BX)−voln

(
(u +BX)∩ (v +BX)

) .

Hence,

Prob
[
P(u) ̸=P(v)

]= 2−2
voln

(
(u+BX)∩(v+BX)

)
voln (BX)

2− voln

(
(u+BX)∩(v+BX)

)
voln (BX)

. (259)
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Now, by the work [Sch92, Corollary 1] of Schmuckenschläger we have the following general estimates.

1−ψ(u − v)⩽
voln

(
(u +BX)∩ (v +BX)

)
voln(BX)

⩽ e−ψ(u−v), (260)

where ψ(·) is defined in (256). The mapping t 7→ (2−2t )/(2− t ) is decreasing on [0,1], so (257) is conse-
quence of (259) and (260). The remaining assertions of Lemma 130 (in particular the asymptotic evalu-
ation (255) of the separation probability) follow from (257) by elementary calculus. Observe that for the
purpose of bounding the separation modulus of X from above, we need only the first inequality in (260);
since it is stated in [Sch92] but not proved there, for completeness we will include its elementary proof in
Section 4.1.1 below. The second inequality in (260) is used here only to show that our bounds are sharp;
its proof in [Sch92] relies on a more substantial use of Brunn–Minkowski theory.

It remains to verify (258). Fix (k, z) ∈N×Λ. Suppose first that (⃗x, γ⃗) is an element of the right hand side
of (258). Recalling the definitions (245) and (246), this implies thatχ(z) = γk and z+xk ∈ (u+BX)∩(v+BX),
while for every j ∈ {1, . . . ,k−1} and w ∈Λwithχ(w) = γ j we have w+x j ∉ (u+BX)∪(v+BX). By the triangle
inequality these facts imply that z +xk +BX ⊇ {u, v} and the union of the balls{

w +x j +BX : ( j , w) ∈ {1, . . . ,k −1}×Λ ∧ χ(w) = γ j
}

contains neither of the vectors u, v . The definition (241) of Γk,z (⃗x, γ⃗) now shows that {u, v} ⊆ Γk,z (⃗x, γ⃗).
For the reverse inclusion, assume that {u, v} ⊆ Γk,z (⃗x, γ⃗). Thenχ(z) = γk and {u, v} ⊆ z+xk+BX by (241),

which implies that z + xk ∈ (u +BX)∩ (v +BX) = I(u, v). If there were j ∈ {1, . . . ,k − 1} and w ∈ Λ with
χ(w) = γ j such that (w + x j +BX)∩ {u, v} ̸=∅, then when one subtracts w + x j +BX from z + xk +BX one
removes at least one of the vectors u, v , which by (241) would mean that one of these two vectors is not
an element of Γk,z (⃗x, γ⃗), in contradiction to our assumption. Hence for all j ∈ {1, . . . ,k−1} and w ∈Λwith
χ(w) = γ j we have u ∉ w+x j +BX and v ∉ w+x j +BX, i.e., w+x j ∉ (u+BX)∪(v+BX) =U(u, v). This shows
that (⃗x, γ⃗) belongs to the the right hand side of (258), thus completing the proof of Lemma 130. □

Proof of Theorem 121. By rescaling, namely considering the norm (2/∆)∥ · ∥X, it suffices to treat the case
∆ = 2. The desired random partition will then be the partition P of Lemma 126 and the conclusions of
Theorem 121 follow from Lemma 129 and Lemma 130. □

4.1.1. Proof of the first inequality in (260). The proof of the first inequality in (260) is a simple and ele-
mentary application of standard reasoning using Fubini’s theorem. Denote

t
def= ∥v −u∥ℓn

2
and x

def= 1

t
(v −u) ∈ Sn−1. (261)

Then,

voln
(
(u +BX)∩ (v +BX)

)= voln
(
BX ∩ (t x +BX)

)
,

The desired estimate is therefore equivalent to the following assertion.

voln(BX)⩽ voln
(
BX ∩ (t x +BX)

)+ t ·voln−1
(
Projx⊥(BX)

)
. (262)

To prove (262), partition BX into the following three sets.

U
def= BX ∩ (t x +BX), (263)

V
def=

{
y ∈ BX ∖ (t x +BX) :Projx⊥(y) ∈Projx⊥(U )

}
, (264)

W
def= BX ∖ (U ∪V ) =

{
y ∈ BX : Projx⊥(y) ∉Projx⊥(U )

}
. (265)

A schematic depiction of this partition, as well as the notation of ensuing discussion, appears in Figure 3.
We recommend examining Figure 3 while reading the following reasoning because it consists of a formal
justification of a situation that is clear when one keeps the geometric picture in mind.
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FIGURE 3. A schematic depiction of the partition of BX into the sets U ,V ,W (with
the sets U ,W shaded), as well as the line segments parallel to x that are used in the
justification of the estimate (262).

For every z ∈ Projx⊥(BX) let αz ∈ R be the smallest real number such that z +αz x ∈ BX and let βz ∈ R
be the largest real number such that z +βz x ∈ BX. Thus the intersection of the line z +Rx with BX is the
segment w + [αz ,βz ]x ⊆Rn . Since ∥x∥ℓn

2
= 1, by Fubini’s theorem we have

voln(BX) =
�
Projx⊥ (BX)

(βz −αz )dz =
�
Projx⊥ (U )

(βu −αu)du +
�
Projx⊥ (W )

(βw −αw )dw. (266)

For the final step of (266), note that by (265) we have Projx⊥(BX) = Projx⊥(U )∪Projx⊥(W ), and the the
sets Projx⊥(U ),Projx⊥(W ) have disjoint interiors (in the subspace x⊥).

Since U = BX∩(t x+BX) is convex, for every u in the interior of Projx⊥(U ) the line u+Rx intersects U in
an interval, say (u+Rx)∩U = u+[γu ,δu]x withγu ,δu ∈R satisfyingγu < δu such that u+γu x,u+δu x ∈ ∂U
and u + sx ∈ int(U ) for every s ∈ (γu ,δu). Also, (u +Rx)∩BX = u + [αu ,βu]x with u +αu x,u +βu x ∈ ∂BX.
Thus [γu ,δu] ⊆ [αu ,βu]. Since u+γu x ∈U ⊆ t x+BX, it follows that γw −t ∈ [αw ,βw ]. But γu ∈ [αu ,βu], so
βu −αu ⩾ t and thereforeαu +t ,βu −t ∈ [αu ,βu], or equivalently u+(αu +t )x,u+(βu −t )x ∈ BX. Because
u+αu x,u+βu x ∈ ∂BX, we get that u+(αu+t )x ∈ BX∩(t x+∂BX) ⊆ ∂U and u+βu x ∈ (∂BX)∩(t x+BX) ⊆ ∂U .
Hence γu =αu + t and δu =βu , from which we conclude that

u ∈Projx⊥(U ) =⇒ (u +Rx)∩U = u + [αu + t ,βu]x, (267)

and therefore also

u ∈Projx⊥(U ) =⇒ (u +Rx)∩V
(264)= BX ∖

(
(u +Rx)∩U

) (267)= u + [αu ,αu + t ]x. (268)

80



Another application of Fubini’s theorem now implies that�
Projx⊥ (U )

(βu −αu)du =
�
Projx⊥ (U )

vol1
(
(u +Rx)∩U

)
du +

�
Projx⊥ (U )

t du

= voln(U )+ tvoln−1
(
Projx⊥(U )

)
= voln(U )+ t

(
voln−1

(
Projx⊥(BX)

)−voln−1
(
Projx⊥(W )

))
,

(269)

where the first step of (269) uses (267) and (268) and for the last step of (269) recall the definition (265).
Observe next that

w ∈Projx⊥(W ) =⇒ βw −αw ⩽ t . (270)

Indeed, if w ∈Projx⊥(W ) yet βw −αw > t then w + (βw − t )x belongs to the interval joining w +αw x and
w +βw x. By the convexity of BX we therefore have w + (βw − t )x ∈ BX, or equivalently w +βw x ∈ t x +BX.
Recalling that w +βw x ∈ BX, this means that w +βw x ∈ BX ∩ (t x +BX). By the definition (263) of U , it
follows that w ∈Projx⊥(U ). By the definition (265) of W , this means that w ∉Projx⊥(W ), a contradiction.

Having established (270) we see that�
Projx⊥ (W )

(βw −αw )dw
(270)
⩽ tvoln−1

(
Projx⊥(W )

)
. (271)

The desired estimate (262) now follows from a substitution of (269) and (271) into (266). □

4.2. Proof of Theorem 80. For any m ∈ N, because evr(ℓm
1 ) ≍ p

m, by the second part (193) of Theo-
rem 106 there exists C⊆Rm with |C|⩽ eβm for some universal constant β> 0 such that SEP(Cℓm

1
)≳m (as

we are considering here ℓm
1 rather than more general normed spaces, this statement is due [CCG+98]).

Fix an integer n ⩾ 2 and 1⩽ p ⩽ 2. Let m be the largest integer such that eβm ⩽ n. Thus m ≍ logn and

SEPn(ℓp )⩾ SEP
(
Cℓm

p

)
⩾

SEP
(
Cℓm

1

)
dBM

(
ℓm

1 ,ℓm
p

) ≳ m

dBM
(
ℓm

1 ,ℓm
p

) = m
1
p ≍ (logn)

1
p .

This proves the lower bound on SEPn(ℓp ) in Theorem 80.
It remains to prove the upper bound on SEPn(ℓp ) in Theorem 80, i.e., that for all x1, . . . , xn ∈ ℓp ,

SEP
(
{x1, . . . , xn},∥ ·∥ℓp

)
≲

(logn)
1
p

p −1
. (272)

The proof of (272) will refer to the following technical probabilistic lemma.

Lemma 131. Suppose that p ∈ (1,∞) and let X be a nonnegative random variable, defined on some prob-
ability space (Ω,Prob), that satisfies the following Laplace transform identity.

∀u ∈ [0,∞), E
[

e−uX2
]
= e−u

p
2 . (273)

Then

E[X] =
Γ
(
1− 1

p

)
p
π

≍ p

p −1
. (274)

Moreover, we have

∀t ∈ (0,∞), Prob
[
X⩽ t

]
⩽ exp

− ( p
2

) p
2−p

(
1− p

2

)
t

2p
2−p

 . (275)

Proof. Suppose that α ∈ (0,1). Then every x ∈ (0,∞) satisfies� ∞

0

1−e−ux

u1+α dx = xα
� ∞

0

1−e−v

v1+α dx = Γ(1−α)

α
xα, (276)
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where the first step of (276) is a straightforward change of variable and the last step of (276) follows by
integration by parts. The case α= 1/2 of (276) implies (274) as follows.

E[X] = E
[

1

2
p
π

� ∞

0

1−e−uX2

u
3
2

du

]
= 1

2
p
π

� ∞

0

1−E[e−uX2]
u

3
2

du

(273)= 1

2
p
π

� ∞

0

1−e−u
p
2

u
3
2

du = 1

p
p
π

� ∞

0

1−e−v

v1+ 1
p

dv
(276)=

Γ
(
1− 1

p

)
p
π

.

The small ball probability estimate (275) is a consequence of the following standard use of Markov’s
inequality. For every u, t ∈ (0,∞) we have

Prob
[
X⩽ t

]= Prob
[

e−uX2
⩾ e−ut 2

]
⩽ eut 2

E
[

e−uX2
]
= eut 2−u

p
2 . (277)

The value of u ∈ (0,∞) that minimizes the right-hand side of (277) is

u = u(p, t )
def=

( p

2t 2

) 2
2−p

.

A substitution of this value of u into (277) simplifies to give the desired estimate (275). □

Proof of (272). Fix distinct x1, . . . , xn ∈ ℓp . It suffices to prove (272) when p ∈ (1,2), since the quantity that
appears in the right-hand side of (272) remains bounded as p → 2−, and every finite subset of ℓ2 embeds
isometrically into ℓp for every p ∈ [1,2] (see e.g. [Woj91, Chapter III.A]). We will therefore assume in the
remainder of the proof of (272) that p ∈ (1,2).

Marcus and Pisier proved [MP84, Section 2] the following statement, relying on a structural result
for p-stable processes; its deduction from the formulation in [MP84] appears in [LMN05, Lemma 2.1]).
There is a probability space (Ω,Prob) and a Prob-to-Borel measurable mapping (ω ∈Ω) 7→ Tω ∈L(ℓp ,ℓ2)
(hereL(ℓp ,ℓ2) is the space of bounded operators from ℓp to ℓ2, equipped with the strong operator topol-
ogy) such that for every ω ∈Ω and x ∈ ℓp ∖ {0} the random variable

(ω ∈Ω) 7→ ∥Tω(x)∥ℓ2

∥x∥ℓp

(278)

has the same distribution as the random variable X of Lemma 131 (in particular, its distribution is inde-
pendent of the choice of x ∈ ℓp ∖ {0}). Consequently,

∀i , j ∈ {1, . . . ,n},

�
Ω

∥∥Tω(xi )−Tω(x j )∥ℓ2 dProb(ω) = ∥xi −x j∥ℓpE[X]
(274)≍

∥xi −x j∥ℓp

p −1
. (279)

It also follows from the above discussion and Lemma 131 that for every t ∈ (0,∞) we have

Prob
[ ⋃

i , j∈{1,...,n}

{
ω ∈Ω : ∥Tω(xi )−Tω(x j )∥ℓ2 ⩾ t∥xi −x j∥ℓp

}]

⩽
∑

i , j∈{1,...,n}
i ̸= j

Prob
[{
ω ∈Ω :

∥Tω(xi )−Tω(x j )∥ℓ2

∥xi −x j∥ℓp

< t
}] (275)

⩽

(
n

2

)
exp

− ( p
2

) p
2−p

(
1− p

2

)
t

2p
2−p

 .
(280)

If we choose

t = t (n, p)
def=

√
p

2

(
2−p

4logn

) 1
p − 1

2

,

then the right hand side of (280) becomes less than 1/2. In other words, this shows that there exists a
measurable subset A ⊆Ωwith Prob[A]⩾ 1/2 such that for every ω ∈ A and i , j ∈ {1, . . . ,n},

∥xi −x j∥ℓp ⩽

√
2

p

(
4logn

2−p

) 1
p − 1

2 ∥Tω(xi )−Tω(x j )∥ℓ2 ⩽ 4(logn)
1
p − 1

2 ∥Tω(xi )−Tω(x j )∥ℓ2 , (281)
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where the last step of (281) uses the elementary inequality (2/(2− p))(2−p)/(2p)
√

2/p ⩽ 4, which holds
(with room to spare) for every p ∈ [1,2).

{Tω(x1), . . . ,Tω(xn)} ⊆ ℓ2 is a subset of Hilbert space of size at most n, so by the Johnson–Lindenstrauss
dimension reduction lemma [JL84] there is k ∈Nwith k ≲ logn such that for every ω ∈Ω there is a linear
operator Qω : ℓ2 →Rk such that for all i , j ∈ {1, . . . ,n},

∥Tω(xi )−Tω(x j )∥ℓ2 ⩽ ∥QωTω(xi )−QωTω(x j )∥ℓk
2
⩽ 2∥Tω(xi )−Tω(x j )∥ℓ2 . (282)

An examination of the proof in [JL84] reveals that the mappingω 7→Qω can be taken to be Prob-to-Borel
measurable, but actually Qω can be chosen from a finite set of operators (see e.g. [Ach03]).

Fix ∆ ∈ (0,∞). Since by [CCG+98] we have SEP(ℓk
2 ) ≲

p
k, there exists a probability space (Θ,µ) and a

mapping θ 7→Rθ that is a random partition of Rk for which

∀(ω,θ, i ) ∈Ω×Θ× {1, . . . ,n}, diamℓk
2

(
Rθ

(
QωTω(xi )

))
⩽

∆

4(logn)
1
p − 1

2

, (283)

and also every ω ∈Ω and i , j ∈ {1, . . . ,n} satisfy

µ
({
θ ∈Θ : Rθ

(
QωTω(xi )

) ̸=Rθ
(
QωTω(x j )

)})
≲

p
k

∆/
(
4(logn)

1
p − 1

2

)∥∥QωTω(xi )−QωTω(xi )
∥∥
ℓk

2

≲
(logn)

1
p

∆

∥∥Tω(xi )−Tω(xi )
∥∥
ℓ2

,

(284)

where the last step of (284) uses the right-hand inequality in (282) and the fact that k ≲ logn.
Recalling the set A ⊆Ω on which (281) holds for every i , j ∈ {1, . . . ,n}, let ν be the probability measure

on A defined by ν[E ] = Prob[E ]/Prob[A] for every Prob-measurable E ⊆ A (recall that Prob[A] ⩾ 1/2).
For every (ω,θ) ∈ A×Θ define a partition P(ω,θ) of {x1, . . . , xn} as follows.

∀i ∈ {1, . . . ,n}, P(ω,θ)(xi )
def=

{
x ∈ {x1, . . . , xn} : QωTω(x) ∈Rθ

(
QωTω(xi )

)}
. (285)

Then, for every (ω,θ) ∈ A×Θ and every i ∈ {1, . . . ,n} we have

diamℓp

(
P(ω,θ)(xi )

)= max
u,v∈{1,...,n}

QωTω(xu ),QωTω(xv )∈Rθ
(

QωTω(xi )
)∥xu −xv∥ℓp

⩽ 4(logn)
1
p − 1

2 max
u,v∈{1,...,n}

QωTω(xu ),QωTω(xv )∈Rθ
(

QωTω(xi )
)∥Tω(xu)−Tω(xv )∥ℓ2

⩽ 4(logn)
1
p − 1

2 max
u,v∈{1,...,n}

QωTω(xu ),QωTω(xv )∈Rθ
(

QωTω(xi )
)∥QωTω(xu)−QωTω(xv )∥ℓk

2

⩽ 4(logn)
1
p − 1

2 diamℓk
2

(
Rθ

(
QωTω(xi )

))
⩽∆,

(286)
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where the first step of (286) uses (285), the second step of (286) uses (281), the third step of (286) uses (282),
and the final step of (286) uses (283). Also, every distinct i , j ∈ {1, . . . ,n} satisfy

ν×µ
({

(ω,θ) ∈ A×Θ : P(ω,θ)(xi ) ̸=P(ω,θ)(x j )
})

=
�

A
µ
({
θ ∈Θ : Rθ

(
QωTω(xi )

) ̸=Rθ
(
QωTω(x j )

)})
dν(ω)

≲
1

Prob[A]

�
A

(logn)
1
p

∆

∥∥Tω(xi )−Tω(xi )
∥∥
ℓ2
dProb(ω)

⩽
2(logn)

1
p

∆

�
Ω

∥∥Tω(xi )−Tω(xi )
∥∥
ℓ2

dProb(ω)

≲
(logn)

1
p

p −1
·
∥xi −x j∥ℓp

∆
,

(287)

where the first step of (287) uses (285), the second step of (287) uses (284), the third step of (287) uses
Prob[A]⩾ 1

2 , and the last step of (287) uses (279). By (286) and (287), the proof of (272) is complete. □

5. BARYCENTRIC-VALUED LIPSCHITZ EXTENSION

In this section, we will explain how separation profiles relate to Lipschitz extension. We cannot in-
voke [LN05] as a “black box” because we need a more general result and our definition of random par-
titions differs from that of [LN05]. But, the modifications that are required in order to apply the ideas
of [LN05] in the present setting are of a secondary nature, and the main geometric content of the phe-
nomenon that is explained below is the same as in [LN05].

In addition to making the present article self-contained, there are more advantages to including here
complete proofs of Theorem 65 and Theorem 113. Firstly, the reasoning of [LN05] was designed to deal
with a more general setting (treating multiple notions of random partitions at once), and it is illuminating
to present a proof for separating decompositions in isolation, which leads to simplifications. Secondly,
since [LN05] appeared, alternative viewpoints have been developed that relate it to optimal transport,
as carried out by Kozdoba [Koz05], Brudnyi and Brudnyi [BB07a], Ohta [Oht09], and culminating more
recently with a comprehensive treatment by Ambrosio and Puglisi [AP20]. Here we will frame the con-
struction using the optimal transport methodology, which has conceptual advantages that go beyond
yielding a clearer restructuring of the argument. The optimal transport viewpoint had an important role
in quantitative improvements that were obtained in [NR17, Nao21b], as well as results that will appear
in forthcoming works. As a byproduct, we will use this viewpoint to easily derive a stability statement for
convex hull-valued Lipschitz extension under metric transforms.

5.1. Notational preliminaries. We will start by quickly setting notation and terminology for basic con-
cepts in measure theory and optimal transport. Everything that we describe in this subsection is stan-
dard and is included here only in order to avoid any ambiguities in the subsequent discussions.

Given a signed measure µ on a measurable space (Ω,F), its Hahn–Jordan decomposition is denoted
µ = µ+−µ−, i.e., µ+,µ− are disjointly supported nonnegative measures. The total variation measure of
µ is |µ| = µ++µ−. For A ∈ F, the restriction of µ to A is denoted µ⌊A , i.e., µ⌊A(E) = µ(A ∩E) for E ∈ F. If
(Ω′,F′) is another measurable space and f :Ω→Ω′ is a measurable mapping, then the push-forward of
µ under f is denoted f#µ. Thus f#µ(E) =µ( f −1(E)) for E ∈F′, or equivalently

∀h ∈ L1( f#µ),

�
Ω′

h
(
ω′)d f#µ

(
ω′)= �

Ω

h
(

f (ω)
)

dµ(ω).

Suppose from now on that (M,dM) is a Polish metric space. A signed Borel measure µ on M has finite
first moment if

�
M dM(x, y)d|µ|(y) <∞ for all x ∈M. Note that this implies in particular that |µ|(M) <∞,
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because if x, x ′ ∈ M are distinct points, then the mapping (y ∈ M) 7→ [dM(x, y)+dM(x ′, y)]/dM(x, x ′)
belongs to L1(|µ|) and takes values in [1,∞) by the triangle inequality.

The set of signed Borel measures on M of finite first moment is denoted M1(M,dM) or simply M1(M)
if the metric is clear from the context. The set of all nonnegative measures in M1(M) is denoted M+

1 (M),
the set of all µ ∈ M1(M) with total mass 0, i.e., µ+(M) = µ−(M), is denoted M0

1(M), and the set of all
probability measures in M1(M) is denoted P1(M).

Given µ,ν ∈M+
1 (M) with µ(M) = ν(M), a Borel measure π on M×M is a coupling of µ and ν if

π(E ×M) =µ(A) and π(M×E) = ν(A)

for every Borel subset E ⊆M. The set of couplings of µ and ν is denotedΠ(µ,ν) ⊆M+
1 (M×M). Note that

(µ×ν)/µ(M) = (µ×ν)/ν(M) ∈Π(µ,ν), soΠ(µ,ν) ̸=∅. The Wasserstein-1 distance between µ and ν that is
induced by the metric dM, denoted WdM

1 (µ,ν) or simply W1(µ,ν) if the metric is clear from the context,
is the infimum of

�
M×M dM(x, y)dπ(x, y) over all possible couplings π ∈Π(x, y). Since (M,dM) is Polish,

the metric space (P1(M),W1) is also Polish; see e.g. [Bol08] or [AGS08, Proposition 7.1.5]. Throughout
what follows, P1(M) will be assumed to be equipped with the metric W1. The Kantorovich–Rubinstein
duality theorem (see e.g. [Vil09, Theorem 5.10]) asserts that

W1(µ,ν) = sup
ψ:M→R

∥ψ∥Lip(M)=1

(�
M

ψdµ−
�
M

ψdν

)
. (288)

Note that (288) implies in particular that W1(µ+τ,ν+τ) =W1(µ,ν) for every τ ∈M+
1 (M).

Forµ ∈M0
1(M) we haveµ+(M) =µ−(M), so we can define ∥µ∥W1(M) =W1(µ+,µ−).13 This turnsM0

1(M)
into a normed space whose completion is called the free space over M (also known as the Arens–Eells
space over M), and is denoted F(M); see [AE56, Wea99, God15] for more on this topic, and note that
while F(M) is commonly defined as the closure of the finitely supported measures in M0

1(M) with respect
to the Wasserstein-1 norm, since the finitely supported measures are dense in M0

1(M) (see e.g. [Vil09,
Theorem 6.18]), the definitions coincide. It follows from (288) that the dual of F(M) is canonically iso-
metric to the space of all the real-valued Lipschitz functions on M that vanish at some (arbitrary but
fixed) point x0 ∈M, equipped with the norm ∥ ·∥Lip(M).

Suppose that (Z,∥ · ∥Z) is a separable Banach space and fix µ ∈ M1(M). By the Pettis measurability
criterion [Pet38] (see also [BL00, Proposition 5.1]), any f ∈ Lip(M; Z ) is |µ|-measurable. Moreover, we
have ∥ f ∥Z ∈ L1(|µ|) because if we fix x ∈M, then for every y ∈M,

∥ f (y)∥Z ⩽ ∥ f (y)− f (x)∥Z +∥ f (x)∥X ⩽ ∥ f ∥Lip(M;Z)dM(y, x)+∥ f (x)∥X ∈ L1(|µ|),

where the last step holds by the definition of M1(M) and the fact that it implies that |µ|(M) < ∞. By
Bochner’s integrability criterion [Boc33] (see also [BL00, Proposition 5.2]), it follows that the Bochner
integrals

�
M f dµ+ and

�
M f dµ− are well-defined elements of Z, so we can consider the vector

If (µ)
def=

�
M

f dµ=
�
M

f dµ+−
�
M

f dµ− ∈ Z. (289)

If µ ∈M0
1(M), then If (µ) = �

M×M( f (x)− f (y))dπ(x, y) for every coupling π ∈ Π(µ+,µ−). Consequently,
∥If (µ)∥Z ⩽ ∥ f ∥Lip(M;Z)

�
M×M dM(x, y)dπ(x, y), so by taking the infimum over all π ∈ Π(µ+,µ−) we see

that the norm of the linear operator If from (M0
1(M),∥ ·∥W1 ) to Z satisfies

∥If ∥(M0
1(M),∥·∥W1 )→Z ⩽ ∥ f ∥Lip(M;Z). (290)

13Note for later use that if µ,ν ∈ M+
1 (M) satisfy µ(M) = ν(M), then µ−ν ∈ M0

1(M) and ∥µ−ν∥W1(M) = W1(µ,ν). For a

standard justification of the latter assertion, see e.g. the simple deduction of equation (2.2) in [NS07].
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Since M0
1(M) is dense in F(M), it follows that If extends uniquely to a linear operator If : F(M) → Z of

norm at most ∥ f ∥Lip(M;Z). So, even though elements of F(M) need not be measures, one can consider
the “integral” If (φ) ∈ Z of f ∈ Lip(M;Z) with respect to φ ∈F(M); see [GK03] for more on this topic.

5.2. Refined extension moduli. Continuing with the notation that was introduced by Matoušek [Mat90],
we will consider the following parameters related to Lipschitz extension. Suppose that (M,dM), (N,dN)
are metric spaces and that C⊆M. Denote by e(M,C;N) the infimum over those K ∈ [1,∞] such that for
every f :C→N with ∥ f ∥Lip(C;N) <∞ there is F :M→N that extends f and satisfies

∥F∥Lip(M;N) ⩽K ∥ f ∥Lip(C;N).

The supremum of e(M,C;N) over all subsets C⊆M will be denotes e(M;N). Note that when N is com-
plete, N-valued Lipschitz functions on C automatically extend to the closure of C while preserving the
Lipschitz constant, so we may assume here that C is closed. The supremum of e(M,C;Z) over all Banach
spaces (Z,∥·∥Z) will be denoted below by e(M,C). Thus, the notation e(M) of the Introduction coincides
with the supremum of e(M,C) over all subsets C⊆M.

If (M,dM) is a metric space, C ⊆ M, and (Z,∥ · ∥Z) is a Banach space, then it is natural to consider
variants of the above definitions with the additional restrictions that the extended mapping F is required
to take values in either the closure of the linear span of f (C) or the closure of the convex hull of f (C).
Namely, let espan(M,C;Z) be the infimum over those K ∈ [1,∞] such that for every f :C→ Z there exists

F :M→ span
(

f (C)
)

that extends f and satisfies
∥F∥Lip(M;Z) ⩽K ∥ f ∥Lip(C;Z). (291)

Analogously, let econv(M,C;Z) be the infimum over K ∈ [1,∞] such that for every f :C→ Z there exists

F :M→ conv
(

f (C)
)

that extends f and satisfies (291). We then define econv(M,C) to be the supremum of econv(M,C;Z) over
all possible Banach spaces (Z,∥ · ∥Z). Note that while one could attempt to define espan(M,C) similarly,
there is no point to do so because it would result in the previously defined quantity e(M,C). By consid-
ering the supremum of econv(M,C) over all subsets C⊆M, one defines the quantity econv(M).

Remark 132. By [Lin64] one can have e(M,C;Z) = e(M;Z) = 1 yet espan(M,C,Z) = ∞ for some metric
space (M,dM), some C⊆M and some Banach space (Z,∥ ·∥Z). Indeed, if X is a closed reflexive subspace
of ℓ∞ and V ⊆ X is a closed uncomplemented subspace of X, then by [Lin64] (see also [BL00, Corol-
lary 7.3]) there is no Lipschitz retraction from X onto V. Equivalently, the identity mapping from V to
V cannot be extended to a Lipschitz mapping from X to V. Hence, since span(V) = V ⊆ ℓ∞, we have
espan(X,V;ℓ∞) = ∞. In contrast, e(X;ℓ∞) = 1 by the nonlinear Hahn–Banach theorem (see [McS34] or
e.g. [BL00, Lemma 1.1]). By combining [Sob41] with the discretization method of [JL84] (see also [MM16]),
one can quantify the above example by showing that for arbitrarily large n ∈N there are Banach spaces
(X,∥ ·∥X), (Z,∥ ·∥Z) and a subset C⊆ X with |C| = n for which we have

espan(X,C;Z)

e(X,C;Z)
≳

√
logn

loglogn
. (292)

(In fact, in (292) one can have e(X,C;Z) = e(X;Z) = 1.) At present, the right hand side of (292) is the largest
asymptotic dependence on n that we are able to obtain for this question, and it remains an interesting
open problem to determine the best possible asymptotics here.

Most, but not all, of the Lipschitz extension methods in the literature, including Kirszbraun’s extension
theorem [Kir34], Ball’s extension theorem [Bal92] and methods that rely on (variants of) partitions of
unity such as in [JLS86, LN05, LS05, BB06], yield convex hull-valued extensions, i.e., they actually provide
bounds on the quantity econv(M,C;Z). Nevertheless, it seems likely that there is no ϕ : [1,∞) → [1,∞)
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such that econv(M) ⩽ ϕ(e(M)) for every Polish metric space (M,dM), though if such an estimate were
available, then it would be valuable; see e.g. Remark 140. In fact, we propose the following conjecture.

Conjecture 133. There exists a Polish metric space (M,dM) for which e(M) <∞ yet econv(M) =∞.

Remark 134. By definition, for every metric space (M,dM), every Banach space (Z,∥·∥Z) and everyC⊆M,

econv(M,C;Z)⩾ espan(M,C;Z)⩾ e(M,C;Z).

We explained in Remark 132 that the second of these inequalities can be strict (in a strong sense). How-
ever, as a complement to Conjecture 133, we state that to the best of our knowledge it is unknown
whether this is so for the first of these inequalities, i.e., if it could happen that espan(M,C;Z) < ∞ yet
econv(M,C;Z) =∞. We suspect that this is possible, but if not, then it would be interesting to investigate
how one could bound econv(M,C;Z) from above by a function of espan(M,C;Z). We do know that there
are a metric space (M,dM), a Banach space (Z,∥ · ∥Z), a subset C⊆M and a Lipschitz mapping f : C→ Z
that can be extended to a Lipschitz mapping that takes values in span( f (C)) but cannot be extended to
a Lipschitz mapping that takes values in conv( f (C)). To see this, let {e j }∞j=1 be the standard basis of ℓ∞.
For n ∈ N set m(n) = n(n − 1)/2 and let Xn be the span of {em(n)+1, . . . ,em(n+1)} in ℓ∞. Thus, Xn is iso-
metric to ℓn∞ and ℓ∞ = (⊕∞

n=1Xn)∞. By [Sob41], there is a linear subspace Vn of Xn such that every linear
projection Q : Xn → Vn satisfies ∥Q∥Xn→Vn ≳

p
n. By the method of [JL84], it follows that there exists14

An ⊆ BVn = Vn ∩Bℓ∞ with |An |⩽ nO(n) such that ∥Fn∥Lip(Xn ;Vn ) ≳
p

n for any Fn : Xn → Vn that extends
the formal identity IdAn→Vn

:An → Vn . By compactness, there exists δn ∈ (0,1) such that if we define

Cn =An ∪{
δnem(n)+1, . . . ,δnem(n+1)

}∪ {0},

then also ∥Φn∥Lip(Xn ;Xn ) ≳
p

n for any mapping Φn from Xn to the polytope conv(Cn) that extends the
formal identity IdCn→Xn

. Consider the subset

C=
∞⋃·

n=1
Cn ⊆ ℓ∞.

If Φ : ℓ∞ → conv(C) extends IdC→ℓ∞ , then for each n ∈ N the mapping Rn ◦ (Φ|Xn ) : Xn → Xn extends
IdCn→ℓ∞ and takes values in conv(Cn), where Rn : ℓ∞ → Xn is the canonical restriction operator. Hence,

∥Φ∥Lip(ℓ∞;Xn ) ⩾ ∥Rn ◦ (Φ|Xn )∥Lip(Xn ;Xn ) ≳
p

n.

Since this holds for every n ∈N, the mapping Φ is not Lipschitz. Consequently, econv(ℓ∞,C;ℓ∞) =∞. At
the same time, by construction we have span(C) = span({e j }∞j=1) = c0 (recall that c0 commonly denotes
the subspace of ℓ∞ consisting of all those sequences that tend to 0). So, any 2-Lipschitz retraction ρ

of ℓ∞ onto c0 extends IdC→ℓ∞ and takes values in span(C); the existence of such a retraction ρ is due
to [Lin64] (see also [BL00, Example 1.5]). If espan(ℓ∞,C;ℓ∞) were finite, then this example would answer
the above question,15 but we suspect that in fact espan(ℓ∞,C;ℓ∞) =∞.

Proposition 135 is a convenient characterization of the quantities e(M,C) and econv(M,C); while it was
not previously stated explicitly in this form, its proof is based on well-understood ideas.

Proposition 135. Suppose that (M,dM) is a metric space, C is a Polish subset of M and s0 ∈ C. Fix two
nonnegative functions d :M×M→ [0,∞) and ε :C :→ [0,∞). Then, the following two equivalences hold.

(1) The following two statements are equivalent.

14The subset An can be taken to be any εn -net of the unit sphere of Vn , for any εn ≲ n−3/2. Note, however, that the bound
that follows from [JL84] (and also [MM16, Appendix C]) is εn ≲ n−2, and this suffices for the present purposes; see [NR17,
Theorem 23] for the above stated weaker requirement from εn .

15And, it would show that for arbitrarily large k ∈N there exist a metric space (M,dM), a Banach space (Z,∥·∥Z) and a subset
S ⊆ M with |S| = k such that econv(M,S;Z)/espan(M,S;Z) ≳

√
(logk)/ loglogk. It would then remain an interesting open

question to determine the largest possible asymptotic dependence on k here.
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• For every Banach space (Z,∥ · ∥Z) and every mapping f :C→ Z that is 1-Lipschitz with respect
to the metric dM there exists F :M→ Z that satisfies the following two conditions.

– ∥F (s)− f (s)∥Z ⩽ ε(s) for every s ∈C.
– ∥F (x)−F (y)∥Z ⩽ d(x, y) for every x, y ∈M.

• There exists a family {φx }x∈M of elements of the free space F(C) with the following properties.
– ∥φs −δs +δs0∥F(C) ⩽ ε(s) for every s ∈C.
– ∥φx −φy∥F(C) ⩽ d(x, y) for every x, y ∈M.

(2) The following two statements are equivalent.
• For every Banach space (Z,∥ · ∥Z) and every mapping f :C→ Z that is 1-Lipschitz with respect

to the metric dM there exists F :M→ conv
(

f (C)
)

that satisfies the following two conditions.
– ∥F (s)− f (s)∥Z ⩽ ε(s) for every s ∈C.
– ∥F (x)−F (y)∥Z ⩽ d(x, y) for every x, y ∈M.

• There exists a family {µx }x∈M of probability measures in P1(C) with the following properties.
– WdM

1 (µs ,δs)⩽ ε(s) for every s ∈C.

– WdM

1 (µx ,µy )⩽ d(x, y) for every x, y ∈M.

In the setting of Proposition 135, if ε(s) = 0 for every s ∈ C and also d = K dM for some K ⩾ 1, then
in [AP20, Definition 2.7] a family {φx }x∈M ⊆ F(C) as in part (1) of Proposition 135 is called a K -random
projection of M onto C, and in [Oht09, Definition 3.1] a family {µx }x∈M ⊆ P1(C) as in part (2) of Propo-
sition 135 is called a stochastic K -Lipschitz retraction of M onto C while in [AP20, Definition 2.7] it is
called a strong K -random projection of M onto C.

Proof of Proposition 135. Suppose first that {φx }x∈M ⊆F(C) and {µx }x∈M ⊆P1(C) are as in the two parts of
Proposition 135. Let (Z,∥·∥Z) be a Banach space and fix a 1-Lipschitz function f :C→ Z. Since C is Polish
and hence separable, by replacing Z with the closure of the linear span of f (C) we may assume that Z is
separable. Recalling the notation (289) and the discussion immediately following it for the (integration)
operator If :M1(M)∪F(M) → Z, define two (linear) mappings

Ext
φ

C
f ,Extµ

C
f :M→ Z

by setting for every x ∈M,

Ext
φ

C
f (x)

def= f (x0)+If (φx ) and Ext
µ

C
f (x)

def= If (µx )
(289)=

�
C

f dµx . (293)

Observe that sinceµx is a probability measure, Extµ
C

f (x) belongs to the closure of the convex hull of f (C).
For every x, y ∈M we have∥∥Extφ

C
f (x)−Ext

φ

C
f (y)

∥∥
Z = ∥∥If (φx −φy )

∥∥
Z

(290)
⩽ ∥φx −φy∥F(C) ⩽ d(x, y),

and similarly (using Kantorovich–Rubinstein duality),∥∥Extµ
C

f (x)−Ext
φ
µ f (y)

∥∥
Z ⩽WdM

1 (µx ,µy )⩽ d(x, y).

Also, for every s ∈C we have∥∥Extφ
C

f (s)− f (s)
∥∥

Z = ∥∥If (φs −δs +δx0 )
∥∥

Z ⩽ ∥φs −δs +δx0∥F(C) ⩽ ε(s),

and similarly, ∥∥Extµ
C

f (s)− f (s)
∥∥

Z = ∥∥If (φs −δs)
∥∥

Z ⩽WdM

1 (µs ,δs)⩽ ε(s).

Conversely, define f : C → F(C) by setting f (s) = δs −δs0 for each s ∈ C. Then f is 1-Lipschitz. Fix
F : M→ F(C). Writing F (x) = φx for each x ∈M, the assumptions of the first half of part (1) of Proposi-
tion 135 coincide with the assertions of its second half. As C is Polish, P1(C) is closed in F(C). Therefore,

conv
(

f (C)
)=P1(C)−δs0 ,
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where the closure is in F(C). Thus, if F (M) ⊆ conv( f (C)), then µx
def= F (x)+δs0 ∈ P1(C) and the assump-

tions of the first half of part (2) of Proposition 135 coincide with the assertions of its second half. □

The proof of Proposition 135 shows that even though in the first parts of the two equivalences in
Proposition 135 one assumes merely the existence of an F with the desired properties, it follows that
such an F can in fact be chosen to depend linearly on the input f , per (293).

Due to Proposition 135, the following question is closely related to Conjecture 133, though we think
that it is also of independent interest.

Question 136. Characterize those Polish metric spaces (M,dM) for which there exists a Lipschitz map-
ping ρ : F(M) → P1(M) (recall that by default P1(M) is equipped with the Wasserstein-1 metric) and
x0 ∈M such that ρ(δy −δx0 ) = δy for every y ∈M.

5.3. Barycentric targets. Following [MN13], say that a metric space (M,dM) isW1-barycentric with con-
stant β> 0 if there is a mapping B :P1(M) →M that satisfies B(δx ) = x for every x,∈M, and also

∀µ,ν ∈P1(M), dM

(
B(µ),B(ν)

)
⩽βWdM

1 (µ,ν).

The infimal β for which this holds is denoted β1(M). This notion (and variants thereof) were studied in
various contexts; see e.g. [ESH99, LPS00, Gro03, Stu03, LN05, Oht09, Aus11, MN13, Nav13, Lim18, Bas18].
Any normed space X is W1-barycentric with constant 1, as seen by considering B(µ) = �

X x dµ(x). Other
examples of spaces that are W1-barycentric with constant 1 include Hadamard spaces and Busemann
nonpositively curved spaces [BH99], or more generally spaces with a conical geodesic bicombing [DL15].

Thanks to Proposition 135, convex hull-valued (approximate) extension theorems automatically gen-
eralize to extension theorems for mappings that take value in W1-barycentric metric spaces.

Proposition 137. Let (M,dM) be a metric space and suppose that C ⊆ M is a Polish subset of M. Fix
d : M×M→ [0,∞) and ε : C→ [0,∞). Assume that for every Banach space (Z,∥ · ∥Z) and every f : C→ Z
that is 1-Lipschitz with respect to dM there is F : M → conv( f (C)) that satisfies ∥F (s)− f (s)∥Z ⩽ ε(s) for
every s ∈ C and ∥F (x)−F (y)∥Z ⩽ d(x, y) for every x, y ∈ M. Fix η : C → (1,∞) and τ : M×M → (1,∞),
as well as β > 0 and a concave nondecreasing function ω : [0,∞) → [0,∞) with ω(0) = 0. If (N,dN) is a
W1-barycentric metric space with constant β and φ : C→ N has modulus of uniform continuity ω with
respect to dM, namely dN( f (s), f (t )) ⩽ ω(dM(s, t )) for every s, t ∈ C, then there is Φ : M → N such that
dN(Φ(s),φ(s))⩽ω(η(s)ε(s)) for every s ∈C and dN(Φ(x),Φ(y))⩽ω(τ(x, y)d(x, y)) for every x, y ∈M.

Proof. By Proposition 135, there is a collection of measures {µx }x∈M ⊆P1(C) such that

∀s ∈C, WdM

1 (µs ,δs)⩽ ε(s) and ∀x, y ∈M WdM

1 (µx ,µy )⩽ d(x, y).

Hence, for every s ∈C and x, y ∈M there are couplings πs ∈Π(µs ,δs) and πx,y ∈Π(µx ,µy ) such thatÏ
C×C

dM(u, v)dπs(u, v)⩽ η(s)ε(s) and
Ï

C×C
dM(u, v)dπx,y (u, v)⩽ τ(x, y)d(x, y),

Since (φ×φ)#πs ∈Π(φ#µs ,φ#δs) and (φ×φ)#πx,y ∈Π(φ#µx ,φ#µy ), it follows that

WdN

1 (φ#µs ,φ#δs)⩽
Ï

N×N
dN(a,b)d(φ×φ)#πs(a,b)

=
Ï

N×N
dN

(
φ(u),φ(v)

)
dπs(u, v)

⩽
Ï

N×N
ω

(
dN(u, v)

)
dπs(u, v)

⩽ω

(Ï
N×N

dN(u, v)dπs(u, v)

)
⩽ω

(
η(s)ε(s)

)
,
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where the penultimate step uses the concavity of ω. For the same reason, also

WdN

1 (φ#µx ,φ#µy )⩽ω
(
τ(x, y)d(x, y)

)
.

Since (N,dN) is β-barycentric there is B :P1(N) →N satisfying B(δz ) = z for every z,∈N, and

∀ν1,ν2 ∈P1(N), dN

(
B(ν1),B(ν2)

)
⩽βWdN

1 (ν1,ν2).

DefineΦ :M→N by

∀x ∈M, Φ(x)
def= B(φ#µx ).

Then, for every s ∈C we have

dN

(
Φ(s),φ(s)

)
⩽βWdN

1

(
φ#µs ,φ#δs

)
⩽ω

(
η(s)ε(s)

)
,

and for the same reason also dN

(
Φ(x),φ(y)

)
⩽ω

(
τ(x, y)d(x, y)

)
for every x, y ∈M. □

Because (as we will soon see) all of our new Lipschitz extension theorems are in fact bounds on econv(·),
the following immediate corollary of Proposition 137 (with d a multiple of dM and ω linear) shows that
they apply to barycentric targets and not only to Banach space targets.

Corollary 138. Fixβ> 0. Suppose thatM is a Polish metric space and thatN is a completeW1-barycentric
metric space with constant β. Then, econv(M,N)⩽βeconv(M).

Another noteworthy special case of Proposition 137 is when ω(s) = sθ for some 0 < θ ⩽ 1, i.e., in the
setting of Hölder extension that we discussed in Remark 15 and Section 2.3. Analogously to (18), we
denote the convex hull-valued θ-Hölder extend modulus of a metric space (M,dM) by

eθconv(M) = econv
(
M,dθ

M

)
.

Corollary 139. Suppose that M is a Polish metric space. Then, for every 0 < θ⩽ 1 we have

eθ(M)⩽ eθconv(M)⩽ econv(M)θ.

Because the upper bound on e(ℓn∞) that we obtain in Theorem 14 is actually an upper bound on
econv(ℓn∞), Corollary (139) implies (19). More generally, Proposition 137 implies that

econv
(
M,ω◦dM

)
⩽ sup

d>0

ω
(
econv(M)d

)
ω(d)

for any concave nondecreasing function ω : [0,∞) → [0,∞) with ω(0) = 0.

Remark 140. The question of how Lipschitz extension results imply extension results for other moduli of
uniform continuity was studied in [Nao01] and treated definitively by Brudnyi and Shvartsman in [BS02]
using an interesting connection to the Brudnyı̆–Krugljak K -divisibility theorem [BK81] (see also [Cwi84])
from the theory of real interpolation of Banach spaces. In particular, by [BS02] we have eθ(M) ≲ e(M)2,
which remains the best-known bound on eθ(M) in terms of e(M) and it would be interesting to deter-
mine if it could be improved. As Corollary 139 shows that a better bound is available in terms of eθconv(M),
Conjecture 133 and Question 136 could be relevant for this purpose.

5.4. Gentle partitions of unity. The following definition describes a numerical parameter that underlies
the extension method of [LN05].

Definition 141 (modulus of gentle partition of unity). Suppose that (M,dM) is a metric space and that
C⊆M is nonempty and closed. Define the modulus of gentle partition of unity ofM relative toC, denoted
GPU(M,dM;C) or simply GPU(M;C) when the metric is clear from the context, to be the infimum over
those g ∈ (0,∞] such that for every x ∈M there is a Borel probability measure µx supported on C with the
requirements that if s ∈C, then µs =δs , and also for every x, y ∈M we have�

C

dM(s, x)d|µx −µy |(s)⩽ gdM(x, y).
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The modulus of gentle partitions of unity of M, denoted GPU(M,dM) or simply GPU(M) when the metric
is clear from the context, is the supremum of GPU(M,dM;C) over all nonempty closed subsets C⊆M.

The nomenclature of Definition 141 is derived from [LN05], though we warn that Definition 141 con-
siders objects that are not identical to those that were introduced in [LN05]. In [LN05] the measures
{µx }x∈M∖C were also required to have a Radon–Nikoým derivative with respect to some reference mea-
sure µ. This additional requirement arises automatically from the constructions of [LN05] but it is not
needed for any of the known applications of gentle partitions of unity, so it is beneficial to remove it
altogether. The formal connection between [LN05] and Definition 141 was clarified in [AP20].

In anticipation of the proof of Theorem 65, one can generalize Definition 141 to the case of general
profiles, analogously to what we did in Definition 63.

Definition 142 (gentle partition of unity profile). Suppose that (M,dM) is a metric space and that C⊆M

is nonempty and closed. A metric d : M×M → [0,∞) is called a gentle partition of unity profile for
(M,dM) relative to C if for every x ∈M there is a Borel probability measure µx supported on C with the
requirements that if s ∈C, then µs =δs , and also for every x, y ∈M we have�

C

dM(s, x)d|µx −µy |(s)⩽ d(x, y).

If d is a gentle partition of unity profile for (M,dM) relative to every closed ∅ ̸= C⊆M, then we say that d
is a gentle partition of unity profile for (M,dM).

Note in passing that if d is a gentle partition of unity profile for (M,dM) relative to C, then for every
x ∈M the probability measure µx in Definition 142 has finite first moment. Indeed, for any s0 ∈C,�

C

dM(s0, s)dµx (s) =
�
C

dM(s0, s)d
(
µx −δs0

)
(s)⩽

�
C

dM(s0, s)d
∣∣µx −µs0

∣∣(s)⩽ d(s0, x) <∞, (294)

where we used the fact that µs0 = δs0 , since s0 ∈C.
Suppose that (M,dM) is a Polish metric space. The following estimate is implicit in [LN05].

econv(M)⩽ 2GPU(M). (295)

In fact, the same reasoning as in [LN05] leads to the following more general lemma.

Lemma 143. Suppose that (M,dM) is a Polish metric space and that C ⊆ M is nonempty and closed.
Assume that d : M×M → [0,∞) is a gentle partition of unity profile for (M,dM) relative to C. Then, for
every Banach space (Z,∥ ·∥Z) and every 1-Lipschitz mapping f :C→ Z there exists

F :M→ conv
(

f (C)
)

that extends f and satisfies ∥F (x)−F (y)∥Z ⩽ 2d(x, y) for every x, y ∈M.

Proof. Let {µx }x∈M be probability measures as in Definition 142. Then, {µx }x∈M ⊆P1(C) by (294). So, by
Proposition 135 (with ε≡ 0) it suffices to check that W1(µx ,µy )⩽ 2d(x, y) for every x, y ∈M. To this end,
fix η> 0 and s0 ∈C such that dM(x, s0)⩽ dM(x,C)+η. Then,

∀s ∈C, dM(s, s0)⩽ dM(s, x)+dM(x, s0)⩽ dM(s, x)+dM(x,C)+η⩽ 2dM(s, x)+η.

Consequently, every 1-Lipschitz function ψ :C→R satisfies
�
C

ψdµx −
�
C

ψdµy =
�
C

(
ψ(s)−ψ(s0)

)
d(µx −µy )(s)⩽

�
C

|ψ(s)−ψ(s0)|d|µx −µy |(s)

⩽
�
C

dM(s, s0)d|µx −µy |(s)⩽
�
C

(2dM(s, x)+η)d|µx −µy |(s)⩽ 2d(x, y)+2η.

The desired conclusion follows by letting η→ 0 and using the Kantorovich–Rubinstein duality (288). □
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5.5. The multi-scale construction. Suppose that (M,dM) is a Polish metric space and fix another metric
d on M. In this section we will show that there is a universal constant α⩾ 1 with the following property.
Assume that either (M,dM) is locally compact and d is a separation modulus for (M,dM) per Defini-
tion 63, or the assumptions of Theorem 113 are satisfied. We will prove that either of these assumptions
implies that αd is a gentle partition of unity profile for (M,dM). By Lemma 143 this gives Theorem 65
and Theorem 113, and will show that in fact these extension results are both convex hull-valued and via
a linear extension operator. This also implies that every locally compact metric space M satisfies

GPU(M)≲ SEP(M). (296)

Remark 144. The bound (296) need not be sharp. Indeed, it was proved in [LN05] that if M is finite, then

GPU(M)≲
log |M|

loglog |M| . (297)

However, by [Bar96] sometimes SEP(M) ≳ log |M| (and always SEP(M) ≲ log |M|). A shorter presen-
tation of the proof of (297) can be found in [Nao15], and a different proof of (297) will appear in the
forthcoming work [MN21]. Also, in the forthcoming work [MNR21] it is proved that (297) is optimal.

The following theorem is a precise formulation of what we will prove in this section.

Theorem 145. Let (M,dM) be a Polish metric space and fix another metric d on M. Suppose that for every
∆ > 0 there is a probability space (Ω∆,Prob∆) and a sequence of set-valued mappings {Γk

∆ :Ω∆ → 2M}∞k=1
such that one of the following two measurability assumptions hold.

• Either (M,dM) is locally compact and Γk
∆ is strongly measurable for each fixed k ∈N and ∆> 0,

• or Ω∆ is a Borel subset of some Polish metric space Z∆ and Prob∆ is a Borel probability measure
supported onΩ∆, and Γk

∆ is a standard set-valued mapping for each fixed k ∈N and ∆> 0.

Suppose that the following three requirements hold.

(1) Pω∆ = {Γk
∆(ω)}∞k=1 is a partition of M for every ω ∈Ω∆,

(2) diamM(Pω∆(x)) <∆ for every x ∈M and ω ∈Ω∆,
(3) ∆Prob∆

[
ω ∈Ω∆ : Pω∆(x) ̸=Pω∆(y)

]
⩽ d(x, y) for every x, y ∈M.

Then, αd is a gentle partition of unity profile for (M,dM) for some universal constant α ∈ [1,∞).

Suppose from now on that C is a nonempty closed subset of M. We will first set notation and record
basic properties of a sequence of bump functions that will be used in the proof of Theorem (145); this
part of the discussion is entirely standard and has nothing to do with random partitions.

Fix a 1-Lipschitz function ψ : [0,∞) → [0,∞) such that supp(ψ) ⊆ [1,4] and ψ(t ) = 1 for every t ∈ [2,3]
(these requirements uniquely determine ψ, which is piecewise linear). Define for each n ∈Z,

∀x ∈M, φn(x) =φC
n(x)

def= ψ
(
2−ndM(x,C)

)
.

Then ∥φn∥Lip(M) ⩽ 2−n and if φn(x) ̸= 0 then necessarily 2n ⩽ dM(x,C)⩽ 2n+2. We also denote

∀x ∈M, Φ(x) =ΦC(x)
def= ∑

m∈Z
φn(x).

For each x ∈M, at most two summands in the sum that definesΦ(x) do not vanish. If x ∈M∖C, then
since C is closed we have dM(x,C) > 0, and therefore there is n ∈ Z for which 2n ⩽ dM(x,C) < 2n+1. For
this value of n we have φn(x) = 1, soΦ(x)⩾ 1 for every x ∈M∖C. Finally, for each n ∈Z define

∀x ∈M, λn(x) =λCn(x)
def=

{
φn (x)
Φ(x) if x ∈M∖C,

0 if x ∈C.

By design,
∑

n∈Zλn(x) = 1 for every x ∈M∖C. Further properties of these bump functions are recorded
in the following basic lemma, for ease of later reference.
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Lemma 146. Suppose that x, y ∈M satisfy dM(x,C)⩾ dM(y,C) > dM(x, y). Then for every n ∈Z,

2n

dM(y,C)
∉

(1

4
,2

)
=⇒ φn(x) =φn(y) =λn(x) =λn(y) = 0, (298)

and

2n−1 < dM(y,C) < 2n+2 =⇒ ∣∣λn(x)−λn(y)
∣∣≲ dM(x, y)

dM(y,C)
. (299)

Proof. Our assumption implies that dM(x,C),dM(y,C) > 0, so x, y ∈ M∖C. To prove (298), suppose
first that 2n ⩾ 2dM(y,C). Then, φn(y) = λn(y) = 0 since supp(ψ) ⊆ [1,4] and 2−ndM(y,C) ⩽ 1. Also,
dM(x,C) ⩽ dM(x, y)+dM(y,C) < 2dM(y,C) ⩽ 2n , so 2−ndM(x,C) ⩽ 1 and hence φn(x) = λn(x) = 0. The
remaining case of (298) is when dM(y,C) ⩾ 2n+2. Then, 2−ndM(x,C) ⩾ 2−ndM(y,C) ⩾ 4 and therefore
{2−ndM(x,C),2−ndM(y,C)}∩ supp(ψ) =∅. Consequently, φn(x) =φn(y) =λn(x) =λn(y) = 0.

To prove (299), assume that 2n−1 < dM(y,C) < 2n+2. Recalling that (point-wise) on M∖C we have
λn =φn/Φ for all n ∈Z andΦ⩾ 1, and moreover ∥φn∥Lip(M) ⩽ 2−n , we conclude as follows.∣∣λn(x)−λn(y)

∣∣⩽ ∣∣φn(x)−φn(y)
∣∣

Φ(x)
+ φn(y)

Φ(x)Φ(y)

∣∣Φ(y)−Φ(x)
∣∣

⩽ 2−ndM(x, y)+ ∑
n∈Z

∣∣φn(x)−φn(y)
∣∣

(298)
⩽ 2−ndM(x, y)+ ∑

n∈Z
2n−1<dM(y,C)<2n+2

2−ndM(x, y) ≍ dM(x, y)

dM(y,C)
. □

The interaction between {λn}n∈Z and the random partitions of Theorem 145 is the content of the fol-
lowing lemma. Note that by reasoning as in (95), the metric d in Theorem 145 must satisfy

∀x, y ∈M, d(x, y)⩾ dM(x, y).

Lemma 147. In the setting of Theorem 145, if x ∈M∖C and y ∈M∖ {x} satisfy dM(x,C)⩾ dM(y,C), then∑
n∈Z

∞∑
k=1

�
Ω2n

∣∣λn(x)1Γk
2n (ω)(x)−λn(y)1Γk

2n (ω)(y)
∣∣dProb2n (ω)≲

d(x, y)

dM(y,C)+dM(x, y)
. (300)

Proof. As
∑

n∈Zλn(x) = ∑
n∈Zλn(y) = 1 and also

∑∞
k=1 1Γk

2n (ω)(x) = ∑∞
k=1 1Γk

2n (ω)(y) = 1 for each n ∈ Z and

ω ∈ Ω2n , the left hand side of (300) is at most 2. Since d(x, y) ⩾ dM(x, y), it follows that (300) holds if
dM(y,C) ⩽ dM(x, y). So, we will assume in the rest of the proof of Lemma 147 that dM(x, y) < dM(y,C)
(thus, in particular, y ∈M∖C), in which case the right-hand side of (300) becomes at least a universal
constant multiple of the quantity d(x, y)/dM(y,C).

We claim that for every n ∈Z the following inequality holds for every ω ∈Ω2n .
∞∑

k=1

∣∣λn(x)1Γk
2n (ω)(x)−λn(y)1Γk

2n (ω)(y)
∣∣≲ (

2−ndM(x, y)+1{
Pω

2m (x) ̸=Pω
2n (y)

})1{
1
4< 2n

dM (y,C)<2
}. (301)

Assuming (301), we conclude the proof of (300) in the remaining case dM(x, y) < dM(y,C) as follows.∑
n∈Z

∞∑
k=1

�
Ω2n

∣∣λn(x)1Γk
2n (ω)(x)−λn(y)1Γk

2n (ω)(y)
∣∣dProb2n (ω)

≲
∑

n∈Z
2n−1<dM(y,C)<2n+2

(
2−ndM(x, y)+Prob2n

[
{ω ∈Ω2n : Pω2n (x) ̸=Pω2n (y)}

])

≲
∑

n∈Z
2mn−1<dM(y,C)<2n+2

2−n(
dM(x, y)+d(x, y)

)≍ d(x, y)

dM(y,C)
≍ d(x, y)

dM(y,C)+dM(x, y)
,
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where the first step uses (301), the second step is where we used condition (3) of Theorem 145, the penul-
timate step uses d(x, y)⩾ dM(x, y), and in the final step uses the assumption dM(x, y) < dM(y,C).

It remains to establish (301). By Lemma 146, if it is not the case that 2n−1 < dM(y,C) < 2n+2, then
λn(x) = λn(y) = 0, so both sides of (301) vanish. We may therefore assume that 2n−1 < dM(y,C) < 2n+2.
Under this assumption, if Pω2n (x) ̸= Pω2n (y), then the right-hand side of (301) is at least 1, while the left-
hand side of (301) consists of a sum of two numbers, each of which is at most 1. It therefore remains to
establish (301) when Pω2n (x) = Pω2n (y) (and still 2n−1 < dM(y,C) < 2n+2). In this case, (301) becomes the
inequality |λ2n (x)−λ2n (y)|⩽ dM(x, y)/dM(y,C), which we proved in Lemma 146. □

Proof of Theorem 145. By Lemma 114 and Corollary 117, for every ∆ > 0 there exists a Prob∆-to-Borel
measurable mapping γk

∆ :Ωm →C such that

∀ω ∈Ω∆, Γk
∆(ω) ̸=∅ =⇒ dM

(
γk
∆(ω),Γk

∆(ω)
)
⩽ dM

(
C,Γk

∆(ω)
)+∆. (302)

(In fact, in the locally compact setting of Theorem 145, the use of Lemma 114 shows that the additive ∆
term in the right hand side of (302) can be removed).

For every x ∈M∖C define a Borel measure µx supported on C by

µx
def= ∑

n∈Z

∞∑
k=1

λn(x)
(
γk

2n

)
#

(
Prob2n

⌊{
ω∈Ω2n : x∈Γk

2n (ω)
}). (303)

In other words, for every Borel-measurable mapping h :C→ [0,∞) we have

�
C

h(s)dµx (s) = ∑
n∈Z

∞∑
k=1

λn(x)

�{
ω∈Ω2n : x∈Γk

2n (ω)
} h

(
γk

2n (ω)
)

dProb2n (ω). (304)

Since Pω2n is a partition of X for every n ∈Z and ω ∈Ω2n , the special case h = 1C of (304) implies that

µx (C) = ∑
n∈Z

∞∑
k=1

λn(x)Prob2n

[{
ω ∈Ω2n : x ∈ Γk

2n (ω)
}]

= ∑
n∈Z

λn(x)Prob2n

[{
ω ∈Ω2n : x ∈

∞⋃
k=1

Γk
2n (ω)

}]= ∑
n∈Z

λn(x) = 1.

Thus µx is a probability measure. Consequently, if we also denote µs = δs for every s ∈ C, then the proof
of Theorem 145 will be complete if we show that

∀x, y ∈M,

�
C

dM(s, x)d|µx −µy |(s)≲ d(x, y). (305)

It suffices to prove (305) when x, y ∈M are distinct and {x, y} ̸⊆C. Indeed, if {x, y} ⊆C then µx =δx and
µy =δy , so the left hand side of (305) is equal to dM(x, y), which is at most d(x, y). Hence, in the rest of the
proof of Theorem 145 we will assume without loss of generality that x ∈M∖C and dM(x,C)⩾ dM(y,C).

We claim that the left hand side of (305) can be bounded from above as follows.

�
C

dM(s, x)d|µx −µy |(s)

⩽ dM(x, y)+ ∑
n∈Z

∞∑
k=1

�
Ω2n

dM

(
γk

2n (ω), x
)∣∣λn(x)1Γk

2n (ω)(x)−λ2n (y)1Γk
2n (ω)(y)

∣∣dProb2n (ω).
(306)
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Indeed, if x, y ∈M∖C, then µx ,µy are defined according to (303), so that�
C

dM(s, x)d|µx −µy |(s)

⩽
∑

n∈Z

∞∑
k=1

�
C

dM(s, x)d

((
γk

2n

)
#

∣∣∣λn(x)Prob2n
⌊{
ω∈Ω2n : x∈Γk

2n (ω)
}−λn(y)Prob2n

⌊{
ω∈Ω2n : y∈Γk

2n (ω)
}∣∣∣)(s)

= ∑
n∈Z

∞∑
k=1

�
Ω2n

dM

(
γk

2n (ω), x
)∣∣λn(x)1Γk

2n (ω)(x)−λn(y)1Γk
2n (ω)(y)

∣∣dProb2n (ω),

thus establishing (306) in this case. The remaining case is when x ∈M∖C and y ∈ C, so that µx is given
in (303) and µy =δy . We can then use the following (crude) estimate.�

C

dM(s, x)d|µx −µy |(s)⩽
�
C

dM(s, x)dµy (s)+
�
C

dM(s, x)dµx (s)

= dM(x, y)+ ∑
n∈Z

∞∑
k=1

�
Ω2n

dM

(
γk

2n (ω), x
)
λn(x)1Γk

2n (ω)(x)dProb2n (ω).
(307)

It remains to observe that because y ∈C we have λn(y) = 0 for all n ∈Z and therefore the right hand side
of (307) coincides with the right hand side of (306).

Next, we claim that for every (n,k) ∈Z×N and every ω ∈Ω2n we have

dM

(
γk

2n (ω), x
)∣∣λn(x)1Γk

2n (ω)(x)−λn(y)1Γk
2n (ω)(y)

∣∣
≲

(
dM(y,C)+dM(x, y)

)∣∣λn(x)1Γk
2n (ω)(x)−λn(y)1Γk

2n (ω)(y)
∣∣. (308)

By a substitution of the point-wise estimate (308) into (306) and using dM(x, y) ⩽ d(x, y) the desired
estimate (305) follows from Lemma 147, thus completing the proof of Theorem 145.

To verify (308), note first that both sides of (308) vanish unless x ∈ Γk
2n (ω) or y ∈ Γk

2n (ω) and also, due to
Lemma 146, 2n−1 < dM(y,C) < 2n+2. So, assume from now on that

{x, y}∩Γk
2n (ω) ̸=∅ and 2n−1 < dM(y,C) < 2n+2. (309)

Our goal (308) then becomes to deduce that

dM

(
γk

2n (ω), x
)
≲ dM(y,C)+dM(x, y). (310)

Choose a point z ∈ Γk
m(ω) such that

dM

(
γk

2n (ω), z
)
⩽ dM

(
γk

2n (ω),Γk
2n (ω)

)+2n (302)= dM

(
C,Γk

2n (ω)
)+2n+1 (309)≍ dM

(
C,Γk

2n (ω)
)+dM(y,C). (311)

If x ∈ Γk
2n (ω), then

dM

(
C,Γk

2n (ω)
)
⩽ dM(x,C)⩽ dM(x, y)+dM(y,C) and dM(x, z)⩽ diamM

(
Γk

2n (ω)
)
⩽ 2n (309)≍ dM(y,C).

By combining these two estimates with (311) and the triangle inequality, we see that

dM

(
γk

2n (ω), x
)
⩽ dM

(
γk

2n (ω), z
)+dM(z, x)≲ dM(x, y)+dM(y,C).

Hence, the desired estimate (310) holds when x ∈ Γk
2n (ω).

It remains to check (310) when y ∈ Γk
2n (ω), in which case we proceed similarly by noting that now

dM

(
C,Γk

2n (ω)
)
⩽ dM(y,C) and dM(y, z)⩽ diamM

(
Γk

2n (ω)
)
⩽ 2n (309)≍ dM(y,C).

By combining these two estimates with (311) and the triangle inequality, we conclude that

dM

(
γk

2n (ω), x
)
⩽ dM

(
γk

2n (ω), z
)+dM(z, y)+dM(y, x)≲ dM(y,C)+dM(x, y). □
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6. VOLUME COMPUTATIONS

In this section we will prove volume estimates that occur in our bounds on the separation modulus.

6.1. Direct sums. Fix n ∈N and a normed space X = (Rn ,∥ · ∥X). Throughout what follows, the (normal-
ized) cone measure [GM87] on ∂BX will be denoted κX. Thus, for every measurable A ⊆ ∂BX,

κX(A)
def= voln([0,1]A)

voln(BX)
= voln({sv : (s, v) ∈ [0,1]× A})

voln(BX)
. (312)

The probability measure κX is characterized by the following “generalized polar coordinates” identity,
which holds for every f ∈ L1(Rn); see e.g. [NR03, Proposition 1].�

Rn
f (x)dx = nvoln(BX)

� ∞

0
r n−1

(�
∂BX

f (rθ)dκX(θ)

)
dr. (313)

As a quick application of (313), we will next record for ease of later reference the following computation
of the volume of the unit ball of an ℓp direct sum of normed spaces.

Lemma 148. Fix n,m1, . . . ,mn ∈N and normed spaces
{

X j =
(
Rm1 ,∥ ·∥Xm j

)}n
j=1. Then

∀p ∈ [1,∞], volm1+...+mn

(
BX1⊕p ...⊕p Xn

)= ∏n
j=1Γ

(
1+ m j

p

)
volm j

(
BX j

)
Γ
(
1+ m1+...+mn

p

) . (314)

Proof. This follows by induction on n from the following identity (direct application of Fubini), which
holds for every a,b ∈N and any two normed spaces X = (Ra ,∥ ·∥X) and Y = (Rb ,∥ ·∥Y).

vola+b(BX⊕p Y) =
�

BX

volb

((
1−∥x∥p

X

) 1
p BY

)
dx = volb(BY)

�
BX

(
1−∥x∥p

X

) b
p dx

(313)= vola(BX)volb(BY)

� 1

0
ar a−1(1− r p) b

p dr = vola(BX)volb(BY)
Γ
(
1+ b

p

)
Γ
(
1+ a

p

)
Γ
(
1+ a+b

p

) . □

By Lemma 148, for every m ∈N, every normed space X = (Rm ,∥ ·∥X) satisfies

volnm
(
Bℓn

p (X)
)= Γ(

1+ m
p

)n

Γ
(
1+ nm

p

) volm(BX)n and hence volnm
(
Bℓn

p (X)
) 1

nm ≍ volm(BX)
1
m

n
1
p

. (315)

In particular, for every m,n ∈N and 1⩽ p, q ⩽∞ we have

volnm
(
Bℓn

p (ℓm
q )

)= 2nmΓ
(
1+ 1

q

)nm
Γ
(
1+ m

p

)n

Γ
(
1+ m

q

)n
Γ
(
1+ nm

p

) and hence volnm
(
Bℓn

p (ℓm
q )

) 1
nm ≍ 1

n
1
p m

1
q

. (316)

The following simple lemma records an extension of the second part of (315) to m-fold iterations of
the operation X 7→ ℓn

p (X), i.e., to spaces of the form

ℓ
nm
pm

(
ℓ

nm−1
pm−1

( · · ·ℓn1
p1

(X) · · ·));

the main point for us here is that the implicit constants remain bounded as m →∞.

Lemma 149. Fix {nk }∞k=0 ⊆N and {pk }∞k=1 ⊆ [1,∞]. Let X = (Rn0 ,∥ ·∥X) be a normed space and define

∀k ∈N∪ {0}, Xk+1 = ℓnk
pk

(Xk ), where X0 = X.

Then, for every m ∈Nwe have

voln0···nm

(
BXm

) 1
n0 ···nk ≍ voln0

(
BX

) 1
n0∏m

k=1 n
1

pk

k

.
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Proof. With the convention that an empty product equals 1, by applying (315) inductively we see that

voln0···nm

(
BXm

)= voln0

(
BX

)n1···nm
m∏

k=1

Γ
(
1+ n0···nk−1

pk

)nk ···nm

Γ
(
1+ n0···nk

pk

)nk+1···nm
.

Hence,

voln0···nm

(
BXm

) 1
n0 ···nk

∏m
k=1 n

1
pk

k

voln0

(
BX

) 1
n0

=
m∏

k=1

Γ
(
1+ n0···nk−1

pk

) 1
n0 ···nk−1

Γ
(
1+ n0···nk

pk

) 1
n0 ···nk

n
1

pk

k =
m∏

k=1
fn0···nk−1,nk

(
1

pk

)
, (317)

where for u, v, t > 0 we denote

fu,v (t )
def= Γ(1+ut )

1
u

Γ(1+uv t )
1

uv

v t .

Since
(

logΓ(z)
)′ = �∞

0
se−zs

1−e−s ds for z > 0 (see e.g. [WW62, Chapter XII]), if u, t > 0 and v ⩾ 1, then

d

dt
log fu,v (t ) = log v +

� ∞

0

(
e−ut s −e−uv t s) se−s

1−e−s ds ⩾ 0.

Thus, fu,v is increasing on [0,∞), and therefore we get from (317) that

1 =
m∏

k=1
fn0···nk−1,nk (0)⩽

voln0···nm

(
BXm

) 1
n0 ···nk

∏m
k=1 n

1
pk

k

voln0

(
BX

) 1
n0

⩽
m∏

k=1
fn0···nk−1,nk (1) = (n0!)

1
n0 n1 · · ·nm(

(n0 · · ·nm)!
) 1

n0 ···nm

⩽ e. □

The first part of Lemma 150 below is a restatement of Lemma 36 from the Introduction. Qualitatively,
it shows that the class of spaces for which Conjecture 10 holds is closed under unconditional composi-
tion, namely, norms of the form (318) below. The second part of Lemma 150 is further information that
pertains to Conjecture 48, i.e., to the symmetric version of the weak reverse isoperimetric conjecture, for
which we want the operator S to be the identity mapping (i.e., weak reverse isoperimetry holds without
the need to first change the “position” of the given normed space).

Lemma 150. Fix n,m1, . . . ,mn ∈N. Let X1 = (Rm1 ,∥ · ∥X1 ), . . . ,Xn = (Rmn ,∥ · ∥Xn ) be normed spaces. Also, let
E = (Rn ,∥ ·∥E) be an unconditional normed space. Define a normed space X = (Rm1 × . . .×Rmn ,∥ ·∥X) by

∀x = (x1, . . . , xn) ∈Rm1 × . . .×Rmn , ∥x∥X
def= ∥∥(∥x1∥X1 , . . . ,∥xn∥Xn

)∥∥
E. (318)

Then, Conjecture 10 (equivalently, Conjecture 35) holds for X if it holds for X1, . . . ,Xn .
More precisely, suppose that there exist α > 0, linear transformations S1 ∈ SLm1 (R), . . . ,Sn ∈ SLmn (R),

and normed spaces Y1 = (Rm1 ,∥ ·∥Y1 ), . . . ,Yn = (Rmn ,∥ ·∥Yn ) such that

∀k ∈ {1, . . . ,n}, BYk ⊆ Sk BXk and
iq

(
BYk

)
p

mk

(
volmk

(
BXk

)
volmk

(
BYk

) ) 1
mk

⩽α. (319)

Then, there exist a normed space Y = (Rm1 × . . .×Rmn ,∥ ·∥X) and S ∈ SL(Rm1 × . . .×Rmn ) such that

BY ⊆ SBX and
iq(BY)p

m1 + . . .+mn

(
volm1+...+mn (BX)

volm1+...+mn (BY)

) 1
m1+...+mn

≲α. (320)

If furthermore S1, . . . ,Sn are all identity mappings (of the respective dimensions), then S can be taken to
be the identity mapping provided the the following two conditions hold:∥∥∥ n∑

i=1
ei

∥∥∥
E

∥∥∥ n∑
i=1

ei

∥∥∥
E*
≲ n, (321)

and ( n∏
k=1

mmk

k volmk

(
BXk

)) 1
m1+...+mn

≲
m1 + . . .+mn

n
min

k∈{1,...,n}
volmk

(
BXk

) 1
mk . (322)

97



Note that (322) is satisfied in particular if mi ≍ m j and volmi (BXi )
1

mi ≍ volmi (BX j )
1

m j for every i , j ∈ {1, . . . ,n}.

Prior to proving (150) we will make some basic observations. Firstly, (318) indeed defines a norm
because it is well-known that the requirement that E = (Rn ,∥ · ∥E) is an unconditional normed space is
equivalent to (see e.g. [LT77, Proposition 1.c.7]) the following “contraction property.”

∀a, x ∈Rn , ∥(a1x1, . . . , an xn)∥E ⩽ ∥a∥ℓn∞∥x∥E. (323)

Thus, ∥x∥E ⩽ ∥y∥E if x, y ∈ Rn satisfy |xi |⩽ |yi | for every i ∈ {1, . . . ,n}, so the triangle inequality for (318)
follows from applying the triangle inequalities entry-wise for each of the norms {∥ · ∥Xi }n

i=1, using this
monotonicity property, and then applying the triangle inequality for ∥ ·∥E.

It is well-known that condition (321) holds (as an equality) when E is a symmetric normed space (see
e.g. [LT79, Proposition 3.a.6]). More generally, condition (321) holds (also as an equality) in the setting of
the following simple averaging lemma, which shows in particular that Lemma 150 implies Lemma 52.

Lemma 151. Suppose that X = (Rn ,∥·∥X) is a normed space such that for every j ,k ∈ {1, . . . ,n} there exists a
permutation π ∈ Sn with π( j ) = k such that ∥∑n

i=1 aπ(i )ei∥X = ∥∑n
i=1 ai ei∥X for every a1, . . . , an ∈R. Then,∥∥∥ n∑

i=1
ei

∥∥∥
X

∥∥∥ n∑
i=1

ei

∥∥∥
X*

= n.

Proof. Denote S(X) = {π ∈ Sn : Tπ ∈ Isom(X)}, where Tπ ∈ GLn(R) was defined in Example 39 for each
π ∈ Sn . Then, S(X) is a subgroup of Sn that we are assuming acts transitively on {1, . . . ,n}. Consequently,

∀i , j ∈ {1, . . . ,n}, |{π ∈S(X) : π(i ) = j }| = |S(X)|
n

. (324)

For every a1, . . . , an ∈Rwe have

1

|S(X)|
∑

π∈S(X)

n∑
i=1

aπ(i )ei =
n∑

i=1

( n∑
j=1

|{π ∈S(X) : π(i ) = j }|
|S(X)| a j

)
ei

(324)=
∑n

j=1 a j

n

n∑
i=1

ei .

Hence, ∣∣∣〈 n∑
j=1

e j ,
n∑

j=1
a j e j

〉∣∣∣= ∣∣∣ n∑
j=1

a j

∣∣∣= n
∥∥ 1
|S(X)|

∑
π∈S(X)

∑n
i=1 aπ(i )ei

∥∥
X∥∥∑n

i=1 ei
∥∥

X

⩽
n

|S(X)|
∑
π∈S(X)

∥∥∑n
i=1 aπ(i )ei

∥∥
X∥∥∑n

i=1 ei
∥∥

X

= n
∥∥∑n

i=1 ai ei
∥∥

X∥∥∑n
i=1 ei

∥∥
X

,

where the penultimate step uses convexity and the final step uses the assumption that Tπ is an isometry
of X for every π ∈S(X). Since this holds for every a1, . . . , an ∈R, we have ∥∑n

i=1 ei∥X* ⩽ n/∥∑n
i=1 ei∥X. The

reverse inequality holds for any normed space X = (Rn ,∥ ·∥X) because 〈∑n
i=1 ei ,

∑n
i=1 ei 〉 = n. □

By combining Lemma 150 and Lemma 151 we obtain the following corollary that establishes Conjec-
ture 48 for the iteratively nested ℓp spaces of Lemma 149, provided it holds for the initial space X.

Corollary 152. Fix {nk }∞k=0 ⊆N and {pk }∞k=1 ⊆ [1,∞]. Let X = (Rn0 ,∥ ·∥X) be a normed space and define

∀k ∈N, Xk+1 = ℓnk
pk

(Xk ), where X0 = X. (325)

Suppose that α> 0 and there exists a normed space Y = (Rn0 ,∥ ·∥Y) with BY ⊆ BX and that satisfies

iq(BY)p
n0

(
voln0 (BX)

voln0 (BY)

) 1
n0
⩽α. (326)

Then, for every m ∈N there is a normed space Ym = (Rn0···nm ,∥ ·∥Ym ) with BYm ⊆ BXm and

iq
(
BYm

)
p

n0 · · ·nm

(
voln0···nm

(
BXm

)
voln0···nm

(
BYm

)) 1
n0 ···nm

≲α,
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To see why Corollary 152 indeed follows from Lemma 150 and Lemma 151, observe that if we start
with E0 = R and define inductively Ek+1 = ℓ

nk
pk

(Ek ), then for each m ∈ N the space Em is unconditional
and satisfies the assumptions of Lemma 151. The space Ym of Corollary 152 is the same space that is
defined in Lemma 150 if we take E = Em , and also X1 = . . . = Xm = X, which ensures that (322) holds.

Proof of Lemma 150. Denote

M
def=

n∑
k=1

mk = dim(X) and ∀k ∈ {1, . . . ,n}, ρk
def= volmk (BXk )

1
mk . (327)

Fix positive numbers c,C1, . . . ,Cn ,γ1, . . . ,γn , w1, . . . wn , w∗
1 , . . . , w∗

n ,β1, . . . ,βn > 0 that satisfy the following
conditions (their values will be specified later). Firstly, we require that∥∥∥ n∑

i=1
wi ei

∥∥∥
E
=

∥∥∥ n∑
i=1

w∗
i ei

∥∥∥
E*

= 1. (328)

Secondly, we require that

∀k ∈ {1, . . . ,n}, wk w∗
k ⩾

mk

γk M
. (329)

Finally, we require that

∀k ∈ {1, . . . ,n},
1

cwkρk
⩽βk ⩽

Ck

wkρk
, (330)

Denote

D
def=

( n∏
k=1

β
mk

k

) 1
M

. (331)

Consider the block diagonal linear operator S :Rm1 × . . .×Rmn →Rm1 × . . .×Rmn that is given by

∀x = (x1, . . . , xn) ∈Rm1 × . . .×Rmn , Sx
def= 1

D

(
β1S1x1, . . . ,βnSn xn

)
. (332)

The normalization by D in (332) ensures that S ∈ SL(Rm1 × . . .×Rmn ).
Since

∑n
k=1 w∗

k ek is a unit functional in E∗, for every x = (x1, . . . , xn) ∈Rm1 × . . .×Rmn we have

∥∥S−1x
∥∥

X
(318)∧(332)= D

∥∥∥∥ n∑
k=1

∥S−1
k xk∥Xk

βk
ek

∥∥∥∥
E

(328)
⩾ D

〈
n∑

k=1
w∗

k ek ,
n∑

k=1

∥S−1
k xk∥Xk

βk
ek

〉
(329)
⩾

D

M

n∑
k=1

mk∥S−1
k xk∥Xk

γk wkβk
.

This shows that

SBX ⊆
{

x ∈Rm1 × . . .×Rmn :
n∑

k=1

mk∥S−1
k xk∥Xk

γk wkβk
⩽

M

D

}
= M

D
B(

γ1 w1β1
m1

S1X1

)
⊕1...⊕1

(
γn wnβn

mn
Sn Xn

). (333)

Using Lemma 148, we therefore have

volM (BX)
1

M ⩽
M

D
volM

(
B(

γ1 w1β1
m1

S1X1

)
⊕1...⊕1

(
γn wnβn

mn
Sn Xn

)) 1
M (314)= 1

D

(
M M

M !

n∏
k=1

mk !

(
γk wkβkρk

mk

)mk
) 1

M

(330)
⩽

1

D

(
M M

M !

n∏
k=1

mk !

mmk

k

(γkCk )mk

) 1
M

⩽
e

D

(
n∏

k=1
(γkCk )mk

) 1
M

.

(334)

Next, for every x = (x1, . . . , xn) ∈Rm1 × . . .×Rmn we have∥∥S−1x
∥∥

X
(318)∧(332)= D

∥∥∥∥ n∑
k=1

∥S−1
k xk∥Xk

βk
ek

∥∥∥∥
E

(323)
⩽ D

(
max

k∈{1,...,n}

∥S−1
k xk∥Xk

wkβk

)∥∥∥∥ n∑
k=1

wk ek

∥∥∥∥
E

(328)= D max
k∈{1,...,n}

∥S−1
k xk∥Xk

wkβk
.
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This establishes the following inclusion.

SBX ⊇ 1

D

n∏
k=1

wkβk Sk BXk

def= Ω. (335)

Thanks to (62), the assumption (319) of Lemma 150 implies that

∀k ∈ {1, . . . ,n}, λ
(
Sk BXk

)
ρ2

k
(327)= λ

(
Sk BXk

)
volmk

(
BXk

) 2
mk ≲α2mk . (336)

For each k ∈ {1, . . . ,n} take fk : Sk BXk → R that is smooth on the interior of Sk BXk , vanishes on ∂Sk BXk ,
and satisfies ∆ fk =−λ(Sk BXk ) fk on the interior of Sk BXk . Define f :Ω→R by

∀x = (x1, . . . , xn) ∈Ω= 1

D

n∏
k=1

wkβk Sk BXk , f (x)
def=

n∏
k=1

fk

( D

wkβk
xk

)
,

Thus f ≡ 0 on the boundary ofΩ and on the interior ofΩ it is smooth and satisfies

∆ f =−D2
( n∑

k=1

λ
(
Sk BXk

)
(wkβk )2

)
f (337)

Hence,

λ(SX) =λ(SBX)
(335)
⩽ λ(Ω)

(337)
⩽ D2

( n∑
k=1

λ
(
Sk BXk

)
(wkβk )2

)
(330)
⩽ (cD)2

( n∑
k=1

λ
(
Sk BXk

)
ρ2

k

)
(336)
≲ (cαD)2M . (338)

By combining (334) and (338) we see that

λ(SX)volM (BX)
2

M ≲ c2
( n∏

k=1
(γkCk )mk

) 2
M

α2M .

Another application of (62) now shows that the desired conclusion (320) holds with Y = ChSX (recall the
definition of Cheeger space in Section 1.6.1) provided

c

( n∏
k=1

(γkCk )mk

) 1
M

≲ 1. (339)

To get (320), by the Lozanovskĭı factorization theorem [Loz69] there exist w1, . . . wn , w∗
1 , . . . , w∗

n > 0
such that (328) holds and also wk w∗

k = mk /M for every k ∈ {1, . . . ,n}. Thus (329) holds (as an equality) if
we choose γ1 = . . . = γn = 1. If we take c =C1 = . . . =Cn = 1 and βk = 1/(wkρk ) for each k ∈ {1, . . . ,n}, then
both (330) and (339) also hold (as equalities). With these choices, (320) holds.

Suppose that the additional assumptions (321) and (322) hold. Denote η = ∥∑n
i=1 ei∥E∥∑n

i=1 ei∥E* /n.
So, η=O(1) by (321). Take w1 = . . . = wn = 1/∥∑n

i=1 ei∥E and w∗
1 = . . . = w∗

n = 1/∥∑n
i=1 ei∥E* , so that (328)

holds by design. This choice also ensures that if we take γk = mk /(ηM) for each k ∈ {1, . . . ,n}, then (329)
holds (as an equality). Next, choose Ck = ρk for each k ∈ {1, . . . ,n}, as well as β1 = . . . = βn = ∥∑n

i=1 ei∥E

and c = 1/mink∈{1,...,n}ρk . This ensures that (330) holds, and also that (339) coincides with the assump-
tion (322), sinceη=O(1). The desired conclusion (320) therefore holds with Sx = (S1x1, . . . ,Sn xn) in (332).
In particular, if Sk = Idmk for every k ∈ {1, . . . ,n}, then we can take S = IdRm1×...×Rmn in (320). □

The following lemma provides a formula for the cone measure of Orlicz spaces. Fix a convex increasing
functionψ : [0,∞) → [0,∞] that satisfiesψ(0) = 0 and limx→∞ψ(x) =∞ (so, if limx→a−ψ(x) =∞ for some
a ∈ (0,∞), then we require that ψ(x) =∞ for every x ⩾ a). Henceforth, the associated Orlicz space (see
e.g. [RR91b]) ℓn

ψ = (Rn ,∥ ·∥ℓn
ψ

) will always be endowed with the Luxemburg norm that is given by

∀x ∈Rn , ∥x∥ℓn
ψ
= inf

{
s > 0 :

n∑
i=1

ψ
( |xi |

s

)
⩽ 1

}
. (340)
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Lemma 153. Suppose that ψ : [0,∞) → [0,∞] is convex, increasing, continuously differentiable on the set
{x ∈ (0,∞) : ψ(x) <∞}, and satisfies ψ(0) = 0 and limx→∞ψ(x) =∞. Then, for every g ∈ L1(κℓn

ψ
) we have

n!

2n voln
(
Bℓn

ψ

)�
∂Bℓn

ψ

g (θ)dκℓn
ψ

(θ)

=
�
∂Bℓn

1

g
(
ψ−1(|τi |)sign(τ1), . . . ,ψ−1(|τn |)sign(τn)

)∑n
i=1ψ

−1(|τi |)ψ′(ψ−1(|τi |)
)∏n

i=1ψ
′(ψ−1(|τi |)

) dκℓn
1

(τ).

(341)

For example, when ψ(t ) = t p for some p ⩾ 1 and every t ⩾ 0, in which case ℓn
ψ = ℓn

p , Lemma 153 gives

�
∂Bℓn

p

g dκℓn
ψ
=

Γ
(
1+ n

p

)
n!Γ

(
1+ 1

p

)n

�
∂Bℓn

1

g ◦M n
1→p (τ)

|τ1 · · ·τn |1−
1
p

dκℓn
1

(τ),

where M1→p :Rn →Rn is the Mazur map [Maz29] from ℓn
1 to ℓn

p , i.e.,

∀x ∈Rn , M n
1→p (x1, . . . , xn) = (|x1|

1
p sign(x1), . . . , |xn |

1
p sign(xn)

)
.

As another special case of Lemma 153, consider the following family of Orlicz spacesΩn
β
= (Rn ,∥ ·∥Ωn

β
):

∀β> 0, Ωn
β

def= ℓn
ψβ

where ∀t ⩾ 0, ψβ(t )
def=

{ 1
β log

( 1
1−t

)
if 0⩽ t < 1,

∞ if t ⩾ 1.
(342)

Observe that by considering the case g ≡ 1 of (341) we obtain the following identity.

�
∂Bℓn

ψ

g dκℓn
ψ
=
�
∂Bℓn

1

g
(
ψ−1(|τi |)sign(τ1), . . . ,ψ−1(|τn |)sign(τn)

)∑n
i=1ψ

−1(|τi |)ψ′(ψ−1(|τi |))∏n
i=1ψ

′(ψ−1(|τi |)) dκℓn
1

(τ)

�
∂Bℓn

1

∑n
i=1ψ

−1(|τi |)ψ′(ψ−1(|τi |))∏n
i=1ψ

′(ψ−1(|τi |)) dκℓn
1

(τ)
. (343)

When ψ=ψβ for some β> 0 (we will eventually need to work with β≍ n), for every τ ∈ ∂Bℓn
1

we have∑n
i=1ψ

−1
β

(|τi |)ψ′
β

(
ψ−1
β

(|τi |)
)

∏n
i=1ψ

′
β

(
ψ−1
β

(|τi |)
) =

∑n
i=1

(
1−e−β|τi |) eβ|τi |

β∏n
i=1

eβ|τi |
β

= βn−1 ∑n
i=1

(
eβ|τi |−1

)
e
β∥τ∥ℓn

1

= βn−1

eβ

n∑
i=1

(
eβ|τi |−1

)
. (344)

Consequently, (343) gives the following identity, which we will need later.

�
∂BΩn

β

g dκΩn
β
=
�
∂Bℓn

1

g
(
(eβ|τ1|−1)sign(τ1), . . . , (eβ|τn |−1)sign(τn)

)∑n
i=1

(
eβ|τi |−1

)
dκℓn

1
(τ)

�
∂Bℓn

1

∑n
i=1

(
eβ|τi |−1

)
dκℓn

1
(τ)

. (345)

Proof of Lemma 153. For each i ∈ {1, . . . ,n} define fi :Rn →R by setting fi (0) = 0 and

∀y ∈Rn ∖ {0}, fi (y) = ∥y∥ℓn
1
ψ−1

( |yi |
∥y∥ℓn

1

)
sign(yi ).

Consider f = ( f1, . . . , fn) :Rn →Rn . Then, ∥ f (y)∥ℓn
ψ
= ∥y∥ℓn

1
for every y ∈Rn . Hence, f (Bℓn

1
) = Bℓn

ψ
. Now,

�
∂Bℓn

ψ

g (θ)dκℓn
ψ

(θ)
(313)= 1

voln
(
Bℓn

ψ

) �
f (Bℓn

1
)
g
( 1

∥x∥ℓn
ψ

x
)

dx

= 1

voln
(
Bℓn

ψ

) �
Bℓn

1

g
( 1

∥ f (y)∥ℓn
ψ

f (y)
)
|det f ′(y)|dy

(313)=
voln

(
Bℓn

1

)
voln

(
Bℓn

ψ

) �
∂Bℓn

1

g
(

f (τ)
)|det f ′(τ)|dκℓn

1
(τ),
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where in the final step we used the fact f is positively homogeneous of order 1, and hence its derivative is
homogeneous of order 0 almost everywhere ( f is continuously differentiable on {y ∈ Rn ; y1, . . . , yn ̸= 0}).
Since the volume of the unit ball of ℓn

1 equals 2n/n!, it remains to check that the Jacobian of f satisfies

det f ′(τ) =
∑n

i=1ψ
−1(|τi |)ψ′(ψ−1(|τi |)

)∏n
i=1ψ

′(ψ−1(|τi |)
) ,

for every τ ∈ ∂Bℓn
1

with τ1, . . . ,τn ̸= 0. This is so because for every such τ and i , j ∈ {1, . . . ,n} we have

∂ j fi (τ) = δi j −τi sign(τ j )

ψ′(ψ−1(|τi |)
) +ψ−1(|τi |)sign(τi )sign(τ j ).

Hence, f ′(τ) = A(τ)+u(τ)⊗ v(τ), where A(τ) ∈ Mn(R) is the diagonal matrix Diag((1/ψ′(ψ−1(|τi |)))n
i=1)

and u(τ) = (ψ−1(|τi |)sign(τi )−τi /ψ′(ψ−1(|τi |)))n
i=1, v(τ) = (sign(τi ))n

i=1 ∈Rn . By the textbook formula for
the determinant of a rank-1 perturbation of an invertible matrix (e.g. [Mey00, Section 6.2]), it follows that

det f ′(τ) = (
1+〈A(τ)−1u(τ), v(τ)〉)detA(τ)

=
1+∑n

i=1ψ
′(ψ−1(|τi |)

)(
ψ−1(|τi |)sign(τi )− τi

ψ′
(
ψ−1(|τi |)

))
sign(τi )∏n

i=1ψ
′(ψ−1(|τi |)

) =
∑n

i=1ψ
−1(|τi |)ψ′(ψ−1(|τi |)

)∏n
i=1ψ

′(ψ−1(|τi |)
) . □

Another description of κX is the fact (see e.g. [NR03, Lemma 1]) that the Radon–Nikodým derivative
of the (n −1)-dimensional Hausdorff (non-normalized surface area) measure on ∂BX with respect to the
(non-normalized cone) measure voln(BX)κX is equal at almost every x ∈ ∂BX to n times the Euclidean
length of the gradient at x of the function u 7→ ∥u∥X. In other words, for any g ∈ L1(∂BX),�

∂BX

g (x)dx = nvoln(BX)

�
∂BX

g (x)
∥∥∇∥·∥X(x)

∥∥
ℓn

2
dκX(x). (346)

The special case g ≡ 1 of (346) gives the following identity.

voln−1(∂BX)

voln(BX)
= n

�
∂BX

∥∥∇∥·∥X(x)
∥∥
ℓn

2
dκX(x) =

 
BX

∥∇∥ ·∥X(x)∥ℓn
2

∥x∥n−1
X

dx, (347)

where the second equality in (347) is an application of (313) because it is straightforward to check that
∥∇∥ ·∥X(r x)∥ℓn

2
= ∥∇∥ ·∥X(x)∥ℓn

2
for any r > 0 and x ∈Rn at which the norm ∥ ·∥X is smooth.

Remark 154. By applying Cauchy–Schwarz to the first equality in (347), we see that

voln−1(∂BX)

voln(BX)
⩽ n

(�
∂BX

∥∥∇∥·∥X(x)
∥∥2
ℓn

2
dκX(x)

) 1
2 =

(
n

voln(BX)

�
∂BX

∥∥∇∥·∥X(x)
∥∥
ℓn

2
dx

) 1
2

, (348)

where the final step of (348) is an applications of (346) with g (x) = ∥∇∥·∥X(x)∥ℓn
2

. If ∥·∥X is twice continu-
ously differentiable on Rn ∖ {0} and ϕ :R→ [0,∞) is twice continuously differentiable with ϕ′(1) > 0 and
ϕ′′(0) = 0, then because for every x ∈ ∂BX the vector ∇∥ · ∥X(x)/∥∇∥ · ∥X(x)∥ℓn

2
is the unit outer normal to

∂BX at x, by the divergence theorem we have�
∂BX

∆
(
ϕ◦∥ ·∥X

)
(x)dx =

�
∂BX

div∇(
ϕ◦∥ ·∥X

)
(x)dx =

�
∂BX

〈∇(ϕ◦∥ ·∥X)(x),∇∥·∥X(x)〉∥∥∇∥·∥X(x)
∥∥
ℓn

2

dx

=
�
∂BX

ϕ′(∥x∥X
)∥∥∇∥·∥X(x)

∥∥
ℓn

2
dx =ϕ′(1)

�
∂BX

∥∥∇∥·∥X(x)
∥∥
ℓn

2
dx.

A substitution of this identity into (348) give the following bound.

voln−1(∂BX)

voln(BX)
⩽

p
n√

ϕ′(1)

( 
∂BX

∆
(
ϕ◦∥ ·∥X

)
(x)dx

) 1
2

. (349)
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In particular, for every p > 2 we have

voln−1(∂BX)

voln(BX)
⩽

√
n

p

( 
BX

∆
(∥ ·∥p

X

)
(x)dx

) 1
2

. (350)

It is worthwhile to record (349) separately because this estimate is sometimes convenient for getting
good bounds on voln−1(∂BX). In particular, by using (350) when X is an ℓp direct sum one can obtain
an alternative derivation of some of the ensuing estimates. Another noteworthy consequence of (348) is
when there is a transitive subgroup of permutations G ⩽ Sn such that ∥(xπ(1), . . . , xπ(n))∥X = ∥x∥X for all
x ∈Rn and π ∈G . Under this further symmetry assumption, the first inequality of (348) becomes

voln−1(∂BX)

voln(BX)
⩽ n

3
2

(�
∂BX

(
∂∥ ·∥X

∂x1
(x)

)2

dκX(x)

) 1
2

.

The following lemma provides a probabilistic interpretation of the cone measure which generalizes
the treatment of the special case X = ℓn

p by Schechtman–Zinn [SZ90] and Rachev–Rüschendorf [RR91a].

Lemma 155 (probabilistic representation of cone measure). Fix n ∈N and let X = (Rn ,∥·∥X) be a normed
space. Suppose that ϕ : [0,∞) → [0,∞) is a continuous function such that ϕ(0) = 0, ϕ(t ) > 0 when t > 0
and

�∞
0 r n−1ϕ(r )dr <∞. Let V be a random vector in Rn whose density at each x ∈Rn is equal to

1

nvoln(BX)
�∞

0 r n−1ϕ(r )dr
ϕ

(∥x∥X
)
, (351)

where we note that (351) in indeed a probability density by (313). Then, the density of ∥V∥X at s ∈ [0,∞) is
equal to sn−1ϕ(s)/

�∞
0 r n−1ϕ(r )dr . Moreover, the following two assertions hold:

• V/∥V∥X is distributed according to the cone measure κX,
• ∥V∥X and V/∥V∥X are (stochastically) independent.

Proof. The density of ∥V∥X at s ∈ [0,∞) is equal to

d

ds
Prob

[∥V∥X ⩽ s
] (351)= d

ds

(
1

nvoln(BX)
�∞

0 r n−1ϕ(r )dr

�
sBX

ϕ
(∥x∥X

)
dx

)
(313)= d

ds

(� s
0 tr n−1ϕ(r )dr�∞
0 r n−1ϕ(r )dr

)
= sn−1ϕ(s)�∞

0 r n−1ϕ(r )dr
.

The rest of Lemma 155 is equivalent to showing that for every measurable A ⊆ ∂BX and ρ > 0,

Prob
[

V

∥V∥X
∈ A

∣∣∣∥V∥X = ρ
]
= κX(A).

To prove this identity, observe first that for every a,b ∈Rwith a < b we have

voln([a,b]A) = voln

(
b
((

[0,1]A
)
∖

( a

b
[0,1]A

)))= (bn −an)voln([0,1]A).

Hence, it follows from the definition (312) that

κX(A) = voln([a,b]A)

voln([a,b]∂BX)
. (352)

Consequently,

Prob
[

V

∥V∥X
∈ A

∣∣∣∥V∥X = ρ
]
= lim
ε→0

Prob[V ∈ ∥V∥X A and ρ−ε⩽ ∥V∥X ⩽ ρ+ε]

Prob[ρ−ε⩽ ∥V∥X ⩽ ρ+ε]

= lim
ε→0

�
([0,∞)A)∩([ρ−ε,ρ+ε]∂BX)ϕ(∥x∥X)dx�

[ρ−ε,ρ+ε]∂BX
ϕ(∥x∥X)dx

= lim
ε→0

voln([ρ−ε,ρ+ε]A)

voln([ρ−ε,ρ+ε]∂BX)
= κX(A),

where the penultimate step holds as ϕ is continuous at ρ and ϕ(ρ) > 0, and the final step uses (352). □
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Lemma 156. Fix m,n ∈N and p ∈ (1,∞). Suppose that X = (Rm ,∥ ·∥X) is a normed space. Let R1, . . . ,Rn be
i.i.d. random variables taking values in [0,∞) whose density at each t ∈ (0,∞) is equal to

p

2(p −1)Γ
(m

p

) t
m

2p−2−1e−t
p

2p−2
. (353)

Then,

volnm−1
(
∂Bℓn

p (X)
)

volnm
(
Bℓn

p (X)
) =

pΓ
(
1+ nm

p

)
Γ
(
1+ nm−1

p

) �
(∂BX)n

E

[( n∑
i=1

Ri
∥∥∇∥·∥X(xi )

∥∥2
ℓm

2

) 1
2

]
dκ⊗n

X (x1, . . . , xn). (354)

Furthermore,

�
∂Bℓn

p (X)

∥∥∇∥·∥ℓn
p (X)

∥∥2
ℓn

2 (ℓm
2 ) dκℓn

p (X) =
nΓ

(nm
p

)
Γ
(m+2p−2

p

)
Γ
(m

p

)
Γ
(nm+2p−2

p

) �
∂BX

∥∥∇∥·∥X
∥∥2
ℓm

2
dκX. (355)

Proof. For almost every x = (x1, . . . , xn) ∈ ℓn
p (X) we have

∇∥·∥ℓn
p (X)(x) = 1

∥x∥p−1
ℓn

p (X)

(∥x1∥p−1
X ∇∥·∥X(x1), . . . ,∥xn∥p−1

X ∇∥·∥X(xn)
)
.

Consequently,

∥x∥p−1
ℓn

p (X)

∥∥∥∇∥·∥ℓn
p (X)

( x

∥x∥ℓn
p (X)

)∥∥∥
ℓn

2 (ℓm
2 )

=
( n∑

i=1
∥xi∥2p−2

X

∥∥∥∇∥·∥X

( xi

∥x∥ℓn
p (X)

)∥∥∥2

ℓm
2

) 1
2

=
( n∑

i=1
∥xi∥2p−2

X

∥∥∥∇∥·∥X

( xi

∥xi∥X

)∥∥∥2

ℓm
2

) 1
2

,

(356)

where we used the straightforward fact that the gradient of any (finite dimensional) norm is homoge-
neous of order 0 (on its domain of definition, which is almost everywhere).

Let V= (V1, . . . ,Vn) be a random vector on ℓn
p (X) whose density at x = (x1, . . . , xn) ∈ ℓn

p (X) is

1

Γ
(
1+ nm

p

)
volnm

(
Bℓn

p (X)
)e

−∥x∥p

ℓn
p (X) = 1

Γ
(
1+ nm

p

)
volnm

(
Bℓn

p (X)
) n∏

i=1
e−∥xi ∥p

X . (357)

By combining Lemma 155 with the first equality in (347), we see that

volnm−1
(
∂Bℓn

p (X)
)

volnm
(
Bℓn

p (X)
) = nmE

[∥∥∥∇∥·∥ℓn
p (X)

( V

∥V∥ℓn
p (X)

)∥∥∥
ℓn

2 (ℓm
2 )

]
. (358)

Also, using the formula from Lemma 155 for the density of ∥V∥ℓn
p (X), for every q >−nm we have

E
[
∥V∥q

ℓn
p (X)

]
=
�∞

0 snm+q−1e−sp
ds�∞

0 r nm−1e−r p dr
=
Γ
(nm+q

p

)
Γ
(nm

p

) . (359)

Consequently,

E
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( V

∥V∥ℓn
p (X)

)∥∥∥
ℓn

2 (ℓm
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]
= E

[
∥V∥p−1

ℓn
p (X)
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E
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∥V∥ℓn
p (X)

)∥∥∥
ℓn

2 (ℓm
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]

=
Γ
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(360)
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where the first step of (360) uses the independence of ∥V∥ℓn
p (X) and V/∥V∥ℓn

p (X), by Lemma 155, and the
final step of (360) is a substitution of (358) and the case q = p −1 of (359). Hence,
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( Vi

∥Vi∥X

)∥∥∥2

ℓm
2

) 1
2

]
,

(361)

where in the last step we used the identity (356).
The product structure of the density of V in (357) means that V1, . . . ,Vn are (stochastically) indepen-

dent. By Lemma 155, for each i ∈ {1, . . . ,n} the random vector Vi /∥Vi∥X is distributed on ∂BX according
to the cone measure κX, and it is independent of the random variable

Ri
def= ∥Vi∥2p−2

X , (362)

whose density at t ∈ (0,∞) is equal (using Lemma 155 once more) to

d

dt
Prob

[
∥Vi∥X ⩽ t

1
2p−2

]
= d
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� t
1

2p−2

0

sm−1e−sp

�∞
0 r m−1e−r p dr
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2(p −1)Γ
(m

p

) t
m

2p−2−1e−t
p

2p−2
.

Hence, the identity (361) which we established above coincides with the desired identity (354).
To prove the identity (355), letR be a random variable whose density at each t ∈ (0,∞) is given by (353),

i.e., R1, . . . ,Rn are independent copies of R. Then, for every α>−m/(2p −2) we have

E
[
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Γ
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p

) . (363)

Using Lemma 155 (including the independence of Vi /∥Vi∥X and ∥Vi∥X), we have
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(364)

where we recall (362) and the last step of (364) is the case α= 1 of (363). At the same time,
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2 ) dκℓn
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(365)

where the first step of (365) uses the identity (356), the second step of (365) uses the independence
of ∥V∥ℓn

p (X) and V/∥V∥ℓn
p (X) per Lemma 155, and the final step of uses the case q = 2p − 2 of (359) and

Lemma 155. The desired identity (355) now follows by substituting (365) into (364). □

The following lemma will have a central role in the proof of Theorem 24 and Theorem 47.

Lemma 157. Suppose that n,m ∈N and β> 0 satisfy β⩽ m−1
2 . Then, for every 1⩽ p ⩽m we have

iq
(
Bℓn

p (Ωm
β

)
)≍p

nm =
√

dim
(
ℓn

p (Ωm
β

)
)
,
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where we recall that the normed spaceΩm
β
= (Rm ,∥ ·∥Ωm

β
) was defined in (342).

Prior to proving Lemma 157, we will show how it implies Theorem 47, and then deduce Theorem 24.

Proof of Theorem 47 assuming Lemma 157. By the assumption (47) of Theorem 47, write n = km for some
k,m ∈ N with max{2, p} ⩽ m ⩽ ep . Then (m −1)/2 > 0 and m ⩾ p, so we may apply Lemma 157 with n
replaced by k and β= (m−1)/2. Denoting Y = ℓk

p (Ωm
β

), the conclusion of Lemma 157 is that iq(BY) ≍p
n.

Y is canonically positioned (it is a space from Example 41). To prove Theorem 47, it remains to check
that ∥·∥Y ≍ ∥·∥ℓn

p
, where, since n = km, we identify Rn with Mk×n(R), namely we identify ℓn

p with ℓk
p (ℓm

p ).
In fact, for any β> 0 (not only our choice β= (m −1)/2 above) we will check that

∀x ∈Rm ,
(
1−e−

β

m

)
∥x∥Ωm

β
⩽ ∥x∥ℓm∞ ⩽ ∥x∥Ωm

β
. (366)

It follows from (366) that ∥ ·∥Ωm
β
≍ ∥·∥ℓm∞ when β≍ m. But, ∥ ·∥ℓm

p
≍ ∥·∥ℓm∞ by the assumption ep ⩾m. So,

β≍ n =⇒ ∥·∥Y = ∥·∥ℓk
p (Ωm

β
) ≍ ∥·∥ℓk

p (ℓm∞) ≍ ∥·∥ℓk
p (ℓm

p ) = ∥·∥ℓn
p

.

Fix x ∈Rm . To verify the second inequality in (366), the definition (342) gives
∑m

i=1ψβ(|xi |/s) =∞ when
0 < s ⩽ ∥x∥ℓm∞ , so ∥x∥Ωm

β
⩾ ∥x∥ℓm∞ by (340). For the first inequality in (366), by direct differentiation it is

elementary to verify that the function u 7→ log(1/(1−u))/u is increasing on the interval [0,1). Thus,

0⩽ t ⩽α< 1 =⇒ ψβ(t ) = 1

β
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(
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)
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αβ
t .

Hence, for every fixed 0 <α< 1,
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α
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αβs
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m log
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)

αβs
∥x∥ℓm∞ . (367)

Providedα⩾ 1−e−β/m , the choice s = m log(1/(1−α))∥x∥ℓm∞/(αβ) satisfies the requirement s ⩾ ∥x∥ℓm∞/α,
so we get from (340) and (367) that

∥x∥Ωm
β
⩽

m log
( 1

1−α
)

αβ
∥x∥ℓm∞ . (368)

The optimal choice of α in (368) is α= 1−e−β/m , giving the first inequality in (366). □

Having proved Theorem 47 (assuming Lemma 157, which we will soon prove), we have also already
established Theorem 24 provided n ∈N and p ⩾ 1 satisfy the divisor condition (74). Indeed, the space Y
that Theorem 47 provides is canonically positioned and hence by the discussion in Section 1.6.2 it is also
in its minimum surface area position, so by [GP99, Proposition 3.1] we have

MaxProj(BY)

voln(BY)
≍ voln−1(∂BY)

voln(BY)
p

n
=

(
iq(BY)p

n

)
1

voln(BY)
1
n

≍ 1

voln(Bℓn
p

)
1
n

(315)≍ n
1
p ,

where the penultimate step uses the fact that iq(BY) ≍p
n by Theorem 47, and also that by Theorem 47

we have ∥ · ∥Y ≍ ∥ ·∥ℓn
p

, which implies that the n’th root of the volume of the unit ball of Y is proportional
to the n’th root of the volume of the unit ball of ℓn

p .
The deduction of Theorem 24 for the remaining values of p ⩾ 1 and n ∈N uses the following identity,

which we will also use in the proof of Proposition 163 below.

Lemma 158. Fix n,m ∈N. Suppose that K ⊆Rn and L ⊆Rm are convex bodies. Then,

MaxProj(K ×L)

voln+m(K ×L)
=

(
MaxProj(K )2

voln(K )2 + MaxProj(L)2

volm(L)2

) 1
2

.
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Proof. Fix z ∈ Sn+m−1. By the Cauchy projection formula [Gar06] that we recalled in (30), we have

voln+m−1
(
Projz⊥(K ×L)

)= 1

2

�
∂(K×L)

∣∣〈z, NK×L(w)〉∣∣dw,

where NK×L(w) is the (almost-everywhere defined) unit outer normal to ∂(K ×L) at w ∈ ∂(K ×L). Now,

∂(K ×L) = (∂K ×L)∪ (K ×∂L) and voln+m−1
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)= 0.

Consequently,
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∣∣〈z, NK×L(w)〉∣∣dw.

If we write each w ∈ Rn as w = (w1, w2) where w1 ∈ Rn and w2 ∈ Rm , then for almost every (with respect
to the (n +m −1)-dimensional Hausdorff measure) w ∈ ∂K ×L we have NK×L(w) = (NK (w1),0). Also, for
almost every w ∈ K ×∂L we have NK×L(w) = (0, NL(w2)). We therefore have
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,

where the last step is two applications of the Cauchy projection formula (in Rn and Rm). Hence,
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Consequently,
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. □

We can now prove Theorem 24 in its full generality using the fact that we proved Theorem 47.

Proof of Theorem 24. Let m be any integer that satisfies max{2, p}⩽m ⩽ ep (if 1⩽ p ⩽ 2, then take m = 2,
and if p ⩾ 2, then such an m exists because ep −p ⩾ e2−2 > 5). Write n = km+r for some k ∈N∪{0} and
r ∈ {0, . . . ,m−1}. If r = 0, then m divides n and we can conclude by applying Theorem 47 as we did above
(recall the paragraph immediately before Lemma 158). So, assume from now that r ⩾ 1.

By Theorem 47 there is a canonically positioned normed space Y = (Rkm ,∥·∥Y) such that iq(BY) ≍p
km

and ∥·∥Y ≍ ∥·∥ℓkm
p

. Define Yn
p = Y⊕∞Ωr

β
, whereβ≍ r and iq(Ωr

β
) ≍p

r ; suchβ exists trivially if r = 1, and if

r ⩾ 2, then its existence follows from an application of Lemma 157 (with the choices n = 1 and p = m = r ).
Since β≍ r , by (366) we have ∥ ·∥Ωr

β
≍ ∥·∥ℓr∞ . Also, ∥ ·∥ℓr∞ ≍ ∥·∥ℓr

p
since ep ⩾m > r . Consequently,
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Recalling the definition of Yn
p , this means that ∥ ·∥Yn

p
≍ ∥·∥ℓn

p
.

Since both Y andΩr
β

are canonically positioned and hence in their minimum surface area positions,
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Consequently, since BYn
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β
, by Lemma 158 we conclude that
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The following lemma will be used in the proof of Lemma 157.

Lemma 159. Suppose that m ∈N, r ∈N∪ {0} and β> 0 satisfy β⩽ m+r−2
2 . Then�
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Proof. Let H1, . . . ,Hm be independent random variables whose density at each s ∈ R is equal to e−|s|/2.
Then, |H1|, . . . , |Hm | are exponential random variables of rate 1, and therefore if we denote

Γ
def=

m∑
i=1

|Hi |,

then Γ has Γ(m,1) distribution, i.e., its density at each s ⩾ 0 is equal to sm−1e−s/(m−1)!; the proof of this
standard probabilistic fact can be found in e.g. [Dur19]. By [SZ90, RR91a] (or Lemma 155), the random
vector (H1, . . . ,Hm)/Γ is distributed according to κℓm

1
and is independent of Γ. Thus, for every k ∈N,
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0
eβt (1− t )m+r−2 dt , (370)

where the last step is the integral form of the remainder of the Taylor series of the exponential function.
It is mechanical to check that (369) holds for m ∈ {1,2}, so assume for the rest of the proof of Lemma 159

that m ⩾ 3. We then see from (370) that our goal (369) is equivalent to showing that� 1

0
eβt (1− t )m+r−2 dt ≍ 1

m + r
. (371)

For the upper bound in (371), estimate the integrand using (1− t )m+r−2 ⩽ e−(m+r−2)t to get� 1
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where in the last step we used the assumption β< m+r−2
2 once more. □

Proof of Lemma 157. By combining the case g ≡ 1 of (341) with (344), we see that
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Since we are assuming in Lemma 157 that β≲m, in combination with (315) we get from (372) that
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At the same time, by applying Cauchy–Schwarz to the identity (354) of Lemma 156 we have
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(374)

where the random variable R1 is as in Lemma 156, i.e., its density is in (353), and the last step is an
application the evaluation (363) of its moments and Stirling’s formula, using the assumption 1⩽ p ⩽m.

Recalling (342), even though ∥·∥Ωm
β

is defined implicitly by (340), we can compute∇∥·∥Ωm
β

(θ) for almost

every θ ∈ ∂BΩm
β

as the unique vector v ∈ Rm that is normal to ∂BΩm
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and satisfies 〈v,θ〉 = 1. Indeed, since
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(375)

where the first equality in (375) holds for any ψβ that satisfies the conditions of Lemma 153, and for the
second equality in (375) recall the definition (342) of the specific ψβ that we are using here. Therefore,
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(376)
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where the first step of (376) is a substitution of (375) into (343) while using (344) and thatψ−1
β

(t ) = 1−e−βt

for every t ⩾ 0, the second step of (376) uses the inequality e t ⩾ t +1 which holds for any t ∈ R, and the
final step of (376) is an application of Lemma 159. Now, a combination of (374) and (376) gives

volnm−1
(
∂Bℓn

p (Ωm
β

)
)

volnm
(
Bℓn

p (Ωm
β

)
) ≲

n
1
p + 1

2 m
3
2

β
. (377)

By combining (373) and (377) we conclude that

iq
(
Bℓn

p (Ωm
β

)
)= volnm−1

(
∂Bℓn

p (Ωm
β

)
)

volnm
(
Bℓn

p (Ωm
β

)
) volnm

(
Bℓn

p (Ωn
β

)
) 1

nm ≲
p

nm.

The reverse inequality iq(Bℓn
p (Ωm

β
)) ≳

p
nm follows from the isoperimetric theorem (12), so the proof of

Lemma 157 is complete. Note that this also shows that all of the inequalities that we derived in the above
proof of Lemma 157 are in fact asymptotic equivalences. This holds in particular for (377), i.e.,

volnm−1
(
∂Bℓn

p (Ωm
β

)
)

volnm
(
Bℓn

p (Ωm
β

)
) ≍ n

1
p + 1

2 m
3
2

β
. □

The following asymptotic evaluation of the surface area of the sphere of ℓn
p (ℓm

q ) in the entire range of
possible values of p, q ⩾ 1 and m,n ∈N is an application of Lemma 156; by (316) it is equivalent to (83).

Theorem 160. For every n,m ∈N and p, q ∈ [1,∞] we have
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) ·


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1
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q m ⩾max{p, q}.

(378)

Proof. By continuity we may assume that p, q ∈ (1,∞). Suppose that G is a symmetric real-valued ran-
dom variable whose density at each s ∈R is equal to

1

2Γ
(
1+ 1

q

)e−|s|
q

. (379)

LetG1, . . . ,Gm be independent copies ofG. SetU
def= (G1, . . . ,Gm) ∈Rm . By the probabilistic representation

of the cone measure on ∂Bℓm
q

in [SZ90, RR91a] (or Lemma 155), the random vectorU/∥U∥ℓm
q

is distributed
according to the cone measure on ∂Bℓm

q
, and moreover it is independent of ∥U∥ℓm

q
.

Consider the following random variable.

N
def=

∥∥∥∇∥·∥ℓm
q

( U

∥U∥ℓm
q

)∥∥∥2

ℓm
2

= 1

∥U∥2q−2
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q

m∑
j=1

|G j |2q−2 =
∥U∥2q−2

ℓm
2q−2

∥U∥2q−2
ℓm

q

. (380)

If we let N1, . . . ,Nn ,R1, . . . ,Rn be independent random variables such that N1, . . . ,Nn have the same dis-
tribution as N, and R1, . . . ,Rn are as in Lemma 156, then by Lemma 156 we have

volnm−1
(
∂Bℓn

p (ℓm
q )

)
volnm

(
Bℓn
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) =
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p

)E[Z] ≍ pn
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p m

1
p E[Z], (381)
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where for (381) we introduce the following notation.

Z
def=

( n∑
i=1

RiNi

) 1
2

. (382)

Let R be a random variable that takes values in [0,∞) whose density at each t ∈ (0,∞) is given by (353),
i.e., R1, . . . ,Rn are independent copies of R. We computed the moments of R in (363) and by Stirling’s
formula this gives the following asymptotic evaluations.

E
[
R

1
2
]≍ m1− 1

p

p
, (383)

E[R] ≍ max
{m

p
,1

}m1− 2
p

p
, (384)

E
[
R2]≍ max

{m3

p3 ,1
}m1− 4

p

p
. (385)

We also need an analogous asymptotic evaluation of moments of the random variable N in (380).
Observe that the random variables N and ∥U∥ℓm

q
are independent, since U/∥U∥ℓm

q
and ∥U∥ℓm

q
are inde-

pendent and N is a function U/∥U∥ℓm
q

. Consequently, for every β> 0 we have
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(380)= E

[
∥U∥(2q−2)β

ℓm
2q−2

]
. (386)

Since (e.g. by Lemma 155) the density of ∥U∥ℓm
q

at s ∈ (0,∞) is proportional to sm−1e−sq
, we can compute

analogously to (359) that

E
[
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]
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) .

Therefore (386) implies that
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)
Γ
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2β+ m−2β

q

)E[∥U∥(2q−2)β
ℓm

2q−2

]
.

By considering each of the values β ∈ { 1
2 ,1,2} in this identity and using Stirling’s formula, we get the

following asymptotic evaluations of moments of N in terms of moments of ∥U∥ℓm
2q−2

.

E
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1
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m1− 1
q

E
[
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, (387)

E[N] ≍ min
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} q
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E
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, (388)

E
[
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{
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m3 ,1

}
q

m1− 4
q

E
[
∥U∥4q−4

ℓm
2q−2

]
. (389)

Due to (387), (388), (389), we will next evaluate the corresponding moments of ∥U∥ℓm
2q−2

. Recalling the

density (379) of G, for every β>−1/(2q −2) we have

E
[|G|(2q−2)β]= 1
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) � ∞

0
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Hence,

E
[|G|q−1]≍ E[|G|2q−2]≍ E[|G|4q−4]≍ 1

q
. (390)
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We therefore have

E
[
∥U∥2q−2
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]
= mE

[|G|2q−2] (390)≍ m
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, (391)

and
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Consequently, using Hölder’s inequality we get the following estimate.
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This simplifies to give

E
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]
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{√
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,
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}
. (394)

At the same time, by Cauchy–Schwarz,

E
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(
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Also, by the subadditivity of the square root on [0,∞),
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By combining (395) and (396) we see that (394) is in fact sharp, i.e.,
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By substituting (397) into (387), and correspondingly (391) into (388) and (392) into (389), we get the
following asymptotic identities.
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By combining (384) and (399) we see that

E
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p2 nm
2
q − 2

p .

Using Cauchy–Schwarz, this implies the following upper bound on the final term in (381).
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Also, recalling (382) and using the subadditivity of the square root on [0,∞) in combination with (383)
and (398), we have the following additional upper bound on the final term in (381).

pn
1
p m

1
p E[Z]⩽ pn

1
p m

1
p E

[ n∑
i=1

R
1
2
i N

1
2
i

]
= pn1+ 1

p m
1
p
(
E
[
R

1
2
])(
E
[
N

1
2
])≍ n1+ 1

p m
1
2+ 1

q
√

min{m, q}. (402)

112



It follows from (401) and (402) that
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(403)

We will next prove that (403) is optimal in all of the six ranges that appear in (403); by (381) and (316),
this will complete the proof of Corollary 160. Recalling (382) and using (384), (385), (399), (400), the
fourth moment of Z can be evaluated (up to universal constant factors) as follows.
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By using Hölder’s inequality similarly to (393), we conclude that
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. □

Lemma 161 below applies Theorem 160 iteratively to obtain an upper bound on the surface area of the
unit sphere of nested ℓp norms on k-tensors (the case k = 2 corresponds to n by m matrices equipped
with the ℓn

p (ℓm
q ) norm). The second part of Lemma 161, namely the conclusion (406) below, is an imple-

mentation of the approach towards Conjecture 9 for the hypercube that we described in Remark 55.

Lemma 161. Suppose that k,n1, . . . ,nk ∈ N and p1, . . . , pk ∈ [1,∞] are such that n1 ⩾ max{3, p1 −2} and
n1n2 . . .n j−1 ⩾ p j − 2 for every j ∈ {2, . . . ,k}. Define normed spaces Y0,Y1, . . . ,Yk by setting Y0 = R and

inductively Y j = ℓn j
p j

(Y j−1) for j ∈ {1, . . . ,k}. Then,

voln1...nk−1
(
∂BYk

)
voln1...nk

(
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) ⩽ eO(k)pp1

k∏
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n
1
2+ 1

p j

j . (405)
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Hence, using the natural identification of the vector space that underlies Yk with Rdim(Yk ) =Rn1n2...nk , if in
addition we have n1 =O(1) and p j = logn j for every j ∈ {1, . . . ,k}, then

BYk ⊆ B
ℓ

dim(Yk )
∞

⊆ eO(k)BYk and
MaxProj

(
BYk

)
voldim(Yk )

(
BYk

) ⩽ eO(k), (406)

where we recall the notation (52).

Proof. Suppose that n,m ∈N and p ∈ (1,∞). By applying Cauchy–Schwarz to the right hand side of (354)
while using the case α= 1 of (363), we see that for every normed space X = (Rm ,∥ ·∥X) we have

volnm−1
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2
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) 1
2

. (407)

If also m ⩾max{3, p −2}, then by Stirling’s formula (407) gives the following estimate.
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) 1
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. (408)

By continuity we may assume that p1, . . . , pk ∈ (1,∞). Denote d0 = 1 and d j = dim(Y j ) = n1n2 . . .n j for
j ∈ {1, . . . ,k}. We will naturally identify Y j with (Rd j ,∥ ·∥Y j ). As Yk = ℓnk

pk
(Yk−1), we deduce from (408) that
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. (409)

At the same time, by (355) for every j ∈ {1, . . . ,k} we have
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If also j ⩾ 2, then d j−1 ⩾ n1 ⩾ 3 and by assumption d j−1 ⩾ p j −2, so by Stirling’s formula (410) gives

∀ j ∈ {2, . . . ,k},
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When j = 1 we have d0 = 1 and n1 ⩾max{3, p1 −2}, and therefore by Stirling’s formula (410) gives�
∂BY1
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Hence, by applying (411) iteratively in combination with the base case (412), we conclude that
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A substitution of (413) into (409) yields the desired estimate (405).
To deduce the conclusion (406), note that for every j ∈ {1, . . . ,k} we have the point-wise bounds
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It follows by induction that
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where the final step holds if p j = logn j for every j ∈ {1, . . . ,k}. This implies the inclusions in (406). Fur-
thermore, Yk belongs to the class of spaces from Example 39. Hence Yk is canonically positioned and by
the discussion in Section 1.6.2 know that BY′ is in its minimum surface area position. Therefore,

MaxProj
(
BYk

)
voldk

(
BYk

) ≍ voldk−1
(
∂BYk

)
voldk

(
BYk

)√
dk

⩽ eO(k)pp1

k∏
j=1

n
1

p j

j ≍ eO(k),

where the first step uses [GP99, Proposition 3.1], the second step is (405), and the final step holds because
p1 =O(1) and p j = logn j . This completes the proof of (406). □

The following technical lemma replaces a more ad-hoc argument that we previously had to deduce
Proposition 163 below from Lemma 161; it is due to Noga Alon and we thank him for allowing us to
include it here. This lemma shows that the set of super-lacunary products n1n2 . . .nk that can serve as
dimensions of the space Yk in Lemma 161 for which (406) holds is quite dense inN.

Lemma 162. For every integer n ⩾ 3 there are k,m ∈N∪ {0} and integers n1 < n2 < . . . < nk that satisfy

• n = n1n2 . . .nk +m,
• n1 ∈ {6,7} and ni+1 ⩽ 2ni ⩽ n3

i+1 for every i ∈ {1, . . . ,k −1},

• m ⩽ (logn)1+o(1).

Prior to proving Lemma 162, we will make some preparatory (mechanical) observations for ease of
later reference. Note first that the conclusion ni+1 ⩽ 2ni ⩽ n3

i+1 of Lemma 162 can be rewritten as

∀i ∈ {1, . . . ,k −1}, log2 ni+1 ⩽ ni ⩽ log 3p2 ni+1.

It follows by induction that

∀i ∈ {1, . . . ,k}, log[k−i ]
2 nk ⩽ ni ⩽ log[k−i ]

3p2
nk , (414)

where, as in (135), we denote the iterates of ϕ : (0,∞) → R by ϕ[ j ] = ϕ ◦ϕ[ j−1] : (ϕ[ j−1])−1(0,∞) → R for
each j ∈N, with the convention ϕ[0](x) = x for every x ∈ (0,∞). Since n1 ∈ {6,7}, it follows from (414) that

k ≍ log∗nk ≲ log∗n. (415)

Consequently,

nk lognk ≍ nk nk−1 ⩽
k∏
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nk ⩽ n = m +

k∏
i=1

nk ⩽ (logn)1+o(1) +
k∏
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log[k−i ]

3p2
nk

≲ (logn)2 +nk (lognk )(loglognk )O(log∗nk ) ≲ (logn)2 +nk (lognk )2.

This implies the following (quite crude) bounds on nk .
n

(logn)2 ≲ nk ≲
n

logn
. (416)

Note in particular that thanks to (416) we know that (415) can be improved to k ≍ log∗n.

Proof of Lemma 162 . LetM⊆N be the set of all those x ∈N that can be written as x = n1n2 . . .nk for some
k,n1, . . . ,nk ∈N that satisfy nk > nk−1 > . . . > n1 ∈ {6,7} and

∀i ∈ {1, . . . ,k −1}, ni+1 ⩽ 2ni ⩽ n3
i+1. (417)

The goal of Lemma 162 is to show that there exists x ∈M such that

n − (logn)1+o(1) ⩽ x ⩽ n. (418)

By adjusting the o(1) term, we may assume that n is sufficiently large, say, n ⩾ n(0) for some fixed n(0) ∈N
that will be determined later. We will then find x ∈Mwith a representation x = n1n2 . . .nk as above and

n −n1n2 . . .nk−1 ⩽ x ⩽ n. (419)
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This would imply the desired bound (418) because

k−1∏
i=1

ni
(414)
⩽

k−1∏
i=1

log[k−i ]
3p2

nk

(415)
≲ (lognk )1+o(1)

(416)
≲ (logn)1+o(1). (420)

We will first construct {yi }∞i=1 ⊆M such that y1 = 7 and yi < yi+1 < 12yi for every i ∈N. Furthermore,
for each i ∈N there are k,n1, . . . ,nk ∈Nwith yi = n1n2 . . .nk such that nk > nk−1 > . . . > n1 ∈ {6,7} and

∀ j ∈ {1, . . . ,k −1}, n2
j+1 ⩽ 2n j ⩽ 2n2

j+1, (421)

which is a more stringent requirement than (417). Note in passing that (421) implies the (crude) bound

k∏
j=1

(
1+ 1

n j

)
⩽ 2. (422)

To verify (422), note that since {n j }k
j=1 is strictly increasing and the second inequality in (421) holds, it is

mechanical to check that n1 ⩾ 6, n2 ⩾ 7, n3 ⩾ 8, n4 ⩾ 12 and n j+1 ⩾ 3n j for every j ∈ {4,5, . . . ,k −1}. So,

k∏
j=1

(
1+ 1

n j

)
⩽

(
1+ 1

6

)(
1+ 1

7

)(
1+ 1

8

)
e

∑∞
s=0

1
12·3s =

(
1+ 1

6

)(
1+ 1

7

)(
1+ 1

8

)
e

1
8 ⩽ 2.

Suppose that yi has been defined with a representation yi = n1n2 . . .nk that fulfils the above require-
ments. Define m0,m1, . . . ,mk ∈N with m0 = 6, mk = nk +1 and m j ∈ {n j ,n j +1} for all j ∈ {1, . . . ,k −1} by
induction as follows. Assuming that m j+1 has already been constructed for some j ∈ {1, . . . ,k −1}, let

m j
def=

{
n j if m2

j+1 ⩽ 2n j ,

n j +1 if m2
j+1 > 2n j .

(423)

Definition (423) implies that m j < m j+1. Indeed, n j < n j+1 so if m j = n j , then n j < n j+1 ⩽m j+1 since
m j+1 ⩾ n j+1 by the induction hypothesis. On the other hand, if m j = n j +1, then since the first inequality
in (421) holds, the definition (423) necessitates that m j+1 = n j +1, so m j < m j+1 in this case as well.

Definition (423) also ensures that the requirement (421) is inherited by {m j }k
j=1, i.e.,

∀ j ∈ {1, . . . ,k −1}, m2
j+1 ⩽ 2m j ⩽ 2m2

j+1. (424)

Indeed, if m j = n j , then m2
j+1 ⩽ 2n j = 2m j by (423), i.e., the first inequality in (424) holds, and the second

inequality in (424) holds because m j+1 ⩾ n j+1 and (421) holds. On the other hand, if m j = n j +1, then
by (423) we necessarily have m j+1 = n j + 1 and m2

j+1 > 2n j , which directly gives the second inequality
in (424), and in combination with (421) we also get the first inequality in (424) because

m j+1

2m j
= (n j +1)2

2n j+1

(421)
⩽

(n j +1)2

2n2
j

⩽ 1,

where the final step uses n j ⩾ 6, though n j ⩾ 1/(
p

2−1) = 2.414... is all that is needed for this purpose.
If the above construction produces m1 ∈ {6,7}, then define yi+1 = m1m2 . . .mk . Otherwise necessarily

m1 = n1+1 = 8, so (424) holds also when j = 0 (recall that m0 = 6, hence m2
1 = 26 = 2m0 ), so we can define

yi+1 = m0m1 . . .mk and thanks to (424) in both cases yi+1 has the desired form. Moreover,

yi+1

yi
⩽ 6

k∏
j=1

(
1+ 1

n j

) (422)
⩽ 12.

This completes the inductive construction of the desired sequence {yi }∞i=1 ⊆M.
With the sequence {yi }∞i=1 ⊆ M at hand, will next explain how to obtain for each integer n ⩾ n(0),

where n(0) ∈ N is a sufficiently large universal constant that is yet to be determined, an element x ∈M
that approximates n as in (419). Let i ∈N be such that yi ⩽ n ⩽ yi+1 and denote y = yi . Thus, there are
k,n1, . . . ,nk ∈N for which y = n1n2 . . .nk such that nk > nk−1 > . . . > n1 ∈ {6,7} and (421) holds.
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If y ⩾ n −n1n2 . . .nk−1, then x = y has the desired approximation property, so suppose from now that
y < n −n1n2 . . .nk−1, or equivalently n/(n1n2 . . .nk−1) > y/(n1n2 . . .nk−1)+1 = nk +1. Hence, if we define

n′
k

def=
⌊

n

n1n2 . . . ,nk−1

⌋
and x = n1n2 . . .nk−1n′

k , (425)

Then n′
k ⩾ nk +1 ≳ n/(logn)2, where we used (416). Consequently, recalling (414), there is a universal

constant n(0) ∈ N such that if n ⩾ n(0), then n′
k > max{144,nk−1}. So, the sequence n1,n2, . . . ,nk−1,n′

k
is still increasing. Since by design x satisfies (419), it remains to check that x ∈M, i.e., that (417) holds.
Since n1, . . . ,nk are assumed to satisfy the more stringent requirement (421), we only need to check that

n′
k ⩽ 2nk−1 ⩽ (n′

k )3. (426)

The second inequality in (426) is valid since (421) holds and n′
k > nk . For the first inequality in (426), note

that y ⩽ n ⩽ 12y , as yi+1 ⩽ 12yi . Hence, n′
k ⩽ n/(n1n2 . . .nk−1)⩽ 12y/(n1n2 . . .nk−1) = 12nk . Therefore,

2nk−1
(421)
⩾ n2

k ⩾
(n′

k

12

)2

> n′
k ,

where the last step uses the fact that n′
k > 144. □

We are now ready to extend the conclusion (406) of Lemma 161 to all dimensions n ∈N. Namely, we
will prove the following proposition, which comes very close to proving Conjecture 9 for the hypercube
[−1,1]n via a route that differs from the way by which we proved Theorem 24.

Proposition 163. For any n ∈N there is a normed space Y = (Rn ,∥ ·∥Y) that satisfies

∀x ∈Rn ∖ {0}, ∥x∥ℓn∞ ⩽ ∥x∥Y ⩽ eO(log∗n)∥x∥ℓn∞ and
voln−1

(
Projx⊥BY

)
voln(BY)

⩽ eO(log∗n).

Furthermore, Y can be taken to be an ℓ∞ direct sum of nested ℓp spaces as in Lemma 161.

Proof. Let M ⊆N be the set of integers from the proof of Lemma 162, namely m ∈M if and only if there
are integers nk > nk−1 > . . . > n1 ∈ {6,7} that satisfy (417) such that m = n1n2 . . .nk . By Lemma 161, there
exists C > 1 such that for every m ∈M there is a normed space Ym = (Rm ,∥ ·∥Ym ) that satisfies

∥ ·∥ℓm∞ ⩽ ∥ ·∥Ym ⩽ eC log∗m∥ ·∥ℓm∞ and
MaxProj

(
BYm

)
voln

(
BYm

) ⩽ eC log∗m .

By applying Lemma 162 iteratively write n = m1 + . . .+ms+1 for m1, . . . ,ms ∈M and ms+1 ∈ {1,2} that
satisfy mi+1 ⩽ (logmi )c for every i ∈ {1, . . . , s}, where c > 1 is a universal constant. Denote Yms+1 = ℓ

ms+1∞
and consider the ℓ∞ direct sum

Y
def= Ym1 ⊕∞ Ym2 ⊕∞ . . .⊕∞ Yms+1 = (Rn ,∥ ·∥Y).

Then ∥ ·∥ℓn∞ ⩽ ∥ ·∥Y ⩽maxi∈{1,...,s+1} eC log∗mi ∥ ·∥ℓmi∞
⩽ eC log∗n∥ ·∥ℓn∞ . We claim that MaxProj(BY)

voln (BY) ⩽ eO(log∗n).
Since BY = BYm1 ×BYm2 × . . .×BYms+1 , by an inductive application of Lemma 158 we have

MaxProj
(
BY

)
voln

(
BY

) ⩽

(
s+1∑
i=1

MaxProj
(
BYmi

)2

volmi

(
BYmi

)2

) 1
2

⩽
( s+1∑

i=1
e2C log∗mi

) 1
2

≲ eC log∗n ,

where the first step uses Lemma 158, the penultimate step is our assumption on Ymi , and the final step
has the following elementary justification. Recall that for every i ∈ {1, . . . , s} we have mi+1 ⩽ (logmi )c ,
where c > 1 is a universal constant. So, mi+2 ⩽ cc (loglogmi )c for every i ∈ {1, . . . , s −1}. Fix n0 ∈N such
that cc (loglogn)c ⩽ logn for every n ⩾ n0. Then, mi+2 ⩽ logmi if mi ⩾ n0, hence log∗mi+2 ⩽ log∗mi −1.
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Let i0 be the largest i ∈ {1, . . . , s + 1} for which mi < n0. Then, log∗m2i ⩽ log∗m2 − i ⩽ log∗n − i and
log∗m2 j+1 ⩽ log∗m1 − j ⩽ log∗n − j if 2i ,2 j +1 ∈ {1, . . . , i0 −1}. Also, |{i0, . . . , s +1}| =O(1). Consequently,

s+1∑
i=1

e2C log∗mi ⩽ e2C log∗n
∞∑

k=0
e−2C k +O(1)≲ e2C log∗n . □

Remark 164. A straightforward way to attempt to compute the surface area of the unit sphere of a normed
space X = (Rn ,∥ · ∥X) is to fix a direction z ∈ Sn−1 and consider ∂BX as the union of the two graphs of the
functions ΨX

z ,ψX
z : Projz⊥(BX) → R that are defined by setting ΨX

z (x) and ψX
z (x) for each x ∈Projz⊥(BX) to

be, respectively, the largest and smallest s ∈R for which x + sz ∈ ∂BX. We then have

voln−1(∂BX) =
�
Projz⊥ (BX)

√
1+∥∇ΨX

z (x)∥2
ℓn

2
dx +

�
Projz⊥ (BX)

√
1+∥∇ψX

z (x)∥2
ℓn

2
dx. (427)

When X = ℓn
p for some p ∈ (1,∞) and z = en ,

∀x ∈Proje⊥
n

(
Bℓn

p

)= Bℓn−1
p

, Ψ
ℓn

p
en

(x) =−ψℓn
p

en
(x) = (

1−∥x∥p
ℓn−1

p

) 1
p .

Therefore (427) becomes

voln−1
(
∂Bℓn

p

)
voln−1

(
Bℓn−1

p

) = 2

 
B
ℓn−1

p

(
1+ (1−∥x∥p

ℓn−1
p

)−
2(p−1)

p

n−1∑
i=1

|xi |2(p−1)
) 1

2
dx.

By [BGMN05], a point chosen from the normalized volume measure on Bℓn−1
p

is equidistributed with(|G1|p + . . .+|Gn−1|p +Z
)− 1

p (G1, . . . ,Gn−1) ∈Rn−1,

where G1, . . . ,Gn−1,Z are independent random variables, the density of G1, . . . ,Gn−1 at s ∈ R is equal to
2Γ(1+1/p)−1e−|s|

p
and the density of Z at t ∈ [0,∞) is equal to e−t . Consequently,

voln−1
(
∂Bℓn

p

)
voln−1

(
Bℓn−1

p

) = 2E

[(
1+Z− 2(p−1)

p

n−1∑
i=1

|Gi |2(p−1)
) 1

2

]
. (428)

Optimal estimates on moments such as the right hand side of (428) were derived (in greater generality)
in [Nao07], using which one can quickly get asymptotically sharp bounds on the left hand side of (428).
It is possible to implement this approach to get an alternative treatment of ℓn

p (ℓm
q ), though it is signifi-

cantly more involved than the different way by which we proceeded above, and it becomes much more
tedious and technically intricate when one aims to treat hierarchically nested ℓp norms as we did in
Lemma 161. Nevertheless, an advantage of (427) is that it applies to normed spaces that do not have a
product structure as in Lemma 156, which is helpful in other settings that we will study elsewhere.

6.2. Negatively correlated normed spaces. Our goal here is to further elucidate the role of symmetries in
the context of the discussion in Section 1.6.2. Fix n ∈N and γ⩾ 1. Say that a normed space X = (Rn ,∥·∥X)
is γ-negatively correlated if the standard scalar product 〈·, ·〉 on Rn is invariant under its isometry group
Isom(X), i.e., Isom(X)⩽On , and there exists a Borel probability measure µ on Isom(X) such that

∀x, y ∈Rn ,

�
Isom(X)

|〈Ux, y〉|dµ(U )⩽
γp
n
∥x∥ℓn

2
∥y∥ℓn

2
. (429)

We were inspired to formulate this notion by the proof of Theorem 1.1 in [Sch89]. It is tailored for the
purpose of bounding volumes of hyperplane projections of BX from above in terms of the surface area of
∂BX, as exhibited by the following lemma which generalizes the reasoning in [Sch89].

Lemma 165. Fix n ∈N and γ⩾ 1. If X = (Rn ,∥ ·∥X) is γ-negatively correlated, then

MaxProj(BX)⩽
γ

2
p

n
voln−1(∂BX).
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Proof. Recall that for every y ∈ ∂BX at which ∂BX is smooth we denote the unit outer normal to ∂BX at y
by NX(y) ∈ Sn−1. By the Cauchy projection formula (30) for every x ∈ Sn−1 we have

voln−1
(
Projx⊥(BX)

)= 1

2

�
∂BX

|〈x, NX(y)〉|dy.

Since every U ∈ Isom(X) is an orthogonal transformation and NX ◦U∗ =U∗ ◦NX almost surely on ∂BX,

voln−1
(
Projx⊥(BX)

)= 1

2

�
∂BX

|〈Ux, NX(y)〉|dy.

By integrating this identity with respect to µ, we therefore conclude that

voln−1
(
Projx⊥(BX)

)= 1

2

�
∂BX

(�
Isom(X)

|〈Ux, NX(y)〉|dµ(U )

)
dy ⩽

γ

2
p

n
voln−1(∂BX),

where we used (429) and the fact that ∥x∥ℓn
2
= 1 and ∥NX(y)∥ℓn

2
= 1 for almost every y ∈ ∂BX. □

By substituting Lemma 165 into Theorem 75 and using (97), we get the following corollary.

Corollary 166. Fix n ∈N and γ⩾ 1. If X = (Rn ,∥ ·∥X) is γ-negatively correlated, then

e(X)≲ SEP(X)⩽ 2γ
voln−1(∂BX)diamℓn

2
(BX)

voln(BX)
p

n
.

Corollary 166 generalizes Corollary 44 since any canonically positioned normed space is 1-negatively
correlated. Indeed, suppose that X = (Rn ,∥ · ∥X) is canonically positioned. Recall that in Section 1.6.2 we
denoted the Haar probability measure on Isom(X) by hX. Fix x, y ∈ Rn . The distribution of the random
vector Ux when U is distributed according to hX is Isom(X)-invariant, and therefore it is isotropic. Hence,

�
Isom(X)

|〈Ux, y〉|dhX(U )⩽
(�

Isom(X)
〈Ux, y〉2 dhX(U )

) 1
2

(70)=
∥y∥ℓn

2p
n

(�
Isom(X)

∥Ux∥2
ℓn

2
dhX(U )

) 1
2 = 1p

n
∥x∥ℓn

2
∥y∥ℓn

2
,

where the final step uses the fact that each U ∈ Isom(X) is an orthogonal transformation.
One way to achieve (429), which is close in spirit to the considerations in [Sch89], is when there are

Γ⊆ {−1,1}n andΠ⊆ Sn such that Uε,π ∈ Isom(X) for every (ε,π) ∈ Γ×Π, where Uε,π ∈GLn(R) is given by

∀x = (x1, . . . , xn) ∈Rn , Uε,πx
def= (

ε1xπ(1), . . .εn xπ(n)
)
,

and also there are α,β> 0 such that

∀w ∈Rn ,
1

|Γ|
∑
ε∈Γ

|〈ε, w〉|⩽α∥w∥ℓn
2

, (430)

and

∀i , j ∈ {1, . . . ,n}, |{π ∈Π : π(i ) = j }|⩽β
|Π|
n

. (431)

Under these assumptions, X is γ-negatively correlated with γ = α
√
β. Indeed, we can take µ in (429) to

be the uniform distribution over the finite set {Uε,π : (ε,π) ∈ Γ×Π} ⊆ Isom(X), since every x, y ∈Rn satisfy

1

|Γ×Π|
∑

(ε,π)∈Γ×Π
|〈Uε,πx, y〉| (430)

⩽
1

|Π|
∑
π∈Π

α

( n∑
i=1

(xπ(i ) yi )2
) 1

2

⩽α

( n∑
i=1

( 1

|Π|
∑
π∈Π

x2
π(i )

)
y2

i

) 1
2

=α
( n∑

i=1

( 1

|Π|
n∑

j=1
|{π ∈Π : π(i ) = j }|x2

j

)
y2

i

) 1
2 (431)

⩽
α

√
βp

n
∥x∥ℓn

2
∥y∥ℓn

2
.
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The condition (430) can be viewed as a negative correlation property of the coordinates of sign vectors
that are chosen uniformly from Γ. The condition (431) roughly means that for each i ∈ {1, . . . ,n} the sets
{π ∈ Π : π(i ) = 1}, . . . , {π ∈ Π : π(i ) = n} form an approximately equitable partition of Π. This holds with
β= 1 ifΠ is a transitive subgroup of Sn . One could formulate weaker conditions that ensure the validity of
the conclusion of Lemma 165 (e.g. considering bi-Lipschitz automorphisms of X rather than isometries
of X), and hence also the conclusion of Corollary 166, though we will not pursue this here as we expect
that in concrete cases such issues should be easy to handle.

6.3. Volume ratio computations. Here we will present asymptotic evaluations of volume ratios of some
normed spaces, for the purpose of plugging them into results that we stated in the Introdcution. Due to
the large amount of knowledge on this topic that is available in the literature, we will only give a flavor of
such applications. The main reference for the contents of this section is the valuable work [Sch82].

We will start by examining the iteratively nested ℓp products {Xk }∞k=0 of Lemma 152, in the special case
when the initial space X = X0 is a canonically positioned normed space for which Conjecture 48 holds.
Thus, we are fixing {nk }∞k=0 ⊆ N and {pk }∞k=1 ⊆ [1,∞], and assuming that X = (Rn0 ,∥ · ∥X) is a canonically
positioned normed space satisfying Conjecture 48, i.e., (326) holds with α=O(1); the case X =R is suffi-
ciently rich for our present illustrative purposes, but one can also take X = E to be any symmetric space,
per Lemma 53. By Lemma 152 and Corollary 78, if we define inductively

∀k ∈N, Xk+1 = ℓnk
pk

(Xk ), where X0 = X,

then, because {Xk }∞k=1 are canonically positioned (they belong to the class of spaces in Remark 39),

∀m ∈N, SEP(Xm) ≍ evr(Xm)
√

dim(Xm) = evr(Xm)
p

n0 · · ·nm . (432)

Let {Hk }∞k=0 be the sequence of Euclidean spaces that arise from the above construction with the same
{nk }∞k=0 ⊆N but with pk = 2 for all k ∈N and X = ℓn0

2 . Thus, for each m ∈N the Euclidean space Hm can be
identified naturally with ℓn0···nm

2 . Under this identification, by a straightforward inductive application of
Hölder’s inequality and the fact that the ℓp norm deceases with p, the Löwner ellipsoid of Xm satisfies16

LXm ⊆
(

m∏
k=1

n
max

{
1
2− 1

pk
,0

}
k

)
(LX)n1···nm .

Also, by Lemma 149 we have

voln0···nm

(
BXm

) 1
n0 ···nk ≍ voln0

(
BX

) 1
n0∏m

k=1 n
1

pk

k

.

These facts combine to give the following consequence of (432).

SEP(Xm) ≍ evr(X)
m∏

k=1
n

max
{

1
2 , 1

pk

}
k .

In particular, when we take X =R and consider only two steps of the above iteration, we get the follow-
ing asymptotic evaluation of the separation modulus of the ℓn

p (ℓm
q ) norm the space of n-by-m matrices

Mn×m(R) for any n,m ∈N and p, q ⩾ 1; the case of square matrices was stated in the Introduction as (5).

SEP
(
ℓn

p (ℓm
q )

)≍ n
max

{
1
p , 1

2

}
m

max
{

1
q , 1

2

}
= max

{p
nm,m

1
q
p

n,n
1
p
p

m,n
1
p m

1
q

}
. (433)

Next, fix an integer n ⩾ 2 and let E = (Rn ,∥ · ∥E) be an unconditional normed space. Given q ∈ [2,∞]
andΛ⩾ 1, one says (see e.g. [LT79, Definition1.f.4]) that E satisfies a lower q-estimate with constantΛ if

16As Xm is canonically positioned, this holds as an equality, but for the present purposes we just need the stated inclusion.
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for every {uk }∞k=1 ⊆Rn with pairwise disjoint supports we have( ∞∑
k=1

∥uk∥q
E

) 1
q

⩽Λ
∥∥∥ ∞∑

k=1
uk

∥∥∥
E

. (434)

Note that by (323) this always holds withΛ= 1 if q =∞.
In concrete cases it is often mechanical to evaluate up to universal constant factors the minimum ra-

dius of a Euclidean ball that circumscribes BX, but it is always within a O(
√

logn) factor of the expression

RE
def= max

∅̸=S⊆{1,...,n}

( p|S|
∥∑

i∈S ei∥E

)
. (435)

More precisely, if E satisfies a lower q-estimate with constantΛ, then

RE ⩽ outradiusℓn
2

(BX)≲Λ(logn)
1
2− 1

q RE. (436)

The first inequality in (436) is immediate because ∥∑
i∈S ei∥−1

E
∑

i∈S ei ∈ BE if ∅ ̸= S ⊆ {1, . . . ,n}. For a quick
justification of the second inequality in (436), note that by homogeneity we may assume without loss of
generality that ∥ei∥E ⩾ 1 for every i ∈ N. Therefore, using (323) we see that if x = (x1, . . . , xn) ∈ BE, then
maxi∈{1,...,n} |xi |⩽ 1. Consequently, if we fix x ∈ BE and denote for each k ∈N,

Sk = Sk (x)
def=

{
i ∈ {1, . . . ,n} :

1

2k
< |xi |⩽ 1

2k−1

}
, (437)

then the sets {Sk }∞k=1 are a partition of {1, . . . ,n} and in particular
∑∞

k=1 |Sk | = n. Next,

ΛRE ⩾ΛRE∥x∥E ⩾RE

( ∞∑
k=1

∥∥∥ ∑
i∈Sk

xi ei

∥∥∥q

E

) 1
q

⩾
( ∞∑

k=1
Rq

E

∥∥∥ ∑
i∈Sk

1

2k
ei

∥∥∥q

E

) 1
q

⩾
( ∞∑

k=1

|Sk |
q
2

2kq

) 1
q

, (438)

where the second step of (438) uses (434), the penultimate step of (438) uses (323) and (437), and the
final step of (438) uses (435). Now, for every 0 < θ < 1 we have

∥x∥ℓn
2
=

( ∞∑
k=1

∑
i∈Sk

x2
i

) 1
2

⩽
( ∞∑

k=1

|Sk |
22(k−1)

) 1
2 = 2

( ∞∑
k=1

|Sk |1−θ
22k(1−θ)

|Sk |θ2−2kθ
) 1

2

⩽ 2

( ∞∑
k=1

|Sk |
q
2

22kq

) 1−θ
q

( ∞∑
k=1

|Sk |
) θ

2
( ∞∑

k=1
2− 2kqθ

(q−2)(1−θ)

)(
1
2− 1

q

)
(1−θ)

≲ (ΛRE)1−θn
θ
2 θ

−
(

1
2− 1

q

)
,

(439)

where the second step of (439) uses (437), the penultimate step of (439) uses the trilinear Hölder inequal-
ity with exponents 1/θ, q/(2(1−θ)) and 1/((1−2/q)(1−θ)), and the final step of (439) uses (438), the fact
that

∑∞
k=1 |Sk | = n, and elementary calculus. By choosing θ = 1/logn in (439), we get (436).

By the Lozanovskĭı factorization theorem [Loz69] there exist w1, . . . , wn > 0 such that∥∥∥ n∑
i=1

wi ei

∥∥∥
E
=

∥∥∥ n∑
i=1

1

wi
ei

∥∥∥
E*

=p
n. (440)

We will call any w1, . . . , wn > 0 that satisfy (440) Lozanovskĭı weights for E. They can be found by max-
imizing the concave function w 7→ ∑n

i=1 log wi over w ∈ BE (see also e.g. [Pis89, Chapter 3]), which
can be done efficiently if E is given by an efficient oracle; their existence can also be established non-
constructively using the Brouwer fixed point theorem [JR76]. By [Sch82, Lemma 1.2] (note that we are
using a different normalization of the weights than in [Sch82]),

voln(BE)
1
n ≍ (w1 · · ·wn)

1
np

n
. (441)

By combining (436) and (441), we get the following lemma.
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Lemma 167. Fix an integer n ⩾ 2 and let E = (Rn ,∥ · ∥E) be an unconditional normed space. Suppose that
E satisfies a lower q-estimate with constantΛ for some q ⩾ 2 andΛ⩾ 1. Then,

evr(E)≲
max∅ ̸=S⊆{1,...,n}

( p|S|
∥∑

i∈S ei ∥E

)
n
p

w1 · · ·wn
Λ(logn)

1
2− 1

q ,

for any Lozanovskiı̆ weights w1, . . . , wn > 0 for E. If the Löwner ellipsoid of E is a multiple of Bℓn
2

, then

max∅̸=S⊆{1,...,n}

( p|S|
∥∑

i∈S ei ∥E

)
n
p

w1 · · ·wn
≲ evr(E)≲

max∅ ̸=S⊆{1,...,n}

( p|S|
∥∑

i∈S ei ∥E

)
n
p

w1 · · ·wn
Λ(logn)

1
2− 1

q .

The following corollary is a consequence of Lemma 167 because if E = (Rn ,∥ · ∥E) is a normed space
that satisfies the assumptions of Lemma 52 (in particular, E is unconditional), then by Lemma 151

w1 = w2 = . . . = wn =
p

n

∥e1 + . . .+en∥E

are Lozanovskĭı weights for E.

Corollary 168. If E = (Rn ,∥ ·∥E) a normed space that satisfies the assumptions of Lemma 52, then

∥e1 + . . .+en∥Ep
n

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)
≲ evr(E)≲

∥e1 + . . .+en∥Ep
n

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)√
logn.

Hence, by Corollary 78 we have

∥e1 + . . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)
≲ SEP(E)≲ ∥e1 + . . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)√
logn,

More succinctly, this can be written in the following form, which we already stated in Corollary 6.

SEP(E) = ∥e1 + . . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)
no(1). (442)

By [Sch82, Proposition 2.2], the unitary ideal of any symmetric normed space E = (Rn ,∥ ·∥E) satisfies

vr(SE) ≍ vr(E). (443)

This implies that

evr(SE) ≍ evr(E), (444)

by (72) combined with S∗E = SE* , though a straightforward adjustment of the proof of (443) in [Sch82]
yields (444) directly, without using the much deeper result (72). We therefore have the following corollary.

Corollary 169. If E = (Rn ,∥ ·∥E) is a symmetric normed space, then

∥e1 + . . .+en∥Ep
n

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)
≲ evr(SE)≲

∥e1 + . . .+en∥Ep
n

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)√
logn.

Hence, by Corollary 78 we have

∥e1+. . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)p
n ≲ SEP(SE)≲ ∥e1+. . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)p
n logn,

More succinctly, this can be written in the following form, which we already stated in Corollary 6.

SEP(SE) = ∥e1 + . . .+en∥E

(
max

k∈{1,...,n}

p
k

∥e1 + . . .+ek∥E

)
n

1
2+o(1). (445)
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Remark 170. In the above discussion, as well as in the ensuing treatment of tensor products, we prefer
to consider square matrices rather than rectangular matrices because the setting of square matrices ex-
hibits all of the key issues while being notationally simpler. Nevertheless, there are two places in which
we do need to work with rectangular matrices, namely the above proof of Proposition 163 and the proof
of the first inequality in (118). For the latter, fix p ⩾ 1 and n,m ∈N. As in the proof of Theorem 76, denote
the Schatten–von Neumann trace class on the n-by-m real matrices Mn×m(R) by Sn×m

p ; recall (120). The
following asymptotic identity implies (121) (recall that in the setting of (121) we have r ∈ {1, . . . ,n}).

evr
(
Sn×m

p

)≍ (
min{n,m}

)max
{

1
p − 1

2 ,0
}
. (446)

Volumes of unit balls of Schatten–von Neumann trace classes have been satisfactorily estimated in the
literature, starting with [STJ80] and the comprehensive work [Sch82], through the more precise asymp-
totics in [SR84, KPT20]. Unfortunately, all of these works dealt only with square matrices. Nevertheless,
these references could be mechanically adjusted to treat rectangular matrices as well. Since (446) does
not seem to have been stated in the literature, we will next sketch its derivation by mimicking the reason-
ing of [Sch82], though the more precise statements of [SR84, KPT20] could be derived as well via similarly
straighforward modifications of the known proofs for square matrices. We claim that

volnm
(
BSn×m

p

) 1
nm ≍ 1(

min{n,m}
) 1

p
p

max{n,m}
. (447)

(447) gives (446) since Sn×m
p is canonically positioned, so by Hölder’s inequality its Löwner ellipsoid is

LSn×m
p

= (
min{n,m}

)max
{

1
2− 1

p ,0
}

BSn×m
2

.

To prove (447), note first that it follows from its special case p =∞. Indeed, as Sn×m
1 = (Sn×m∞ )∗, by the

Blaschke–Santaló inequality [Bla17, San49] and the Bourgain–Milman inequality [BM87] the case p = 1
of (447) follows from its case p =∞. Now, (447) follows in full generality since by Hölder’s inequality.

1(
min{n,m}

) 1
p

BSn×m∞ ⊆ BSn×m
p

⊆ (
min{n,m}

)1− 1
p BSn×m

1
.

The upper bound volnm(BSn×m∞ )1/(nm) ≲ 1/
p

max{n,m} follows from BSn×m∞ ⊆ p
min{n,m}BSn×m

2
. For the

matching lower bound, if {εi j }i , j∈N are i.i.d. Bernoulli random variables, then by [BGN75, Theorem 1],

E

[∥∥∥ n∑
i=1

m∑
j=1

εi j ei ⊗e j

∥∥∥
Sn×m∞

]
≲

√
max{n,m},

This implies the lower bound volnm(BSn×m∞ )1/(nm) ≳ 1/
p

max{n,m} by [Sch82, Lemma 1.5].

Proof of Lemma 53. By equation (2.2) in [Sch82] we have

voln2

(
BSE

) 1
n2 ≍ 1

∥e1 + . . .+en∥E
p

n
. (448)

In particular,

∀q ⩾ 1, voln2

(
BSn

q

) 1
n2 ≍ 1

n
1
2+ 1

q

. (449)

Because Sn
q is canonically positioned (it belongs to the class of spaces in Example 39), and hence it is in

its minimum surface area position, by combining [GP99, Proposition 3.1] and (54) we see that

voln2−1
(
∂BSn

q

)
voln2

(
BSn

q

) ≍
nMaxProj

(
BSn

q

)
voln2

(
BSn

q

) (43)≍ n
3
2+ 1

q
√

min{q,n}. (450)
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Consequently,

iq
(
BSn

q

)= n
voln2−1

(
∂BSn

q

)
voln2

(
BSn

q

) voln2

(
BSn

q

) 1
n2

(449)∧(450)≍ n
3
2+ 1

q
√

min{q,n}

n
1
2+ 1

q

= n
√

min{q,n}. (451)

Because by (323) we have ∥x∥E ⩽ ∥e1+. . .+en∥E∥x∥ℓn∞ for every x ∈Rn , every matrix A ∈Mn(R) satisfies
∥A∥SE ⩽ ∥e1 + . . .+en∥E∥A∥Sn∞ ⩽ ∥e1 + . . .+en∥E∥A∥Sn

q
. Consequently,

1

∥e1 + . . .+en∥E
BSn

q
⊆ BSE . (452)

Moreover,

iq
( 1

∥e1 + . . .+en∥E
BSn

q

)
= iq

(
BSn

q

) (451)≍ n
√

min{q,n},

and

voln2

( 1

∥e1 + . . .+en∥E
BSn

q

) 1
n2 (449)≍ 1

∥e1 + . . .+en∥En
1
2+ 1

q

(448)≍ voln2

(
BSE

) 1
n2

n
1
q

.

By choosing q = logn we get (81) for the normed space Y whose unit ball is the left hand side of (452). □

Remark 171. An inspection of the proof of Lemma 53 reveals that if Conjecture 48 holds for Sn∞, then also
Conjecture 48 holds for SE for any symmetric normed space E = (Rn ,∥ · ∥E). Indeed, we would then take
Y′ = (Mn(R),∥ ·∥Y′) to be the normed space whose unit ball is

BY′ = 1

∥e1 + . . .+en∥E
ChSn

∞ = 1

∥e1 + . . .+en∥E
Sχℓn∞ ,

where we recall Corollary 42. If Conjecture 48 holds for Sn∞, then n ≍ iq(ChSn∞) = iq(BY′), and also

voln2

(
ChSn

∞
) 1

n2 ≍ voln2

(
Sn
∞

) 1
n2

(449)≍ 1p
n

,

from which we see that

voln2

(
BY′

) 1
n2 = voln2

(
ChSn∞

) 1
n2

∥e1 + . . .+en∥E
≍ 1

∥e1 + . . .+en∥E
p

n

(448)≍ voln2

(
BSE

) 1
n2 .

This proves Conjecture 48 for SE. Note in passing that this also implies that

1p
n
≍ voln2

(
Sχℓn∞

) 1
n2

(448)≍ 1

∥e1 + . . .+en∥χℓn∞
p

n
.

Therefore, if Conjecture 48 holds for Sn∞, then ∥e1 + . . .+ en∥χℓn∞ ≍ 1. More generally, by mimicking the
above reasoning we deduce that if Conjecture 48 holds for SE, then ∥e1 + . . .+ en∥χE ≍ ∥e1 + . . .+ en∥E,
which would be a modest step towards Problem 43.

Fix n ∈N and p, q ⩾ 1. We claim that the volume ratio of the projective tensor product ℓn
p⊗̂ℓn

q satisfies

vr
(
ℓn

p⊗̂ℓn
q

)≍Φp,q (n), (453)

where

Φp,q (n)
def=



1 if 1⩽ p, q ⩽ 2,

n
1
2− 1

p if q ⩽ 2⩽ p ⩽ q
q−1 ,

n
1
q − 1

2 if q ⩽ 2⩽ q
q−1 ⩽ p,

n
1
2− 1

q if p ⩽ 2⩽ q ⩽ p
p−1 ,

n
1
p − 1

2 if p ⩽ 2⩽ p
p−1 ⩽ q,

1 if p, q ⩾ 2 and 1
p + 1

q ⩾ 1
2 ,

n
1
2− 1

p − 1
q if 1

p + 1
q ⩽ 1

2 .

(454)
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Assuming (454) for the moment, by substituting it into Theorem 3 we get that

SEP
(
ℓn

p⊗̌ℓn
q

)
≳ nvr

((
ℓn

p⊗̌ℓn
q

)∗)= nvr
(
ℓn

p∗⊗̂ℓn
q∗

)≍ nΦp∗,q∗(n) =



n if p, q ⩾ 2,

n
1
p + 1

2 if q
q−1 ⩽ p ⩽ 2⩽ q,

n
3
2− 1

q if p ⩽ q
q−1 ⩽ 2⩽ q,

n
1
q + 1

2 if p
p−1 ⩽ q ⩽ 2⩽ p,

n
3
2− 1

p if q ⩽ p
p−1 ⩽ 2⩽ p,

n if p, q ⩽ 2 and 1
p + 1

q ⩽ 3
2 ,

n
1
p + 1

q − 1
2 if 1

p + 1
q ⩾ 3

2 .

Since for any two normed spaces X = (Rn ,∥ · ∥X) and Y = (Rn ,∥ · ∥Y) the space of operators from X∗ to Y is
isometric to the injective tensor product X∗⊗̌Y (see e.g. [DFS08]), we get from this that

SEP
(
Mn(R),∥ ·∥ℓn

p→ℓn
q

)= SEP
(
ℓn

p∗⊗̌ℓn
q

)
≳



n if p ⩽ 2⩽ q,

n
3
2− 1

p if 2⩽ p ⩽ q,

n
3
2− 1

q if 2⩽ q ⩽ p,

n
1
q + 1

2 if p ⩽ q ⩽ 2,

n
1
p + 1

2 if q ⩽ p ⩽ 2,

n if 2p
p+2 ⩽ q ⩽ 2⩽ p,

n
1
q − 1

p + 1
2 if q ⩽ 2p

p+2 .

(455)

Observe that the rightmost quantity in (455) coincides with the right hand side of (14). Since ℓn
p⊗̌ℓn

q
belongs to the class of spaces in Remark 39, a positive answer to Conjecture 11 for ℓn

p⊗̌ℓn
q would imply

the following asymptotic evaluation of SEP(ℓn
p⊗̌ℓn

q ), which is equivalent to (14).

SEP
(
ℓn

p⊗̌ℓn
q

)≍



n if p, q ⩾ 2,

n
1
2+ 1

p if q
q−1 ⩽ p ⩽ 2⩽ q,

n
3
2− 1

q if p ⩽ q
q−1 ⩽ 2⩽ q,

n
1
2+ 1

q if p
p−1 ⩽ q ⩽ 2⩽ p,

n
3
2− 1

p if q ⩽ p
p−1 ⩽ 2⩽ p,

n if p, q ⩽ 2 and 1
p + 1

q ⩽ 3
2 ,

n
1
p + 1

q − 1
2 if 1

p + 1
q ⩾ 3

2 .

Furthermore, by Theorem 79 the leftmost quantity in (455) is bounded from above by O(logn) times the
rightmost quantity in (455), thus implying the fourth bullet point of Corollary 4.

The asymptotic evaluation (453) of vr(ℓn
p⊗̂ℓn

q ) was proved in [Sch82] up to constant factors that de-
pend on p, q , namely [Sch82, Theorem 3.1] states that

∀p, q > 1, vr
(
ℓn

p⊗̂ℓn
q

)≍p,q Φp,q (n). (456)

If 2 ∈ {p, q} and also min{p, q}⩽ 2, then (456) is due to Szarek and Tomczak-Jaegermann [STJ80]. More re-
cently, Defant and Michels [DM06] generalized (456) to projective tensor products of symmetric normed
spaces that are either 2-convex or 2-concave. The proof of (456) in [Sch82] yields constants that degen-
erate as min{p, q} tends to 1. We will therefore next improve the reasoning in [Sch82] to get (453).
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Lemma 172. Fix n ∈N and p, q ⩾ 1. Let {εi j }i , j∈{1,...,n} be i.i.d. Bernoulli random variables (namely, they
are independent and each of them is uniformly distributed over {−1,1}). Then,

E

[∥∥∥ n∑
i=1

n∑
j=1

εi j ei ⊗e j

∥∥∥
ℓn

p ⊗̌ℓn
q

]
≍ nβ(p,q) def=

{
n

1
p + 1

q − 1
2 if max{p, q}⩽ 2,

n
1

min{p,q} if max{p, q}⩾ 2.
(457)

Citing the work [Che78] of Chevet, a version of Lemma 172 appears as Lemma 2.3 in [Sch82], except
that in [Sch82, Lemma 2.3] the implicit constants in (457) depend on p, q . An inspection of the proof
of (456) in [Sch82] reveals that this is the only source of the dependence of the constants on p, q (in fact,
for this purpose [Sch82] only needs half of (457), namely to bound from above its left hand side by its right
hand side). Specifically, all of the steps within [Sch82] incur only a loss of a universal constant factor, and
the proof of (456) in [Sch82] also appeals to inequalities in the earlier work [Sch78] of Schütt, as well a
classical inequality of Hardy and Littlewood [HL34]; all of the constants in these cited inequalities are
universal. Therefore, (453) will be established after we prove Lemma 172.

Proof of Lemma 172. Denote the random matrix whose (i , j ) entry is εi j by E ∈Mn(R). Then, the goal is

E
[∥E∥ℓn

p∗→ℓn
q

]≍ nβ(p,q). (458)

In fact, the lower bound on the expected norm in (458) holds always, i.e., for a universal constant c > 0,

∀A ∈Mn({−1,1}), ∥A∥ℓn
p∗→ℓn

q
⩾ cnβ(p,q). (459)

A justification of (459) appears in the proof of Proposition 3.2 of Bennett’s work [Ben77] (specifically, see
the reasoning immediately after inequality (15) in [Ben77]), where it is explained that we can take c = 1 if
min{p∗, q}⩾ 2 or max{p∗, q}⩽ 2, and that we can take c = 1/

p
2 otherwise.

Next, let {gi j }i , j∈{1,...,n} be i.i.d. standard Gaussian random variables. By [Che78, Lemme 3.1],

E

[∥∥∥ n∑
i=1

n∑
j=1

gi j ei ⊗e j

∥∥∥
ℓn

p ⊗̌ℓn
q

]
≍ n

max
{

1
p + 1

q − 1
2 , 1

p

}p
p +n

max
{

1
p + 1

q − 1
2 , 1

q

}p
q . (460)

Consequently,

E

[∥∥∥ n∑
i=1

n∑
j=1

εi j ei ⊗e j

∥∥∥
ℓn

p ⊗̌ℓn
q

]
⩽

√
π

2
E

[∥∥∥ n∑
i=1

n∑
j=1

gi j ei ⊗e j

∥∥∥
ℓn

p ⊗̌ℓn
q

]
≲ nβ(p,q)

√
max{p, q}, (461)

where the first step of (461) is a standard comparison between Rademacher and Gaussian averages (a
quick consequence of Jensen’s inequality; e.g. [MP76]) and final step of (461) uses (460). This proves the
desired bound (457) when max{p, q}⩽ 2, so suppose from now on that max{p, q}⩾ 2.

It suffices to treat the case p ⩾ 2. Indeed, if p ⩽ 2, then q ⩾ 2 since max{p, q}⩾ 2, so by the duality

∥E∥ℓn
p∗→ℓn

q
= ∥E∗∥ℓn

q∗→ℓn
p

,

and the fact that the transpose E∗ has the same distribution as E, the case p ⩽ 2 follows from the case
p ⩾ 2. It also suffices to treat the case q ⩽ p because if q ⩾ p, then ∥·∥ℓn

q
⩽ ∥·∥ℓn

p
point-wise, and therefore

∥E∥ℓn
p∗→ℓn

q
⩽ ∥E∥ℓn

p∗→ℓn
p

.

Consequently, since β(p, q) =β(p, p) when q ⩾ p, the case q ⩾ p follows from the case q = p.
So, suppose from now that q ⩽ 2⩽ p. If we denote

r
def= q(p −2)

p −q
,

with the convention r =∞ if q = p, then r ⩾ 1 and

1

q
= 1−θ

r
+ θ

2
, where θ

def= 2

p
∈ [0,1]. (462)
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Hence, by the Riesz–Thorin interpolation theorem [Rie27, Tho48] we have

∥E∥ℓn
p∗→ℓn

q
⩽ ∥E∥1−θ

ℓn
1 →ℓn

r
∥E∥θℓn

2 →ℓn
2
=

(
max

i∈{1,...,n}

∥∥Eei
∥∥
ℓn

r

)1−θ∥E∥θℓn
2 →ℓn

2
= n

1−θ
r ∥E∥θℓn

2 →ℓn
2

.

By taking expectations of this inequality, we get that

E
[∥E∥ℓn

p∗→ℓn
q

]
⩽ n

1−θ
r E

[∥E∥θℓn
2 →ℓn

2

]
⩽ n

1−θ
r

(
E
[∥E∥ℓn

2 →ℓn
2

])θ
≲ n

1−θ
r + θ

2 = n
1
q = nβ(p,q), (463)

where the second step of (463) uses Jensen’s inequality, the third step of (463) uses the classical fact that
the expectation of the operator norm from ℓn

2 to ℓn
2 of an n ×n matrix whose entries are i.i.d. symmetric

Bernoulli random variables is O(
p

n) (this follows from (461), though it is older; see e.g. [BGN75]), the
penultimate step of (463) uses (462), and the last step of (463) uses the definition of β(p, q) in (457) while
recalling that we are now treating the case p ⩾ 2 and q ⩽ p. □

A substitution of Lemma 172 into the proof of Lemma 3.2 in [Sch82] yields the following asymptotic
evaluations of the n2-roots of volumes of the unit balls of injective and projective tensor products; the
statement of [Sch82, Lemma 3.2] is identical, except that the constant factors depend on p, q , but that is
due only to the dependence of the constants on p, q in Lemma 2.3 in [Sch82], which Lemma 172 removes.

voln2

(
Bℓn

p ⊗̌ℓn
q

) 1
n2 ≍ n−β(p,q) and voln2

(
Bℓn

p ⊗̂ℓn
q

) 1
n2 ≍ nβ(p∗,q∗)−2. (464)

Since ℓn
p⊗̂ℓn

q belongs to the class of spaces in Remark 39, its Löwner ellipsoid is the minimal multiple
of the standard Euclidean ball BSn

2
that superscribes the unit ball of ℓn

p⊗̂ℓn
q , namely

Lℓn
p ⊗̂ℓn

q
= R(n, p, q)BSn

2
,

where, since Bℓn
p ⊗̂ℓn

q
is the convex hull of Bℓn

p
⊗Bℓn

q
,

R(n, p, q) = max
x∈Bℓn

p

y∈Bℓn
q

∥x ⊗ y∥Sn
2
=

(
max
x∈Bℓn

p

∥x∥ℓn
2

)(
max
y∈Bℓn

q

∥y∥ℓn
2

)
= nmax

{
1
2− 1

p ,0
}
+max

{
1
2− 1

q ,0
}

. (465)

By combining (464) and (465) we get that

vr
(
ℓn

p∗⊗̌ℓn
q∗

) (72)≍ evr
(
ℓn

p⊗̂ℓn
q

)= R(n, p, q)

( voln2 (BSn
2

)

voln2 (Bℓn
p ⊗̂ℓn

q
)

) 1
n2

≍ nmax
{

1
2− 1

p ,0
}
+max

{
1
2− 1

q ,0
}
−β(p∗,q∗)+1 (457)=

{ p
n if max{p, q}⩾ 2,

n
1

max{p,q} if max{p, q}⩽ 2.

(466)

A substitution of (466) into Theorem 3 gives

SEP
(
ℓn

p⊗̂ℓn
q

)
≳

{
n

3
2 if max{p, q}⩾ 2,

n1+ 1
max{p,q} if max{p, q}⩽ 2.

(467)

Furthermore, if Conjecture 11 holds for ℓn
p⊗̂ℓn

q , then (467) is sharp, namely (15) holds. Also, by Theo-
rem 79 the left hand side of (467) is bounded from above by O(logn) times the right hand side of (467),
thus implying the fifth bullet point of Corollary 4.

Remark 173. The above results imply clustering statements (and impossibility thereof) for norms that
have significance to algorithms and complexity theory. For example, the cut norm [FK99] on Mn(R) is
O(1)-equivalent [AN06] to the operator norm from ℓn∞ to ℓn

1 . So, by (13) the separation modulus of the
cut norm on Mn(R) is predicted to be bounded above and below by universal constant multiples of n3/2,
and by Theorem 79 we know that it is at least a universal constant multiple of n3/2 and at most a uni-
versal constant multiple of n3/2 logn. As another notable example, we proved that SEP(ℓn∞⊗̂ℓn∞) ≳ n3/2.
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Moreover, if Conjecture 11 holds for ℓn∞⊗̂ℓn∞, then SEP(ℓn∞⊗̂ℓn∞) ≍ n3/2 and by Theorem 79 we have
SEP(ℓn∞⊗̂ℓn∞)≲ n3/2 logn. Grothendieck’s inequality [Gro53] implies that

∀A ∈Mn(R), ∥A∥ℓn∞⊗̂ℓn∞ ≍ γ1→∞
2 (A), (468)

where γ1→∞
2 (A) is the factorization-through-ℓ2 norm (see [Pis86]) of A as an operator from ℓn

1 to ℓn∞, i.e.,

γ1→∞
2 (A)

def= min
X ,Y ∈Mn (R)

A=X Y

∥X ∥ℓn
2 →ℓn∞∥Y ∥ℓn

1 →ℓn
2
= min

X ,Y ∈Mn (R)
A=X Y

max
i , j∈{1,...,n}

∥rowi (X )∥ℓn
2
∥column j (Y )∥ℓn

2
.

Above, for each i , j ∈ {1, . . . ,n} and M ∈Mn(R) we denote by rowi (M) and column j (M) the i ’th row and
j ’th column of M , respectively. See [LMSS07] for the justification of (468), as well as the importance of the
factorization norm γ1→∞

2 to complexity theory (see [MNT20, BLN21] for further algorithmic significance
of factorization norms). Thanks to the above discussion, we know that

n
3
2 ≲ SEP

(
Mn(R),γ1→∞

2

)
≲ n

3
2 logn,

and that SEP(Mn(R),γ1→∞
2 ) ≍ n3/2 assuming Conjecture 11. To check that this does not follow from the

previously known bounds (2), we need to know the asymptotic growth rate of the Banach–Mazur distance
between ℓn∞⊗̂ℓn∞ and each of the spaces ℓn2

1 ,ℓn2

2 . However, these Banach–Mazur distances do not appear
in the literature. In response to our inquiry, Carsten Schütt answered this question, by showing that

dBM
(
ℓn2

2 ,ℓn
∞⊗̂ℓn

∞
)≍ dBM

(
ℓn2

1 ,ℓn
∞⊗̂ℓn

∞
)≍ n. (469)

More generally, Schütt succeeded to evaluate the asymptotic growth rate of the Banach–Mazur distance
between ℓn

p⊗̂ℓn
q and ℓn

p⊗̌ℓn
q to each of ℓn2

1 ,ℓn2

2 for every p, q ∈ [1,∞] (this is a substantial matter that
Schütt communicated to us privately and he will publish it elsewhere). Due to (469), an application
of (2) only gives the bounds n ≲ SEP(ℓn∞⊗̂ℓn∞)≲ n2, which hold for every n2-dimensional normed space.
More generally, Schütt’s result shows that (13) and (15) do not follow from (2).

The volume computations of this section are only an indication of the available information. The
literature contains many more volume estimates that could be substituted into Theorem 3 and Conjec-
ture 6 to yield new results (and conjectures) on separation moduli of various spaces; examples of further
pertinent results appear in [Sch82, Bal91a, GJ97, GJN97, GJ99, GP99, GPS+17, DP09, DV20, KP20, KPT20].

7. LOGARITHMIC WEAK ISOMORPHIC ISOPERIMETRY IN MINIMUM DUAL MEAN WIDTH POSITION

In this section we will prove the results that we stated in Section 1.6.3. We first claim that for every
integer n ⩾ 2 and every r > 0 we have

iq
(
Bℓn∞ ∩ (r Bℓn

2
)
)= iq

(
[−1,1]n ∩ (r Bℓn

2
)
)
≳

(
min

{p
n,r

}(
1− 1

max
{
1,r 2

}) n−1
2 +1

)
p

n (470)

Observe that (470) implies (86). Furthermore, (470) implies the direction ≳ in (87) because

min
r>0

iq
(
Bℓn∞ ∩ (r Bℓn

2
)
)

p
n

(
voln(Bℓn∞)

voln
(
Bℓn∞ ∩ (r Bℓn

2
)
)) 1

n

⩾min
r>0

iq
(
Bℓn∞ ∩ (r Bℓn

2
)
)

p
n

(
2n

voln
(
r Bℓn

2

)) 1
n

≳min
r>0

(
min

{pn

r
,1

}(
1− 1

max
{
1,r 2

}) n−1
2 + 1

r

)
p

n ≍
√

logn,

where the penultimate step uses (470) and the final step is elementary calculus. Since the K -convexity
constant of ℓn∞ satisfies K (ℓn∞) ≍ √

logn (see [Pis89, Chapter 2]), the matching upper bound in (87) will
follow after we will prove (below) Proposition 60. This will also show that Proposition 60 is sharp, though
it would be worthwhile to find out if it is sharp even for some normed space X = (Rn ,∥ · ∥X) for which
K (X) ≍ logn; such a space exists by a remarkable (randomized) construction of Bourgain [Bou84].
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To prove (470), note first that if 0 < r ⩽ 1, then r Bℓn
2
⊆ [−1,1]n and therefore

∀0 < r ⩽ 1, iq
(
[−1,1]n ∩ (r Bℓn

2
)
)= iq(r Bℓn

2
) ≍p

n. (471)

Similarly, note that if r ⩾
p

n, then r Bℓn
2
⊆ [−1,1]n and therefore

∀r ⩾
p

n, iq
(
[−1,1]n ∩ (r Bℓn

2
)
)= iq

(
[−1,1]n)≍ n. (472)

Both (471) and (472) coincide with (470) in the respective ranges. The less trivial range of (470) is when
1 < r <p

n, in which case the boundary of [−1,1]n∩(r Bℓn
2

) contains the disjoint union of the intersection
of r Bℓn

2
with the 2n faces of [−1,1]n , each of which is isometric to the following set.

[−1,1]n−1 ∩ (√
r 2 −1Bℓn−1

2

)
.

Together with the straightforward inclusion

[−1,1]n−1 ∩ (√
r 2 −1Bℓn−1

2

)⊇√
1− 1

r 2

(
[−1,1]n−1 ∩ (r Bℓn−1

2
)
)
,

the above observation implies that if 1 < r <p
n, then

voln−1

(
∂
(
[−1,1]n ∩ (r Bℓn

2
)
))
⩾ 2n

(
1− 1

r 2

) n−1
2

voln−1
(
[−1,1]n−1 ∩ (r Bℓn−1

2
)
)

= n

(
1− 1

r 2

) n−1
2

voln

((
[−1,1]n−1 ∩ (r Bℓn−1

2
)
)× [−1,1]

)
⩾ n

(
1− 1

r 2

) n−1
2

voln
(
[−1,1]n ∩ (r Bℓn

2
)
)
,

(473)

where the final step (473) is a consequence of the straightforward inclusion(
[−1,1]n−1 ∩ (r Bℓn−1

2
)
)× [−1,1] ⊇ [−1,1]n ∩ (r Bℓn

2
).

By combining (473) with the definition (11) of the isoperimetric quotient, we see that

iq
(
[−1,1]n ∩ (r Bℓn

2
)
)
⩾

n
(
1− 1

r 2

) n−1
2 voln

(
[−1,1]n ∩ (r Bℓn

2
)
)

voln
(
[−1,1]n ∩ (r Bℓn

2
)
) n−1

n

= n

(
1− 1

r 2

) n−1
2

voln
(
[−1,1]n ∩ (r Bℓn

2
)
) 1

n . (474)

When r ⩽
p

n we have [−1,1]n ∩ (r Bℓn
2

) ⊇ [−r /
p

n,r /
p

n]n . In combination with (474), this implies that

∀1 < r <p
n, iq

(
[−1,1]n ∩ (r Bℓn

2
)
)
⩾ 2r

p
n

(
1− 1

r 2

) n−1
2

.

As also iq([−1,1]n∩(r Bℓn
2

))≳
p

n by the isoperimetric theorem (12), this completes the proof of (470). □

Passing to the proof of Proposition 60, observe first that for every r > 0 we have

voln
(
BX ∩ (r Bℓn

2
)
)

voln(r Bℓn
2

)
=

voln
(
{x ∈ r Bℓn

2
: ∥x∥X ⩽ 1}

)
voln(r Bℓn

2
)

⩾ 1−
 

r Bℓn
2

∥x∥X dx = 1− nr

n +1
M(X), (475)

where the penultimate step in (475) is Markov’s inequality and the final step in (475) is integration in po-
lar coordinates using the following standard notation for the mean of the norm on the Euclidean sphere:

M(X)
def=

 
Sn−1

∥z∥X dz. (476)

We will also use the common notation M∗(X)
def= M(X∗). By setting r = 1/(2M(X)) in (475) we get that

voln

(
BX ∩

( 1

2M(X)
Bℓn

2

)) 1
n

⩾
(

1

2
voln

( 1

2M(X)
Bℓn

2

)) 1
n ≍ 1

M(X)
p

n
. (477)
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This simple consideration gives the following general elementary lemma.

Lemma 174. Let X = (Rn ,∥ ·∥X) be a normed space. For r = 1/(2M(X)) and L = BX ∩ (r Bℓn
2

) we have

voln(L)
1
n ≳

1

M(X)
p

n
and

MaxProj(L)

voln(L)
n−1

n

≲ 1. (478)

Proof. The first inequality in (478) follows from (477). For the second inequality in (478), observe that
Projz⊥(L) ⊆Projz⊥(r Bℓn

2
) for every z ∈ Sn−1, since L ⊆ r Bℓn

2
. Consequently,

MaxProj(L)⩽MaxProj
(
r Bℓn

2

)= r n−1voln−1
(
Bℓn−1

2

)≍ voln
(
r Bℓn

2

) n−1
n ≲ voln(L)

n−1
n , (479)

where the penultimate step of (479) is a standard computation using Stirling’s formula and the final step
of (479) uses the first inequality in (477). □

By (54), the second inequality in (478) implies that iq(L) ≲
p

n. Hence, in order to use Lemma 174 in
the context of Conjecture 10 it would be beneficial to choose S ∈ SLn(R) for which M(SX) is small. So, fix
δ > 0 and suppose that δM(SX) ⩽ minT∈SLn (R) M(T X). By compactness, this holds for some S ∈ SLn(R)
with δ= 1, in which case the polar of SBX is in minimum mean width position and we will say that SX is
in minimum dual mean width position (the terminology that is used in [GMR00] is that SBX has minimal
M). By [GM00], the matrix in SLn(R) at which minT∈SLn (R) M(T X) is attained is unique up to orthogonal
transformations. We allow the flexibility of working with some universal constant 0 < δ < 1 rather than
considering only the minimum dual mean width position since this will encompass other commonly
used positions, such as the ℓ-position (see [BGVV14, Section 1.11]). By [GM00], X is in minimum dual
mean width position if and only if the measure dνX(z) = ∥z∥X dz on Sn−1 is isotropic. Since νX is evidently
Isom(X)-invariant, by (70) if X is canonically positioned, then it is in minimum dual mean width position.

Let γ be the standard Gaussian measure on R, i.e., its density is u 7→ exp(−u2/2)/
p

2π. The (Gaussian)
K -convexity constant K (X) of X is defined [MP76] to be the infimum over those K > 0 that satisfy(�

Rℵ0

∥∥∥ ∞∑
i=1

g′i

�
Rℵ0

gi f (g)dγ⊗ℵ0 (g)
∥∥∥2

X
dγ⊗ℵ0 (g′)

) 1
2

⩽K

(�
Rℵ0

∥ f (g)∥2
X dγ⊗ℵ0 (g)

) 1
2

,

for every measurable f :Rℵ0 → X with
�
Rℵ0 ∥ f (g)∥2

X dγ⊗ℵ0 (g) <∞. By [FTJ79] there is T ∈ SLn(R) such that
M(T X)M∗(T X) ⩽ K (X). By the above assumption δM(SX) ⩽ M(T X), so δM(SX) ⩽ K (X)/M∗(T X). Next,
M(X) ⩾ (voln(Bℓn

2
)/voln(BX))1/n ; see e.g. [MP89, Section 2] and [HN19, Lemma 30] for two derivations of

this well-known volumetric lower bound on M(X). Applying this lower bound to the dual of T X, we get
M∗(T X)⩾ (voln(Bℓn

2
)/voln(BX* ))1/n . The Blaschke–Santaló inequality [Bla17, San49] states that

voln(Bℓn
2

)

voln(BX* )
⩾

voln(BX)

voln(Bℓn
2

)
,

so we conclude that δM(SX)
p

n ≲K (X)/ n
√

voln(BX). A substitution of this into Lemma 174 gives:

Proposition 175. Fix 0 < δ ⩽ 1 and a normed space X = (Rn ,∥ · ∥X). Suppose that S ∈ SLn(R) satisfies
δM(SX)⩽minT∈SLn (R) M(T X). Then, denoting r = 1/(2M(SX)) we have

voln
(
(SBX)∩ (r Bℓn

2
)
) 1

n ≳
δ

K (X)
voln(BX)

1
n and MaxProj

(
(SBX)∩ (r Bℓn

2
)
)
≲ voln

(
(SBX)∩ (r Bℓn

2
)
) n−1

n .

Furthermore, if X is canonically positioned, then this holds when S is the identity matrix and δ= 1.

By (54), Proposition 175 implies Proposition 60, with the additional information that the conclusion
of Proposition 60 holds with S the identity matrix if X is in minimum dual mean width position, in which
case we obtain an upper bound on MaxProj(L). Hence, by the reasoning in Section 1.6, if X is in minimum
dual mean width position, then

SEP(X)≲K (X)
diamℓn

2
(BX)

voln(BX)
1
n

.
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