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Abstract

Let H denote the discrete Heisenberg group, equipped with a word metric dW associated to
some finite symmetric generating set. We show that if (X, ‖ ·‖) is a p-convex Banach space then
for any Lipschitz function f : H→ X there exist x, y ∈ H with dW (x, y) arbitrarily large and

‖f(x)− f(y)‖
dW (x, y)

.

(
log log dW (x, y)

log dW (x, y)

)1/p

. (1)

We also show that any embedding into X of a ball of radius R > 4 in H incurs bi-Lipschitz
distortion that grows at least as a constant multiple of(

logR

log logR

)1/p

. (2)

Both (1) and (2) are sharp up to the iterated logarithm terms. When X is Hilbert space we
obtain a representation-theoretic proof yielding bounds corresponding to (1) and (2) which are
sharp up to a universal constant.

1 Introduction

Let H def
= 〈a, b| aba−1b−1 is central

〉
denote the discrete Heisenberg group, with canonical generators

a, b ∈ H. We let dW (·, ·) denote the left-invariant word metric on H associated to the symmetric

generating set S
def
= {a, b, a−1, b−1}.

A Banach space (X, ‖ · ‖X) is superreflexive if it admits an equivalent uniformly convex norm,
i.e., a norm ‖ · ‖ satisfying α‖x‖X 6 ‖x‖ 6 β‖x‖X for some α, β > 0 and all x ∈ X, such that for
all ε ∈ (0, 1) there exists δ > 0 for which we have

‖x‖ = ‖y‖ = 1 ∧ ‖x− y‖ = ε =⇒ ‖x+ y‖ 6 2− δ. (3)

Here we prove the following result:

Theorem 1.1. Let (X, ‖ · ‖X) be a superreflexive Banach space. Then there exist c, C > 0 such
that for every f : H → X which is 1-Lipschitz with respect to the metric dW , there are x, y ∈ X
with dW (x, y) arbitrarily large and

‖f(x)− f(y)‖X
dW (x, y)

6
C

(log dW (x, y))c
.
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The fact that H does not admit a bi-Lipschitz embedding into any superreflexive Banach space
was proved in [18, 7]. These proofs use an argument of Semmes [25], based on a natural extension
of Pansu’s differentiability theorem [22].

A natural way to quantify the extent to which H does not admit a bi-Lipschitz embedding
into (X, ‖ · ‖X) is via Gromov’s notion [13, Sec. 7.3] of compression rate, defined for a Lipschitz
function f : H → X as the largest function ωf : (0,∞) → [0,∞) such that for all x, y ∈ H we
have ‖f(x) − f(y)‖X > ωf (dW (x, y)). The fact that H does not admit a bi-Lipschitz embedding
into a superreflexive Banach space X means that lim inft→∞ ωf (t)/t = 0 for all Lipschitz functions
f : H → X. The differentiability-based proof of this nonembeddability result involves a limiting
argument that does not give information on the rate at which ωf (t)/t vanishes. Theorem 1.1
supplies such information, via an approach which is different from the arguments in [18, 7].

Cheeger and Kleiner proved [6] that H does not admit a bi-Lipschitz embedding into L1. In [8]
it was shown that there exists c > 0 such that for any Lipschitz function f : H → L1 we have
ωf (t)/t 6 1/(log t)c for arbitrarily large t. This result covers Theorem 1.1 when the superreflexive
Banach space X admits a bi-Lipschitz embedding into L1: such spaces include Lp for p ∈ (1, 2].
Theorem 1.1 is new even for spaces such as Lp for p ∈ (2,∞), which do not admit a bi-Lipschitz
embedding into L1 (see [3]). Moreover, our method yields sharp results, while the constant c
obtained in [8] is far from sharp.

In order to state our sharp version of Theorem 1.1, we recall the following important theorem
of Pisier [23, Thm. 3.1]: if X is superreflexive then it admits an equivalent norm ‖ · ‖ for which
there exist p > 2 and K > 0 satisfying the following improvement of (3):

∀x, y ∈ X,
∥∥∥∥x+ y

2

∥∥∥∥p 6 ‖x‖p + ‖y‖p

2
− 1

Kp

∥∥∥∥x− y2

∥∥∥∥p . (4)

A Banach space admitting an equivalent norm satisfying (4) is said to be p-convex. If (X, ‖ · ‖)
satisfies (4) then the infimum over those K > 0 satisfying (4) is denoted Kp(X). For concreteness,
when p ∈ (1, 2] we have K2(Lp) 6 1/

√
p− 1 and for p > 2 we have Kp(Lp) 6 1 (see [2]).

The following theorem is a refinement of Theorem 1.1.

Theorem 1.2. Assume that the Banach space (X, ‖·‖) satisfies (4). Let f : H→ X be a 1-Lipschitz
function. Then for every t > 3 there exists an integer t 6 n 6 t2 such that1

ωf (n)

n
. Kp(X)

(
log log n

log n

)1/p

. (5)

The estimate (5) is sharp up to the iterated logarithm term. Indeed, Lp is p-convex when
p ∈ [2,∞), and in [26, 27] it was shown that there exists f : H→ Lp satisfying

ωf (n)

n
&

1

(log n)1/p log logn

for all n > 3 (we refer to [27] for a more refined result of this type).
Our proof of Theorem 1.2 circumvents the difficulties involved with proving quantitative variants

of differentiability results by avoiding the need to reason about arbitrary Lipschitz mappings.

1In (5), and in the rest of this paper, the notation .,& denotes the corresponding inequalities up to a universal
multiplicative factor. The notation A � B stands for A . B ∧B . A.
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Instead, we start by using a simple result from [21] which reduces the problem to equivariant
mappings. Specifically, in [21, Thm. 9.1] it is shown that if X satisfies (4) and f : H → X is
1-Lipschitz, then there exists a Banach space Y that also satisfies (4), with Kp(Y ) = Kp(X) (in
fact, Y is finitely representable in `p(X)), an action π of H on Y by linear isometric automorphisms,
and a 1-cocycle F : H→ Y (i.e., F (xy) = π(x)F (y)+F (x) for all x, y ∈ H) with ωF = ωf . Thus, in
proving Theorem 1.2 it suffices to assume that f itself is a 1-cocycle. We note that if X is Hilbert
space then Y is also Hilbert space; this is an older result of Gromov (see [10]). More generally,
when X = Lp then it is shown in [21] that we can take Y = Lp.

Having reduced the problem to 1-cocycles, our starting point is a (non-quantitative) proof,
explained in Section 2, showing that if X is an ergodic Banach space, then for every 1-cocycle
f : H → X we have lim inft→∞ ωf (t)/t = 0. It turns out that the ideas of this proof, which
crucially use the fact that f is a 1-cocycle, can be (nontrivially) adapted to yield Theorem 1.2.

Recall that X is ergodic if for every linear isometry T : X → X and every x ∈ X the sequence{
1
n

∑n−1
j=0 T

jx
}∞
n=1

converges in norm. Reflexive spaces, and hence also superreflexive spaces, are

ergodic (see [11, p. 662]). If a Banach space X has the property that all Banach spaces that are
finitely representable in X are ergodic, then X must be superreflexive [4]. Thus, when using the
reduction to 1-cocyles based on the result of [21], the class of Banach spaces to which it naturally
applies is the class of superreflexive spaces.

1.1 Bi-Lipschitz distortion of balls

For R > 1 let BR = {x ∈ H : dW (e, x) 6 R} denote the ball of radius R centered at the identity
element e ∈ H. The bi-Lipschitz distortion of (BR, dW ) in (X, ‖·‖), denoted cX(BR), is the infimum
over those D > 1 such that there exists f : BR → X satisfying

∀ x, y ∈ BR, dW (x, y) 6 ‖f(x)− f(y)‖ 6 DdW (x, y). (6)

Another way to measure the extent to which H does not admit a bi-Lipschitz embedding into
X is via the rate at which cX(BR) grows to ∞ with R. In [8] it was shown that

cL1(BR) & (logR)c (7)

for some universal constant c > 0. This result is of importance due to an application to theoretical
computer science; see [9, 8, 20] for a detailed discussion. Evaluating the supremum over those c > 0
satisfying (7) remains an important open problem. Theorem 1.2 implies the following sharp bound
on the bi-Lipschitz distortion of BR into a p-convex Banach space:

Theorem 1.3. If a Banach space (X, ‖ · ‖) satisfies (4) then for every R > 4 we have

cX(BR) &
1

Kp(X)

(
logR

log logR

)1/p

.

Thus in particular for p ∈ (1, 2] we have cLp(BR) &
√
p− 1 · (logR)

1
2
−o(1) and for p > 2 we

have cLp(BR) & (logR)
1
p
−o(1)

. Theorem 1.3 is a formal consequence of Theorem 1.2. The simple
deduction of Theorem 1.3 from Theorem 1.2 is presented in Section 6. It follows from the results
of [1, 24] (see the explanation in [15, 27]) that for every p > 2 we have cLp(BR) . (logR)1/p. Thus
Theorem 1.3 is sharp up to iterated logarithms.
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1.2 The case of Hilbert space

In section 7 we prove the following Poincaré-type inequality for functions on H taking value in
Hilbert space:

Theorem 1.4. For every f : H→ L2 and every R ∈ N we have

∑
x∈BR

R2∑
k=1

∥∥f(xck)− f(x)
∥∥2

2

k2
.

∑
x∈B22R

(
‖f(xa)− f(x)‖22 + ‖f(xb)− f(x)‖22

)
. (8)

This result has the following two sharp consequences. First, assume that θ : (0,∞)→ [0,∞) is
nondecreasing, and that θ 6 ωf for some 1-Lipschitz f : H → L2. Then since |B22R| � |BR| and
dW (ck, e) �

√
k for all k ∈ N, inequality (8) implies that

1

2

∫ ∞
1

θ (t)2

t3
dt =

∫ ∞
1

θ (
√
s)

2

s2
ds .

∞∑
k=1

θ
(√

k
)2

k2
. 1. (9)

Combined with [26, Theorem 1], we obtain

Corollary 1.5. A nondecreasing function θ : (0,∞) → [0,∞) satisfies θ 6 ωf for some Lipschitz
function f : H→ L2 if and only if ∫ ∞

1

(
θ(t)

t

)2 dt

t
<∞. (10)

A second corollary of Theorem 1.4 yields a sharp bound (up to universal constants) on cL2(BR).
Indeed, fix R > 2 and assume that f : BR → L2 satisfies dW (x, y) 6 ‖f(x)−f(y)‖ 6 DdW (x, y) for
all x, y ∈ BR. Let f∗ : H → L2 have Lipschitz constant at most 2D and coincide with f on BR/2
(see equation (41) for an explicit formula defining such an extension f∗). It follows from (8) applied
to f∗ that D2 &

∑R
k=1

1
k & logR. Thus cL2(BR) &

√
logR. In conjunction with the previously

quoted upper bound on cL2(BR), we have

Corollary 1.6. For every R > 2 we have cL2(BR) �
√

logR.

Roughly speaking, the proof of Theorem 1.4 proceeds via a reduction to the case of 1-cocycles
corresponding to the irreducible representations of H (see Section 7). But actually, since the repre-
sentation theory of the continuous Heisenberg group is simpler than the representation theory of the
discrete Heisenberg group H, we first apply a discretization argument which reduces Theorem 1.4
to an inequality on the real Heisenberg group. Then an averaging argument reduces the proof to
an inequality on cocycles. Every unitary representation of the continuous Heisenberg group decom-
poses as a direct integral of irreducibles, and cocycles themselves can be decomposed accordingly.
Since the desired inequality involves a sum of squares of norms, it suffices to prove it for cocycles
corresponding to irreducible representations (that is, for each direct integrand separately). The
computation for irreducible representations is carried out in Section 7.1.
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2 Sublinear growth of Heisenberg cocycles in ergodic spaces

Write c
def
= [a, b] = aba−1b−1. Thus c lies in the center of H and for every n ∈ N we have

dW

(
cn

2
, eH

)
= 4n (in fact cn

2
= [an, bn] = anbna−nb−n).

Let (X, ‖·‖) be a Banach space and π : G→ Aut(X) be an action of H on X by linear isometric
automorphisms. In addition let f ∈ Z1(π) be a 1-cocycle, so f : H → X and for all x, y ∈ H we
have f(xy) = π(x)f(y) + f(x). We assume in what follows that f is 1-Lipschitz, or equivalently
that max{‖f(a)‖, ‖f(b)‖} = 1.

In this section we quickly show that if X is an ergodic Banach space then lim inft→∞ ωf (t)/t = 0,
but without obtaining any quantitative bounds.

If X is ergodic then the operator on X defined by

Px
def
= lim

N→∞

1

N

N−1∑
n=0

π(c)nx

is a contraction onto the subspace X0 ⊆ X of π(c)-invariant vectors, and since Px = x for any
x ∈ X0 it follows at once that P is idempotent. Also, since c is central in H, the projection P
commutes with π(g) for all g ∈ H, and hence the maps g 7→ Pf(g) and g 7→ (I − P )f(g) are both
still members of Z1(π). Since P and I − P are bounded, these cocycles are both still Lipschitz
functions from H to X.

We complete the proof by showing that for any ε > 0 we have∥∥∥f (cN2
)∥∥∥ 6 2εdW

(
eH, c

N2
)
6 8εN (11)

for all sufficiently large N . To prove this we consider the two cocycles Pf and (I −P )f separately.
On the one hand, Pf takes values among the π(c)-invariant vectors, and hence the cocycle identity
implies that

Pf
(
cN
)

=
N−1∑
n=0

π(c)nPf(c) = NPf(c),

and therefore
∥∥Pf (cN)∥∥ = N‖Pf(c)‖. However,

∥∥Pf (cN)∥∥ 6 dW
(
eH, c

N
)
.
√
N , so these

relations are compatible only if Pf(c) = 0.

On the other hand, let f̃
def
= (I − P )f and for each K > 1,

vK
def
= − 1

K

K∑
k=1

f
(
ck
)
.

Observe from the cocycle identity and the centrality of c that

− π(g)vK + f̃(g) =
1

K

K∑
k=1

(
π(g)f̃

(
ck
)

+ f̃(g)
)

=
1

K

K∑
k=1

f̃
(
gck
)

=
1

K

K∑
k=1

f̃
(
ckg
)

=
1

K

K∑
k=1

π
(
ck
)
f̃(g)− vK . (12)
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Re-arranging (12) gives

f̃(g) = π(g)vK − vK +
1

K

K∑
k=1

π(c)kf̃(g). (13)

For any fixed g ∈ H the last term of this right-hand side of (13) converges to P (I − P )f(g) = 0
(using again that X is ergodic), and so in particular once K is sufficiently large we obtain that for
all g ∈ H we have,

max
{∥∥∥f̃ (a±1

)
−
(
π
(
a±1
)
vK − vK

)∥∥∥ , ∥∥∥f̃ (b±1
)
−
(
π
(
b±1
)
vK − vK

)∥∥∥} 6 ε.

Having obtained this approximation to f̃ by a coboundary, let cN
2

= s1s2 · · · s4N be an expres-
sion for cN

2
as a word in S, and observe from another appeal to the cocycle identity that

f̃
(
cN

2
)

=
4N−1∑
i=0

π (s1s2 · · · si) f̃ (si+1) =
4N−1∑
i=0

π (s1s2 · · · si) (π (si+1) vK − vK) +RN

= π(s1s2 · · · s4N )vK − vK +RN

for some remainder RN which is a sum of 4N terms all of norm at most ε. Since the action π is
isometric and we may let N grow independently of K we obtain∥∥∥f̃ (cN2

)∥∥∥ 6 2‖vK‖+ ‖RN‖ 6 8εN

for all sufficiently large N . Since ε was arbitrary and f̃
(
cN

2
)

= f
(
cN

2
)

by our analysis of Pf

above, this completes the proof of (11).

3 A uniform convexity lemma for ergodic averages

We prove here a simple lemma on the behavior of ergodic averages in p-convex Banach spaces.

Lemma 3.1. Assume that (X, ‖ · ‖) satisfies (4). Fix z ∈ X and an operator T : X → X with
‖T‖ 6 1. For every integer n > 0 denote

sn
def
=

1

2n

2n−1∑
j=0

T jz.

Then for every ` ∈ N we have:

∞∑
i=0

1

2`

2`−1∑
j=0

∥∥∥s(i+1)` − T j2
i`
si`

∥∥∥p 6 (2K)p‖z‖p. (14)

Proof. A consequence of (4) is that for every x1, . . . , xn ∈ X we have:

1

n

n∑
i=1

∥∥∥∥∥∥xi − 1

n

n∑
j=1

xj

∥∥∥∥∥∥
p

6 (2K)p

(
1

n

n∑
i=1

‖xi‖p −

∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
p)

. (15)
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For the derivation of (15) from (4) see [19, Lem. 3.1].
Due to the identity

s(i+1)` =
1

2`

2`−1∑
j=0

T j2
i`
si`,

inequality (15) implies that:

1

2`

2`−1∑
j=0

∥∥∥T j2i`si` − s(i+1)`

∥∥∥p 6 (2K)p

 1

2`

2`−1∑
j=0

∥∥∥T j2i`si`∥∥∥p − ∥∥s(i+1)`

∥∥p
6 (2K)p

(
‖si`‖p −

∥∥s(i+1)`

∥∥p) . (16)

The desired inequality (14) now follows by summing (16) over i ∈ {0, 1, . . .}.

4 Estimates for Heisenberg cocycles

Let π : H → Aut(X) and f ∈ Z1(π) be as in Section 2. For every n ∈ N define a linear operator
Pn : X → X by

Pn
def
=

1

2n

2n−1∑
j=0

π(c)j .

Thus ‖Pn‖ 6 1.

Lemma 4.1. Assume that (X, ‖ · ‖) satisfies (4). Then for every `, k,m ∈ N there exist integers
i ∈ [k + 1, k +m] and j ∈ [0, 2` − 1] satisfying for all n ∈ N,∥∥∥π (c−j2i`)P(i+1)`f

(
cn

2
)
− Pi`f

(
cn

2
)∥∥∥ 6

16Kn

m1/p
. (17)

Proof. Consider the Banach space Y = X ⊕X, equipped with the norm

‖(x, y)‖Y = (‖x‖p + ‖y‖p)1/p .

We also define T : Y → Y by T (x, y) = (π(c)x, π(c)y). Then ‖T‖ 6 1. Since (Y, ‖ · ‖Y ) satisfies (4)
we may apply Lemma 3.1 to z = (f(a), f(b)) ∈ Y , obtaining the following estimate:

(4K)p >
k+m∑
i=k+1

1

2`

2`−1∑
j=0

(∥∥∥P(i+1)`f (a)− π
(
cj2

i`
)
Pi`f (a)

∥∥∥p +
∥∥∥P(i+1)`f (b)− π

(
cj2

i`
)
Pi`f (b)

∥∥∥p)

=
k+m∑
i=k+1

1

2`

2`−1∑
j=0

(∥∥∥π (c−j2i`)P(i+1)`f (a)− Pi`f (a)
∥∥∥p +

∥∥∥π (c−j2i`)P(i+1)`f (b)− Pi`f (b)
∥∥∥p)

> m min
k+16i6k+m

06j62`−1

(∥∥∥π (c−j2i`)P(i+1)`f (a)− Pi`f (a)
∥∥∥p +

∥∥∥π (c−j2i`)P(i+1)`f (b)− Pi`f (b)
∥∥∥p) .

It follows that there exist integers i ∈ [k + 1, k +m], j ∈ [0, 2` − 1] such that

max
{∥∥∥π (c−j2i`)P(i+1)`f (a)− Pi`f (a)

∥∥∥ ,∥∥∥π (c−j2i`)P(i+1)`f (b)− Pi`f (b)
∥∥∥} 6

4K

m1/p
. (18)
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Consider the operator

Qn
def
=

1

n

n−1∑
i=0

π(a)i.

The cocycle identity implies that f(an) = nQnf(a). Thus

π
(
c−j2

i`
)
P(i+1)`f(an)− Pi`f(an) = n

(
π
(
c−j2

i`
)
P(i+1)` − Pi`

)
Qnf(a)

= nQn

(
π
(
c−j2

i`
)
P(i+1)` − Pi`

)
f(a), (19)

where the last equality in (19) holds since c is in the center of H, and therefore Qn commutes with
all of {Pr}∞r=0. Since ‖Qn‖ 6 1, it follows from (19) and (18) that∥∥∥π (c−j2i`)P(i+1)`f(an)− Pi`f(an)

∥∥∥ 6
4Kn

m1/p
. (20)

Since f(a−n) = −π(a)−nf(an), and π(a) commutes with π(c), and hence with all of {Pr}∞r=0, it
follows that also ∥∥∥π (c−j2i`)P(i+1)`f(a−n)− Pi`f(a−n)

∥∥∥ 6
4Kn

m1/p
. (21)

An identical argument implies the analogous bounds with a replaced by b:∥∥∥π (c−j2i`)P(i+1)`f(bn)− Pi`f(bn)
∥∥∥ 6

4Kn

m1/p
(22)

and ∥∥∥π (c−j2i`)P(i+1)`f(b−n)− Pi`f(b−n)
∥∥∥ 6

4Kn

m1/p
. (23)

The cocycle identity implies that for all n ∈ N,

f
(
cn

2
)

= f ([an, bn]) = π(anbna−n)f(b−n) + π(anbn)f(a−n) + π(an)f(bn) + f(an).

Thus, using (20), (21), (22) and (23), we conclude the validity of (17).

Lemma 4.2. For every m,n ∈ N we have∥∥∥Pmf (cn2
)∥∥∥ .

n5/3

2m/3
. (24)

Proof. Note that for every k ∈ N we have

Pm − π
(
ck
)
Pm =

1

2m

k−1∑
j=0

π(c)j − 1

2m

2m+k−1∑
j=2m

π(c)j .

Thus, ∥∥∥Pm − π (ck)Pm∥∥∥ 6
2k

2m
. (25)

The cocycle identity implies that

f
(
c(kn)2

)
=

k2−1∑
j=0

π
(
cjn

2
)
f
(
cn

2
)
. (26)

8



Using the fact that f is 1-Lipschitz, ‖Pm‖ 6 1 and dW

(
eH, c

(kn)2
)
6 4kn, we deduce from (26)

that

4kn >
∥∥∥Pmf (c(kn)2

)∥∥∥ >
k2−1∑
j=0

(∥∥∥Pmf (cn2
)∥∥∥− ∥∥∥Pm − π (cjn2

)
Pm

∥∥∥ · ∥∥∥f (cn2
)∥∥∥)

(25)

> k2
∥∥∥Pmf (cn2

)∥∥∥− k2−1∑
j=0

2jn2

2m
· 4n > k2

∥∥∥Pmf (cn2
)∥∥∥− 4n3k4

2m
.

Thus, ∥∥∥Pmf (cn2
)∥∥∥ 6

4n

k
+

4n3k2

2m
. (27)

Choosing k =
⌈
(2m−1/n2)1/3

⌉
in (27) (roughly the optimal choice of k), we obtain (24).

Lemma 4.3. For every m,n ∈ N we have:∥∥∥f (cn2
)
− Pmf

(
cn

2
)∥∥∥ 6 2m/3n1/3. (28)

Proof. In this proof the relation to Section 2 becomes clear. Define f̃ : H→ X by

f̃(h)
def
= f (h)− Pmf (h) = (I − Pm)f(h).

Note that f̃ ∈ Z1(π). Fix an integer k > 1 that will be determined later. Consider the vector
v ∈ X defined by

v
def
= −1

k

k−1∑
j=0

f̃
(
cj
)
.

Then

‖v‖ . 1

k

k−1∑
j=0

√
j .
√
k. (29)

Since c is in the center of H, we have the following identity for every h ∈ H:

− π(h)v + f̃(h) =
1

k

k−1∑
j=0

(
π(h)f̃

(
cj
)

+ f̃(h)
)

=
1

k

k−1∑
j=0

f̃
(
hcj
)

=
1

k

k−1∑
j=0

f̃
(
cjh
)

=
1

k

k−1∑
j=0

(
π
(
cj
)
f̃ (h) + f̃

(
cj
))

=
1

k

k−1∑
j=0

π
(
cj
)
f̃ (h)− v. (30)

Note that

1

k

k−1∑
j=0

π
(
cj
)
f̃ (h) =

1

k

k−1∑
j=0

(
π
(
cj
)
f(h)− 1

2m

2m−1∑
i=0

π
(
cj+i

)
f(h)

)

=
1

2m

2m−1∑
i=0

1

k

k−1∑
j=0

π
(
cj
)
− 1

k

i+k−1∑
j=i

π
(
cj
) f(h).

9



Hence, ∥∥∥∥∥∥1

k

k−1∑
j=0

π
(
cj
)
f̃ (h)

∥∥∥∥∥∥ 6
dW (h, eH)

2m

2m−1∑
i=0

2i

k
6

2m

k
dW (h, eH). (31)

Combining (30) and (31), we see that f̃ is close to a coboundary in the following sense:∥∥∥f̃(h)− (π(h)v − v)
∥∥∥ 6

2m

k
dW (h, eH). (32)

If we now write cn
2

= h1h2 · · ·h4n for h1, . . . , h4n ∈
{
a, a−1, b, b−1

}
, then the cocycle identity for f̃

implies the following bound:∥∥∥f̃ (cn2
)∥∥∥ =

∥∥∥∥∥
4n−1∑
i=0

π(h1 · · ·h4n−i−1)f̃(h4n−i)

∥∥∥∥∥
(32)

6

∥∥∥∥∥
4n−1∑
i=0

π(h1 · · ·h4n−i−1)(π(h4n−i)v − v)

∥∥∥∥∥+
4n2m

k

=
∥∥∥π (cn2

)
v − v

∥∥∥+
4n2m

k
(29)

.
√
k +

n2m

k
. (33)

The optimal choice for k in (33) is k � n2/322m/3. For this choice of k, (33) becomes the desired
bound (28).

5 Proof of Theorem 1.2

As explained in the introduction, using [21, Thm. 9.1] we may assume without loss of generality
that f ∈ Z1(π) for some action π of H on X by linear isometric automorphisms. We may also
assume that t > 8p. Let m be the largest integer such that

mm 6

(
t

4

)p/3
. (34)

Having defined m, let k be the smallest integer such that

m
3
2p

+
3(k+1)

p > t, (35)

and set

`
def
=

⌈
6

p
log2m

⌉
. (36)

By Lemma 4.1 there exist integers i ∈ [k + 1, k +m] and j ∈ [0, 2` − 1] satisfying for all n ∈ N,∥∥∥π (c−j2i`)P(i+1)`f
(
cn

2
)
− Pi`f

(
cn

2
)∥∥∥ 6

16Kn

m1/p
. (37)

Choose

n
def
=

1

4

⌈
m

3
2p 2

i`
2

⌉
, (38)

10



We may write

f
(
cn

2
)

= π
(
c−j2

i`
)
P(i+1)`f

(
cn

2
)

+
(
Pi`f

(
cn

2
)
− π

(
c−j2

i`
)
P(i+1)`f

(
cn

2
))

+
(
f
(
cn

2
)
− Pi`f

(
cn

2
))

.

Hence, by Lemma 4.2, inequality (37), and Lemma 4.3, we obtain the following bound:

ωf (4n) = ωf

(
dW

(
cn

2
, eH

))
6
∥∥∥f (cn2

)∥∥∥ .
n5/3

2(i+1)`/3
+

8Kn

m1/p
+ 2i`/3n1/3

(38)∧(36)

.
Kn

m1/p
. (39)

Observe that

4n
(38)

> m
3
2p 2

i`
2 > m

3
2p 2

(k+1)`
2

(36)

> m
3
2p

+
3(k+1)

p

(35)

> t.

At the same time,

4n
(38)

6 2m
3
2p 2

i`
2 6 2m

3
2p 2

(k+m)`
2

(36)

6 4m
3
2p

+ 3k
p ·m

3m
p

(35)
< 4tm

3m
p

(34)

6 t2.

Hence t 6 4n 6 t2. The definition of m implies that m & p
3

logn
log logn , and therefore (39) becomes:

ωf (4n)

n
. K

(
log log n

log n

)1/p

.

The proof of Theorem 1.2 is complete.

6 Deduction of Theorem 1.3 from Theorem 1.2

Fix R > 4 and a function f : BR → X satisfying

∀ x, y ∈ BR, dW (x, y) 6 ‖f(x)− f(y)‖ 6 DdW (x, y). (40)

Our goal is to bound D from below. Without loss of generality assume that f(e) = 0. Define
f∗ : H→ X by

f∗(x) =


f(x) x ∈ BR/2,
2
(

1− dW (x,e)
R

)
f(x) x ∈ BR rBR/2,

0 x ∈ HrBR.

(41)

Then f∗ is 2D-Lipschitz and coincides with f on BR/2. Let N ⊆ H be a maximal 3R-separated

subset of H. Thus the function f∗∗ : H→ X given by f∗∗(x)
def
=
∑

y∈N f
∗(y−1x) (only one summand

is nonzero for any given x) is also 2D-Lipschitz.
Fix a free ultrafilter U on N. Consider the semi-normed space Y = (`∞(H, X), ‖ · ‖Y ), where

‖ψ‖Y
def
= lim

M→U

 1

|BM |
∑
z∈BM

‖ψ(z)‖p
1/p

.

Note that since X satisfies (4), so does Y . Y is a semi-normed space rather than a normed space,
so we should formally deal below with the quotient Y/{f ∈ `∞(H, X) : ‖f‖Y = 0}, but we will
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ignore this inessential formality in what follows. (Complete details are as in the proof of Theorem
9.1 in [21]. Alternatively one can note that our proof of Theorem 1.2 carries over without change
to the class of semi-normed spaces.)

Define F : H → Y by F (x)(z)
def
= f∗∗(zx) − f∗∗(z). This is well defined since the metric

dW is left-invariant, and therefore ‖F (x)‖Y 6 2DdW (x, eH) for all x ∈ H. Moreover, by left-
invariance, F is 2D-Lipschitz. Theorem 1.2 therefore implies that there exist x, y ∈ H such that√
R/4 6 dW (x, y) 6 R/4 and

lim
M→U

 1

|BM |
∑
z∈BM

(
‖f∗∗(zx)− f∗∗(zy)‖

dW (x, y)

)p1/p

. DKp(X)

(
log logR

logR

)1/p

. (42)

Fix an integer M > 2dW (x, e) + 4R and write m = M − 2dW (x, e)− 4R. Since N is a maximal

3R-separated subset of H, we have Bmx ⊆
⋃
w∈MwB3R, whereM def

= {w ∈ N : wB3R ∩Bmx 6= ∅}.
Hence, since for r > 1 we have |Br| � r4, we can bound the cardinality of M as follows:

|M| &
(
M − 2dW (x, e)− 4R

3R

)4

. (43)

If w ∈M then there exists z ∈ Bm and g ∈ B3R such that zx = wg. Hence, for every h ∈ BR/4
we have

dW (whx−1, e) = dW (zxg−1hx−1, e) 6 dW (z, e) + 2dW (x, e) + dW (g, e) + dW (h, e) < M.

Thus the sets {wBR/4x−1}w∈M are disjoint and contained in BM . Moreover, if w ∈ M and
z ∈ wBR/4x−1 then dW (zx,w) 6 R/4, and hence also dW (zy, w) 6 dW (zy, zx) +dW (zx,w) 6 R/2.
By the definition of f∗∗, this implies that f∗∗(zx) = f(w−1zx) and f∗∗(zy) = f(w−1zy). Hence,

∑
z∈BM

(
‖f∗∗(zx)− f∗∗(zy)‖

dW (x, y)

)p
>
∑
w∈M

∑
z∈wBR/4x

−1

(∥∥f(w−1zx)− (w−1zy)
∥∥

dW (x, y)

)p
(40)

> |M| · |BR/4|
(43)

&

(
1− 2dW (x, e) + 4R

M

)4

|BM |. (44)

Theorem 1.3 now follows from (42) and (44).

7 Embeddings into Hilbert space

In this section, we prove Theorem 1.4. We will deduce it from an inequality on cocycles for the
real Heisenberg group. We switch to the real Heisenberg group because its representation theory
is simpler. However, this comes at the cost of adding a (straightforward) discretization step to
the proof. The upshot is that we obtain as a byproduct a smooth Poincaré inequality on H(R) of
independent interest; see Theorem 7.5.

The real Heisenberg group H(R) is defined as the matrix group

H(R)
def
=


 1 u w

0 1 v
0 0 1

 : u, v, w ∈ R

 .
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The discrete Heisenberg group H sits inside H(R) as the cocompact discrete subgroup consisting of
unipotent matrices with integer coefficients. We equip the group H(R) with the word metric dSR

associated with the compact symmetric generating set SR = {au, bv, cw; |u|, |v|, |w| 6 1}, where

au =

 1 u 0
0 1 0
0 0 1

 , bv =

 1 0 0
0 1 v
0 0 1

 , cw =

 1 0 w
0 1 0
0 0 1

 .

Let µ denote a Haar measure on H(R), which coincides with Lebesgue measure under the natural
identification of H(R) with R3.

Theorem 7.1. For every continuous unitary representation π of H(R), any continuous cocycle
γ ∈ Z1(π) satisfies the inequality∫ ∞

1

∥∥γ (ct)∥∥2

t2
dt .

∫ 1

−1

(
‖γ(au)‖2 + ‖γ(bu)‖2

)
du. (45)

Section 7.1 is devoted to the proof of Theorem 7.1. It is clearly enough to check inequality (45)
when the representation π is irreducible. The proof therefore boils down to a quantitative study of
1-cocycles with values in an irreducible representation of H(R). In the next three subsections we
deduce Theorem 1.4 from Theorem 7.1 by a succession of reductions. Finally, in the last subsection,
we state a smooth Poincaré inequality on the real Heisenberg group, whose proof, being very similar
to the discrete one, is explained in a few sentences.

7.1 Proof of Theorem 7.1

By the Stone-von Neumann theorem (see for example [12, Ch. 2]), irreducible representations of
H(R) are of two types: those that factor through the center, and, for every λ ∈ R r {0}, the
representation πλ on L2(R) satisfying

∀h ∈ L2(R), πλ(aubvcw)(h)(x)
def
= e2πiλvxh(x+ u)e2πiλw. (46)

Note that if a nontrivial irreducible representation π factors through the center then any 1-
cocycle γ ∈ Z1(π) must vanish on the center. Indeed, γ(cw) is invariant under π(H) for every
w ∈ R, which, since the representation is supposed to be irreducible and nontrivial, implies that
γ(cw) = 0. Therefore, in proving Theorem 7.1 we may assume that π = πλ for some λ 6= 0.

By [14, Thm. 7] all 1-cocycles γ ∈ Z1(πλ) can be approximated uniformly on compact sets by
coboundaries. Hence, it is enough to consider the case where γ is of the form γ(x) = πλ(x)h − h,
for some h ∈ L2(R). We may assume that ‖h‖ = 1. By the definition (46), for every w ∈ R we
have ‖γ(cw)‖2 = 4 sin2(πλw), from which we deduce that∫ ∞

1

‖γ(cw)‖2

w2
dw .

∫ ∞
1

sin2(πλw)

w2
dw = |λ|

∫ ∞
|λ|

sin2(πw)

w2
dw . min{|λ|, 1}. (47)

Also,∫ 1

−1

(
‖γ(au)‖2 + ‖γ(bu)‖2

)
du =

∫ 1

−1

∫
R

(
|h(x+ u)− h(x)|2 + 2|h(x)|2 (1− cos(2πλux))

)
dxdu

�
∫ 1

−1

∫
R
|h(x+ u)− h(x)|2dxdu+

∫
R
|h(x)|2 min{λ2x2, 1}dx. (48)
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Since R = (Rr [−|u|, |u|])∪ (u+ (Rr [−|u|, |u|]))∪ (−u+ (Rr [−|u|, |u|])) for every u ∈ R, we
can bound ‖h‖2 = 1 from above as follows.

1 6
∫
Rr[−|u|,|u|]

(
|h(x+ u)|2 + |h(x− u)|2 + |h(x)|2

)
dx

.
∫
R

(
|h(x+ u)− h(x)|2 + |h(x)− h(x− u)|2

)
dx+

∫
Rr[−|u|,|u|]

|h(x)|2dx

6
∫
R

(
|h(x+ u)− h(x)|2 + |h(x)− h(x− u)|2

)
dx

+
1

min{λ2u2, 1}

∫
R
|h(x)|2 min{λ2x2, 1}dx. (49)

Write k =
⌈
1/
√
|λ|
⌉
. By applying (49) with u = kv, and integrating over v ∈ [−1,−1/2]∪ [1/2, 1],

we see that∫ ∞
1

‖γ(cw)‖2

w2
dw

(47)

. min{|λ|, 1}

(49)

. min{|λ|, 1}
∫ 1

−1

∫
R
|h(x+ kv)− h(x)|2dxdv

+
min{|λ|, 1}

min

{
λ2
⌈
1/
√
|λ|
⌉2
, 1

} ∫
R
|h(x)|2 min{λ2x2, 1}dx

. min{|λ|, 1}k
k∑
j=1

∫ 1

−1

∫
R
|h(x+ jv)− h(x+ (j − 1)v)|2dxdv

+

∫
R
|h(x)|2 min{λ2x2, 1}dx

= min{|λ|, 1}k2

∫ 1

−1

∫
R
|h(x+ u)− h(x)|2dxdu+

∫
R
|h(x)|2 min{λ2x2, 1}dx

(48)

.
∫ 1

−1

(
‖γ(au)‖2 + ‖γ(bu)‖2

)
du.

The proof of Theorem 7.1 is complete.

7.2 Reduction to finitely supported functions

Claim 7.2. Inequality (8) is a consequence of the following statement. For every finitely supported
φ : H→ L2, we have

∑
x∈H

∞∑
k=1

∥∥φ(xck)− φ(x)
∥∥2

2

k2
.
∑
x∈H

(
‖φ(xa)− φ(x)‖22 + ‖φ(xb)− φ(x)‖22

)
. (50)

Proof. Fix R ∈ N and f : H→ L2. Note that since (8) is not sensitive to adding a constant to the
function f , we can assume without loss of generality that the average of f over B7R is zero.
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Define a cutoff function ξ : H→ [0, 1] by

ξ(x)
def
=


1 x ∈ B5R,

6− dW (x,e)
R x ∈ B6R rB5R,

0 x ∈ HrB6R,

and let φ
def
= ξf . Then φ is supported on B6R. Since ξ is 1/R-Lipschitz and takes values in [0, 1],

for all x ∈ H and s ∈ S,

‖φ(x)− φ(xs)‖22 . |ξ(x)− ξ(xs)|2 · ‖f(x)‖22 + |ξ(xs)|2 · ‖f(x)− f(xs)‖22

6
1

R2
‖f(x)‖2 + ‖f(x)− f(xs)‖22. (51)

Note that if k ∈ {1, . . . , R2} then dW (e, ck) 6 4R, and hence for x ∈ BR we have xck ∈ B5R.
Therefore, an application of (50) to φ yields the estimate

∑
x∈BR

R2∑
k=1

‖f(xck)− f(x)‖22
k2

6
∑
x∈H

∞∑
k=1

‖φ(xck)− φ(x)‖22
k2

.
∑
x∈H

max
s∈S
‖φ(xs)− φ(x)‖22

=
∑
x∈B7R

max
s∈S
‖φ(xs)− φ(x)‖22

(51)

6
1

R2

∑
x∈B7R

‖f(x)‖22 +
∑
x∈B7R

max
s∈S
‖f(xs)− f(x)‖22. (52)

By [17, Thm. 2.2] (a discrete version of the classical Heisenberg local Poincaré inequality [16]),

1

R2

∑
x∈B7R

‖f(x)‖22 .
∑

x∈B22R

(
‖f(xa)− f(x)‖22 + ‖f(xb)− f(x)‖22

)
, (53)

where we used the fact that the average of f on B7R vanishes. The desired inequality (8) is now a
consequence of (52) and (53).

7.3 Reduction to an inequality on the real Heisenberg group

Claim 7.3. Inequality (50) is a consequence of the following statement. For every continuous and
compactly supported function ψ : H(R)→ L2, we have∫

H(R)

∫ ∞
1

∥∥ψ(xct)− ψ(x)
∥∥2

2

t2
dtdµ(x) .

∫
H(R)

(
sup
s∈SR

‖ψ(xs)− ψ(x)‖22

)
dµ(x). (54)

Proof. For r > 0 let BR
r ⊆ H(R) denote the ball of radius r with respect to the metric dSR . Note

that H(R) =
⋃
g∈H gB

R
2 . Let σ : H(R)→ [0, 1] be a continuous nonnegative function, which equals

1 on BR
2 and 0 outside of BR

3 . Let σ̃ =
∑

g∈H σg, where σg(x) = σ(g−1x). For all x ∈ H(R) we have

1 6 σ̃(x) 6 C for some C ∈ (0,∞). Writing β = σ/σ̃ and βg(x) = β(g−1x), we see that {βg}g∈H is
a continuous partition of unity for H(R) satisfying

sup
x∈H(R)

∑
g∈H

sup
s∈SR

|βg(xs)− βg(x)| <∞. (55)
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Throughout the ensuing argument we will use repeatedly the fact that for every x ∈ H(R) the
number of elements g ∈ H for which βg(x) > 0 is bounded by a constant independent of x, and
that

∑
g∈H 1gB2 � 1H(R).

Let φ : H → L2 be a finitely supported function on the discrete Heisenberg group H. Define a
function on the real Heisenberg group H(R) by

ψ(x) =
∑
g∈H

φ(g)βg(x).

Then ψ is compactly supported. We will eventually apply (54) to ψ, but before doing so we will
need some preparatory estimates.

The metric dSR restricted to H ⊆ H(R) is bi-Lipschitz equivalent to dW [5, Thm. 8.3.19]. It
follows that for all g0 ∈ H, if x ∈ g0B

R
3 then the sum ψ(x)− φ(g0) =

∑
g∈H βg(x)(φ(g)− φ(g0)) is

supported on elements of the form g = g0h, with dW (h, e) 6 K, for some universal constant K ∈ N.
Thus, using (55) we see that for all x ∈ g0B

R
2 ,

sup
s∈SR

‖ψ(xs)− ψ(x)‖22 .
∑
h∈BK

‖φ(g0h)− φ(g0)‖22. (56)

Integrating (56) over g0B
R
2 gives the following inequality:∫

g0BR
2

(
sup
s∈SR

‖ψ(xs)− ψ(x)‖22

)
dµ(x) .

∑
h∈BK

‖φ(g0h)− φ(g0)‖22. (57)

By summing (57) over g0 ∈ H we see that∫
H(R)

(
sup
s∈SR

‖ψ(xs)− ψ(x)‖22

)
dµ(x) .

∑
g∈H

max
s∈S
‖φ(g)− φ(gs)‖22, (58)

where we used the bound∑
g0∈H

∑
h∈BK

‖φ(g0h)− φ(g0)‖22 .
∑
g∈H

max
s∈S
‖φ(g)− φ(gs)‖22, (59)

which follows by writing each h ∈ BK as a product of at most K elements of S, and using the
triangle inequality.

In order to deduce from (54) a corresponding bound on φ, we need to bound φ in terms of ψ.
To this end, note that for all g0 ∈ H,

ψ(g0) = φ(g0) +
∑
g∈H

β(g−1g0)(φ(g)− φ(g0)) = φ(g0) +
∑
h∈BK

β(h−1)(φ(g0h)− φ(g0)).

It follows that for all g0, g1 ∈ H we have

‖φ(g0)− φ(g1)‖22 . ‖ψ(g0)− ψ(g1)‖22 +
∑
h∈BK

(
‖φ(g0)− φ(g0h)‖22 + ‖φ(g1)− φ(g1h)‖22

)
. (60)

If x, y ∈ H(R) satisfy max{dSR(x, g0), dSR(y, g1)} 6 2, then using (56) we deduce from (60) that

‖φ(g0)− φ(g1)‖22 . ‖ψ(x)− ψ(y)‖22 +
∑
h∈BK

(
‖φ(g0)− φ(g0h)‖22 + ‖φ(g1)− φ(g1h)‖22

)
. (61)
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Fix g0 ∈ H, x ∈ g0B
R
1 , k ∈ N and t ∈ [k, k+1]. Writing g1 = g0c

k and y = xct, we have dSR(x, g0) 6 1
and dSR(y, g1) = dSR(c−kg−1

0 xct, e) = dSR(g−1
0 xct−k, e) 6 dSR(g−1

0 x, e) + dSR(ct−k, e) 6 2. We may
therefore apply (61) and deduce that for all g0 ∈ H, x ∈ g0B

R
1 and k ∈ N,

‖φ(g0c
k)−φ(g0)‖22 . ‖ψ(xct)−ψ(x)‖22 +

∑
h∈BK

(
‖φ(g0)− φ(g0h)‖22 + ‖φ(g0c

k)− φ(g0c
kh)‖22

)
. (62)

Integrating (62) over x ∈ g0B
R
1 and t ∈ [k, k + 1], we see that

‖φ(g0c
k)− φ(g0)‖22
k2

.
∫
g0BR

1

∫ k+1

k

‖ψ(xct)− ψ(x)‖22
t2

dtdµ(x)

+
1

k2

∑
h∈BK

(
‖φ(g0)− φ(g0h)‖22 + ‖φ(g0c

k)− φ(g0c
kh)‖22

)
. (63)

Since g0B
R
1 and g′0B

R
1 intersect at a set of measure zero if g0 6= g′0, by summing (63) over g0 ∈ H

and k ∈ N, we see that

∑
g0∈H

∞∑
k=1

‖φ(g0c
k)− φ(g0)‖22
k2

.
∫
H(R)

∫ ∞
1

‖ψ(xct)− ψ(x)‖22
t2

dtdµ(x) +
∑
g0∈H

∑
h∈BK

‖φ(g0)− φ(g0h)‖22

(59)

.
∫
H(R)

∫ ∞
1

‖ψ(xct)− ψ(x)‖22
t2

dtdµ(x) +
∑
g∈H

max
s∈S
‖φ(g)− φ(gs)‖22

(54)

.
∫
H(R)

(
sup
s∈SR

‖ψ(xs)− ψ(x)‖22

)
dµ(x) +

∑
g∈H

max
s∈S
‖φ(g)− φ(gs)‖22

(58)

.
∑
g∈H

max
s∈S
‖φ(g)− φ(gs)‖22.

7.4 Reduction to a 1-cocycle on H(R)

Claim 7.4. Inequality (54) follows from Theorem 7.1.

Proof. Let ψ : H(R) → L2 be continuous and supported in BR
r for some r > 1. Take a maximal

family
{
xiB

R
10r

}∞
i=1

of disjoint balls of radius 10r. Define ϕ : H(R)→ L2 by ϕ(g) =
∑∞

i=1 ψ(x−1
i g).

Note that since dSR(cr
2
, e) 6 4r, for each i ∈ N we have∫

H(R)

∫ ∞
1

∥∥ψ(xct)− ψ(x)
∥∥2

2

t2
dtdµ(x) =

∫
xiBR

5r

∫ r2

1

∥∥ϕ(xct)− ϕ(x)
∥∥2

2

t2
dtdµ(x). (64)

Similarly, ∫
H(R)

(
sup
s∈SR

‖ψ(xs)− ψ(x)‖22

)
dµ(x) =

∫
xiBR

2r

(
sup
s∈SR

‖ϕ(xs)− ϕ(x)‖22

)
dµ(x). (65)
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Let X be the space of all finitely supported complex-valued functions on H(R). We denote by π

the action of H(R) on X given by π(x)δy
def
= δxy, where δz : H(R)→ C denotes the function which

equals 1 at z ∈ H(R) and equals 0 elsewhere. Let U be a free ultrafilter on N. Define a scalar
product [·, ·] on X by:

[δx, δy]
def
= lim

n→U

1

µ(BR
n )

∫
BR

n

〈ϕ(zx), ϕ(zy)〉dµ(z), (66)

where 〈·, ·〉 denotes the scalar product on L2.
Since {Bn}∞n=1 is a Følner sequence for H(R), a limit along a free ultrafilter of averages over Bn

when n → ∞ is an invariant mean on H(R). It follows that the scalar product defined in (66) is
π(H(R))-invariant. Thus π is a unitary representation of H(R) (formally we should first pass to the
completion of the quotient of X by the subspace consisting of norm-zero elements, but we will ignore
this inessential point in what follows). We note that π is also continuous in the strong operator
topology. Indeed, since ψ is continuous and compactly supported, ϕ is uniformly continuous. Thus,

writing ‖f‖2X
def
= [f, f ] for f ∈ X, we have for every y ∈ H(R),

lim
x→e
‖π(x)δy − δy‖2X = lim

x→e
lim
n→U

1

µ(BR
n )

∫
BR

n

‖ϕ(gxy)− ϕ(gy)‖22dµ(g)

6 lim
x→e

sup
g∈H(R)

‖ϕ(gxy)− ϕ(gy)‖22 = 0, (67)

implying the strong continuity of π.
Let γ : H(R)→ X be given by γ(x) = δx − δe. Then π ∈ Z1(π) and for all x ∈ X,

‖γ(x)‖2X = lim
n→U

1

µ(BR
n )

∫
BR

n

‖ϕ(gx)− ϕ(g)‖22dµ(g). (68)

Arguing as in (67), the uniform continuity of ϕ and (68) imply that γ is a continuous 1-cocycle.
Fix n > 100r large enough so as to ensure that we have µ(Bn r Bn−100r) 6 µ(Bn)/2. Define

I = {i ∈ N : xiB
R
5r ⊆ Bn} and write Ω =

⋃
i∈I xiB

R
5r and Ω′ =

⋃
i∈I xiB

R
10r. By the maximality of{

xiB
R
10r

}∞
i=1

we have Ω′ ⊇ Bn−100r. Hence µ(Ω′) > µ(Bn)/2. Since H(R) is doubling, µ(Ω′) . µ(Ω),

and therefore |I|µ(BR
5r) > µ(Ω) & µ(Bn). Note that if g ∈ xiBR

5r for some i ∈ N then for every
t ∈ [1, r2] we have gct ∈ xiB10r. Hence,

1

µ(BR
n )

∫
BR

n

‖ϕ(gct)− ϕ(g)‖22dµ(g) >
1

µ(BR
n )

∑
i∈I

∫
xiBR

5r

‖ϕ(gct)− ϕ(g)‖22dµ(g)

=
|I|

µ(BR
n )

∫
BR

5r

‖ψ(xct)− ψ(x)‖22dµ(x) &
1

µ(BR
5r)

∫
BR

5r

‖ψ(xct)− ψ(x)‖22dµ(x). (69)

It follows from (68) and (69) that

1

µ(BR
5r)

∫
BR

5r

∫ r2

1

‖ψ(xct)− ψ(x)‖22
t2

dµ(x) .
∫ r2

1

‖γ(ct)‖2X
t2

dt
(45)

. sup
s∈SR

‖γ(s)‖2X

(68)
= sup

s∈SR

lim
n→U

1

µ(BR
n )

∫
BR

n

‖ϕ(gs)− ϕ(g)‖22dµ(g). (70)
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Let J ⊆ N denote the set of i ∈ N such that Bn ∩ xiB2r 6= ∅. Then |J |µ(BR
2r) 6 µ(BR

n+4r). It
follows that for all s ∈ SR,∫

BR
n

‖ϕ(gs)− ϕ(g)‖22dµ(g) 6
∑
i∈J

∫
xiB2r

‖ϕ(gs)− ϕ(g)‖22dµ(g)

= |J |
∫
B2r

‖ψ(xs)− ψ(x)‖22dµ(x) 6
µ(BR

n+4r)

µ(BR
2r)

∫
B2r

‖ψ(xs)− ψ(x)‖22dµ(x). (71)

Substituting (71) into (70) we conclude that∫
H(R)

∫ ∞
1

∥∥ψ(xct)− ψ(x)
∥∥2

2

t2
dtdµ(x)

(64)
=

∫
BR

5r

∫ r2

1

‖ψ(xct)− ψ(x)‖22
t2

dµ(x)

(70)∧(71)

.
µ(BR

5r)

µ(BR
2r)

sup
s∈SR

lim
n→U

µ(BR
n+4r)

µ(BR
n )

∫
B2r

‖ψ(xs)− ψ(x)‖22dµ(x)

(65)

.
∫
H(R)

(
sup
s∈SR

‖ψ(xs)− ψ(x)‖22

)
dµ(x)

This completes the proof of Claim 7.4, and therefore also the proof of Theorem 1.4.

7.5 A smooth Poincaré inequality on H(R)

Equip H(R) with the left-invariant Riemannian metric given by du2 + dv2 + (dw − udv)2. In what
follows, given a smooth function f : H(R)→ R we let ∇Hf denote its gradient with respect to this
Riemannian structure.

Theorem 7.5. For every smooth function f : H(R)→ R, and all R > 0,∫
BR

R

∫ R2

1

∣∣f(xct)− f(x)
∣∣2

t2
dtdµ(x) .

∫
BR

CR

|∇Hf(x)|2 dµ(x),

where C > 0 is a universal constant.

The proof of this Poincaré inequality can be obtained from Theorem 7.1 in a way similar, and
actually even shorter than its discrete counterpart. Indeed, the discretization step of Claim 7.3 is
not needed here. The other difference lies in the first step, where instead of the discrete Poincaré
inequality (53), we use the following smooth version, which is due to [16]. For all R > 0, and for
all smooth functions f : H(R)→ R whose integral over BR

R is zero,

1

R2

∫
BR

R

|f(g)|2dµ(g) .
∫
BR

cR

|∇Hf(g)|2dµ(g),

where c > 0 is a universal constant.
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for metric measure spaces. Geom. Dedicata, 136:203–220, 2008.

21

http://www.cims.nyu.edu/~naor/homepage%20files/L_pHGL.pdf
http://www.cims.nyu.edu/~naor/homepage%20files/L_pHGL.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0910/0910.2041v1.pdf
http://arxiv.org/abs/0904.4728
http://arxiv.org/abs/math/0603138
http://arxiv.org/abs/math/0603138

	Introduction
	Bi-Lipschitz distortion of balls
	The case of Hilbert space

	Sublinear growth of Heisenberg cocycles in ergodic spaces
	A uniform convexity lemma for ergodic averages
	Estimates for Heisenberg cocycles
	Proof of Theorem 1.2
	Deduction of Theorem 1.3 from Theorem 1.2
	Embeddings into Hilbert space
	Proof of Theorem 7.1
	Reduction to finitely supported functions
	Reduction to an inequality on the real Heisenberg group
	Reduction to a 1-cocycle on H(R)
	A smooth Poincaré inequality on H(R)


