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Abstract

It is shown that if X is a random variable whose density satisfies a Poincaré inequality, and Y
is an independent copy of X, then the entropy of (X + Y )/

√
2 is greater than that of X by a fixed

fraction of the entropy gap between X and the Gaussian of the same variance. The argument uses a
new formula for the Fisher information of a marginal, which can be viewed as a local, reverse form
of the Brunn-Minkowski inequality (in its functional form due to Prékopa and Leindler).

1 Introduction

The information-theoretic entropy of a real random variable X with density f : R→ [0,∞) is defined as

Ent(X) = −
∫

R
f log f

provided that the integral makes sense. For many random systems, entropy plays a fundamental role
in the analysis of how they evolve towards an equilibrium. In this article we are interested in the
convergence of the normalised sums

1√
n

n∑
1

Xi

of independent copies of X to the Gaussian limit: the convergence in the central limit theorem for IID
copies of X.

Among random variables with a given variance, the Gaussian has the largest entropy. For any random
variable, X, the gap between its entropy and that of a Gaussian G with the same variance, is a strong
measure of how close X is to being Gaussian. In particular, if X has mean 0, variance 1 and density f ,
and G is the standard Gaussian with density g, then the Pinsker-Csiszar-Kullback inequality ([17], [9],
[13]) implies that

1
2

(∫

R
|f − g|

)2

≤ Ent(G)− Ent(X).

It is a consequence of the Shannon-Stam inequality ([19], [21]) that if X and Y are IID, then the
normalised sum (X +Y )/

√
2 has entropy at least as large as that of X and Y . Thus, along the sequence

of powers of 2, the normalised sums

1√
2k

2k∑
1

Xi
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have increasing entropy. Under fairly weak assumptions it can be shown that this increasing entropy
converges to that of the Gaussian limit. The idea of tracking the central limit theorem using entropy
goes back to Linnik [15] who used it to give a particularly attractive proof of the central limit theorem.
Barron [2] was the first to prove a central limit theorem with convergence in the entropy sense. A
stronger result in this direction was obtained by Carlen and Soffer [8] (see also the works of Brown and
Shimuzu [7] [20]). The crucial point is that if X is not itself a Gaussian random variable, and X and Y
are IID, then the entropy of (X + Y )/

√
2 is strictly larger than that of X.

Carlen and Soffer obtained a uniform result of this type, showing that for any decreasing function
K converging to zero at infinity and any real number ε > 0, there is a constant δ > 0 so that if X is a
random variable with variance 1 whose entropy is at least ε away from that of the standard Gaussian
G, and if X satisfies the tail estimate

∫

|x|>t

x2f(x) dx ≤ K(t), t > 0

then the entropy of the sum (X + Y )/
√

2 of IID copies of X is greater than that of X by at least δ.
Thus, the entropy experiences a definite jump, as long as it starts off some way below the Gaussian value.
Carlen and Soffer used this result to give a very clear entropy proof of the central limit theorem and
to study various quantum systems. Their approach uses a compactness argument at one point, and for
this reason does not give any quantitative estimates of δ in terms of ε and K. The main purpose of this
article is to obtain such quantitative estimates, at least for certain special classes of random variables.

The starting point for the article is a method already used to good effect by (almost all) the authors
mentioned earlier. Instead of considering the entropy directly, they study the Fisher information

4
∫

R
((

√
f)′)2 =

∫

R
f((log f)′)2.

For random variables with a given variance, the Gaussian has the smallest Fisher information, and
according to the Blachman-Stam inequality ([4], [21]), the Fisher information of a general density,
decreases with repeated convolution. It was discovered by Bakry and Emery [1] and again by Barron
[2] that there is a remarkable connection between entropy and information provided by the adjoint
Ornstein-Uhlenbeck semigroup. This is the semigroup {Pt}t≥0 of convolution operators on L1 which act
on densities in the following way. If f is the density of X then Ptf is the density of the random variable
Xt =

√
e−tX +

√
1− e−tG where G is a standard Gaussian, independent of X. The time derivative of

the entropy gap −Ent(Xt) + Ent(G) is precisely the gap between the Fisher information of Xt and that
of G. Since the semigroup commutes with self-convolution, any linear inequality for the information gap
can be integrated up to give the “same” inequality for the entropy gap. This argument is explained in
more detail in Section 2.

Quantitative estimates for information jumps, in a very similar spirit to ours, have recently been
obtained also by Barron and Johnson, [3]. Their result will be explained more precisely at the end of
this introduction.

Our original plan was to try to get estimates for so-called log-concave random variables: those for
which the density f has a concave logarithm. Since the Ornstein-Uhlenbeck evolutes of such a random
variable are also log-concave, the Fisher information approach makes sense for these random variables.
Now the Fisher information can be written as

∫

R

(f ′)2

f
.

Motivated by the desire to understand log-concave random variables one may observe that if the deriva-
tive of f decays at infinity, the integral is equal to

∫

R

(f ′)2

f
− f ′′ =

∫

R
f(− log f)′′

2



The log-concave random variables are precisely those for which the latter integrand is pointwise non-
negative.

Now, if X and Y are IID random variables with density f , the normalised sum (X + Y )/
√

2 has
density

u 7→
∫

R
f

(
u + v√

2

)
f

(
u− v√

2

)
dv

which is a marginal of the joint density on R2 of the pair (X, Y ). It is a consequence of the Brunn-
Minkowski inequality (in its functional form due to Prékopa and Leindler, see e.g. [18]) that log-concave
random variables have log-concave marginals and hence that that if X and Y are log-concave, then so
is X + Y . So, in principle, the Prékopa-Leindler inequality tells us something about the positivity of

(− log(f ∗ f))′′

in terms of the positivity of
(− log f)′′.

The crucial first idea in this article is to rewrite a proof of the Brunn-Minkowski inequality so that
it provides an explicit relation between these two functions which can be used to estimate the Fisher
information of the convolution in terms of the information of the original f .

Most proofs of the Brunn-Minkowski inequality are not very well adapted for this purpose, since
they involve combining values of the functions at points which are far apart: but since we want to end
up just with derivatives, we need a “local” proof. Such a proof is the so-called “transportation” proof
explained in Section 3 below. This is a variation of an argument by Henstock and Macbeath [11], see
also [12]. In Section 4, we differentiate the transportation proof to obtain the following identity which
relates (− log h)′′ to the Hessian of − log w where w : R2 → (0,∞) is a positive function on the plane
and h is its marginal given by

h(x) =
∫

w(x, y) dy.

The basic formula Let w : R2 → (0,∞) be integrable and let h be the marginal given by,

h(x) =
∫

w(x, y) dy.

Then, under appropriate regularity conditions, for each x

h′(x)2

h(x)
− h′′(x) =

∫
w · (∂yp)2 dy +

+
∫

w · (1, p)Hess(− log w) (1, p)∗ dy (1)

where p is given by

p(x, y) =
1

w(x, y)

(
h′(x)
h(x)

∫ y

−∞
w(x, v) dv −

∫ y

−∞
∂xw(x, v) dv

)
.

The particular function p in the preceding formula arises as the derivative of a transportation map.
The righthand side of the above formula, is a quadratic form in the function p and it makes sense to ask
whether the particular choice of p that yields the information of the marginal is the choice that minimises
the quadratic form. It is not hard to check that this particular p does indeed satisfy the Euler-Lagrange
equation for the minimisation problem. So under appropriate conditions we arrive at a second version
of the formula.
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Variational inequality for the marginal
Let w : R2 → (0,∞) be integrable and let h be the marginal given by,

h(x) =
∫

w(x, y) dy.

Then under appropriate regularity conditions, for each x,

h′(x)2

h(x)
− h′′(x) ≤

∫
w · (∂yp)2 dy +

+
∫

w · (1, p)Hess(− log w) (1, p)∗ dy.

By integrating over all x we obtain the estimate for information that we really want.

Theorem 1 (Variational inequality for the information)
Let w : R2 → (0,∞) be a density with

∫ |∇w|2
w

,

∫
|∂xxw| < ∞.

Let h be the marginal density given by,

h(x) =
∫

w(x, y) dy

and let J(h) be its Fisher information. Then

J(h) ≤
∫

w · (∂yp)2 dxdy +

+
∫

w · (1, p)Hess(− log w) (1, p)∗ dxdy

where p : R2 → R is any differentiable function for which the terms p∂xw∂yw
w , p∂xyw and p2∂yyw are

integrable.

We have also obtained higher dimensional analogues of these variational inequalities (i.e. similar
inequalities for the Rm-marginal of a density on Rm×Rn). In this sense, it is possible to obtain a local,
reverse form of the Prékopa Leindler inequality in its full. We defer the statement and proof of these
facts to a future article in which we will focus on their geometric applications.

As one might expect, once Theorem 1 is written down, it can easily be proved directly without any
reference to transportation or the calculus of variations. This is done in Section 5. The aim will be to
choose a function p which is not optimal, but which is simple enough to calculate with, so as to obtain
good estimates of the left side. Section 6 of the article explains how a suitable function p may be chosen
in the case in which the marginal comes from a convolution. The problem of estimating an entropy jump
is quite subtle and, presumably because of this, we were unable to write down an explicit p in any simple
way. Our solution to this problem was to make the best possible choice of p from within a restricted
family of functions of a certain type for which the formulae are simpler. So, this particular p is chosen to
be the solution to the Euler-Lagrange equation for a restricted minimisation problem. Using standard
Sturm-Liouville techniques, we then show that this choice of p guarantees a significant information jump,
provided that the density f of the random variable X satisfies a spectral gap (or Poincaré) inequality:

c

∫

R
fs2 ≤

∫

R
f(s′)2
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for any function s satisfying ∫

R
fs = 0.

The estimate is given by the following theorem.

Theorem 2 Let X be a random variable with variance 1 and finite Fisher information J , whose density
f satisfies the Poincaré inequality above, and Y an independent copy of X. If the Fisher information of
(X + Y )/

√
2 is J2 then

J − J2 ≥ c

2 + 2c
(J − 1).

The result states that for a density with a spectral gap inequality, the information decreases by a
fixed proportion of its distance to the Gaussian, each time the random variable is added to itself. Using
the Ornstein-Uhlenbeck semigroup, this inequality can be integrated up to give the “same” result for
entropy.

Theorem 3 Let X be a random variable with variance 1 and finite entropy, whose density f satisfies
the Poincaré inequality above, and Y an independent copy of X. Then

Ent
(

X + Y√
2

)
− Ent(X) ≥ c

2 + 2c
(Ent(G)− Ent(X)).

As mentioned earlier, in a recent article, [3], Barron and Johnson have obtained an inequality very
much in the same spirit as that of Theorem 2. Their method is completely different (at least in detail)
but they also prove an information jump in the presence of a spectral gap. The main difference is
that they have an extra factor 1/J on the right side. This non-linearity means that an entropy jump
inequality cannot immediately be recovered but the inequality yields good large-time estimates for the
rate of information decrease.

As we mentioned earlier, our original aim had been to obtain jump estimates for log-concave random
variables. Although the really relevant property seems to a spectral gap, log-concave random variables
on the line, do satisfy a spectral gap inequality with a uniform constant (see the paper [5] by Bobkov, and
also [16], in which Muckenhoupt gives a complete characterisation of densities on the line with a spectral
gap). Moreover, the Gaussian random variable satisfies the best possible spectral gap inequality (see e.g.
[6]), so one expects the constant to improve as the random variable is repeatedly convolved with itself.
There may be scope here for understanding long-term entropy behaviour, even for random variables
that do not themselves satisfy a Poincaré inequality. Before we begin the analysis of the information of
marginals we collect some of the standard facts alluded to above.

2 Preliminaries concerning information

Throughout this article, X will be a random variable with mean 0, variance 1 and density f and G will
be a standard Gaussian with density g : x 7→ (1/

√
2π)e−x2/2. The Fisher information of G is

∫
(g′)2

g
=

1√
2π

∫
x2e−x2/2 dx = 1.

Now as long as f has finite Fisher information

0 ≤
∫ (

f ′(x)
f(x)

+ x

)2

f(x) dx

=
∫

(f ′)2

f
+ 2

∫
xf ′(x) +

∫
x2f(x)

= J(X)− 2
∫

f + 1 = J(X)− 1
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where J(X) is the Fisher information of X. Thus among random variables with variance 1, the Gaussian
has the least information.

Given a random variable X with density f and variance 1, we may run an Ornstein-Uhlenbeck process
starting with X and the ordinate at time t having the same distribution as

√
e−tX +

√
1− e−tG where

G is a Gaussian with variance 1. Call the density of this random variable, ft. For each t > 0, ft will be
strictly positive, smooth, and with the information

Jt =
∫

(f ′t)2

ft

finite.
Moreover ft satisfies the modified diffusion equation

∂

∂t
ft = f ′′t + (xft)

′
.

Let the spatial differential operator on the right be denoted L. Then the time derivative of the entropy
is

− ∂

∂t

∫
ft log ft = −

∫
Lft · log ft −

∫
Lft

= −
∫

Lft · log ft

= −
∫

f ′′t log ft −
∫

(xft)′ log ft

=
∫

(f ′t)
2

ft
+

∫
xf ′t

=
∫

(f ′t)
2

ft
− 1 = Jt − 1

where Jt is the Fisher information of the random variable at time t.
Thus the derivative of the entropy is the gap between the information of the ordinate and that of the

Gaussian limit. To obtain the result of Bakry-Emery and Barron, that the entropy gap is the integral
of the information gap

Ent(G)− Ent(X) =
∫ ∞

0

(Jv − 1) dv

therefore boils down to a continuity result about the semigroup. A streamlined proof of this, under the
assumption just that X has finite entropy can be found in [8] (in particular, Lemma 1.1 there implies
that for every t > 0, Jt is finite). Since we want to apply Theorem 2 along the semigroup, we need
to know that the Poincaré constant does not deteriorate. (As we shall see below, it strictly improves
along the semigroup). This observation seems to be well known, but we include a proof for the sake of
completeness.

Proposition 1 Let X, Y be independent random variables such that for every smooth function s, Var[s(X)] ≤
AEs′(X)2 and Var[s(Y )] ≤ BEs′(Y )2. Then for every λ ∈ (0, 1) one has

Var[s(
√

λX +
√

1− λY )] ≤ (λA + (1− λ)B)Es′(
√

λX +
√

1− λY )2.

Proof: Let P, Q denote the laws of X,Y respectively. Then

Var[ s (
√

λX +
√

1− λY )]

=
∫

s2(
√

λx +
√

1− λy) dP (x)dQ(y)−
(∫

s(
√

λx +
√

1− λy) dP (x)dQ(y)
)2
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=
∫ [∫

s2(
√

λx +
√

1− λy)dQ(y)−
(∫

s(
√

λx +
√

1− λy)dQ(y)
)2

]
dP (x)

+
∫ (∫

s(
√

λx +
√

1− λy)dQ(y)
)2

dP (x)−
(∫

s(
√

λx +
√

1− λy) dP (x)dQ(y)
)2

≤B(1− λ)
∫

s′(
√

λx +
√

1− λy)2dP (x)dQ(y)

+A

∫ (
∂

∂x

∫
s(
√

λx +
√

1− λy)dQ(y)
)2

dP (x)

≤(λA + (1− λ)B)Es′(
√

λX +
√

1− λY )2.

From these remarks we immediately see that Theorem 3 above follows from Theorem 2.

3 The transportation argument

The aim of this section is to explain the transportation proof of the Brunn-Minkowski-Prékopa-Leindler
inequality and why it is a “local” argument. We start with a function w : R2 → [0,∞) which is
log-concave and for each x we set

h(x) =
∫

w(x, y) dy.

We want to show that h is log-concave. For our purposes this means that for each a and b,

h

(
a + b

2

)
≥ h(a)1/2h(b)1/2. (2)

Now define new functions as follows: for each y let

f(y) = w(a, y)
g(y) = w(b, y)

m(y) = w

(
a + b

2
, y

)

We want to show that ∫
m ≥

(∫
f

)1/2 (∫
g

)1/2

and from the log-concavity of w we know that for any y and z,

m

(
y + z

2

)
= w

(
a + b

2
,
y + z

2

)

≥ w(a, y)1/2w(b, z)1/2

= f(y)1/2g(z)1/2. (3)

By homogeneity, we may assume that
∫

f =
∫

g = 1 and we may also assume that f and g are smooth
and strictly positive. Choose a fixed smooth density on the line, say k : R → [0,∞). We transport the
measure defined by k to that defined by f and g in the following sense. We let T, S : R → R be the
monotone increasing functions with the property that for each z,

∫ z

−∞
k(u) du =

∫ S(z)

−∞
f(u) du
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and ∫ z

−∞
k(u) du =

∫ T (z)

−∞
g(u) du.

Equivalently, for each z,
k(z) = S′(z)f(S(z)) = T ′(z)g(T (z)).

Then

1 =
∫

k =
∫

S′(z)1/2T ′(z)1/2f(S(z))1/2g(T (z))1/2

≤
∫

S′(z)1/2T ′(z)1/2m

(
S(z) + T (z)

2

)

≤
∫ (

S′(z) + T ′(z)
2

)
m

(
S(z) + T (z)

2

)

=
∫

m

where the first of the two inequalities is from (3) and the second is the arithmetic/geometric mean
inequality. So

∫
m ≥ 1 as required.

Our first aim in this article is to replace the inequality (2) with an identity relating the second
derivative of log h to the Hessian of log w. So we wish to examine the inequality when a and b are close
together. In that case the functions f , g and m used in the proof are all close together. Thus, if we
choose the density k to be the appropriate multiple of m, the transportation functions S and T will both
be close to the identity function on R:

S(z) ≈ T (z) ≈ z.

Therefore, the inequality

m

(
S(z) + T (z)

2

)
≥ f(S(z))1/2g(T (z))1/2

used in the proof, which depends upon the log-concavity of w, involves only values of w at points near
to one another. So, in the limit, it will convert into an expression involving the Hessian of log w. The
resulting identity is the subject of the next section.

4 The basic formula

The aim in this section is to derive (informally) a formula for the Fisher information of a marginal in
terms of the original density. We are given a density w : R2 → (0,∞) and for each x we set

h(x) =
∫

R
w(x, y) dy.

We want an expression for
h′2

h
− h′′ = h (− log h)′′

at each point. To simplify the notation, let’s fix this point at 0. For each value of x the function

y 7→ w(x, y)
h(x)

is a density. Now for each value of x other than 0, transport the density at 0 to the one at x by a map
y 7→ T (x, y). Thus, for each x and y we have

w (x, T (x, y)) · ∂yT (x, y)
h(x)

=
w(0, y)
h(0)

. (4)
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Next we take logarithms and differentiate twice with respect to x. Setting x = 0, and using the fact that
T (0, y) = y (and hence ∂yT (0, y) = 1), we obtain a simpler relationship which can be rearranged to give

h′(0)2

h(0)2
− h′′(0)

h(0)
= (∂x∂yT |x=0)

2 +

+ (1, ∂xT |x=0) ·Hess(− log w)|x=0 (1, ∂xT |x=0)
∗

− 1
w(0, y)

∂y [w(0, y) · ∂xxT |x=0]

= p′(y)2 + (1, p(y))Hess(− log w)|x=0 (1, p(y))∗

− 1
w(0, y)

∂y [w(0, y)∂xxT |x=0]

where p : R→ R is given by
p(y) = ∂xT (x, y)|x=0. (5)

Now multiply by w(0, y) and integrate with respect to y. The last term in the above makes no
contribution because we integrate a derivative. Since

∫
w(0, y) = h(0) we end up with

h′(0)2

h(0)
− h′′(0) =

∫
w · (p′)2 dy +

+
∫

w · (1, p) Hess(− log w)|x=0 (1, p)∗ dy. (6)

The connection with the Prékopa-Leindler inequality is now clear, since if w is log-concave then Hess(− log w)
is positive semi-definite and the right side of (6) is non-negative while the left side is h(0)(− log h)′′(0).

The function p can be written directly in terms of w by differentiating equation (4) just once with
respect to x. We get

d

dy
(w(0, y)p(y)) = w(0, y)

h′(0)
h(0)

− ∂xw(x, y)|x=0. (7)

The solution satisfying appropriate boundary conditions at ±∞ is

p(y) =
1

w(0, y)

(
h′(0)
h(0)

∫ y

−∞
w(0, v) dv −

∫ y

−∞
∂xw(x, v)|x=0 dv

)
.

Now, replacing the point 0 by a general one x we obtain formula (1).

The basic formula Let w : R2 → (0,∞) be integrable and let h be the marginal given by,

h(x) =
∫

w(x, y) dy.

Then, under appropriate regularity conditions, for each x

h′(x)2

h(x)
− h′′(x) =

∫
w · (∂yp)2 dy +

+
∫

w · (1, p)Hess(− log w) (1, p)∗ dy (8)

where p is given by

p(x, y) =
1

w(x, y)

(
h′(x)
h(x)

∫ y

−∞
w(x, v) dv −

∫ y

−∞
∂xw(x, v) dv

)
. (9)

9



The right side of (8) is a quadratic form in p. As explained in the introduction, it is natural to ask
whether its minimum occurs at the particular function p given by (9). The Euler-Lagrange equation for
the minimum is

−∂y(w∂yp) + ∂xy(− log w) + p∂yy(− log w) = 0,

which simplifies to
∂

∂y

1
w(x, y)

(
∂

∂y
w(x, y)p(x, y) + ∂xw(x, y)

)
= 0

and this is satisfied by the function p. Hence the inequality in (1).

5 The inequality for information

The aim in this section is to give a proof of the inequality for information contained in Theorem 1.
Theorem (Variational inequality for the information) Let w : R2 → (0,∞) be a continuously
twice differentiable density with ∫ |∇w|2

w
,

∫
|∂xxw| < ∞.

Let h be the marginal density given by,

h(x) =
∫

w(x, y) dy

and let J(h) be its Fisher information. Then,

J(h) ≤
∫

w · (∂yp)2 dxdy +

+
∫

w · (1, p)Hess(− log w) (1, p)∗ dxdy

where p : R2 → R is any differentiable function for which the terms p∂xw∂yw
w , p∂xyw and p2∂yyw are

integrable.
Proof: Plainly we may assume that

∫
w(∂yp)2 ,

∫
(∂yw)2

w
p2 < ∞.

For such p we have that for almost every x,
∫

∂y [w(x, y) · p(x, y)] dy = 0.

The conditions on w ensure that for every x

h′(x) =
∫

∂xw(x, y) dy.

Hence
∫

h′(x)2

h(x)
dx =

∫ (∫
∂xw dy

)2

∫
w dy

=
∫ (∫

[∂xw + ∂y (w · p)] dy
)2

∫
w dy

≤
∫ ∫

1
w

(∂xw + ∂y [w · p])2 dydx
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by the Cauchy-Schwarz inequality. The integrand on the right and the expression

∂xxw + w(∂yp)2 + w · (1, p)Hess(− log w)(1, p)∗ + ∂y

(
p2∂yw + 2p∂xw

)

are equal, as follows from direct expansion and rearrangement of both terms. The conditions on w ensure
that

∫ ∫
∂xxw = 0. The conditions on p ensure that the last term also integrates to zero.

6 The variational construction of a test function

In this section we shall turn our attention to convolutions and estimate the jump in Fisher information
for sums of random variables satisfying a spectral gap inequality. Let X be a random variable on the
line with mean 0 and variance 1. Assume that X has a positive, continuously twice differentiable density
f , for which ∫

(f ′)2

f
,

∫
|f ′′| < ∞.

Let Y be an independent copy of X and w : R2 → (0,∞) be the joint density given by (u, v) 7→
f((u + v)/

√
2)f((u− v)/

√
2) so that the density of (X + Y )/

√
2 is

h : u 7→
∫

w(u, v) dv.

By the preceding theorem, the Fisher information of (X + Y )/
√

2 is at most
∫

w · (∂vp)2 dvdu +
∫

w. (1, p) Hess(− log w) (1, p)∗ dvdu.

for any suitable p. If we make the change of variables x = (u + v)/
√

2, y = (u − v)/
√

2, and rewrite
p(u, v) as q(x, y) we get

1
2

∫
f(x)f(y) (∂xq − ∂yq)2 dxdy+

+
1
2

∫
f(x)f(y)[φ′′(x) + φ′′(y) + 2(φ′′(x)− φ′′(y))q(x, y) + (φ′′(x) + φ′′(y))q(x, y)2] dxdy, (10)

where here, and in what follows, we denote φ = − log f .
Our task is to find a function q for which we can obtain a good estimate on this expression. The

choice q = 0 leaves us with
∫

f(− log f)′′ which is the information for the original random variable X.
So we need to choose a function q which improves upon this. We were led to the method which follows
by studying a particular convolution semigroup: the Gamma semigroup. This semigroup consists of
positive random variables Xt, indexed by a positive real parameter t, where Xt has density

x 7→ e−xxt−1

Γ(t)
.

For every s and t, independent copies of Xs and Xt have a sum whose distribution is the same as Xs+t.
In particular, for each t it is easy to describe the distribution of the sum of 2 independent copies of Xt.
It turns out that for these random variables, the optimal function q is always given by

q(x, y) =
x− y

x + y
.

As t increases and the random variables look more and more Gaussian, the mass of the random variables
concentrates in regions where x and y are large, so the denominator of q is essentially constant in the
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places where the action occurs. This suggested that it might be possible to replace q by an appropriate
multiple of x− y and this turns out to work well.

This in turn suggested that in the general situation, it might be sufficient to consider a function q of
the form q(x, y) = r(x)− r(y) for some function r of one variable. For such functions, the formula (10)
simplifies considerably and it becomes clear that one loses very little by simplifying further and choosing
q of the form q(x, y) = r(x). In this case, continuing with the notation φ = − log f , the upper estimate
for the Fisher information of the convolution, (10), becomes

J +
1
2

∫
f(r′)2 +

1
2

∫
fφ′′r2 +

J

2

∫
fr2 +

∫
fφ′′r − J

∫
fr

where J is the information of the original random variable

J =
∫

fφ′′

and the regularity conditions on q will be satisfied as long as fr2, f(φ′)2r2 and fφ′′r2 are integrable.
The information change as a result of convolution is thus at most

T (r) =
1
2

∫
f(r′)2 +

1
2

∫
fφ′′r2 +

J

2

∫
fr2 +

∫
fφ′′r − J

∫
fr

and our aim is to choose the function r so as to make this quantity as negative as possible. The argument
given below ignores questions of existence, regularity and integrability of solutions to the Sturm-Liouville
problems that arise. All these issues are dealt with in the appendix.

At first sight this may look slightly odd if φ′′ can take negative values but under the assumptions,
we may integrate by parts to get

∫
f(r′)2 +

∫
fφ′′r2 =

∫
f(r′ − φ′r)2 (11)

so the objective functional cannot be too small.
The Euler-Lagrange equation for this minimisation problem is

− (fr′)′ + f(J + φ′′)r = f(J − φ′′) (12)

Integrating this Sturm-Liouville equation respectively against r and 1 we obtain
∫

f(r′)2 +
∫

fφ′′r2 + J

∫
fr2 = J

∫
fr −

∫
fφ′′r

and
J

∫
fr +

∫
fφ′′r = 0.

Adding up these two relations shows that for an appropriately integrable solution of equation (12)

T (r) = −J

∫
fr.

In order to estimate this quantity it is more convenient to obtain a differential equation for a new
function s whose derivative is r. By writing f ′ = −fφ′, and dividing by f , we can rewrite equation (12)
as

−r′′ + φ′r′ + φ′′r + Jr = J − φ′′.

If r = s′ then we can integrate the equation to get

−s′′ + φ′s′ + Js = Jx− φ′ (13)

12



(apart from a constant of integration).
It remains to show that T = −J

∫
fs′ is bounded well away from 0. Multiplying (13) by f we get

− (fs′)′ + Jfs = Jfx + f ′ (14)

Now equation (14) is the Euler-Lagrange equation for a different minimisation problem in which the
objective function is

Q(s) =
1
2

∫
f(s′)2 +

J

2

∫
f

(
s− x +

φ′

J

)2

. (15)

Set A =
∫

fs′ and B =
∫

fsx. Integrating equation (14) against s and x respectively we get
∫

fs′2 + J

∫
fs2 = J

∫
fsx−

∫
fs′ = JB −A (16)

and ∫
fs′ + J

∫
fsx = J

∫
fx2 −

∫
f = J − 1

since f is the density of a random variable with variance 1. The latter inequality reads as

A + JB = J − 1. (17)

Now, using equations (16) and (17) we get that the objective (15) is precisely A. Indeed

inf Q = Q(s) =
1
2

∫
f(s′)2 +

J

2

∫
fs2 +

J

2

∫
fx2 +

1
2J

∫
f(φ′)2

+J

(
−

∫
fsx +

∫
fs

φ′

J
−

∫
fx

φ′

J

)

=
JB −A

2
+

J

2
+

1
2

+ J

(
−B +

A

J
− 1

J

)
= A.

The aim is to obtain a good lower bound for (15). Now suppose that f satisfies a Poincaré inequality
with constant c. The constant of integration was chosen above so that the condition

∫
f(x)x = 0 (on the

mean of the random variable) ensures that
∫

fs = 0. This means that the Poincaré inequality applies
to s and

c

∫
fs2 ≤

∫
f(s′)2.

Thus we get

A =
1
2

∫
f(s′)2 +

J

2

∫
f

(
s− x +

φ′

J

)2

≥ 1
2

∫
f

(
cs2 + J

(
s− x +

φ′

J

)2
)

≥ 1
2

cJ

c + J

∫
f

(
−x +

φ′

J

)2

=
cJ

2(c + J)
J − 1

J
.

This in turn gives, using J ≥ 1

T = −JA ≤ − cJ

2(c + J)
(J − 1) ≤ − c

2 + 2c
(J − 1).
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7 Appendix

Here we give detailed proofs for the arguments in the preceding section involving the calculus of varia-
tions.

First we notice that for the purpose of proving Theorem 2, we may restrict attention to densities
f with the following properties: f is C∞ and everywhere strictly positive, and f, f ′, f ′′ have a strong
decay at infinity (like 1/t2 or even e−Kt for some constant K > 0). To achieve this we replace f by the
density ft of

√
tX +

√
1− tG, for t very small. We have seen that ft also satisfies a Poincaré inequality

with constant c. Letting t tend to zero in the result for ft, will provide the required inequality for f . It
is plain that ft is smooth and strictly positive. Its decay at zero is related to the tails of the density f .
Indeed, up to a scaling factor, ft is the convolution of f with a Gaussian function. More generally, let
h be a function on R with

∫ |h| = M and |h(x)| ≤ Ce−Bx2
. One has

∣∣∣∣
∫

f(x− y)h(y)dy

∣∣∣∣ ≤
∫

|y|≤|x|/2

f(x− y)|h(y)|dy +
∫

|y|>|x|/2

f(x− y)|h(y)|dy

≤ M

∫

|y|>|x|/2

f + Ce−Bx2/4.

So we obtain a bound for f determined by the tails of its distribution. The fact that
∫

fx2 = 1 ensures
a bound of the form A/|x|2, but the spectral gap inequality is known to guarantee sub-exponential tails
(see e.g. [14]). Therefore |f ∗h(x)| ≤ A1e

−A2|x| where the constants depend on B,C, M and the spectral
gap c. Applying this in turn for h equal to g, g′ and g′′ (where g(x) = e−Kx2

) shows that ft and its first
and second derivatives are bounded by exponential functions. This in turns justifies the use of relations
like

∫
f ′′ = 0.

From now on we assume that f has the above properties. Next we observe a consequence of the
spectral gap inequality satisfied by f. Recall that for every smooth function s, we have assumed

∫
fs2 ≤

C
∫

fs′2 + (
∫

fs)2. This makes sense as soon as
∫

fs2 and
∫

fs′2 are finite. We shall work in H1(f),
the Sobolev space with weight f of locally integrable functions s for which

∫
fs2 < ∞ (s ∈ L2(f)) and∫

fs′2 < ∞ where s′ is the distributional derivative of s. This is a Hilbert space, equipped with the
norm ‖s‖2H1(f) =

∫
fs2 +

∫
fs′2. By the density of smooth functions, the Poincaré inequality is valid for

s ∈ H1(f). We point out a useful fact: if s is smooth and s′ ∈ L2(f), then the assumption on f ensures
that s ∈ L2(f) as well, and that the inequality holds for s. We give a proof of this. For each n ≥ 1 let
sn = ξn −

∫
fξn, where ξn(t) = s(t) if t ∈ [−n, n], ξn(t) = s(n) if t > n and ξn(t) = s(−n) if t < −n.

Clearly sn is in H1(f),
∫

fs′2n ≤ ∫
fs′2 and by the spectral gap inequality,

∫
fs2

n ≤ C
∫

fs′2. Therefore
the sequence (sn) is in a ball of H1(f), which is compact for the weak topology. So the on subsequence
has a weak limit s∞ in H1(f). However by construction, the limit of s′n in the L2(f) sense is s′. Thus
s′ = s′∞ in the distributional sense. This implies that s is equal to s∞ ∈ H1(f) plus a constant function
(also in H1(f)). So s ∈ H1(f) and the Poincaré inequality is valid for s.

We are now ready to give details of the argument in Section 6. We recall some classical facts from
the calculus of variations:

Proposition 2 Let w be a strictly positive smooth function on R. Let ϕ0 ∈ L2(w) be also smooth. For
ϕ ∈ H1(w), let

F (ϕ) =
∫

wϕ′2 + J

∫
w(ϕ− ϕ0)2

1) The infimum inf
ϕ∈H1(w)

F (ϕ) is achieved by a function ρ ∈ H1(w).

2) For every function ϕ ∈ H1(f), one has
∫

wρ′ϕ′ + J

∫
w(ρ− ϕ0)ϕ = 0.
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3) The minimum of the functional is equal to

F (ρ) = J

∫
wϕ2

0 − J

∫
wϕ0ρ.

4) The function ρ is in C∞ and satisfies the Euler-Lagrange equation

(−wρ′)′ + Jw(ρ− ϕ0) = 0.

Proof: Let m ≥ 0 be the infimum of the functional and (ϕn)n≥1 be a minimising sequence with F (ϕn) ≤
m+1/n. Clearly

∫
wϕ′2n ≤ m+1 and ‖ϕn‖L2(w) ≤ ‖ϕ0‖L2(w)+‖ϕn−ϕ0‖L2(w) ≤ ‖ϕ0‖L2(w)+

√
(m + 1)/J .

So the sequence is in a bounded subset of H1(w), which is weakly relatively compact. Therefore there
is a subsequence with a weak limit ρ ∈ H1(w). The functional F is clearly norm-continuous in H1(w).
Since it is also convex, it is weakly continuous and F (ρ) = m is the minimum. To prove the second part
of the proposition, one looks at the behaviour around the minimum. For every ϕ ∈ H1(w) and t ∈ R,
F (ρ) ≤ F (ρ + tϕ). As t → 0 this yields the relation stated in 2). This applied for ϕ = ρ gives the
formula for F (ρ) given in 3). The relation given in 2) applied for smooth compactly supported functions
shows that ρ satisfies the equation (−wρ′)′ + Jw(ρ− ϕ0) = 0 in the distributional sense. This equation
can be rearranged as

ρ′′ +
w′

w
ρ′ − Jρ = −Jϕ0.

The theory of regularity for uniformly elliptic second order linear equations can be used to show that ρ
is a strong solution (see e.g. [10]). We first apply Lp regularity theory on open segments I : the second
term in the equation is bounded by continuity so it is in L2(I) (with Lebesgue measure). It follows
from the theory that ρ has two derivatives in L2(I ′) for every smaller open interval I ′. In particular
ρ ∈ H1(I ′), so by the Sobolev injection, ρ is Hölder continuous. It is therefore locally bounded, and
Schauder theory then applies (see [10, Theorem 6.2 page 85]). Thus ρ is infinitely differentiable, and the
Euler-Lagrange equation is satisfied in the strong sense.

This proposition applies directly to the minimisation of the quantity (15). It ensures that the min-
imum is achieved for a smooth s satisfying equation (14), and is equal to A. More effort is needed for
the quantity

T (r) =
1
2

∫
f(r′)2 +

1
2

∫
fφ′′r2 +

J

2

∫
fr2 +

∫
fφ′′r − J

∫
fr.

Our aim is to show that the infimum of T on, (say) smooth compactly supported functions, is well below
zero. For such functions, we may rewrite T (r) as:

T (r) = −J +
1
2

∫
f(r + 1)′2 +

1
2

∫
fφ′′(r + 1)2 +

J

2

∫
f(r − 1)2.

Integrating by parts as in (11), which is justified for functions that are eventually constant, we get

T (r) = −J +
1
2

(∫
1
f

(f(r + 1))′2 + J

∫
1
f

(f(r + 1)− 2f)2
)

.

So by the density of functions of the form f(r + 1) we are reduced to the study of the infimum problem

inf
ϕ∈H1(1/f)

∫
1
f

(ϕ′)2 + J

∫
1
f

(ϕ− 2f)2.

By the proposition above, there is a smooth minimiser ρ ∈ H1(1/f). Let r be such that ρ = f(r + 1).
The minimum of the functional T is given in terms of ρ by statement 3). In terms of r it is equal to
−J

∫
fr. Moreover, the Euler-Lagrange equation satisfied by ρ translates into equation (12) for r. Now

choose the primitive σ of r for which there is no additional constant in equation (13). We are done if we
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can prove that this σ is the function s obtained as a minimiser and satisfying the same equation. To do
so, note that

∫
fσ′2 =

∫
fr2 < ∞, so by the previous remarks on the Poincaré inequality, σ ∈ H1(f).

Finally, s and σ are two critical points of the same strictly convex functional on H1(f): so they coincide
and the argument is complete
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1123 in Lect. Notes in Math., pages 179–206. Springer, 1985.

[2] A. R. Barron. Entropy and the central limit theorem. Ann. Probab., 14:336–342, 1986.

[3] A. R. Barron and O. Johnson. Fisher information inequalities and the central limit theorem.
Preprint.

[4] N. M. Blachman. The convolution inequality for entropy powers. IEEE Trans. Info. Theory, 2:267–
271, 1965.

[5] S. G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann.
Probab., 27(4):1903–1921, 1999.

[6] A. A. Borovkov and S. A. Utev. An inequality and a characterization of the normal distribution
connected with it (Russian). Teor. Veroyatnost. i Primenen, 28(2):209–218, 1983.

[7] L. D. Brown. A proof of the central limit theorem motivated by the Cramer-Rao inequality. In
Kalliampur et al., editor, Statistics and Probability: Essays in Honor of C. R. Rao, pages 314–328,
Amsterdam, 1982. North-Holland.

[8] E. A. Carlen and A. Soffer. Entropy production by block variable summation and central limit
theorem. Commun. Math. Phys., 140(2):339–371, 1991.

[9] I. Csiszar. Informationstheoretische Konvergenzbegriffe im Raum der Wahrscheinlichkeitsverteilun-
gen. Publications of the Mathematical Institute, Hungarian Academy of Sciences, VII, Series A:137–
157, 1962.

[10] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag,
Berlin, second edition, 1983.

[11] R. Henstock and A. M. Macbeath. On the measure of sum sets. (I) the theorems of Brunn, Minkowski
and Lusternik. Proceedings of the London Math. Soc., 3:182–194, 1953.

[12] H. Knothe. Contributions to the theory of convex bodies. Michigan Math. J., 4:39–52, 1957.

[13] S. Kullback. A lower bound for discrimination information in terms of variation. IEEE Trans. Info.
Theory, 4:126–127, 1967.

[14] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Prob-
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Universités de Marne-la-Vallée et de Paris 12-Val-de-Marne,
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