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Abstract

We show that any.; embedding of the transportation cost (a.k.a. Earthmover) metric on probability
measures supported on the gfij1,...,n}*> € R? incurs distortionQ ( y/logn). We also use Fourier
analytic techniques to construct a simpleembedding of this space which has distortidfhog n).

1 Introduction

For a finite metric spaceX(dyx) we denote by¥x the space of all probability measures ¥n The trans-
portation cost distance (also known as the Earthmover distance in the computefgvagpbics literature)
between two probability measurgsy € P is defined by

(u,v) = min{ DT dkeNA(RY) L VXY €EX m(xy) 20, Y a(x2) =p(x), > x(zy) = v(y)}.

X,yexX zeX zeX

Observe that ifu and v are the uniform probablity distribution ovérpoint subsetsA € X andB C X,
respectively, then by the fact that all the extreme points ok&ledoubly stochastic matrices are permutation
matrices,

T(u,v) = min{% Z dx(a, f(a)): f: A—> Bisa bijectior}. ()

acA

This quantity is also known as tmeinimum weight matchinigetweenA andB, corresponding to the weight
functiondx(-,-) (see B2]). Thus, the Earthmover distance is a natural measure of similarity between im-
agesifi2,15,[14]- the distance is the optimal way to match various features, where the cost of such a matching
corresponds to the sum of the distances between the features that were matched. Indeed, such metrics oc-
cur in various contexts in computer science. Apart from being a popular distance measure in graphics and
vision [42,(15, 14, 2€], they are used as LP relaxations for classification problems such as 0-extension and
metric labelling B, [8, 2]. Transportation cost metrics are also prevalent in several areas of analysis and PDE
(see the book33] and the references therein).

Following extensive work on nearest neighbor search and data stream computatidisnietrics
(seeR4,120,119,110, 22)), it became of great interest to obtain low distortion embeddings of useful metrics
into L1 (here, and in what followd,1 denotes the space of all Lebesgue measurable fundtiofs 1] — R,
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such that|f||; = fol |f(t)|dt < o). Indeed, such embeddings can be used to construct approximate nearest
neighbor databases, with an approximation guarantee dependingdisttitéonof the embedding (we are
emphasizing here only one aspect of the algorithmic applications of low distortion embeddings ihiey

are also crucial for the study of various cut problems in graphs, and we refer the re&@: 28 R1] for a
discussion of these issues).

In the context of the Earthmover distance, nearest neighbor search (a.k.a. similarity search in the vi-
sion literature) is of particular importance. It was therefore asked (see3&]pwhether the Earthmover
distance embeds intio; with constant distortion (the best known upper bounds orLthdistortion were
obtained in8,26], and will be discussed further below). I18d] the case of the Hamming cube was settled
negatively: It is shown there that any embedding of the Earthmover distani@ 1f (equipped with the
L1 metric) incurs distortiorf2(d). However, the most interesting case is that of the Earthmover distance on
the Euclidean plane, as this corresponds to a natural similarity measure between idh¢eséed, the
case of thd.; embeddability of planar Earthmover distance was explicitly askeB83]).[ Here we settle
this problem negatively by obtaining the first super-constant lower bound dn ttistortion of the planar
Earthmover distance. To state it we first recall some definitions.

Given two metric space3(dx) and (Y, dy), and a mappind : X — Y, we denote its Lipschitz constant

by
dv(f(x), f(y))
fllLip == sup ———=
” ||L|p x,yeg dx(X,Y)

X#y
If fis one toone then its distortion is defined as

dist(f) = | fllip - I1f Hlip = Supw - sup A(x.)

xyex  dx(Xy) xyex Ay (F(X), f(y)) '
X2y X2y

The smallest distortion with whicK can be embedded intis denotedty(X), i.e.,
cy(X) :=inf {dist(f) : f: X < Yisonetoong.

WhenY = L, we use the shorter notatiay(X) = cp(X). Thus, the parametan(X) is the Euclidean
distortion ofX andc;y(X) is theL; distortion of X.

Our main result bounds from below the distortion of the space of probability measures onriloy n
grid, equipped with the transportation cost distance.

Theorem 1.1.¢1 (Pq1_n2. 7) = Q( +flogn).

We note that the best known upper boundo‘pﬁf@{o,l ,,,,, N2> T) is O(logn), as proved in8, [2€]. Later on
(see Theoreni.4) we will show a new embedding which achieves this bound.
After reducing the problem to a functional analytic question, our proof of Thedréns a discretiza-
tion of a theorem of Kislyakov from 1973p]. We attempted to make the presentation self contained by
presenting here appropriate versions of the various functional anlaytic lemmas that are used in the proof.
For readers who are more interested in the minimum cost matching nigtned also prove the follow-
ing lower bound:

Theorem 1.2 (Discretization) For arbitrarily large integersn there is a family? of n-point subsets of

{0.1...,0(ynlog Iogn)}z, with || < nPeglodn) sych that any; embedding of?, equipped with the
minimum weight matching metrig incurs distortion

(Vfogloglogn) = ( ViogTog g7



A metric spacesX, dx) is said to embed into squaréd, or to be of negative type, if the metric space
(X, \/&) is isometric to a subset &b. Squared., metrics are important in various algorithmic applications
since it is possible tof@ciently solve certain optimization problems on them using semidefinite program-
ming (see the discussion iB,[31]). It turns out that planar Earthmover does not embed into any squared
metric (see RemaiB.3for a more general result):

Theorem 1.3(Nonembeddability into squardg). limp_,. 02(9{0 N2> \/?) = oo,

.....

Motivated by the proof of Theoreth 1, we also construct simple low-distortion embeddings of the space
(«@{o,l ,,,,, nizs T) into Ly. It is convenient to work with probability measures on the tagimnstead of the grid
{0,1,...,n}2. One easily checks th#d, ..., n}> embeds with constant distortion infg, (see e.g. Lemma
6.12in 37]). Everyu € &5, can be written in the Fourier basis as

p=p, AuVew. )
(uv)ez2
where
2ni(autbv) — l
V(@ b),(uv) € Z2 en(ab)=e"n , and Y(uv)eZ2 7u,v):= = Z u(a, b)ey(—a, —b).
(ab)ez3

Observe that fon = 2K + 1, k € N, the decompositior2) can be computed in tim@(n2 log n) using the
fast Fourier transformdg]. Motivated in part by the results c&0)] (see also’, 41]), we define

e 1

A= Z 2riu 2 2riv 2 'ZL\(U, V) * €uvs (3)
woeooy €7 =1 +[e™ ~1

and
e _1
Bu = iu v (U, V) - eyy. @
(U»V)e;\{(o,on |G'2”T - 1|2 + |e2"T _ 1|2

Theorem 1.4. The mapping: — (Au, Bu) from (,@Z%,T) to Ly (Zﬁ) oL (Zﬁ) has distortionO(log n).

The O(logn) distortion in Theoreni.4 matches the best known distortion guarantee provedérg].
Our embedding has various nice features. First of all, it is a simple closed-form linear mapping into a low
dimensionallL; space, which is based on the computation of the Fourier transform. It is thus very fast
to compute, and is versatile in the sense that it might behave better on images whose Fourier transform is
sparse (we do not study this issue here). Thus there is scope to apply the embedding on certain subsets of the
frequencies, and this might improve the performance in practice. This is an interesting “applied” question
which should be investigated further (see the “Discussion and open problems” section).

2 Preliminaries and notation

For the necessary background on measure theory we refer to thel4g)okdwever, in the setting of the
present paper, our main results will deal with finitely supported measures, in which case no background and
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measurabilty assumptions are necessary. We also refer to the/Bgjdlrf background on the theory of
optimal transportation of measures. L&t dx) be a metric space. We denote l# the space of all Borel
measures oiX with bounded total variation, and by?x C .#x the set of all Boreprobability measures
on X. We also let#z C .#x be the space afion-negativeneasures oiX with finite total mass, and we
denote by.#? C .#x the space of all measurgse .#x with u(X) = 0. Given a measure € .#x, we can
decompose it in a unique way as= u* — u~, whereu™, u~ € .y are disjointly supported. lf,v € .Z;
have the same total mass, ik€X) = v(X) < oo, then we lefI(u, v) be the space of atlouplingsof x andyv,
i.e. all non-negative Borel measuresn X x X such that for every measurable boundedX — R,

fx 1dr(xy) - fx f(9du(). and fx T0)dr(xy) - fx Fy)dn(y).

Observe that in the case of finitely supported measures, this condition translates to the standard formulation,
in which we require that the marginalsofireu andv, i.e.

VX, y e X, Z 7(x,2) = u(X), and Zn(z, y) = w(y).

zeX zeX

Thetransportation cost distandeetweeru andv, denoted here by(u, v) = 7(xd,)(u, v) (and also referred
to in the literature as the Wasserstein 1 distance, Monge-Kantorovich distance, or the Earthmover distance),
is

7(u, v) = inf {fx xdx(x, y)dr(x,y) : 7€ I(u, v)}. (5)

Foru e 49, u*(X) = u~(X), so we may writd|u|l; := v(u*, ). This is easily seen to be a norm on the

vector spacesy . = {,u e M2 Nl < oo}. It is easy to check that for any two non-negative measures
with the same total mass, and for every non-negative measwve haver(u+o,v+o0) = t(u, v). It follows
that

e =vlle =7 (=) (w=v)7) =7((u=»"+minfu,v}, (= )"+ minfu,v}) = 7(u, v). (6)

Fix somexg € X, and let Lig(X) = Lip,,(X) be the linear space of all Lipschitz mappings X — R
with f(xo) = O, equipped with the norr- [|Ljp (i.e. the norm of a function equals its Lipschitz constant).
Any u € ,///Q,T can be thought of as a bounded linear functional oy, given by f - fx fdu. The
famousKantorovich duality theorer(see Theorem 1.14 ib8]) implies that Ligy(X)* = ///QT, in the sense
that every bounded linear functional on k{X) is obtained in this way, and for evegye ///QT

lledlz = lillLipgxyr = Sup{fx fdu : f € Lipg(X), IIfllLip < 1}.

(We note that this identity amounts to duality of linear programming.)

3 Proof of Theorem1.1

Fix an integem > 2 and denoteX = {0,1,...,n - 1)2, equipped with the standard Euclidean metric. In
what follows, for concreteness, Igp= Lipy(X) is defined using the base poix = (0, 0). Also, for ease
of notation we denote# = //ZQ,T. Observe that Ligand.# are vector spaces of dimensioh- 1, and by
Kantorovich duality, Lig = .# and.Z* = Lip.



Assume thafF : Px — L, is a bi-Lipschitz embedding, satisfying for any two probability measures
u,v e P,
T, v) <IIF@) = FOlL < L - 7(w, v). (7)

Our goal is to bound. from below. We begin by reducing the problem to the casénafar mappings
Recall that given two normed spac&s|(- ||z) and V|| - |lw), the norm of a linear mapping : Z - W is
defined ad(T|| = SUPcz\ () ”Z”'W (observe that in this cag@ || = [|TlLip)-

Lemma 3.1 (Reduction to a linear embedding o# into 52‘). Under the assumption of an existence of
an embedding- : #x — L satisfying(7), there exists an integed, and an invertible linear operator
T - &), with ||T|| < 2L and [T ()|l > l|ull- for all u € . (the factor2 can be replaced b§ + & for
everye > 0, but this is irrelevant for us here).

Proof. By translation we may assume thHatmaps the uniform measure ofito 0. Foru € .# denote
llulleo == Maxx |(X)]. Observe that it is always the case thatl., < ||ull.. Indeed, ifr € TI(u*, x~) then

f 1= Yllad(x y) > f dr(xy) = 10 = 170 = el
XxX XxX

Let B , denote the unit ball of#. Define foru € B, a probability measuré(u) € Px by ¢ (u)(X) =
’%. Itis clear that for every, v € ., [lu—vll- = W|ly() -y ()ll-. The mappingd := n—lz-Fmp By — L1
satisfiesh(0) = O, [|IhllLip < L, and|h(u) — h(v)ll1 > Il — vIl;, where we have used)and 6). This implies
that there exists a map : .# — L satisfying the same inequalities. We shall present two arguments
establishing this fact: The first is a soft non-constructive proof, using the notion of ultraproducts, and the
second argument is more elementary, but does not preserve the Lipschitz constant.

Let  be a free ultrafilter olN, and denote byl(;)4 the corresponding ultrapower bf (see [L6] for
the necessary background on ultrapowers of Banach spaces. In particular, it is shown thérg4hat (
isometric to arlLy (o) space, for some measurd. Define foru € .4, h(u) = (] - h(u/1))jZy /% . where we
set, sayh(v) = 0 forv e .# \ B 4. Then, by standard argumennﬁllup <L andllﬁ‘lllup < 1. Moreover,
h(.#) spans a separable subspacelgj4, and thus we may assume without loss of generalityftttakes
values inLj.

An alternative proof (for those of us who don’t mind losing a constant factor), proceeds as follows. For
everyf e Ly lety(f) : [0,1] xR — {-1,0, 1} be the function given by

1 f(9>0 0<t< f(9),

x(f)(s 1) = sign(f(9)) - 1[0,”(5)‘](0 = { -1 f(g9 <0, 0<t<—1(9),
0 otherwise

Itis straightforward to check tht(f) —x(9)llL,0.1xr) = IIf —dll1 for everyf, g € L1 (We note here that the
spacel1([0, 1]xR) is isometric toL;.) Defineh : .# — L1([0, 1] xR) by settingh(x) = |l - x o h(w/llll;)
for € . \ {0}, andh(0) = 0. Since for evenyf € Ly, y(f) takes values if-1, 0, 1}, we have the following
pointwise identity for every, v € .# with ||ull; > ||Vl

IA) - )| = Ivle - F h(n:nf) re h(nvvnr)

+(||u||f—||v||7)-%oh(””)
ull



Thus

~ ~ _ _ . #
lh) = b oy = M- '(nunf) (” ”T) + (llulle = VIl Hh(nunr)l 8)
\4
> [l - - + [l = IVl
i ||u||f T P
S [
L e IR Lt
T T
= v - ulls
It also follows from the identityd) that
i) - B oy = LM | = |+ L=
< Ll = vl + LIVl - |—— - Ll = vlr
el VIl
< 3Ll =k

We are now in position to use a Theorem of Rildd][(see also/17], and Corollary 7.10 inl4], for
softer proofs), which implies that there is an into linear isomorpHsm.# — LI* satisfying||S|| < L
and||S7Y|| < 1. Since.# is finite dimensional, by the principle of local reflexivii@d] (alternatively by
Kakutani’s representation theorei/[34]), and a simple approximation argument, we get that there exists
an integeN and an into linear isomorphisi : .# — €)' satisfying||T|| < 2L and|IT~}| < 1 (the value
of N is irrelevant for us here, and indeed it is possible to conclude the proof without passing to a finite
dimensional; space, but this slightly simplifies some of the ensuing arguments. For completeness we note
here that using a theorem of TalagraB@][we can ensure thal = O(n? logn)). m|

Remark 3.1. The first argument above is not special Egr and can be generalized to show that for every
finite dimensional Banach spa¥eif the unit ball ofY admits a bi-Lipschitz embedding into a Banach space
Z, thenY embeds linearly with the same distortion izto

From nowon lefl : .7 — 51'\‘ be the linear operator guaranteed by Len8ria SinceT is an isomor-
phism, the adjoint operatdr* : N — .#* = Lip, is a quotient mapping, i.6/T*|| < 2L and the image of
the unit ball ofeY underT* contains the unit ball of Lig

The rest of the proof follows Kislyakov's3P] and is a discretization of his argument. The idea is to
composer* with a map.# which is the imaginary part of the discrete two dimensional Fourier transform
(see the exact definition below), seen as a map frong topl>(X), and to prove two properties of the
composed map: Using the fact thidt*|| < 2L we shall show that o T* is order boundeavith good bound,
that is,

(T (Ba)) <ty e 2(X) : I <

for somex e €,(X) such that|x|l> < 4Ln. Then, using the quotient property ®f, we find a family of
functions{¢; € B Jici such that it (T*(¢i))) < xfor all i € | then necessarilyx|l> > cn+/logn, for some
universalc > 0.



We now define two more auxiliary linear operators. The first is the formal identity Id 5 HpW,
whereW is the space of all functions: X — R with f(0) = 0, equipped with the (discrete Sobolev) norm

>
=
:!
I\)
3

-1 n-
[ fllw If(I J+ -1 I+ 110 +1,j) - £, )l
j=0 i=0

N

Iy
o
I
o
i
o

n-2 n-2
+n > 1 +1,00= 1,00 +n > IF(0, j+1)= (0, j)l
i=0 =0

The second operator is also a formal identity (discrete Sobolev embeddling)/ — ¢»(X), where the
Euclidean norm orf»(X) is taken with respect to the counting measurexonThe final operator that we
will use is the imaginary part of the Fourier operator, already referred to above, which we dengte by
{2(X) — £2(X). Itis defined forf : X — R by

7= S(n_lz 2, 1 )MUM) =D f(k,f)sin(w).

(k.O)ex (k.O)eX
The following lemma summarizes known estimates on the norms of these operators.

Lemma 3.2(Operator norm bounds)lhe following operator norm bounds hold true:
elldi<4n(n-1). e|SI<3. e[Zl<i.

Proof. The first statement means that for evéry X — R with f(0) = 0, [|f|lw < 4n(n — 1)||f||Lip, which

is obvious from the definitions. The second assertion is|thigt < %Ilfllw- This is a discrete version of
Sobolev’s inequality41] (with non-optimal constant), which can be proved as follows. First of all, since
f(0) = 0, for every (1,v) € X,

C
|_\
<
|_\

[f(u,v) = [f(k+1v) f(k,v)]+Z[f(0 ¢+1)- (0,0)]
k=0 =0
< n_2|f(k+ 1Lv) - f(k V) + 22”(0 ¢+ 1) - (0, 0)] = A(V). 9)
k=0 =0
Analogously,
[f(u,v)| < n22|f(u,€+ 1) - f(u )+ n22|f(k+ 1,0) - f(k,0)| := B(u). (10)
=0 k=0

Multiplying (9) and (L0), and summing oveX, we see that

n-1 n-1 n-1 n-1 2
E< Y, A = (3 A0 (B < 5[ a0 + ) B = Fini,
v=0 u=0 v=0 u=0

(u,v)exX
The final assertion follows from the fact that the system of funct'{c(h,sf) > e }( ) are or-
uv)exX
thogonal int’g(X) (the space of complex valued functions X)) and have norms bounded hy m|



We now recall some facts related to absolutely summing operators on Banach spaces (we refer the
interested reader té®1, 54] for more information on this topic). Given two Banach spa¥emndZ, then;
norm of an operatoA : Y — Z, denotedr1(A), is defined to be the smallest const&nt- 0 such that for
everyme N and everyys,...,Ym € Y there exists a norm 1 linear functiongle Y* satisfying

DAYz < K Dy )l (11)
=1 ji=1

This defines andeal normin the sense that it is a norm, and for every two operakorsW — Y and
Q:Z - V we haver1(QAP) < ||Qll - 71(A) - ||P||. Observe that it is always the case thgth) > ||All.

Lemma 3.3. Using the above notatiom; (Id) < 4n(n — 1). Therefore, Lemma.2 implies that

71(F 0SoldoT¥) <4nL.

Proof. Fix f1,..., fn: X > Rwith f1(0)=--- = f,(0) = 0. Then
m n-1n-2 m
il = DU(f(st+1) - fits Ol +1fit+ 1,9 - fi(t.9)
j=1 s=1t=0 j=1

=}
N

+(n+1) Z (1;(0,t + 1) = £;(0, 1) + | fj(t + 1,0) — f;(t, 0)))
t=0 j=1

1l
o

IA

4n(n-1) max{ max Z|f,(&t+1)— f,(s,t)l max Zlf (t+ 1,9 - fj(t, s)|}

0<t<n 2 i= 0<t<n 2 =

Assume without loss of generality that the maximum above e@'@lﬂfj(so, to + 1) — fj(so, to)l, for some
0< s <n-1landO0<ty<n-2. Considerthe measure= d(sto+1) — d(sote) € -# = Lipy. One checks
that||ull, = 1, andz " 1fj(s0, to + 1) — fi(so, to)l = rjn=1 lu(f;)I, implying the required result. o

The fundamental property of the norm is the Pietsch Factorization Theorem (s&#)[ a special
(particularly easy) case of which is the following lemma. We present a proof for the sake of completeness.

Lemma 3.4 (Pietsch factorization)Let Y be a Banach space, and fix a linear operafor £\ — Y. Then
there exists a probability measuseon{l, ..., N} and a linear operatoR : L1(0") — Y such thatA = Ro |,
wherel is the formal identity fron\ to L1(c), and||Rl| = 71(A).

Proof. Recall thatA : ¢N — Y satisfies for alky, ..., Xm € £,
Z Il <78 sup Z X (x))] = ma(A) - max Z 1% (K. (12)
= xe(tN)" =
[Ix*I=1

where the last equality follows from the fact that the evaluation functionadsx(k) are the extreme points
of the unit ball of ) = (£N)".



Denoting byey, . . ., ey the standard basis &\ we deduce fromA2) thatz1(A) > Z _, lIAgjl|. Define a

probability measure- on{1,..., N} by o(k) = %. Then for every € €N we see that
=178
N N
IAX] = || > x(Aad| < D IX()! - A& (Z ||Ae,||) f{l XRIdo () <m(A) | - Kidr(k)
k=1 -1 \izr T IOLLGNy i
DefiningRx= Ax, this implies the required result. m|

From now on leRando be the operator and probability measure correspondiAgio7 o SoldoT* in
Lemma3.4. ThusRo |l =.# o Soldo T* and||R|| < 4nL. Schematically, we have the following commuting
diagram:

N L Lipy e w2 6500 L 600
\|\ /
Li(o)
We need only one more simple result from classical Banach space theory. This result can be generalized

to the case in which the target spakeis replaced by a more general Banach lattice. For the sake of
simplicity we shall prove here only what is needed to conclude the proof of Thehdem

Lemma 3.5. LetR : Li(0) — ¢2 be a linear operator. Fixf : {0,...,N} — [0, ). Then there i € ¢,
with non-negative coordinates such that

R({g:{0,...,N} = R: Vj lg(j)l < f(j)}) clyeta: Vi, lyjl < xj},

and|[Xll2 < [IRIl - [IfllLyo)-

Proof. Ris given by a matrixR; : i =1,...,N, j € N). In other words, for every, (Rf); = Zi'\ilRij f(i).
Observe that using this notation,

1/2
IRI'= max (0(.)2 Z RZ) (13)
Fix g € L1(o) such that for all € {1,..., N}, |g(i)| < f(i). Then for allj,
N
(RIjI < D IRjIF() = X;.
i=1
Now,

o0 N . 1/2 . . 1 ) 1/2
Xl = l;(;|aj|f(n)) (Zm,l f(|)) =;a(n)f(l)(méaﬁ) < IR I llLyo)s

where we have used3). m|

,11/2

N
i=1



We are now in position to conclude the proof of Theof®h

Proof of Theorerd.1. For (u,V) € {1,...,n— 1}? definep,, : X = R by

1 . (2n(uk + V)
ouv(k, ) = Y sm( . )

Thengyy(0) = 0 and one computes thigbyyllLip < %. By the fact thafl* maps the unit ball of onto the
unit ball of Lipy, it follows that there isp,y € &N with lPuvlles < %” andT ¢,y = ¢uyv. Now, the functions
[1(¢uy)l € L1(o) are point-wise bounded by the const&htso by Lemm@.5there existx € £5(X) of norm

at most%"llRlI < 167L such thatR(I (¢yy))| is bounded pointwise by.

Note that

Rol(puv)(,V) = FoSoldoT (puy)(u,v)

= F(euv)(U,V)
1 1 2 (2n(ul;+ v{’))

R IS R e

N

But

n-1

n-1 n-1
2 1 1 logn
167L)? > I3 > = Rol V| =g ST
A6l 2 G = ), Xz ), [RelGud@] 2§ ), e = g

where the last bound follows from comparison with the appropriate integrals. The proof of Thidrism
complete. m|
3.1 Discretization and minimum weight matching

In this section we deduce Theorel? from Theoreml1.l. The main tool is the following theorem of
Bourgain B], which gives a quantitative version of Ribe’s theoret|[

Theorem 3.6(Bourgain’s quantitative version of Ribe’s theore)[ There exists a universal constabt
with the following property. LeY and Z be Banach spaceslim(Y) = d. Assume tha# is ane-net in
the unit ball ofY, f ;| # — Z satisfiesdist(f) < D, and thatlog Iog% > CdlogD. Then there exists an
invertible linear operatofT : Y — Z satisfying||T|| - |[T~%|| < C - D.

Proof of Theoreri.2. Observe that for every € .#, the measur% c(ureuT)isinII(u*,u). Thus

1
llulle < 00 fx y 1= Yil2du " (9™ () < V2 (n=1)- " (X) < 2n - [suppfe)] - llalleo < 20°ualco-
X

10



On the other hand, as we have seen in the proof of LeBulydor everyu € .4, ||ull < llull-. It follows

from these consideration, and Theorein and3.6, that for every integeN > eeclnzloglog”, the set of
probability measure®” C &y consisting of measurgse #?x such that for alk € X, u(x) = k/N for some
k € {0,...,N}, satisfiesc1 (%, 1) = Q(\/Iog n). We pass to a family of subsets as follows. Mtbe an

integer which will be determined later. For everye % we assign a subs&, c {0,..., nMj)? as follows.
For every (,v) € X = {0,...,n—1}2,if u(u,v) = k/N, wherek € {0,..., N}, thenS, will contain arbitraryk
distinct points from the seti, vM) + {O, o [ \/N]}Z ProvidedM > 4N, the set4S,},c» thus obtained

areN point subsets of0, ..., nM}?, and it is straightforward to check that the minimum weight matching
metric on{S,} . Is bi-Lipschitz equivalent to%’, r) with constant distortion. O

3.2 Uniform and coarse nhonembeddability into Hilbert space

In this section we prove Theore3 We shall prove, in fact, that the spacg ;2. does not embed
uniformly or coarsely intd_,. We first recall the defintions of these important notions (2&7] and
the references therein for background on these concepts). XLa¢)(and (Y, dy) be metric spaces. For
f : X - Y andt > 0 we define

Q¢ (t) = supdy(f(x), f(y)); dx(xy) <t},

and
wt(t) = inf{dy(f(X), f(y)); dn(xy) > t}.
ClearlyQ¢ andws are non-decreasing, and for evety < X,

ws (dx(%,Y)) < dy(f(X), f(y)) < Q¢ (dx(X.Y)).

With these definitionsf is uniformly continuous if limp,o Q¢ (t) = 0, andf is said to be a uniform embed-
ding if f is injective and bottf andf~! are uniformly continuous. Alsd, is said to be a coarse embedding
if Q¢(t) < o forallt>0andlim_. ws(t) = .

In what follows we will use the following standard notation: Given a sequence of Banach spaces
{@Z.11- ”Zi)}jzl the Banach spacEP;”, Zj)1 is the space of all sequences= (z))7?; € []2,Z; such
that|Z| = 52, liZjllz, < co. If for every j € N, Zj = Zy, we write£y(Z;) = (@T‘;l Zj)l.
Theorem 3.7.The space%,///{% T} ) do not admit a uniform or coarse embedding ihtowith moduli

e

uniformly bounded im, i.e., there do not exist increasing functionsQ : [0, ) — [0, o) which either
satisfylimiow(t) = limi-o Q(t) = 0, or limi_« w(t) = oo, and mappingd, : //1{% e L,, such that
w(le = Vlz) < Ifa() = fa()ll2 < Q(l|lu = vII;) for all u, v € ///{% ,and alln.

.....

,,,,, n}

Proof. If this is not the case then by passing to a limit along an ultrafilter we easily deduce/t i uni-
formly or coarsely embeds in an ultraproduct of Hilbert spaces and thuyggeelL6,/17]). By a theorem of
Aharoni, Maurey and Mityagird]] in the case of uniform embeddings, and a result of Randrianarivag}y [
in the case of coarse embeddings, this implies,gw{%t’ll2 is linearly isomorphic to a subspacelgf. By a

theorem of Niksin [39] it follows that //lglz is isomorphic to a subspace bf_, for anye € (0,1). We
recall that it is an open problem posed by Kwapien (see the discussi@, 4]] whether a Banach space
which linearly embeds intdy is linearly isomorphic to a subspacelof. If this were the case, we would

have finished by Theorefl. Since the solution of Kwapien’s problem is unknown, we proceed as follows.
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Let{S }°° be a sequence of disjoint squares inl[3 with

d(S;, Sk) = . Smln lla- b, > max{dlamSJ,dlarnSk} (14)

Consider the linear subspa¥eof ///0 12 consisting of all measuregs satisfying suppf) < Uj2; Sj and
u(Sj) = O forall j. Itis intuitively clear that in the computation ¢fi||. for u € Y the best transportation
leaves each of th8; invariant; i.e., it is enough to take the infimum &) Enly over measures € IT(u, v)
which are supported qrj‘j";l(sj x Sj). This is proved formally as follows: Fix € Y and writeu = Z‘j";l,uj,
where supp(;j) € Sj andu;(S;) = Oforall j € N. We claim that

lballo.apr = D il - (15)
=1

_If mj € _H(,u}f,yj‘) thenr = Z‘J?‘;lnj € Uw+,u_). Thu_s||,u||[0,1]z’r < Z‘j";lllujllsjj. To prove the reverse
inequality taker € II(u™, u™). For everyj = 1,2,... define a measure; on S; as follows: ForA C S; set
agij(A) = n(Ax Uk Sk). Thus, in particular, by our assumptiatdj for everyy € S;,

fIIX—YIlde'j(X)=f IIX—YIlzdﬂ(X,Z)Sf [IX — Z|2dn(X, 2). (16)
Sj SjXUkzj Sk SixUkej Sk

Writing
[ (o) 1

— 1
T=17- 1uj 1(S]xSJ) Z J(S ) CTj ®0’j =7- lU}x;l(SJ'XSi) + Zl ﬂ(Sj » quﬁj Sk)
J:

it follows from our definitions thak € II(u*, u~) and~ is supported orQJ‘j";l(Sj x Sj). Moreover, for each
J, 7wy = T7s; € (], uy), so that

(o8]
D lgjlls -
=1

"o ®0j,

(o)

> [y (x)
=1 SjxS;j

1
| X Ylladr(xy) + >
US1(SjxS)) =1 ﬂ(Sj X Uk;ﬁj Sk)

IA

- f X = Yilzdorj (e ()
S'XSJ'

(19

< f X = iladr(x,y) + Z f IIX - Alodr(x, )
Uiz1(SixS)) SjxUkej Sk

= — Yllodr(x, Y).
f(u, SIUDS J)IIX Yllzdz(x, y)

This concludes the proof oiLE). It follows thatY is isometric to(@‘r’;l //lgn 7)1’ which in turn is isometric

to £1 (///[8 1P ) Now, Kalton proved in28] that if for some Banach spacg, ¢1(X) is isomorphic to a

subspace of g, thenX is isomorphic to a subspace lof and we finish by Theoreih.1. m|
Proof of Theorerd.32. Assume for the sake of contradiction that there exists co such that for alh € N,

..........
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..........

Vi =l < o) = Ol < C - Vil =Vl - 17)

,,,,,

equalities [L7) imply that allu,v € .#g__np satisfy yllu —vll: < [Ifa) = Tn)ll)s < C - Vil =k

.....

Since the ultrapowerl{),, is isometric to a Hilbert space (seg€]), we arrive at a contradiction with
Theoreni3.7. m]

Remark 3.2. We believe that Theorerh.2 can be made quantitative, i.e. one can give explicit quantitative

.....

tative versions of the proofs il1]28,'43], which seems easy but somewhat tedious. We did not attempt to
obtain such bounds.

Remark 3.3. We do not know whethe(n@lo,l]z,r) admits a uniform embedding into Hilbert space. The

proof above actually gives that for all € (0, 1], (L@[O,l]zﬁ,r“) does not embed bi-Lipschitzly into Hilbert
space. But, our proof exploits the homogeneity of the functiem t* in an essential way, so it does not
apply to the case of more general moduli.

4 Upper bounds via Fourier analysis

In this section we prove Theoreiy, and discuss some related upper bounds. Given a mgasarg2 we
decompose it as ir2f, and we consider the linear operatérandB, from ./ to L, (Zﬁ) defined in [B)

and d), respectively. One checks that the duals of these opera&ar8; : L, (Zﬁ) - ///ZfZ = LipO(Zﬁ),
are given by

" e n -1 —
At = Z 2riu 2 2riv 2 f(u’ V) ’ (euv_ l), (18)
woezooy [€7 —1 +]eT —1
and
e‘m -1
B'f = Z 2riu 7" f(u,v) - (eww—1). (29)

(UV)EZ3\{(0,0)} |eT - 1’2 + |e2”TiV 1

To check these identities the reader should verify that fopaHl .2, [, fd(Au) = [.(A*f)du, and

similarly for B (to this end, recall that (Z3) = 0, so thafii(0,0) = 0. This explains the subtraction of 1 in
the identities/18) and (19)).
We claim that for every: € .4,

il < 1AL (22) + I1Budl,(zz) < Clogn- [l (20)

whereC is a universal constant. This will imply Theoréi since the mapping — u — U, whereU is the
uniform probability measure off, is an isometric embedding aP 52 into .4z
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By duality, {20) is equivalent to the fact that the mappirigg) — A" f + B*g from L., (Z2) & L., (Z2) to
Lip, (Z2) is aClogn quotient map, i.e. for evenyf(g) € Lo, (Z2) ® Lo (Z2)

and for everyh e Lipy(Z3) there is somef(g) € L. (Z3) ® L. (23) satisfyingA'f + B'g = h and
max{|| fle, l19ll} < INllLip- The second assertion is proved as follows: Taked1h andg = d-h, where for

A*f + B'g

iy < Clogn - max{l| e, g} (21)

j = 1,2,0ih(xX) = h(x + €j) — h(x) (heree; = (1,0) ande; = (0,1)). Clearly||f|lc, [I9llo < [IPlILip, and
e — 1) d1h(u, V) + (65 = 1) - d2h(u, V)
Af +B'g = > [( ! 2”1 (2” 2) : ](aJv—l)
(UV)EZR\((0.0) e —1° + [ -1
e 1) (R - 1)+ (eF —1)- (5 - 1)) _
.y “ ): (%U )+ (hw 2)( )]-muvx%v—l)
(UV)EZ2\((0.0) e — 1 + [ - 1
= Z h(u, V)ew — Z h(u, v)

(uV)eZ2\{(0,0)}

Z F(u, V)ew = h,

(uv)ez?

(uv)eZ3\{(0.0)}

where we used the fact thiaf0) = 0
It remains to prove41). To this end, it is enough to show thp&" f||Lip < O(logn)- |||l and||B*gllLip <
O(logn) - ||gll. We will establish this foAA*- the case oB* is entirely analogous. Observe that

IA™ fllLip < 1102A" flleo + 102A" flco,

so it is enough to establish the following two inequalities:

|e2"Tiu - 1|2 _
o o -f(uvew| < O(logn) - [Iflle, (22)
woeiooy €5 — 1 + e -1 .
and
) ()
27iu 27iv f(u’ V)QJV < O(Iog n) ' ”f||°° (23)
ooy ™ ~1 + e - 1f°

[

Since forp > 0 the norms o, (22) andL, (Z2) are equivalent with constant/P (by Holder's inequality),
it is enough to show that fqo > 2,

’e% - 1|2 _
> g o - fu,v)ew|| < O(p) - lifllp, (24)
ooy e~ 1 + [ ~ 1 ,
and
(7% -1) (% -1)
2niu 2mv f(u’ V)QJV < O(p) : ” f”p (25)
ooy e~ 1 + [ ~1 ]
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To prove inequalities24) and 25) we will assume that is odd (all of our results are valid for everas
well, and the proofs in this case require minor modifications). We thid afs [-(n—1)/2, (n—1)/2]*>nZ>.
As before, giverm : Z2 — C we denote

om(x,y) = m(x+Ly)-m(xy), and dm(x,y) = m(x,y+1)—m(xy).
Thus
2m(x,y) = m(x+2,y) — 2m(x+ Ly) + m(x,y) and a5m(x,y) = m(x,y + 2) — 2m(x,y + 1) + m(x, y),

and
010oM(X,y) = 0200mM(X,y) = m(X+ Ly+1)—m(x+1,y) - m(x,y + 1) + m(X, y).

In what follows we think ofm as aFourier multiplier in the sense that it corresponds to a translation
invariant operatolry, on L (Z2) given by

To(f) = > muv)- Fuv) - ew (26)

(uv)ez?

Recall that an operatdF : L (Z2) — Ly(Z2) is said to be weak (1) with constani if for every
f:Z2 — Candevena> 0,

|{((u,v) € Zﬁ T f(u,v)| > a}’ < % Il = g . Z [f(u, V).

(uv)ezd
We will use the following discrete version of theédHnander-Mihlin multiplier theoreng, 18].

Theorem 4.1(Hormander-Mihlin multiplier criterion oZ2). For j € N denoteQ; = [-2/,2]] x [-2,2]].
Fix B> 0andm: Z2 — C with m(0,0) = 0, and assume that for ajl=0,1,..., [log,(n - 1)] — 1,

D [27PIm )P + 103m(u, v + 16m(u, v)IP+
(uVv)e(Q)\Qj-1)NZ3
22192m(u, V)7 + 22)165m(u, V)2 + 2%1]910;m(u, V)| < BZ,

Then the translation invariant operatdiy, corresponding tan is weak(1, 1) with constantO(B).

While the continuous version of thedrmander-Mihlin multiplier theorem is a powerful tool which
appears in several texts (e.g. in the bodk#8,52]), we could not locate a statement of the above discrete
version in the literature. Itis, however, possible to prove it using several minor modifications of the existing
proofs. The standard proof of thedHnander-Mihlin criterion is usually split into two parts. The first part,
which is based on the Calder-Zygmund decomposition, transfers virtually verbatim to the discrete setting-
see Theorem 3 in Chapter 1 @], and Remark 8.1 there which explains how this part of the proof transfers
from R" to the setting of finitely generated groups of polynomial growth (in fact, the Gatdygmund
decomposition itself, as presented in Theorem 2 in Chapter48hfif valid in the setting of general metric
spaces equipped with a doubling measure). The second part of the proof dfrthamtler-Mihlin theorem,
as presented in Theorem 2.5 48[, requires several straightforward modifications in order to pass to the
discrete setting. We leave the simple details to the reader. For the sake of readers that are not familiar with
these aspects of Fourier analysis, we will later present a complete reduction to a continuous problem whose
proof appears in print, which yields slightly worse bounds on the distortion guarantee.

15



In order to apply Theore.1 we consider the following two multipliers,

(7 -2 (¢ -3)
)

27tiu

e - af
and mp(u,v) = -

my(u, V) = , , ,
' 1 4 e - 1f e — 1+ e —1

(27)

2riu
e

where we setny (0, 0) = mp(0,0) = 0. A direct (albeit tedious!) computation shows thatandny, satisfy
the conditions of Theore#.Jwith B = O(1). Thus, the operatoi,, andT,, are weak (11) with constant
O(1). Sincemy andm, are bounded functions, the operator NOMMG, 111, (22) - Ly(22) <’:1nd||Tmz||L2(Zﬁ)_>L2 72)
areO(1). Since these operators are self adjoint, by the Marcinkiewicz interpolation theorerbfhee [
follows that forp > 2, the operator NOTMBTmy I (22) - 1,(22) and||Tmz|||_p(zﬁ)_>|_p(zﬁ) areO(p). This is
precisely 24) and 25).

The above argument is based on Theorefywhich does not appear exactly as stated in the literature,
but its proof is a straightforward adaptation of existing proofs (which is too simple to justify rewriting the
lengthy argument here). However, making the necessary changes easily does require some familiarity with
Caldebn-Zygmund theory. We therefore present now another argument which gives a pglydogtd on
the distortion, but uses only statements which appear in the literature. This alternative approach appears to
be quite versatile, and might be useful elsewhere.

The following lemma reduces the problem of proving inequalities sucB4ysagd 25) (with perhaps
a different dependence @) to a continuous inequality. The argument is based on the proof of a theorem
of Marcinkiewicz from b6] (see Theorem 7.5 in chapter X there). In what follows we denot& iye
Euclidean unit circle in the plane.

Proposition 4.2 (Transferring multipliers from the torus #f). Fix an odd integen. Let{A(u, V)l gv—o b€

complex numbers such thau, v) = 0 for max(u,v} > n. Consider the operatorM : Ly (T2) — L, (T?)
and My : Lp(Z2) - Ly (Z2) given by

M Z T(U, V)e2ni(UX+Vy)] - Z A(u, V)f\(u, V)e2ﬂi(ux+vy),
Uy=—co uyv=0
and
SET 2 S = 2
Mn Z f(u’ V)eT(Ua+Vb)] — Z /l(u, V)f(u, v)eT(“a+Vb)_
u,v=0 u,v=0
Then,

IMnll,(z2) - Lp(z2) < 81 IMIlL (72— Ly (72)-

Proof. The proof is a variant of the first part of the proof of Theorem 7.5 in chapter B6h fnd a small
twist on the second part. Since the terminology56] is different from ours, we repeat the proof of the first
part as well. Recall that the Dirichlet kerndds : [0, 1] — C are defined as

De(X) = Z[: e,

j=t
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and the Fdr kernelK, : [0,1] — C are

0~ 2330 3 (1 e

— & m+1

A basic property oDy is that for any trigonometric polynomi&(x) of degree at most, namelyS(x) =
Zfz_[ a; X we have thatS(x) = S*Dy(x) = fol S(t)D.(x—t)dt. The same is true with any other function
all of whosejth Fourier coéicients forj between-¢ and¢ are 1; in particular for the de la V&k Poussin
kernel Ky,_1 — Ky_1 (see R9]). The well known advantage of the Eejkernel over the Dirichlet kernel is
that it is everywhere (real and) nonnegative. Note alsoﬂ%dﬁm(t)dt = 1 for allm. Thus, by convexity of
the functiontP, for any trigonometric polynomig® of degree at most, and for allx € [0, 1],

IS()IP 128 * Kor-1(X) = S * Ke(X)IP

1 1
3p(§ fo ISWOPKar-1(x - et + & fo |S(t)|ng_1(x—t)dt). (28)

IA

Let nowwoyey1 be the measure which assign mgﬁq to each of 2 + 1 equally spaced points on,[0.
Then it is easy to check that

1 1
f K(X = Dwazs1() = f Km(X — ydx = 1
0 0

for all m < 2¢ and for allt € [0, 1]. Integrating/28) with respect tavs,41, We get that for any trigonometric
polynomialS of degree at most

1 1
f ISOIPdwarsa(x) < 3P f ISOOPdx (29)
0 0

It follows that if S(x, y) is a two-variable trigonometric polynomial of degree at most each of the
variables, i.eS(x,y) = uv_ _p ag ),

f IS Y)IPdwzzs 1 (Y dwzrsa(y) < 9P f IS(x y)/Pdxdy
[0,1]2 [0,1]

It follows from this that, since is odd, for everyf Lp(TZ),

n-1
Mn ( Z f(u, v)e_(”a+"b)]

u,v=0

<9

Lp(Z2) Lp(T?) |

Note that for each trigonometric polynomial of the foR{x,y) = uv__n+1 e (uxwy)

M

i f\(u’ V)ezri (ux+vy)]

u,v=—o0

f P(x Y)dwn(X)den(y) = a0 = f P(x. y)dxdy
[0.1] [0,1]2
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Fix f € Lp(Z2), 1< p < oo. By the first part of the proof and duality, theregis Ly (T2) (p* = p/(p- 1))
with [|gllp- = 1 such that

n-1

9 Z i F(u, V) i(“"“’y)) g(x y)dxdy
[0’1]2 =0

IA

||Mnf|||_p(z§)

£
T

-1 n-1
=9 Au, V) u, v)ez”i(“’(+vy)) ( Z (u, v)e 2w | gxdy
(0.1 \iv=0

- 9 f
(0.1

- 9 f
[0.17

o\,
[0,1]?
n-1

[ f D7 AU, Vyg(u, vye e
0.1

>

u,v=0
n-1
Auv)Fu, v)ezﬂi(uxww] ( D" 5, v)e W) | dan(x)dan(y)

u,v=0

£
1]

>
=

u,v=0

>
=

n-1
fu, v)e&iWsw) [Z (U, V)g(u, v)e 21 | g, () dewn(y)

u,v=0

[

0

£
<
I

- p

1/p
Z flu, v)eZriusw) dwn(X)dwn(Y)] ’

u,v=0

>
=

IA

p*

u,v=0

1/p
dwn(X)wn(y)]

p* 1/ p*
d x]

n-1
D A Vg(u, v)e e

u,v=0

< 8Ll (22 f
Lp(Zn) [0,1]2
< 8Ll (z2) - IMIIL (12) Ly (72)-

where the inequality before last follows froi2g) and the last inequality (that is the fact that the norm of a
multiplier in L, (T?) is the same as the norm of the conjugate multipliet in(T2)) follows from duality.
The casg = 1 (and also a similar inequality for the norm) follows easily from thé, cases. m|

Propositiord.2implies that it is enough to obtain, to L, bounds for the operatofig,, andTy,,, where
my, mp are as in[27), as operators on functions on the tofis By a theorem of de Leeuvil]] it is
enough to obtain such bounds when we think'gf andT,, as operators on functions &* (see B5| for
the respective result in the case of weaklflbounds). The continuous version of thérkhander-Mihlin
multiplier theorem now applies, but unfortunately its conditions are not satisfied. However, a (once again
tedious) computation shows it is possible to apply the Marcinkiewicz multiplier theorem4gee?]), in
combination with bounds on the Hilbert transfordv[52], to obtain bounds similar t@®?d) and 25) with
O(p) replaced byO(poly(p)) (it is quite easy to obtain a bound 6{p3), and with more work this can be
reduced taD(p?). However we do not see a simple way to obt@iip) using this approach).

Remark 4.1. Consider the mapping§ : &7z — L1 (Zﬁ) given by
2riu 2niv -
Su = Z (|eT - 1| + ’eT -1 ) - (U, V)eyy.
(UMEZR\((0,0))
Using considerations similar to the above (see Proposition III.A.84hfpr a continuous counterpart) it is

possible to show tha® has distortiorO(polylog(n)). However, we were unable to get this bound down to
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O(logn) as in Theorerd..4. Nevertheless, this embedding might be of interest since it reduces the dimension
of the ambient.; space by a factor of 2.

5 Discussion and open problems

There are several interesting problems that arise from the results presented in this paper- we shall discuss
some of them in the list below.

1. The most natural problem is to determine the asymptotic behavioI(({)ﬁ),l. ..,n}z,r). It seems

hard to use the ideas in Sectidrio obtain an embedding of distortidn(\/Iog n), as the known
bounds on multipliers usually give a weak 1} inequality at best. We do not know what is the actual
distortion of the embedding in Theoreh.

2. Remark4.1 implies that the Banach-Mazur distance betweennthe 1 dimensional normed space
M7z . and 622‘1 is O(polylog(n)). It would be interesting to determine the asymptotic behavior of
this distance. In particular, it isn't clear whether the (embedding) distortion of#;; . behaves

differently from its Banach-Mazur distance frdgﬁ‘l.

.....

contains#g 1. nj2.r» SO theQ ( +/log n) lower bound still applies. But the result (&0] shows that the

transportation cost metric on the Hamming cybgel}? has distortior®(d), so some improvements

are still possible. Note that in higher dimensions it becomes interesting to study the transportation
cost distance wheRY is equipped with other norms. The Banach-Mazur distance bet\tqeand
arbitraryd-dimensional norms has been studieddn4S, [13]. In particular, the result ofl3] states

that anyd-dimensional Banach space is at distam(eﬁ/f’) from 5‘1’. Combining this fact with the

lower bound on thé.; distortion of the transportation cost distance on the Hammigigcube cited
above, we see that for any notimi| onRY, ¢; (Zza - ) = 2 (d/€). It would be interesting to study

the dependence ahfor general norms oR¢.

toinfinity,.
5. As stated in Remai®.3 we do not know Whethe{t@[o,”z, T) admits a uniform embedding into Hilbert
space.

6. The present paper rules out the “low distortion approach” to nearest neighbor search in the Earthmover
metric via embeddings intb;. However, it might still be possible to fintearest neighbor preserving
embedding#to L in the sense 0f45].

7. On the more “applied side”, as stated in the introduction, there is a possibility that the embedding of
Theoreml.4 behaves better than the theoretical distortion guarant€4log n) in “real life” situa-
tions, since it is often the case that the bulk of the Fourier spectrum is concentrated on a sparse set of
frequencies. Additionally, it might be worthwhile to “thin out” some frequencies of the given set of
images before embedding intq (and then using the knowl; nearest neighbor search databases).
It would be interesting to carry out such “tweaking” of our algorithm in a more experimental setting.
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