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Abstract. Let (X, dX) be an n-point metric space. We show that there
exists a distribution D over non-contractive embeddings into trees f :
X → T such that for every x ∈ X,

ED

�
max

y∈X\{x}
dT (f(x), f(y))

dX(x, y)

�
≤ C(log n)2,

where C is a universal constant. Conversely we show that the above
quadratic dependence on log n cannot be improved in general. Such em-
beddings, which we call maximum gradient embeddings, yield a frame-
work for the design of approximation algorithms for a wide range of clus-
tering problems with monotone costs, including fault-tolerant versions of
k-median and facility location.

1 Introduction

We introduce a new notion of embedding, called maximum gradient embeddings,
which is “just right” for approximating a wide range of clustering problems.
We then provide optimal maximum gradient embeddings of general finite metric
spaces, and use them to design approximation algorithms for several natural
clustering problems. Rather than being encyclopedic, the main emphasis of
the present paper is that these embeddings yield a generic approach to many
problems.

Due to their special structure, it is natural to try to embed metric spaces
into trees. This is especially important for algorithmic purposes, as many hard
problems are tractable on trees. Unfortunately, this is too much to hope for in the
bi-Lipschitz category: As shown by Rabinovich and Raz [22] the n-cycle incurs
distortion Ω(n) in any embedding into a tree. However, one can relax this idea
and look for a random embedding into a tree which is faithful on average. Such an
approach has been developed in recent years by mathematicians and computer
scientists. In the mathematical literature this is referred to as embeddings into
products of trees, and it is an invaluable tool in the study of negatively curved
spaces (see for example [7, 10,20]).

? Full version appears in [19].



Probabilistic embeddings into dominating trees became an important algo-
rithmic paradigm due to the work of Bartal [3, 4] (see also [1,11] for the related
problem of embedding graphs into distributions over spanning trees). This work
led to the design of many approximation algorithms for a wide range of NP
hard problems. In some cases the best known approximation factors are due to
the “probabilistic tree” approach, while in other cases improved algorithms have
been subsequently found after the original application of probabilistic embed-
dings was discovered. But, in both cases it is clear that the strength of Bartal’s
approach is that it is generic: For a certain type of problem one can quickly
get a polylogarithmic approximation using probabilistic embedding into trees,
and then proceed to analyze certain particular cases if one desires to find bet-
ter approximation guarantees. However, probabilistic embeddings into trees do
not always work. In [5] Bartal and Mendel introduced the weaker notion of
multi-embeddings, and used it to design improved algorithms for special classes
of metric spaces. Here we strengthen this notion to maximum gradient embed-
dings, and use it to design approximation algorithms for harder problems to
which regular probabilistic embeddings do not apply.

Let (X, dX) and (Y, dY ) be metric spaces, and fix a mapping f : X → Y .
The mapping f is called non-contractive if for every x, y ∈ X, dY (f(x), f(y)) ≥
dX(x, y). The maximum gradient of f at a point x ∈ X is defined as

|∇f(x)|∞ = sup
y∈X\{x}

dY (f(x), f(y))
dX(x, y)

. (1)

Thus the Lipschitz constant of f is given by ‖f‖Lip = supx∈X |∇f(x)|∞.
In what follows when we refer to a tree metric we mean the shortest-path

metric on a graph-theoretical tree with weighted edges. Recall that (U, dU ) is an
ultrametric if for every u, v, w ∈ U we have dU (u, v) ≤ max{dU (u,w), dU (w, v)}.
It is well known that ultrametrics embed isometrically into tree metrics. The
following result is due to Fakcharoenphol, Rao and Talwar [12], and is a slight
improvement over an earlier theorem of Bartal [4]. For every n-point metric
space (X, dX) there is a distribution D over non-contractive embeddings into
ultrametrics f : X → U such that

max
x,y∈X
x 6=y

ED
dU (f(x), f(y)

dX(x, y)
= O(log n). (2)

The logarithmic upper bound in (2) cannot be improved in general.
Inequality (2) is extremely useful for optimization problems whose objective

function is linear in the distances, since by linearity of expectation it reduces
such tasks to trees, with only a logarithmic loss in the approximation guarantee.
When it comes to non-linear problems, the use of (2) is very limited. We will
show that this issue can be addressed using the following theorem, which is our
main result.

Theorem 1. Let (X, dX) be an n-point metric space. Then there exists a dis-
tribution D over non-contractive embeddings into ultrametrics f : X → U (thus



both the ultrametric (U, dU ) and the mapping f are random) such that for every
x ∈ X, ED |∇f(x)|∞ ≤ C(log n)2, where C is a universal constant.

On the other hand, there exists a universal constant c > 0 and arbitrarily
large n-point metric spaces Yn such that for any distribution over non-contractive
embeddings into trees f : Yn → T there is necessarily some x ∈ Yn for which
ED |∇f(x)|∞ ≥ c(log n)2.

We call embeddings as in Theorem 1, i.e. embeddings with small expected
maximum gradient, maximum gradient embeddings into distributions over trees
(in what follows we will only deal with distributions over trees, so we will drop
the last part of this title when referring to the embedding, without creating any
ambiguity). The proof of the upper bound in Theorem 1 is a modification of
an argument of Fakcharoenphol, Rao and Talwar [12], which is based on ideas
from [3, 8]. Alternative proofs of the main technical step of the proof of the
upper bound in Theorem 1 can be also deduced from the results of [18] or an
argument in the proof of Lemma 2.1 in [13].

The heart of this paper is the lower bound in Theorem 1. The metrics Yn

in Theorem 1 are the diamond graphs of Newman and Rabinovich [21], which
have been previously used as counter-examples in several embedding problems—
see [6, 14,17,21].

1.1 A framework for clustering problems with monotone costs

We now turn to some algorithmic applications of Theorem 1. The general reduc-
tion in Theorem 2 below should also be viewed as an explanation why maximum
gradient embeddings are so natural— they are precisely the notion of embedding
which allows such reductions to go through. . In the full version of this paper we
also analyze in detail two concrete optimization problems which belong to this
framework.

A very general setting of the clustering problem is as follows. Let X be an
n-point set, and denote by MET(X) the set of all metrics on X. A possible
clustering solution consists of sets of the form {(x1, C1), . . . , (xk, Ck)} where
x1, . . . , xk ∈ X and C1, . . . , Ck ⊆ X. We think of C1, . . . , Ck as the clusters,
and xi as the “center” of Ci. In this general framework we do not require that
the clusters cover X, or that they are pairwise disjoint, or that they contain
their centers. Thus the space of possible clustering solutions is P = 2X×2X

(though the exact structure of P does not play a significant role in the proof of
Theorem 2). Assume that for every point x ∈ X, every metric d ∈ MET(X),
and every possible clustering solution P ∈ P, we are given Γ (x, d, P ) ∈ [0,∞],
which we think of as a measure of the dissatisfaction of x with respect to P
and d. Our goal is to minimize the average dissatisfaction of the points of X.
Formally, given a measure of dissatisfaction (which we also call in what follows
a clustering cost function) Γ : X ×MET(X)×P → [0,∞], we wish to compute
for a given metric d ∈ MET(X) the value

OptΓ (X, d) def= min

{∑

x∈X

Γ (x, d, P ) : P ∈ P
}



(Since we are mainly concerned with the algorithmic aspect of this problem, we
assume from now on that Γ can be computed efficiently.)

We make two natural assumptions on the cost function Γ . First of all, we will
assume that it scales homogeneously with respect to the metric, i.e. for every
λ > 0, x ∈ X, d ∈ MET(X) and P ∈ P we have Γ (x, λd, P ) = λΓ (x, d, P ).
Secondly we will assume that Γ is monotone with respecting to the metric, i.e.
if d, d ∈ MET(X) and x ∈ X satisfy d(x, y) ≤ d(x, y) for every y ∈ X then
Γ (x, d, P ) ≤ Γ (x, d, P ). In other words, if all the points in X are further with
respect to d from x then they are with respect to d, then x is more dissatisfied.
This is a very natural assumption to make, as most clustering problems look for
clusters which are small in various (metric) senses. We call clustering problems
with Γ satisfying these assumptions monotone clustering problems. A large part
of the clustering problems that have been considered in the literature fall into
this framework.

The following theorem is a simple application of Theorem 1. It shows that
it is enough to solve monotone clustering problems on ultrametrics, with only a
polylogarithmic loss in the approximation factor.

Theorem 2 (Reduction to ultrametrics). Let X be an n-point set and fix a
homogeneous monotone clustering cost function Γ : X×MET(X)×P → [0,∞].
Assume that there is a randomized polynomial time algorithm which approxi-
mates OptΓ (X, ρ) to within a factor α(n) on any ultrametric ρ ∈ MET(X). Then
there is a polynomial time randomized algorithm which approximates OptΓ (X, d)
on any metric d ∈ MET(X) to within a factor of O

(
α(n)(log n)2

)
.

Proof. Let (X, d) be an n-point metric space and let D be the distribution
over random ultrametrics ρ on X from Theorem 1 (which is computable in
polynomial time, as follows directly from our proof of Theorem 1). In other
words, ρ(x, y) ≥ d(x, y) for all x, y ∈ X and

max
x∈X

ED max
y∈X\{x}

ρ(x, y)
d(x, y)

≤ C(log n)2.

Let P ∈ P be a clustering solution for which OptΓ (X, d) =
∑

x∈X Γ (x, d, P ).
Using the monotonicity and homogeneity of Γ we see that

EDOptΓ (X, ρ) ≤ ED

∑

x∈X

Γ (x, ρ, P ) (P is sub-optimal in ρ)

≤ ED

∑

x∈X

Γ

(
x,

[
max

y∈X\{x}
ρ(x, y)
d(x, y)

]
· d, P

)
(Monotonicity of Γ )

= ED

∑

x∈X

[
max

y∈X\{x}
ρ(x, y)
d(x, y)

]
· Γ (x, d, P ) (Homogeneity of Γ )

=
∑

x∈X

(
ED

[
max

y∈X\{x}
ρ(x, y)
d(x, y)

])
· Γ (x, d, P )

≤ C(log n)2 ·OptΓ (X, d) (Theorem 1).



Hence, with probability at least 1
2 , OptΓ (X, ρ) ≤ 2C(log n)2 · OptΓ (X, d).

For such ρ compute a clustering solution Q ∈ P satisfying
∑

x∈X

Γ (x, ρ,Q) ≤ α(n)OptΓ (X, ρ) ≤ 2Cα(n)(log n)2 ·OptΓ (X, d).

Since ρ ≥ d it remains to use the monotonicity of Γ once more to deduce that
∑

x∈X

Γ (x, ρ, Q) ≥
∑

x∈X

Γ (x, d, Q) ≥ OptΓ (X, d).

Thus Q is a O
(
α(n)(log n)2

)
approximate solution to the clustering problem on

X with cost Γ . ut
Due to Theorem 2 we see that the main difficulty in monotone clustering

problems lies in the design of good approximation algorithms for them on ul-
trametrics. This is a generic reduction, and in many particular cases it might
be possible use a case-specific analysis to improve the O

(
(log n)2

)
loss in the

approximation factor. However, as a general reduction paradigm for clustering
problems, Theorem 2 makes it clear why maximum gradient embeddings are so
natural.

We next demonstrate the applicability of the monotone clustering framework
to a concrete example called fault-tolerant k-median. In the full version of the
paper, we analyze another clustering problem, called Σ`p clustering.

Fault-tolerant k-median. Fix k ∈ N. The k-median problem is as follows. Given
an n-point metric space (X, dX), find x1, . . . , xk ∈ X that minimize the objective
function

∑

x∈X

min
j∈{x1,...,xk}

dX(x, xj). (3)

This very natural and well studied problem can be easily cast as monotone
clustering problem by defining Γ (x, d, {(x1, C1), . . . , (xm, Cm)}) to be ∞ if m 6=
k, and otherwise Γ (x, d, {(x1, C1), . . . , (xm, Cm)}) = minj∈{x1,...,xk} d(x, xj).

The linear structure of (3) makes it a prime example of a problem which
can be approximated using Bartal’s probabilistic embeddings. Indeed, the first
non-trivial approximation algorithm for k-median clustering was obtained by
Bartal in [4]. Since then this problem has been investigated extensively: The
first constant factor approximation for it was obtained in [9] using LP rounding,
and the first combinatorial (primal-dual) constant-factor algorithm was obtained
in [15]. In [2] an analysis of a natural local search heuristic yields the best known
approximation factor for k-median clustering.

Here we study the following fault-tolerant version of the k-median problem.
Let (X, d) be an n-point metric space and fix k ∈ N. Assume that for every x ∈ X
we are given an integer j(x) ∈ X (which we call the fault-tolerant parameter
of x). Given x1, . . . , xk and x ∈ X let x∗j (x; d) be the j-th closest point to x

in {x1, . . . , xk}. In other words, {x∗j (x; d)}k
j=1 is a re-ordering of {xj}k

j=1 such



that d(x, x∗1(x; d)) ≤ · · · ≤ d(x, x∗k(x; d)). Our goal is to minimize the objective
function

∑

x∈X

d
(
x, x∗j(x)(x; d)

)
. (4)

To understand (4) assume for the sake of simplicity that j(x) = j for all
x ∈ X. If {xj}k

j=1 minimizes (4) and j−1 of them are corrupted (due to possible
noise), then the optimum value of (4) does not change. In this sense the clustering
problem in (4) is fault-tolerant. In other words, the optimum solution of (4) is
insensitive to (controlled) noise. Observe that for j = 1 we return to the k-median
clustering problem.

We remark that another fault-tolerant version of k-median clustering was
introduced in [16]. In this problem we connect each point x in the metric space
X to j(x) centers, but the objective function is the sum over x ∈ X of the sum
of the distances from x to all the j(x) centers. Once again, the linearity of the
objective function seems to make the problem easier, and in [23] a constant factor
approximation is achieved (this immediately implies that our version of fault-
tolerant k-median clustering, i.e. the minimization of (4), has a O (maxx∈X j(x))
approximation algorithm). In particular, the LP that was previously used for k-
median clustering naturally generalizes to this setting. This is not the case for
our fault-tolerant version in (4). Moreover, the local search techniques for k-
median clustering (see for example [2]) do not seem to be easily generalizable
to the case j > 1, and in any case seem to require nΩ(j) time, which is not
polynomial even for moderate values of j.

Arguing as above in the case of k-median clustering we see that the fault-
tolerant k-median clustering problem in (4) is a monotone clustering problem.
In the full version of this paper we show that it can be solved exactly in poly-
nomial time on ultrametrics. Thus, in combination with Theorem 2, we obtain
a O

(
(log n)2

)
approximation algorithm for the minimization of (4) on general

metrics.

2 Proof of Theorem 1

We begin by sketching the proof of the upper bound in Theorem 1. The full
version of this paper has a complete self-contained proof of it.

By the arguments appearing in [13,18], for every N -point metric spacemetric
space (X, dX) there exist a distribution D of non-contractive embeddings f :
X → U such that for every x ∈ X, and t ≥ 1,

Pr
D

[
∃y ∈ X,

dU (f(x), f(y))
dX(x, y)

≥ t

]
≤ 128 log2 n

t
.

By using a known trick one can modify the construction of D to also satisfy for
every x ∈ X,

Pr
D

[
∃y ∈ X,

dU (f(x), f(y))
dX(x, y)

≥ 4n

]
= 0.



Hence for every x ∈ X,

ED |∇f |∞ = ED sup
y 6=x

dU (f(x), f(y))
dX(x, y)

≤
∞∑

i=0

2i+1 · Pr
[
∃y ∈ X,

dU (f(x), f(y))
dX(x, y)

≥ 2i

]

≤
2+log2 n∑

i=0

2i · 128 log2 n

2i
= O

(
(log n)2

)
.

We next prove a matching lower bound. As mentioned in the introduc-
tion, the metrics Yn in Theorem 1 are the diamond graphs of Newman and
Rabinovich [21], which will be defined presently. Before passing to this more
complicated lower bound, we will analyze the simpler example of cycles.

Let Cn, n > 3, be the unweighted path on n-vertices. We will identify Cn

with the group Zn of integers modulo n. We first observe that in this special case
the upper bound in Theorem 1 can be improved to O(log n). This is achieved by
using Karp’s embedding of the cycle into spanning paths— we simply choose an
edge of Cn uniformly at random and delete it. Let f : Cn → Z be the randomized
embedding thus obtained, which is clearly non-contractive.

Karp noted that it is easy to see that as a probabilistic embedding into
trees f has distortion at most 2. We will now show that as a maximum gradient
embedding, f has distortion Θ(log n). Indeed, fix x ∈ Cn, and denote the deleted
edge by {a, a+1}. Assume that dCn(x, a) = t ≤ n/2−1. Then the distance from
a + 1 to x changed from t + 1 in Cn to n − t − 1 in the path. It is also easy to
see that this is where the maximum gradient is attained. Thus

E|∇f(x)|∞ ≈ 2
n

∑

0≤t≤n/2

n− t− 1
t + 1

= Θ(log n).

We will now show that any maximum gradient embedding of Cn into a distri-
bution over trees incurs distortion Ω(log n). For this purpose we will use the
following lemma from [22].

Lemma 1. For any tree metric T , and any non-contractive embedding g : Cn →
T , there exists an edge (x, x + 1) of Cn such that dT (g(x), g(x + 1)) ≥ n

3 − 1.

Now, let D be a distribution over non-contractive embeddings of Cn into
trees f : Cn → T . By Lemma 1 we know that there exists x ∈ Cn such that
dT (f(x), f(x + 1)) ≥ n−3

3 . Thus for every y ∈ Cn we have that

max{dT (f(y), f(x)), dT (f(y), f(x + 1))} ≥ n− 3
6

.

On the other hand max{dCn(y, x), dCn(y, x+1)} ≤ dCn(x, y)+1. It follows that,

|∇f(y)|∞ ≥ n− 3
6dCn(x, y) + 6

.



Summing this inequality over y ∈ Cn we see that

∑

y∈Cn

|∇f(y)|∞ ≥
∑

0≤k≤n/2

n− 3
6k + 6

= Ω(n log n).

Thus
max
y∈Cn

ED |∇f(y)|∞ ≥ 1
n

∑

y∈Cn

ED |∇f(y)|∞ = Ω(log n),

as required.

We now pass to the proof of the lower bound in Theorem 1. We start by
describing the diamond graphs {Gk}∞k=1, and a special labelling of them that
we will use throughout the ensuing arguments. The first diamond graph G1 is
a cycle of length 4, and Gk+1 is obtained from Gk by replacing each edge by a
quadrilateral. Thus Gk has 4k edges and 2·4k+4

3 vertices. As we have done before,
the required lower bound on maximum gradient embeddings of Gk into trees will
be proved if we show that for every tree T and every non-contractive embedding
f : Gk → T we have

1
4k

∑

e∈E(Gk)

∑
x∈e

|∇f(x)|∞ = Ω
(
k2

)
. (5)

Note that the inequality (5) is different from the inequality that we proved
in the case of the cycle in that the weighting on the vertices of Gk that it
induces is not uniform— high degree vertices get more weight in the average in
the left-hand side of (5).

We will prove (5) by induction on k. In order to facilitate such an induc-
tion, we will first strengthen the inductive hypothesis. To this end we need to
introduce a useful labelling of Gk. For 1 ≤ i ≤ k the graph Gk contains 4k−i

canonical copies of Gi, which we index by elements of {1, 2, 3, 4}k−i, and denote{
G

(k)
[α]

}
α∈{1,2,3,4}k−i

. These graphs are defined as follows. For k = 2 they are

shown in Figure 1.
For k = 3 these canonical subgraphs are shown in Figure 2.
Formally, we set G

(k)
[∅] = Gk, and assume inductively that the canonical

subgraphs of Gk−1 have been defined. Let H1,H2,H3,H4 be the top-right,
top-left, bottom-right and bottom-left copies of Gk−1 in Gk, respectively. For
α ∈ {1, 2, 3, 4}k−1−i and j ∈ {1, 2, 3, 4} we denote the copy of Gi in Hj corre-
sponding to G

(k−1)
[α] by G

(k)
[jα].

For every 1 ≤ i ≤ k and α ∈ {1, 2, 3, 4}k−i let T
(k)
[α] , B

(k)
[α] , L

(k)
[α] , R

(k)
[α] be the

topmost, bottom-most, left-most, and right-most vertices of G
(k)
[α] , respectively.

Fixing an embedding f : Gk → T , we will construct inductively a set of simple
cycles C[α] in G

(k)
[α] and for each C ∈ C[α] an edge εC ∈ E

(
C[α]

)
, with the

following properties.
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Fig. 1. The graph G2 and the labelling of the canonical copies of G1 contained in it.
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Fig. 2. The graph G3 and the induced labeling of canonical copies of G1 and G2.



1. The cycles in C[α] are edge-disjoint, and they all pass through the vertices
T

(k)
[α] , B

(k)
[α] , L

(k)
[α] , R

(k)
[α] . There are 2i−1 cycles in C[α], and each of them contains

2i+1 edges. Thus in particular the cycles in C[α] form a disjoint cover of the
edges in G

(k)
[α] .

2. If C ∈ C[α] and εC = {x, y} then dT (f(x), f(y)) ≥ 2i+1

3 − 1.
3. Denote E[α] = {εC : C ∈ C[α]} and ∆i =

⋃
α∈{1,2,3,4}k−i E[α]. The edges

in ∆i will be called the designated edges of level i. For α ∈ {1, 2, 3, 4}k−i,
C ∈ C[α] and j < i let ∆j(C) = ∆j ∩ E(C) be the designated edges of level
j on C. Then we require that each of the two paths T

(k)
[α] − L

(k)
[α] −B

(k)
[α] and

T
(k)
[α] −R

(k)
[α] −B

(k)
[α] in C contain exactly 2i−j−1 edges from ∆j(C).

The construction is done by induction on i. For i = 1 and α ∈ {1, 2, 3, 4}k−1

we let C[α] contain only the 4-cycle G
(k)
[α] itself. Moreover by Lemma 1 there is

and edge ε
G

(k)
[α]
∈ E

(
G

(k)
[α]

)
such that if ε

G
(k)
[α]

= {x, y} then dT (f(x), f(y)) ≥ 1
3 .

This completes the construction for i = 1. Assuming we have completed the
construction for i− 1 we construct the cycles at level i as follows. Fix arbitrary
cycles C1 ∈ C[1α], C2 ∈ C[2α], C3 ∈ C[3α], C4 ∈ C[4α]. We will use these four
cycles to construct two cycles in C[α]. The first one consists of the T

(k)
[α] − R

(k)
[α]

path in C1 which contains the edge εC1 , the R
(k)
[α]−B

(k)
[α] path in C3 which does not

contain the edge εC3 , the B
(k)
[α] −L

(k)
[α] path in C4 which contains the edge εC4 , and

the L
(k)
[α] − T

(k)
[α] path in C2 which does not contain the edge εC2 . The remaining

edges in E(C1) ∪ E(C2) ∪ E(C3) ∪ E(C4) constitute the second cycle that we
extract from C1, C2, C3, C4. Continuing in this manner by choosing cycles from
C[1α] \{C1}, C[2α] \{C2}, C[3α] \{C3}, C[4α] \{C4} and repeating this procedure,
and then continuing until we exhaust the cycles in C[1α] ∪ C[2α] ∪ C[3α] ∪ C[4α],
we obtain the set of cycles C[α]. For every C ∈ C[alpha] we then apply Lemma 1
to obtain an edge εC with the required property.

For each edge e ∈ E(Gk) let α ∈ {1, 2, 3, 4}k−i be the unique multi-index
such that e ∈ E

(
G

(k)
[α]

)
. We denote by Ci(e) the unique cycle in C[α] containing

e. We will also denote êi(e) = εCi(e). Finally we let ai(e) ∈ e and bi(e) ∈ êi(e)
be vertices such that

dT (f(ai(e)), f(bi(e))) = max
a∈e

b∈bei(e)

dT (f(a), f(b)).

Note that by the definition of êi(e) and the triangle inequality we are assured
that

dT (f(ai(e)), f(bi(e))) ≥ 1
2

(
2i+1

3
− 1

)
≥ 2i

12
. (6)

Recall that we plan to prove (5) by induction on k. Having done all of the
above preparation, we are now in position to strengthen (5) so as to make the



inductive argument easier. Given two edges e, h ∈ Gk we write e_ih if both e, h
are on the same canonical copy of Gi in Gk, Ci(e) = Ci(h) = C, and furthermore
e and h on the same side of C. In other words, e _i h if there is α ∈ {1, 2, 3, 4}k−i

and C ∈ C[α] such that if we partition the edges of C into two disjoint T
(k)
[α] −B

(k)
[α]

paths, then e and h are on the same path.

Let m ∈ N be a universal constant that will be specified later. For every
integer ` ≤ k/m and any α ∈ {1, 2, 3, 4}k−m` define

L`(α) =
1

4m`

∑

e∈E
�

G
(k)
[α]

� max
i∈{1,...,`}

e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

.

We also write L` = minα∈{1,2,3,4}k−m` L`(α). We will prove that L` ≥ L`−1 + c`,
where c > 0 is a universal constant. This will imply that for ` = bk/mc we have
L` = Ω(k2) (since m is a universal constant). By simple arithmetic (5) follows.

Observe that for every α ∈ {1, 2, 3, 4}k−m` we have

L`(α) = 4−m
∑

β∈{1,2,3,4}m

4−m(`−1)
∑

e∈E
�

G
(k)
[βα]

� max
i∈{1,...,`}

e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

= 4−m
∑

β∈{1,2,3,4}m

4−m(`−1)
∑

e∈E
�

G
(k)
[βα]

� max
i∈{1,...,`−1}
e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

+
1

4m`

∑

e∈E
�

G
(k)
[α]

�max





0,
dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

· 1{e_`mbe`m(e)}

− max
i∈{1,...,`−1}
e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1





=
1

4m

∑

β∈{1,2,3,4}m

L`−1(βα)

+
1

4m`

∑

e∈E
�

G
(k)
[α]

�max





0,
dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

· 1{e_`mbe`m(e)}

− max
i∈{1,...,`−1}
e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1







≥ L`−1

+
1

4m`

∑

e∈E
�

G
(k)
[α]

�max





0,
dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

· 1{e_`mbe`m(e)}

− max
i∈{1,...,`−1}
e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1





.

Thus it is enough to show that

A
def= 4−m`

∑

e∈E
�

G
(k)
[α]

�max
{

0,
dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

·1{e_`mbe`m(e)}

− max
i∈{1,...,`−1}
e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

}
= Ω(`). (7)

To prove (7), denote for C ∈ C[α]

SC =
{

e ∈ E(C) : εC _`m e and

max
i∈{1,...,`−1}
e_imbeim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

≥ 1
2
· dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

}
.

Then using (6) we see that

A ≥ 1
2 · 4m`

∑

C∈C[α]

∑

e∈E(C)\SC
εC_`me

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

≥ 1
2 · 4m`

∑

C∈C[α]

∑

e∈E(C)
εC_`me

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

− 1
2 · 4m`

∑

C∈C[α]

∑

e∈SC

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

≥ 1
2 · 4m`

∑

C∈C[α]

2m`−1∑

i=1

2m`

12i
− 1

2 · 4m`

∑

C∈C[α]

∑

e∈SC

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1



= Ω

(
1

4m`
· |C[α]| · 2m` ·m`

)

− 1
2 · 4m`

∑

C∈C[α]

∑

e∈SC

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

= Ω(m`)− 1
2 · 4m`

∑

C∈C[α]

∑

e∈SC

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

. (8)

To estimate the negative term in (8) fix C ∈ C[α]. For every edge e ∈ SC

(which implies in particular that ê`m(e) = εC) we fix an integer i < ` such that
e _im êim(e) and

2im

dGk
(e, êim(e)) + 1

≥ dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

≥ 1
2
· dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

≥ 1
12
· 2`m

dGk
(e, εC) + 1

,

or

dGk
(e, êim(e)) + 1 ≤ 2(i−`)m+4 [dGk

(e, εC) + 1] . (9)

We shall call the edge êim(e) the designated edge that inserted e into SC . For a
designated edge ε ∈ E(C) of level im (i.e. ε ∈ ∆im(C)) we shall denote by EC(ε)
the set of edges of C which ε inserted to SC . Denoting Dε = dGk

(ε, εC) + 1 we
see that (9) implies that for e ∈ EC(ε) we have

∣∣Dε − [dGk
(e, εC) + 1]

∣∣ ≤ 2(i−`)m+4 [dGk
(e, εC) + 1] . (10)

Assuming that m ≥ 5 we are assured that 2(i−`)m+4 ≤ 1
2 . Thus (10) implies that

Dε

1 + 2(i−`)m+4
≤ dGk

(e, εC) + 1 ≤ Dε

1− 2(i−`)m+4
.

Hence

∑

e∈SC

dT (f(a`m(e)), f(b`m(e))) ∧ 2`m

dGk
(e, ê`m(e)) + 1

≤
`−1∑

i=1

∑

ε∈∆im(C)

∑

e∈EC(ε)

2`m

dGk
(e, εC) + 1

≤ 2
`−1∑

i=1

∑

ε∈∆im(C)

∑

j∈N
Dε

1+2(i−`)m+4≤j≤ Dε

1−2(i−`)m+4

2`m

j



= O(1) · 2`m
`−1∑

i=1

|∆im(C)| · log
(

1 + 2(i−`)m+4

1− 2(i−`)m+4

)

= O(1) · 2`m` · 2(`−i)m · 2(i−`)m = O(1) · 2`m`.

Thus, using (8) we see that

A = Ω(m`)−O(1) · 1
4`m

·
∣∣C[α]

∣∣ 2m`` = Ω(m`)−O(1)` = Ω(`),

provided that m is a large enough absolute constant. This completes the proof
of the lower bound in Theorem 1. ut
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