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TUOMAS HYTÖNEN, SEAN LI, AND ASSAF NAOR

Abstract. It is shown here that if (Y, ‖ · ‖Y ) is a Banach space in which martingale differences
are unconditional (a UMD Banach space) then there exists c = c(Y ) ∈ (0,∞) with the following
property. For every n ∈ N and ε ∈ (0, 1/2], if (X, ‖·‖X) is an n-dimensional normed space with unit
ball BX and f : BX → Y is a 1-Lipschitz function then there exists an affine mapping Λ : X → Y
and a sub-ball B∗ = y + ρBX ⊆ BX of radius ρ > exp(−(1/ε)cn) such that ‖f(x) − Λ(x)‖Y 6 ερ
for all x ∈ B∗. This estimate on the macroscopic scale of affine approximability of vector-valued
Lipschitz functions is an asymptotic improvement (as n → ∞) over the best previously known
bound even when X is Rn equipped with the Euclidean norm and Y is a Hilbert space.

1. Introduction

In what follows, the unit ball of a normed space (X, ‖·‖X) is denoted BX
def
= {x ∈ X : ‖x‖X < 1}.

For p ∈ [1,∞] and n ∈ N, the space Rn equipped with the `p norm is denoted as usual by `np . Given
two metric spaces (U, dU ) and (V, dV ), the Lipschitz constant of a mapping f : U → V is denoted
‖f‖Lip. Throughout this article, given a, b ∈ (0,∞), the notations a . b and b & a mean that
a 6 cb for some universal constant c ∈ (0,∞). The notation a � b stands for (a . b) ∧ (b . a).

For n ∈ N and ε ∈ (0, 1) let rn(ε) > 0 be the supremum over those r ∈ [0, 1) such that for every
Lipschitz function f : B`n2 → `2 there exists a linear mapping T : `n2 → `2, a vector a ∈ `2, and a
sub-ball B∗ = x0 + ρB`n2 ⊆ B`n2 of radius ρ > r, such that

∀ x ∈ B∗, ‖f(x)− (a+ Tx)‖`2
ρ

6 ε‖f‖Lip. (1)

Thus, all the Hilbert space-valued 1-Lipschitz functions on the Euclidean unit ball of Rn are
guaranteed to be ε-close to some affine function on some sub-ball of radius at least rn(ε), where
ε-closeness is measured relative to the scale of the sub-ball. A lower bound on rn(ε) corresponds
to a differentiation-type theorem asserting that any such function is macroscopically close to being
affine rather than being infinitesimally affine. Crucially, the macroscopic lower bound on the scale
of affine approximability is independent of the given function.

The basic question in which we are interested is that of determining the asymptotic behavior of
rn(ε) as n → ∞. Qualitatively, we ask for an asymptotic understanding of those Hilbert space-
valued Lipschitz functions on B`n2 that are hardest to approximate by affine functions.

There is a big gap between the known upper and lower bounds on rn(ε). We have rn(ε) 6 e−cn/ε
2
,

where c ∈ (0,∞) is a universal constant; see Section 2.2 below. The only known lower bound [57] on

rn(ε) is rn(ε) > e−(n/ε)Cn , where C ∈ (0,∞) is a universal constant. For concreteness, by choosing,
say, ε = 1

4 and denoting rn = rn(1
4), the best known bounds on rn become

e−n
Kn
6 rn 6 e

−κn, (2)
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for some universal constants κ,K ∈ (0,∞). An illustrative special case of the main result that
is obtained here (to be described in full below) is the following asymptotic improvement over the
leftmost inequality (2), which holds for every n ∈ N and for some universal constant K ∈ (0,∞).

rn > e
−eKn . (3)

1.1. The modulus of Lp affine approximabilty. Despite the fact that the above question was
phrased in the context of Hilbert spaces, a setting which arguably best highlights its fundamental
nature, it is important to study it in the context of mappings between more general normed spaces; it
is in this setting, for example, that it becomes relevant to Bourgain’s discretization problem [13, 35],
as explained in [57, Section 1.1] (see Remark 3 below).

Definition 1. Fix n ∈ N and let (X = Rn, ‖ · ‖X) be an n-dimensional Banach space. Also, let
(Y, ‖ · ‖Y ) be an inifinite dimensional Banach space. For p ∈ (0,∞] and ε ∈ (0, 1) define rX→Yp (ε)
to be the supremum over those r > 0 with the following property. For every Lipschitz function
f : BX → Y there exists y ∈ X and ρ ∈ [r,∞) such that y + ρBX ⊆ BX , and there exists a ∈ Y
and a linear operator T : X → Y whose operator norm satisfies ‖T‖X→Y 6 3‖f‖Lip, such that(

1

vol(x+ ρBX)

ˆ
y+ρBX

‖f(z)− (a+ Tz)‖pY dz

) 1
p

6 ερ‖f‖Lip. (4)

We call rX→Yp (·) the modulus of Lp affine approximability corresponding to X and Y .

Using the notation of Definition 1, the quantity rn(ε) that we defined above can be written as

rn(ε)
def
= r

`n2→`2∞ (ε).

Indeed, the L∞ requirement (1) implies that ‖T‖`n2→`2 6 (1 + 2ε)‖f‖Lip 6 3‖f‖Lip. For finite p,
the Lp bound (4) does not automatically imply a bound on ‖T‖X→Y , which is the reason why we
added the requirement ‖T‖X→Y 6 3‖f‖Lip as part of the definition of rX→Yp (ε).

The case p =∞ of Definition 1, for which we shall use below the simpler notation

rX→Y (ε)
def
= rX→Y∞ (ε),

was introduced by Bates, Johnson, Lindenstrauss, Preiss and Schechtman [6], who proved that
rX→Y (ε) > 0 for all ε ∈ (0, 1) if and only if Y admits an equivalent uniformly convex norm; see [6]
for beautiful geometric applications of this result. The best known lower bound on rX→Y (ε) (in
terms of n, ε and the modulus of uniform convexity of Y ) was obtained in [57]. This bound is

rX→Y (ε) > e−(n/ε)c(Y )n
, (5)

where c(Y ) ∈ (0,∞) depends only the modulus of uniform convexity of the target Banach space
(Y, ‖ · ‖Y ). An explicit estimate on c(Y ) appears in [57, Thm. 1.1]. Here we obtain an estimate
that is asymptotically better than (5) as n→∞ provided that Y -valued martingale differences are
unconditional (Y is a UMD Banach space). Note that all the classical reflexive Banach spaces have
this property, but one can construct [67] uniformly convex Banach spaces that are not UMD.

Formally, a Banach space (Y, ‖ · ‖Y ) is said to be a UMD Banach space if there exists β ∈ (1,∞)
such that if {Mj}∞j=0 is a Y -valued square-integrable martingale defined on some probability space

(Ω,P) then for every n ∈ N and every choice of signs ε1, . . . , εn ∈ {−1, 1} we have
ˆ

Ω

∥∥∥M0 +

n∑
j=1

εn (Mj −Mj−1)
∥∥∥2

Y
dP 6 β2

ˆ
Ω
‖Mn‖2Y dP. (6)

If Y is a UMD Banach space then the infimum over those β ∈ (1,∞) for which (6) holds true
for every square-integrable Y -valued martingale {Mj}∞j=0 is denoted below by β(Y ). Examples of
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UMD Banach spaces include all Lp(µ) spaces when p ∈ (1,∞), in which case β(Lp(µ)) � p2/(p−1).
See [14] and the references therein for more information on UMD spaces.

Theorem 2 below asserts an improved lower bound on the modulus of affine approximability
rX→Y (ε), provided that Y is a UMD space.

Theorem 2. There is a universal constant c ∈ [1,∞) such that for every n ∈ N and β ∈ [2,∞),
if (X, ‖ · ‖X) is an n-dimensional normed space and (Y, ‖ · ‖Y ) is a UMD Banach space satisfying
β(Y ) 6 β then for every ε ∈ (0, 1/2) we have

rX→Y (ε) > exp

(
− (βn)cβ

εc(n+β)

)
.

Remark 3. By substituting Theorem 2 into equation (12) of [57] one obtains a bound on Bourgain’s
discretization modulus in the special case of UMD targets that improves over the bound that was
deduced in [57, Section 1.1] and matches Bourgain’s original bound [13]. Specifically, one obtains
the refined estimate that appears in equation (2) of [35]. This yields a new proof of the best known
general bound in Bourgain’s discretization problem via an approach that is entirely different from
Bourgain’s method, albeit in the special (though still very general) case of UMD targets. We note
that due to the recent progress in [35] a stronger bound is available here when the target is Lp.

The main reason why we study here the modulus of Lp affine approximability rX→Yp (ε) is that

it relates to rX→Y (ε) through Lemma 4 below, whose simple proof appears in Section 2.1. The
advantage of working with finite p is that it allows us to use a variety of analytic tools, such as
vector-valued Littlewood–Paley theory and complex interpolation.

Lemma 4. Fix n ∈ N and p ∈ [1,∞). Suppose that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces
with dim(X) = n. Then for every ε ∈ (0, 1) we have

rX→Y (ε) > rX→Yp

((ε
9

)1+n
p

)
.

Due to Lemma 4, Theorem 2 is a consequence of Theorem 5 below, which is our main result. Its
proof is based on a vector-valued variant of an argument of Dorronsoro [26], combined with a wide
variety of additional analytic and geometric ingredients of independent interest.

Theorem 5. There exist universal constants κ,C ∈ [1,∞) such that for every β ∈ [2,∞) and
n ∈ N, if (X, ‖ · ‖X) is an n-dimensional normed space and (Y, ‖ · ‖Y ) is a UMD Banach space
satisfying β(Y ) 6 β, then for every ε ∈ (0, 1) we have

rX→Yκβ (ε) > exp

(
−(βn)Cκβ

εκβ

)
.

1.2. Previous work. Over the past several decades, research on quantitative differentiation has
proceeded roughly along two lines of inquiry, one of which arising from functional analysis and
metric geometry and the other arising from rectifiability questions in harmonic analysis. The
present work belongs to the former direction, but its main contribution is the use of methods from
the latter direction in this new context while incorporating various Banach space theoretic tools.

Bates, Johnson, Lindenstrauss, Preiss and Schechtman studied [6] quantitative differentiation in
order to prove the rigidity of certain classes of Banach spaces under nonlinear quotients. The same
notion was used in [57] for metric embeddings, namely as an alternative approach to Bourgain’s
discretization problem [13] when the target Banach space is uniformly convex. The methods in this
context fall under the category of (extensions of) “approximate midpoint arguments,” as initiated
by Enflo [7] to prove that L1 is not uniformly homeomorphic to `1, and further developed in [13, 27,
46, 65] (see also Chapter 10 of [8]). As examples of the many related applications to quantitative
embedding theory and rigidity questions, see also [60, 54, 20, 27, 19, 64, 55, 56].
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Parallel developments of a different nature arose in harmonic analysis, as part of the quest
to develop a quantitative theory of rectifiability, with applications to singular integrals. Notable
contributions along these lines include classical works of Stein (see the monograph [72]), through the
works of Dorronsoro [26], Jones [48, 49], David and Semmes [22, 23, 24], as well as the more recent
work of Azzam and Schul [2]. The work of Dorronsoro [26] directly influenced the present article,
and we were also greatly inspired by the works of David and Semmes [22, 23, 24]. These works
introduced and studied quantities that correspond to Definition 1 when X is the Euclidean space
Rn and Y is the real line. Such methods also yield results for mappings from Rn to Rm, but with
statements that include implicit parameters that are allowed to depend on m,n. In [24] David and
Semmes compare their work to that of Bates, Johnson, Lindenstrauss, Preiss and Schechtman [6],
noting that the latter methods are different, and even yield results for infinite dimensional spaces.

Our contribution here follows the harmonic-analytic methodology, while overcoming several diffi-
culties. Firstly, the literature on quantitative rectifiability ignores the dependence on the dimension
n, while this dependence is the main topic of interest in the present context. In fact, a direct exam-
ination of the dependence on n that is implicit in the above cited works reveals that it is insufficient
for the purpose of obtaining improved bounds on rX→Y (ε). Secondly, in our setting the domain X
is a general n-dimensional normed space X rather than a Euclidean space, and our arguments ad-
dress this point. A final important difference is that we treat infinite dimensional Banach spaces Y
as targets. Overcoming this requires substantial effort, because the infinite dimensional arguments
of Bates, Johnson, Lindenstrauss, Preiss and Schechtman [6] do not seem to be applicable in our
setting. The present work yields an infinite dimensional version of an inequality that Dorronsoro
obtained [26] for real-valued functions. Such an infinite dimensional extension of Dorronsoro’s work
is not routine, and in particular it does not hold true for arbitrary infinite dimensional Banach space
targets Y . In fact, the geometry of Y influences the structure of the inequality thus obtained, while
stronger inequalities hold true for real-valued functions. The assumption that Y is UMD is used
several times in our argument through a rich UMD-valued Fourier-analytic toolkit that has been
developed by many authors over the past four decades.

1.3. Open questions. We list below some open questions that arise naturally from our work.

Question 6 (Asymptotics of rX→Y (ε)). Obviously, the most tantalizing open question in the
present context is to determine the rate at which rn tends to 0 as n → ∞, even roughly: say, is
this rate exponential, doubly exponential, or of some intermediate behavior? More importantly for
potential applications, it remains open to obtain sharp bounds on the quantity rX→Y (ε) when X
is a finite dimensional Banach space, Y is a uniformly convex Banach space or belongs to some
important class of Banach spaces (e.g. UMD spaces or uniformly convex lattices), and ε ∈ (0, 1).

Question 7 (Infinite dimensional domains). The question of characterizing those pairs of Banach
space X,Y for which rX→Y (ε) > 0 for every ε ∈ (0, 1) was solved in [6] also when dim(X) = ∞
and dim(Y ) < ∞: this happens if and only if X admits an equivalent uniformly smooth norm.
It remains open to understand the asymptotic behavior of rX→Y (ε) in the setting of uniformly
smooth infinite dimensional domains and finite dimensional ranges. In particular, the rate at which
r`2→`

n
2 (1

4) tends to 0 as n → ∞ is unknown. An explicit lower bound on rX→Y (ε) in terms of the
modulus of uniform smoothness of X and dim(Y ) can be deduced from an examination of the proof
in [6], but we believe that this bound is far from being optimal.

Question 8 (Uniformly convex targets). As stated earlier, by [6] we know that if dim(X) = n <∞
and dim(Y ) = ∞ then rX→Y (ε) > 0 for every ε ∈ (0, 1) if and only if Y admits and equivalent
uniformly convex norm. However, the best known lower bounds on rX→Y (ε) in this (maximal)
generality remain those of [57], and these bounds are weaker than Theorem 2 (as n → ∞), which
does not cover all uniformly convex ranges Y because Pisier [67] proved that there exist uniformly
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convex Banach spaces that are not UMD (even such uniformly convex Banach lattices exist, as
shown by Bourgain in [11]; see also the recent example by Qiu [69]). It would be interesting to
obtain an improved bound as in Theorem 2 under the weaker assumption that Y is uniformly
convex. Our proof of Theorem 2 definitely uses properties of Y that imply the UMD property (e.g.,
we rely on the boundedness of the Y -valued Hilbert transform, which was shown by Bourgain [11]
to imply that Y is UMD). However, the conclusion of Theorem 2, or even Theorem 5, may be
valid when Y is uniformly convex, and the same holds true for some of our other results, such
as Theorem 19 below. Certain aspects of vector-valued Littelwood–Paley theory are known to
hold true for uniformly convex targets (see e.g. [59]), so it would be interesting to investigate the
extent to which the UMD property is needed for our results. If, on the other hand, Theorem 5 or
Theorem 19 imply the UMD property then this would be a new characterization of UMD spaces.

Question 9 (Asymptotics of rX→Yp (ε) for finite p). It would be interesting to understand the

asymptotic behavior of the modulus of Lp affine approximability rX→Yp (ε), even in the special case
when X and Y are both Hilbert spaces, p = 2 and, say, ε = 1/2. A careful examination of the proof
of Theorem 5 in this Hilbertian setting (in which case some of the steps that we perform below are
not needed, and several estimates can be easily improved) reveals that for some c ∈ (0,∞),

∀n ∈ N, ∀ ε ∈ (0, 1), r
`n2→`2
2 (ε) & e−

c(n logn)2

ε2 . (7)

We do not know the extent to which (7) is best possible; it seems plausible that with more work one
could improve the dependence on n in the exponent, but we do not presently have an upper bound
that comes close to the lower bound in (7). Note that while the moduli rX→Yp (ε) are interesting in
their own right, we do not have geometric applications of them as in the case p =∞. So, as a more
amorphous research direction, it would be interesting to find geometric applications of bounds on
rX→Yp (ε) (other than as a tool to bound rX→Y∞ (ε), which is the application that we present here).

2. Geometric preliminaries

Fix from now on an integer n and an n-dimensional normed space (X, ‖ · ‖X). We shall also fix
a normed space (Y, ‖ · ‖Y ). In later sections we will need Y to be a UMD Banach space, but the
statements of the present section hold true when Y is a general normed space.

By John’s theorem [45] there exists a scalar product 〈·, ·〉 on X with respect to which we can
identify X with Rn and we have

∀x ∈ Rn, ‖x‖2 6 ‖x‖X 6
√
n · ‖x‖2, (8)

where ‖ · ‖2 = ‖ · ‖`n2 . We shall also use the standard notation Bn def
= B`n2 and Sn−1 def

= ∂Bn.
This Euclidean structure will be fixed from now on. Despite the fact that X is now endowed
with two metrics (those induced by ‖ · ‖X and ‖ · ‖2), we shall tacitly maintain throughout the
ensuing discussion the convention that whenever Ω ⊆ Rn and f : Ω → Y then ‖f‖Lip(Ω) denotes
the Lipschitz constant of f with respect to the metric induced by ‖ · ‖X , i.e.,

‖f‖Lip(Ω)
def
= sup

x,y∈Ω
x 6=y

‖f(x)− f(y)‖Y
‖x− y‖X

.

When Ω = Rn we shall also use the shorter notation ‖f‖Lip = ‖f‖Lip(Rn).
We shall use standard notation for vector-valued Lp spaces. Specifically, for every measurable

subset Ω ⊆ Rn of positive Lebesgue measure and p ∈ [1,∞], we let Lp(Ω, Y ) denote the space of
all measurable functions f : Ω→ Y such that

‖f‖Lp(Ω,Y )
def
=

(ˆ
Ω
‖f(x)‖pY dx

) 1
p

<∞.
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Given f : Ω→ Y and x ∈ Rn we denote by fx : Ω− x→ Y the translate of f by x, i.e.,

∀ y ∈ Ω− x, fx(y)
def
= f(x+ y). (9)

For u ∈ (0,∞) and f ∈ L1(uBn, Y ) let Tuf : Rn → Y be the linear operator defined by

∀w ∈ Rn, Tuf(w)
def
=

n+ 2

Vnu

ˆ
Bn
〈z, w〉f(uz)dz, (10)

where

Vn
def
= vol(Bn) =

πn/2

Γ
(
n
2 + 1

) .
The operator norm of Tuf can be bounded in terms of the Lipschitz constant of f as follows.

Lemma 10. Fix u ∈ (0,∞) and a Lipschitz map f : uBn → Y . Then

‖Tuf‖X→Y 6 ‖f‖Lip(uBn).

Proof. By rescaling we may assume that u = 1. Take w ∈ Rn r {0}. For every t ∈ R consider the
following affine hyperplane.

Ht
def
=

{
y ∈ Rn :

〈
y,

w

‖w‖2

〉
= t

}
⊆ Rn.

Then by the definition (10) and Fubini’s theorem we have

T1f(w) =
(n+ 2)‖w‖2

Vn

ˆ ∞
−∞

t

ˆ
Ht∩Bn

f(z)dzdt

=
(n+ 2)‖w‖2

Vn

ˆ ∞
0

t

ˆ
Ht∩Bn

(
f(z)− f

(
z − 2tw

‖w‖2

))
dzdt.

Consequently,

‖T1f(w)‖Y 6
(n+ 2)‖w‖2

Vn

ˆ ∞
0

t

ˆ
Ht∩Bn

∥∥∥∥f(z)− f
(
z − 2tw

‖w‖2

)∥∥∥∥
Y

dzdt

6
2(n+ 2)‖f‖Lip(Bn)‖w‖X

Vn

ˆ ∞
0

t2voln−1 (Ht ∩Bn) dt

=
(n+ 2)‖f‖Lip(Bn)‖w‖X

Vn

ˆ
Bn
x2

1dx

= ‖f‖Lip(Bn)‖w‖X . �

We also record for future use the following simple estimate.

Lemma 11. For every u ∈ (0,∞) and p ∈ [1,∞] we have the following operator norm bound.

‖Tu‖Lp(uBn,Y )→Lp(uBn,Y ) . min {√pn, n} .

Proof. By rescaling we may assume that u = 1. If f ∈ Lp(Bn, Y ) then

‖T1f‖Lp(Bn,Y ) 6
n+ 2

Vn

ˆ
Bn
‖w 7→ 〈z, w〉f(z)‖Lp(Bn,Y ) dz (11)

=
n+ 2

Vn

( ˆ
Bn
|w1|pdw

) 1
p
ˆ
Bn
‖z‖2 · ‖f(z)‖Y dz (12)

. min {√pn, n} ‖f‖Lp(Bn,Y ), (13)
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where in (11) we used the definition (10) and the triangle inequality in Lp(B
n, Y ), in (12) we used

rotation invariance, and (13) follows from Hölder’s inequality combined with the following fact,
which can be verified by a direct computation and is also, say, a special case of inequality (4) in [5].(

1

Vn

ˆ
Bn
|w1|pdw

) 1
p

� min

{√
p

n
, 1

}
. �

For u ∈ (0,∞) and f ∈ L1(uBn, Y ) define

P 0
uf

def
=

1

Vn

ˆ
Bn
f(uz)dz ∈ Y. (14)

Thus, for every Ω ⊆ Rn and f ∈ L1(Ω, Y ), if x ∈ Rn and u ∈ (0,∞) satisfy x+ uBn ⊆ Ω then the
vector P 0

uf
x ∈ Y is the mean of f over x+ uBn. The following simple estimate will be used later.

Lemma 12. Fix p ∈ [1,∞), q ∈ (0,∞) and x ∈ Rn. Every measurable f : Rn → Y satisfies
ˆ ∞

0

ˆ
Bn

∥∥fx(uy)− P 0
uf

x
∥∥p
Y

uq+1
dydu 6

2p

n+ q

ˆ
Rn

‖fx(y)− f(x)‖pY
‖y‖n+q

2

dy.

Proof. Recalling (14), it follows from the triangle inequality in Lp(B
n, Y ) and convexity that

∀ v ∈ Y,
ˆ
Bn

∥∥fx(uy)− P 0
uf

x
∥∥p
Y

dy 6 2p
ˆ
Bn
‖fx(uy)− v‖pY dy.

By choosing here v = f(x), we see that for every u ∈ (0,∞) we haveˆ
Bn

∥∥fx(uy)− P 0
uf

x
∥∥p
Y

dy 6 2p
ˆ
Bn
‖fx(uy)− f(x)‖pY dy.

Hence, denoting the surface measure on Sn−1 by σ, by integrating in polar coordinates we getˆ ∞
0

ˆ
Bn

∥∥fx(uy)− P 0
uf

x
∥∥p
Y

uq+1
dydu 6 2p

ˆ ∞
0

ˆ
Bn

‖fx(uy)− f(x)‖pY
uq+1

dydu

= 2p
ˆ ∞

0

ˆ 1

0

ˆ
Sn−1

rn−1 ‖fx(urw)− f(x)‖pY
uq+1

dσ(w)drdu

= 2p
ˆ 1

0

ˆ ∞
0

ˆ
Sn−1

rn−1 ‖fx(sw)− f(x)‖pY
(s/r)q+1

dσ(w)
ds

r
dr

=
2p

n+ q

ˆ
Rn

‖fx(y)− f(x)‖pY
‖y‖n+q

2

dy. �

Define an affine mapping P 1
uf : Rn → Y by

P 1
uf

def
= P 0

uf + Tuf. (15)

By a simple change of variable, for every y ∈ Rn we have(
P 1
uf

x
)−x

(y) = P 0
uf

x +

n∑
j=1

yj − xj´
x+uB(wj − xj)2dw

ˆ
x+uB

(zj − xj)f(z)dz. (16)

Consequently, if f were a real-valued function then (P 1
uf

x)−x would be the orthogonal projection
in L2(x + uBn) of f onto the subspace consisting of all the affine mappings. Lemma 13 below
shows that for every p ∈ [1,∞], if f ∈ Lp(x+ uBn, Y ) then the distance between f and (P 1

uf
x)−x

in Lp(x+uBn, Y ) is controlled by the distance of f to the subspace of Lp(x+uBn, Y ) consisting of
all the affine mappings. Such a statement was previously proved in [26], but since the dependence
on n and p is important in the present context, and is only implicit in [26], we include its proof.
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Lemma 13. Fix p ∈ [1,∞], u ∈ (0,∞) and x ∈ Rn. Suppose that f ∈ Lp(x + uBn, Y ) and that
Λ : Rn → Y is affine. Then∥∥fx − P 1

uf
x
∥∥
Lp(uBn,Y )

=
∥∥∥f − (P 1

uf
x
)−x∥∥∥

Lp(x+uBn,Y )
. min {√pn, n} · ‖f − Λ‖Lp(x+uBn,Y ) .

Proof. By translation and a rescaling we may assume that x = 0 and u = 1. Since P 1
1 Λ = Λ,∥∥f − P 1

1 f
∥∥
Lp(Bn,Y )

6 ‖f − Λ‖Lp(Bn,Y ) +
∥∥P 1

1 (f − Λ)
∥∥
Lp(Bn,Y )

(14)

6 ‖f − Λ‖Lp(Bn,Y ) +
∥∥P 0

1 (f − Λ)
∥∥
Lp(Bn,Y )

+ ‖T1(f − Λ)‖Lp(Bn,Y ) .

It remains to note that ‖P 0
1 (f − Λ)‖Lp(Bn,Y ) 6 ‖f − Λ‖Lp(Bn,Y ) since P 0

1 is an averaging operator,
and to apply Lemma 11. �

We end this section by recording for ease of later reference two consequences of Lemma 13.

Corollary 14. Fix p ∈ [1,∞), q ∈ (0,∞) and x ∈ Rn. Every measurable f : Rn → Y satisfies(ˆ ∞
0

ˆ
Bn

‖fx(uy)− P 1
uf

x(uy)‖pY
uq+1

dydu

) 1
p

.
min

{√
pn, n

}
(q + n)

1
p

(ˆ
Rn

‖fx(y)− f(x)‖pY
‖y‖n+q

2

dy

) 1
p

.

Proof. Fix u ∈ (0,∞). Lemma 13 implies that every affine mapping Λ : Rn → Y satisfies(ˆ
Bn

∥∥fx(uy)− P 1
uf

x(uy)
∥∥p
Y

dy

) 1
p

. min {√pn, n}
(ˆ

Bn
‖fx(uy)− Λ(uy)‖pY dy

) 1
p

. (17)

An application of (17) when Λ is the constant P 0
uf

x shows that for every u ∈ (0,∞) we have(ˆ
Bn
‖fx(uy)− P 1

uf
x(uy)‖pY dy

) 1
p

. min {√pn, n}
(ˆ

Bn

∥∥fx(uy)− P 0
uf

x
∥∥p
Y

dy

) 1
p

.

This implies the desired estimate due to Lemma 12. �

Corollary 15. Fix p ∈ [1,∞), q ∈ (p,∞) and x ∈ Rn. Suppose that f : Rn → Y is smooth. Then

(ˆ ∞
0

ˆ
Bn

‖fx(uy)− P 1
uf

x(uy)‖pY
uq+1

dydu

) 1
p

.
pmin

{√
pn, n

}
q(n+ q − p)

1
p

n∑
j=1

(ˆ
Rn

∥∥∥∥ ∂f∂xj (x+ y)− ∂f

∂xj
(x)

∥∥∥∥p
Y

dy

‖y‖n+q−p
2

) 1
p

. (18)

Proof. Suppose that x ∈ Rn and u ∈ (0,∞). For every j ∈ {1, . . . , n} define

aj(u, x)
def
=

ˆ 1

0
P 0
suf

x
j ds ∈ Y, where fj

def
=

∂f

∂xj
. (19)

Also, define an affine function Λx,u : Rn → Y by setting

∀ y ∈ Rn, Λx,u(y)
def
= f(x) +

n∑
j=1

yjaj(u, x). (20)

8



An application of (17) with Λ = Λx,u shows that(ˆ ∞
0

ˆ
Bn

‖fx(uy)− P 1
uf

x(uy)‖pY
uq+1

dydu

) 1
p

. min{√pn, n}
(ˆ ∞

0

ˆ
Bn

‖fx(uy)− Λx,u(uy)‖pY
uq+1

dydu

) 1
p

. (21)

Observe that

fx(uy)− Λx,u(uy)
(20)
=

ˆ 1

0

d

ds
fx(suy)ds−

n∑
j=1

uyjaj(u, x)
(19)
=

n∑
j=1

ˆ 1

0
uyj
(
fxj (suy)− P 0

suf
x
j

)
ds.

By the triangle inequality in Lp(B
n, Y ), this implies that for every u ∈ (0,∞),(ˆ

Bn
‖fx(uy)− Λx,u(uy)‖pY dy

) 1
p

6
n∑
j=1

ˆ 1

0
u

(ˆ
Bn
|yj |p

∥∥fxj (suy)− P 0
suf

x
j

∥∥p
Y

dy

) 1
p

ds

6
n∑
j=1

ˆ u

0

( ˆ
Bn

∥∥fxj (ty)− P 0
t f

x
j

∥∥p
Y

dy

) 1
p

dt =

n∑
j=1

ˆ u

0
hj(t)dt, (22)

where we used the crude estimate maxy∈Bn maxj∈{1,...,n} |yj | 6 1 and introduced the notation

∀ (j, t) ∈ {1, . . . , n} × (0,∞), hj(t)
def
=

( ˆ
Bn

∥∥fxj (ty)− P 0
t f

x
j

∥∥p
Y

dy

) 1
p

. (23)

A combination of (22) with the triangle inequality and Hardy’s inequality [72, Section A.4] yields(ˆ ∞
0

ˆ
Bn

‖fx(uy)− Λx,u(uy)‖pY
uq+1

dydu

) 1
p

6
n∑
j=1

( ˆ ∞
0

(ˆ u

0
hj(t)dt

)p du

uq+1

) 1
p

6
n∑
j=1

p

q

(ˆ ∞
0

hj(u)p

uq−p+1
du

) 1
p (23)

=
p

q

n∑
j=1

( ˆ ∞
0

ˆ
Bn

∥∥fxj (ty)− P 0
t f

x
j

∥∥p
Y

du

uq−p+1

) 1
p

. (24)

By applying Lemma 12 to each of the functions {hj}nj=1 (with q replaced by q − p), we conclude

from (24) that the following estimate holds true.(ˆ ∞
0

ˆ
Bn

‖fx(uy)− Λx,u(uy)‖pY
uq+1

dydu

) 1
p

.
p

q(n+ q − p)
1
p

n∑
j=1

(ˆ
Rn

‖fxj (y)− fj(x)‖pY
‖y‖n+q−p

2

dy

) 1
p

.

Recalling the definition of fj in (19), the desired estimate (18) now follows from (21). �

2.1. Proof of Lemma 4. Fix ε ∈ (0, 1) and denote δ
def
= (ε/9)1+n/p. Fix also 0 < r < rX→Yp (δ)

and a 1-Lipschitz function f : BX → Y . By the definition of rX→Yp (δ), we can find y ∈ X and
ρ > r such that y + ρBX ⊆ BX , and there exists an affine mapping Λ : X → Y with ‖Λ‖Lip 6 3,
such that

1

vol(ρBX)

ˆ
y+ρBX

‖f(u)− Λ(u)‖pY du 6 δpρp =
εp+nρp

9p+n
. (25)

We claim that (25), combined with the fact that ‖f − Λ‖Lip 6 ‖f‖Lip + ‖Λ‖Lip 6 4, yields

∀ z ∈ y + ρBX , ‖f(z)− Λ(z)‖Y 6 ερ, (26)

thus completing the proof of Lemma 4.
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Assume for the sake of obtaining a contradiction that (26) fails. Then there exists z ∈ y + ρBx
such that ‖f(z)− Λ(z)‖Y > ερ. Write λ = ε/9 and define w = λy+(1−λ)z. Observe that we have
‖w − z‖X = λ‖y − z‖X 6 λρ. Supposing that u ∈ X satisfies ‖u− w‖X 6 λρ, we therefore obtain

‖u− y‖X = ‖(u− w)− (1− λ)(y − z)‖X 6 ‖u− w‖+ (1− λ)‖y − z‖X 6 ρ. (27)

Moreover, since ‖f − Λ‖Lip 6 4 we have

‖f(u)− Λ(u)‖Y > ‖f(z)− Λ(z)‖Y − 4‖u− z‖X
> ερ− 4‖u− w‖X − 4‖w − z‖X > ερ− 8λρ = λρ. (28)

It follows from (27) that w+λρBX ⊆ y+ ρBX , and it follows from (28) that for u ∈ w+λρBX the
integrand in the left hand side of (25) is strictly larger than λρ. Hence, (25) yields the following
contradiction.

λp+nρp =
εp+nρp

9p+n
>

vol(λρBX)

vol(ρBX)
λpρp = λp+nρp. �

2.2. An upper bound on the modulus of affine approximability. The example that is
constructed below was obtained in collaboration with Charles Fefferman; we thank him for agreeing
that we include it here. A simple construction from [57] shows that if p ∈ [2,∞) and ε ∈ (0, 1) then

r`
n
2→`2(`p)(ε) .

e−1/(cε)p

√
n

, (29)

where c ∈ (0,∞) is a universal constant. We shall now show how the example of [57] can be
tensorized so as to yield an improved dependence on n, and we shall also briefly discuss the problem
of bounding rX→Yq (ε) for finite q > 1. The following lemma is an Lq-variant of Lemma 4.1 of [57].

Lemma 16. There exists a universal constant C ∈ (0,∞) with the following property. For every
ε ∈ (0, 1) and p ∈ [1,∞) there exists a 1-Lipschitz function f : R→ `p such that for every q ∈ [1,∞]
and every affine mapping Λ : R→ `p, if a, b ∈ R satisfy −1 6 a < b 6 1 then

b− a
2
> 4e−(C/ε)p =⇒

(
1

b− a

ˆ b

a
‖f(x)− Λ(x)‖qp dx

) 1
q

> ε · b− a
2

. (30)

Consequently,

r
R→`p
q (ε) . e−(C/ε)p .

Proof. Let ϕ : R → R be the piecewise affine (“sawtooth”) function defined by ϕ(2Z) = {0} and
ϕ(1 + 2Z) = {1}. Fix m ∈ N that will be determined later. Denoting the standard basis of `mp by
{ej}mj=1, define f : R→ `mp by setting for every x ∈ R,

f(x)
def
=

1

m1/p

m∑
k=1

ϕ
(
2kx
)

2k
ek. (31)

Since ϕ is 1-Lipschitz, it follows from (31) that also f is 1-Lipschitz.
Fix a, b ∈ R satisfying −1 6 a 6 b 6 1 and b− a > 4/2m. There exists k ∈ {1, . . . ,m} such that

4/2k 6 b− a 6 8/2k. Hence there is j ∈ {0, . . . , 2k−1 − 1} for which [j/2k−1, (j + 1)/2k−1] ⊆ [a, b].
Then, since b− a 6 8/2k, for every affine mapping Λ : R→ `mp we have

1

b− a

ˆ b

a
‖f(x)− Λ(x)‖qp dx & 2k

ˆ (j+1)/2k−1

j/2k−1

‖f(x)− Λ(x)‖qp dx. (32)
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Writing Λ = (Λ1, . . . ,Λm), where Λ1, . . . ,Λm : R→ R are affine, it follows from (31) and (32) that

1

b− a

ˆ b

a
‖f(x)− Λ(x)‖qp dx & 2k

ˆ (j+1)/2k−1

j/2k−1

∣∣∣∣∣ϕ
(
2kx
)

m1/q2k
− Λk(x)

∣∣∣∣∣
q

dx

=
1

mq/p2qk

ˆ 1

−1
|ϕ(y)− L(y)|q dy, (33)

where L : R→ R is the affine function given for every y ∈ R by L(y)
def
= m1/p2kΛk((y+ 2j+ 1)/2k).

Recalling (14) and (16), we have P 1
1ϕ ≡ 1/2. Hence, by Lemma 13,(ˆ 1

−1
|ϕ(y)− L(y)|q dy

) 1
q

&

(ˆ 1

−1

∣∣∣∣ϕ(y)− 1

2

∣∣∣∣q dy

) 1
q

& 1. (34)

Since b− a � 2−k, by combining (33) and (34) we see that(
1

b− a

ˆ b

a
‖f(x)− Λ(x)‖qp dx

) 1
q

>
η

m1/p
· b− a

2
, (35)

where η ∈ (0,∞) is a universal constant. Suppose that ε < η and choose m to be the largest
positive integer such that m < (η/ε)p. Then (35) implies the conclusion of (30). The requirement

here is that b−a > 4/2m, and since m+1 > (η/ε)p, this requirement is satisfied if b−a > 8/2(η/ε)p ,

which follows from (b − a)/2 > 4e−(η/(2ε))p . Thus (30) holds true with C = η/2. Note that, with
this choice of C, the implication (30) holds vacuously when ε > η. �

Lemma 17 below tensorizes Lemma 16 to improve over (29), obtaining exponential decay.

Lemma 17. There exists universal constants K, ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0], every
p ∈ [1,∞) and every n ∈ N we have

r`
n
2→`2(`p)(ε) 6 e−n(K/ε)p . (36)

Proof. By Lemma 16 (with q = ∞) we can fix K, ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0]
and p ∈ [1,∞) there exists a 1-Lipschitz mapping f : [−1, 1] → `p such that for every interval

[a, b] ⊆ [−1, 1] with (b − a)/2 > e−(K/ε)p and for every affine mapping Λ : R → `p there exists
x ∈ [a, b] such that ‖f(x)− Λ(x)‖p > ε(b− a)/2.

Define F : Rn → `n2 (`p) by setting for every x = (x1, . . . , xn) ∈ Rn,

F (x)
def
=

(
f (x1) ,

f
(
e(K/ε)px2

)
e(K/ε)p

, . . . ,
f
(
e(n−1)(K/ε)pxn

)
e(n−1)(K/ε)p

)
∈ `n2 (`p).

By applying the 1-Lipschitz condition for f coordinate-wise, we see that F is 1-Lipschitz as a
mapping from `n2 to `n2 (`p). Fix x ∈ Bn and r ∈ (0, 1) such that x + rBn ⊆ Bn. Suppose from

now on that r > e−n(K/ε)p and let j ∈ N be the largest integer for which r 6 e−(j−1)(K/ε)p .
Then j ∈ {1, . . . , n} and e(j−1)(K/ε)pr > e−(K/ε)p . Let Λ : Rn → `n2 (`p) be an affine mapping,
and write Λ = (Λ1, . . . ,Λn), where Λ1, . . . ,Λn : Rn → `p are affine. Consider the affine mapping

Λ′j : R→ `p given by Λ′j(y) = Λj(x1, . . . , xj−1, y, xj+1, . . . , xn). Set a = xje
(j−1)(K/ε)p−re(j−1)(K/ε)p

and b = xje
(j−1)(K/ε)p + re(j−1)(K/ε)p . Then (b − a)/2 = re(j−1)(K/ε)p > e−(K/ε)p , so by our

assumption on f there exists w ∈
[
xje

(j−1)(K/ε)p − re(j−1)(K/ε)p , xje
(j−1)(K/ε)p + re(j−1)(K/ε)p

]
with∥∥∥f(w)− e(j−1)(K/ε)pΛ′j

(
we−(j−1)(K/ε)p

)∥∥∥
p
> εre(j−1)(K/ε)p .
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Setting y = we−(j−1)(K/ε)p , this is the same as asserting that there exists y ∈ [xj − r, xj + r] with∥∥∥e−(j−1)(K/ε)pf
(
e(j−1)(K/ε)py

)
− Λ′j(y)

∥∥∥
p
> εr.

Hence, writing z = (x1, . . . , xj−1, y, xj+1, . . . , xn), we have that z ∈ x+ rBn and

‖F (z)− Λ(z)‖`n2 (`p) >
∥∥∥e−(j−1)(K/ε)pf

(
e(j−1)(K/ε)py

)
− Λ′j(y)

∥∥∥
p
> εr, (37)

Since (37) holds true for every affine mapping Λ : Rn → `n2 (`p) whenever x + rBn ⊆ Bn and

r > e−n(K/ε)p , the proof of (36) is complete. �

Remark 18. An upper bound on r
`n2→`2(`p)
p (ε) is a consequence of Lemma 17 and Lemma 4.

It seems likely that a significantly stronger upper bound holds true, but the above tensorization
procedure does not seem to yield such an improvement. We leave the investigation of upper bounds
on the modulus of Lp affine approximability as an interesting question for future research.

3. A UMD-valued Dorronsoro-type estimate

The main ingredient of the proof of Theorem 5 (hence also Theorem 2) is the following result.

Theorem 19. There exists a universal constant κ ∈ [2,∞) with the following property. Suppose
that (Y, ‖·‖Y ) is a UMD Banach space and write β = β(Y ). Suppose that f : Rn → Y is a Lipschitz
and compactly supported function. Then(

1

Vn

˚
Rn×Bn×(0,∞)

∥∥fx(uy)− P 1
uf

x(uy)
∥∥κβ
Y

u1+κβ
dxdydu

) 1
κβ

. β15n
5
2
(
vol(supp(f))

) 1
κβ ‖f‖Lip. (38)

In the case of real-valued functions on Rn, such a statement was first proved by Dorronsoro [26],
with an implicit dependence on the dimension n. Extensions and variants of Dorronsoro’s theorem
have been further studied within the theory of functions spaces, where norms like the one that
appears on the left of (38) define what is called local approximation spaces. See [75, Section 1.7] for
some discussion of the subsequent history and [75, Section 3.5.1] for a different proof of a similar
statement. There, the dependence on n is perhaps even more implicit, since it also depends on a
non-canonical choice of resolutions of identity used to define some general function spaces.

This dependence on dimension is crucial for us here; specifically, we desire polynomial growth
in n in the right hand side of (38), while a näıve examination of the proof in [26] reveals that it
yields a much worse (super-exponential) dependence on n. Note also that in [26] the Lκβ norm that
appears in (38) can be replaced by an Lp norm for any p ∈ (1,∞), while in the present vector-valued
setting the geometry of the target space Y influences the value of p. In fact, we shall prove a more
refined (and stronger) version of Theorem 19; see Theorem 40 below, in which the Lκβ norm that
appears in (38) can be replaced by an Lp norm provided Y is a UMD Banach space of Rademacher
cotype p (see Section 4.4 below). These refinements are not important for our purposes, i.e., for
proving Theorem 5, but they do imply sharper results, e.g. when Y is itself an Lq(µ) space. In the
same vein, the exponent 15 of β in (38) is not sharp (for the purpose of Theorem 5 we only desire
a polynomial dependence on β).

The bulk of the ensuing discussion is devoted to the proof of Theorem 19. Our argument roughly
follows the strategy of Dorronsoro in [26], combined with substantial additions and modifications in
order to obtain good dependence on n and also overcome difficulties that arise in the vector-valued
setting and are not present in the real-valued setting of [26]. As explained in the Introduction,
these complications reflect a genuine difference between the vector-valued setting and the real-
valued setting, as such results do not hold true for general Banach space targets Y , so the geometry
of Y must somehow enter into the argument. We did not investigate the extent to which Theorem 19
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(and Theorem 40 below) are sharp in terms of the assumptions that are required from Y and the
Lp norm that could appear in (38) (or (137) below).

3.1. Proof of Theorem 5 assuming the validity of Theorem 19. Here we shall prove The-
orem 5 while using Theorem 19. This will allow us to focus later on Theorem 19 itself in order
complete the justification of Theorem 5, and hence, by Lemma 4, also (3) and Theorem 2.

Recalling our setting, we are given a n-dimensional normed space (X = Rn, ‖ · ‖X) such that (8)
holds true. We are also given a normed space (Y, ‖·‖Y ) that satisfies the assumptions of Theorem 19.
Suppose that f : BX → Y is 1-Lipschitz. Without loss of generality assume also that f(0) = 0.

Define φ : [0,∞)→ [0,∞) by

∀u ∈ [0,∞), φ(u)
def
=


1 if u 6 1√

n
,

n+ 1− n
3
2u if 1√

n
< u 6

(
1 + 1

n

)
1√
n
,

0 if u >
(
1 + 1

n

)
1√
n
.

Then φ is supported in [0, (1 + 1/n)/
√
n] and it is elementary to verify the following inequalities.

∀u ∈ (0,∞), max
{
φ(u),

√
nuφ(u)

}
6 1. (39)

and

∀u, v ∈ (0,∞),
∣∣φ(u)− φ(v)

∣∣ ·min{u, v} 6 (n+ 1)|u− v|. (40)

Since by (8) we have 1√
n
Bn ⊆ BX , by (39) we know that every x ∈ Rn satisfies φ(‖x‖2)x ∈ BX .

We can therefore define F : Rn → Y by F (x) = f(φ(‖x‖2)x). Then, F (x) = f(x) if ‖x‖2 6 1/
√
n,

and F (x) = 0 if ‖x‖2 > (1 + 1/n)/
√
n. Also, every x, y ∈ Rn with ‖y‖X 6 ‖x‖X satisfy

‖F (x)− F (y)‖Y 6 ‖f‖Lip(BX)

∥∥φ(‖x‖2)x− φ(‖y‖2)y
∥∥
X

6 φ(‖x‖2)‖x− y‖X +
∣∣φ(‖x‖2)− φ(‖y‖2)

∣∣‖y‖X
(8)∧(39)

6 ‖x− y‖X +
∣∣φ(‖x‖2)− ‖φ(‖y‖2)

∣∣√n‖y‖2
(40)

6 ‖x− y‖X +
√
n(n+ 1)‖x− y‖2

(8)

6
(
n

3
2 +
√
n+ 1

)
‖x− y‖X .

Thus ‖F‖Lip(Rn) . n
3
2 . Since supp(F ) ⊆

(
1 + 1

n

)
1√
n
Bn, it therefore follows from Theorem 19 that(˚

Rn×Bn×(0,∞)

∥∥F x(uy)− P 1
uF

x(uy)
∥∥κβ
Y

Vnu1+κβ
dxdydu

) 1
κβ

6 Kβ15n
5
2

(
1 +

1

n

) n
κβ
(
Vn

n
n
2

) 1
κβ

n
3
2

< eKβ15n4

(
Vn

n
n
2

) 1
κβ

, (41)

where K ∈ (0,∞) is a universal constant. Note that

(x, u) ∈
((

1− 1

n

)
1√
n
Bn

)
×
(

0,
1

n3/2

)
=⇒ x+ uBn ⊆ 1√

n
Bn.

Since F coincides with f on 1√
n
Bn, it follows that

(x, y, u) ∈
((

1− 1

n

)
1√
n
Bn

)
×Bn ×

(
0,

1

n3/2

)
=⇒ P 1

uF
x = P 1

uf
x and F x(uy) = fx(uy).
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These observations in combination with (41) imply that(˚
(
(1− 1

n) 1√
n
Bn

)
×Bn×

(
0, 1

n3/2

)
∥∥fx(uy)− P 1

uf
x(uy)

∥∥κβ
Y

Vnu1+κβ
dxdydu

) 1
κβ

< Kβ15n4

(
Vn

n
n
2

) 1
κβ

. (42)

Fix M ∈ (1,∞) whose precise value will be specified later. It follows from (42) that there exist

u ∈
(

1

Mn2/3
,

1

n3/2

)
and x ∈

(
1− 1

n

)
1√
n
Bn, (43)

such that (
1

Vn

ˆ
Bn

∥∥fx(uy)− P 1
uf

x(uy)
∥∥κβ
Y

dy

) 1
κβ

6
2eKβ15n4u

(logM)
1
κβ

. (44)

Indeed, we would otherwise have

(˚
(
(1− 1

n) 1√
n
Bn

)
×Bn×

(
0, 1

n3/2

)
∥∥fx(uy)− P 1

uf
x(uy)

∥∥κβ
Y

Vnu1+κβ
dxdydu

) 1
κβ

>

(
1− 1

n

) n
κβ
(
Vn

n
n
2

) 1
κβ

(ˆ n−3/2

n−3/2

M

du

u

) 1
κβ 2eKβ15n4

(logM)
1
κβ

> eKβ15n4

(
Vn

n
n
2

) 1
κβ

,

thus contradicting (42). Observe that by Lemma 10 we have

‖P 1
uf

x‖Lip(Rn)
(15)
= ‖Tufx‖X→Y 6 ‖fx‖Lip(Rn) 6 1.

Hence, if we set Λ
def
= P 1

xf
x then Λ : Rn → Y is affine, ‖Λ‖Lip(Rn) 6 1, and by a change of variable

one can rewrite (44) as follows.(
1

vol(x+ uBn)

ˆ
x+uBn

‖f(z)− Λ(z)‖κβY dz

) 1
κβ

6
2eKβ15n4u

(logM)
1
κβ

. (45)

This is not quite the type of conclusion that we desire, because the averaging in (45) occurs over a
Euclidean ball rather than a ball in (Rn, ‖ · ‖X). We overcome this via another averaging step.

Observe that

x+

(
1− 1

n

)
uBn +

u

n
BX ⊆ x+ uBn ⊆ 1√

n
Bn

(8)

⊆ BX . (46)

Indeed, if a, b ∈ Rn satisfy ‖a‖2 6 (1− 1/n)u and ‖b‖X 6 u/n then,

‖a+ b‖2 6 ‖a‖2 + ‖b‖2
(8)

6 ‖a‖2 + ‖b‖X 6
(

1− 1

n

)
u+

u

n
= u,

Now, define A ⊆ Rn × Rn as follows.

A
def
=

{
(y, w) : y ∈ x+

(
1− 1

n

)
uBn ∧ w ∈ y +

u

n
BX

}
=

{
(y, w) : w ∈ x+

(
1− 1

n

)
uBn +

u

n
BX ∧ y ∈

(
x+

(
1− 1

n

)
uBn

)
∩
(
w +

u

n
BX

)}
.

14



By (46), f(w) is well-defined for every (y, w) ∈ A. It therefore follows from Fubini’s theorem that¨
A
‖f(w)− Λ(w)‖κβY dwdy

=

ˆ
x+(1− 1

n)uBn
dy

ˆ
y+u

n
BX

‖f(w)− Λ(w)‖κβY dw

=

ˆ
x+(1− 1

n)uBn+u
n
BX

vol

((
x+

(
1− 1

n

)
uBn

)
∩
(
w +

u

n
BX

))
‖f(w)− Λ(w)‖κβY dw

6 vol
(u
n
BX

)ˆ
x+uBn

‖f(w)− Λ(w)‖κβY dw.

Hence,

1

vol
(
x+

(
1− 1

n

)
uBn

) ˆ
x+(1− 1

n)uBn

dy

vol
(
y + u

nBX
) ˆ

y+u
n
BX

‖f(w)− Λ(w)‖κβY dw

6
1

vol
(
x+

(
1− 1

n

)
uBn

) ˆ
x+uBn

‖f(w)− Λ(w)‖κβY dw 6

(
2eKβ15n4u

)κβ(
1− 1

n

)n
logM

6

(
4eKβ15n4u

)κβ
logM

.

This implies that there exists y ∈ x+
(
1− 1

n

)
uBn such that(

1

vol
(
y + u

nBX
) ˆ

y+u
n
BX

‖f(w)− Λ(w)‖κβY dw

) 1
κβ

6
4eKβ15n4u

(logM)
1
κβ

=
4eKβ15n5

(logM)
1
κβ

· u
n
.

Recalling Definition (1), since by (43) we are ensured that u > 1/(Mn3/2), it follows that

∀M ∈ (1,∞), rX→Yκβ

(
4eKβ15n5

(logM)
1
κβ

)
>

1

Mn
3
2

. (47)

For ε ∈ (0, 1) choose M = e(4eKβ15n5/ε)κβ in (47), thus yielding Theorem 5 as follows.

∀ ε ∈ (0, 1), rX→Yκβ (ε) >
1

n
3
2

exp

(
−(4eKβ15n5)κβ

εκβ

)
. �

4. Preliminaries on UMD Banach spaces

This section is devoted to the presentation of several analytic properties of UMD Banach spaces
that will be used extensively in the proof of Theorem 5.

Let (Y, ‖ · ‖Y ) be a UMD Banach space and fix p ∈ (1,∞). Denote (as usual) by βp(Y ) the
infimum over those β ∈ (1,∞] such that if {Mj}∞j=0 is a Y -valued p-integrable martingale defined

on some probability space (Ω,P) then for every n ∈ N and every ε1, . . . , εn ∈ {−1, 1} we have

ˆ
Ω

∥∥∥M0 +
n∑
j=1

εj (Mj −Mj−1)
∥∥∥p
Y

dP 6 βp
ˆ

Ω
‖Mn‖pY dP. (48)

Thus, using the notation of the Introduction, we have β2(Y ) = β(Y ). The following inequality
is well-known; see [17] for its proof.

βp(Y ) .
p2

p− 1
β(Y ). (49)
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We also record for future use that (48) implies (see [53, Thm. 4.4]) that for every a0, a1, . . . , an ∈ R,
ˆ

Ω

∥∥∥a0M0 +
n∑
j=1

aj (Mj −Mj−1)
∥∥∥p
Y

dP 6
(

max
j∈{0,...,n}

|aj |p
)
βp(X)p

ˆ
Ω
‖Mn‖pY dP. (50)

In [33] Garling introduced two parameters β+
p (Y ), β−p (Y ), defined to be the best constants in the

following inequalities, which are required to hold true for every martingale {Mj}∞j=0 as above.

Eε
[ˆ

Ω

∥∥∥M0 +
n∑
j=1

εn (Mj −Mj−1)
∥∥∥p
Y

dP
]
6 β+

p (Y )p
ˆ

Ω
‖Mn‖pY dP,

and ˆ
Ω
‖Mn‖pY dP 6 β−p (Y )pEε

[ˆ
Ω

∥∥∥M0 +

n∑
j=1

εn (Mj −Mj−1)
∥∥∥p
Y

dP
]
,

where Eε[·] denotes the expectation with respect to ε = (ε1, . . . , εn) chosen uniformly at random
from {−1, 1}n. Garling’s inequalities are weaker than (48), which is required to hold for every
ε ∈ {−1, 1}n rather than only in expectation with respect to ε. Hence,

max
{
β+
p (Y ), β−p (Y )

}
6 βp(Y ), (51)

but there are examples of Banach spaces Y for which β+
p (Y ) or β−p (Y ) is markedly smaller than

βp(Y ); see [33, 34]. Some of the ensuing estimates can be stated in terms of the parameters
βp(Y ), β+

p (Y ), β−p (Y ), but in order to avoid cumbersome expressions we will sometimes state our
bounds in terms of the quantity β(Y ) := β2(Y ), by invoking (49) and (51). In fact, in our setting we
will always choose 2 6 p � β(Y ), in which case by using (49) and (51) we will sometimes bound from
above the quantities βp(Y ), β+

p (Y ), β−p (Y ) by a universal constant multiple of p β(Y ) � β(Y )2. This
choice has the advantage of simplifying some of the ensuing discussion, but it yields bounds that
could be improved for some (quite exotic) UMD Banach spaces Y by a straightforward inspection
of our proofs.

4.1. R-boundedness. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces. The space of bounded linear
operators from X to Y is denoted L(X,Y ). Following [10, 21], a set of operators T ⊆ L(X,Y ) is
said to be R-bounded if

Eε
[∥∥∥ N∑

j=1

εjTjxj

∥∥∥p
Y

]
6 CpEε

[∥∥∥ N∑
j=1

εjxj

∥∥∥p
X

]
, (52)

for every N ∈ N, every x1, . . . , xN ∈ Y and every T1, . . . , TN ∈ T , and some (equivalently, by
Kahane’s inequality [50], for all) p ∈ [1,∞). The infimum over those C in (52) is denoted Rp(T ).

The following result is due to Bourgain [12]; see also [30] for a proof.

Proposition 20 (Bourgain’s vector-valued Stein inequality). Suppose that (Y, ‖ · ‖Y ) is a UMD
Banach space and fix p ∈ (1,∞). Let {Fj}j∈Z be an increasing sequence of sub-σ-algebras on
some probability space (Ω,F,P). For every j ∈ Z let Ej ∈ L(Lp(P, Y ), Lp(P, Y )) be the conditional
expectation operator corresponding to Fj, i.e., Ejf = E[f |Fj ] for every f ∈ Lp(P, Y ). Then

Rp ({Ej}j∈Z) 6 β+
p (Y ).

By a classical representation theorem for positive self-adjoint semigroups of contractions due to
Rota [70] (see also [73, Sec. VI] or [59, Thm. 2.5]), Proposition 20 implies the following dimension
independent R-boundedness estimate for the heat semigroup. Here and in what follows, ∆ denotes
the Laplacian on Rn.
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Corollary 21 (R-boundedness of the heat semigroup). Let (Y, ‖ · ‖Y ) be a UMD Banach space,
n ∈ N, and p ∈ (1,∞). Then

Rp
(
{et∆}t∈(0,∞)

)
6 β+

p (Y ).

Proof. For any δ > 0, the operator Q = e
1
2
δ∆ satisfies the assumptions of Rota’s theorem as for-

mulated in [73, Sec. VI] or [59, Thm. 2.5]. Thus there exists a measure space (Ω,F, µ) with an
increasing sequence of sub-σ-algebras {Fj}j∈Z and yet another sub-σ-algebra F′ with the corre-
sponding conditional expectation operators Ej and E′ such that

∀ j ∈ N ∪ {0}, ejδ∆ = Q2j = J−1E′E−jJ,

where J : Lp(Rn, Y )→ Lp(Ω,F
′, Y ) is an isometric isomorphism. Thus

Rp
(
{ejδ∆}j∈N∪{0}

)
= Rp

(
{JE′E−jJ}j∈N∪{0}

)
6 ‖J−1‖Lp(Ω,F′,Y )→Lp(Rn,Y ) · ‖E′‖Lp(Ω,F,µ)→Lp(Ω,F′,µ) · Rp

(
{E−j}j∈N∪{0}

)
· ‖J‖Lp(Rn,Y )→Lp(Ω,F′,Y )

6 β+(Y ),

where we used Proposition 20 together with easy properties of R-bounds and the contractivity of
conditional expectations.

Using basic properties of R-bounds (cf. [76, Proposition 9.5]), if T =
⋃∞
k=1 Tk is a union of an

increasing sequence Tk ⊆ Tk+1, and T is the closure of T in the strong operator topology, then

Rp(T) = Rp(T) = limk→∞Rp(Tk). With Tk = {ej2−k∆}j∈N∪{0}, we have T = {et∆}t∈(0,∞) by the

strong continuity of t 7→ et∆, and this proves the claim. �

Our next goal is to prove Theorem 24 below, which is a useful bound on the norm of operators on
UMD Banach spaces that admit a certain integral representation in terms of the heat semigroup.
Results in this spirit have been implicitly used for a long time; see for examples the probabilistic
treatment of the Riesz transforms by Gundy and Varopoulos [37], and of the Beurling–Ahlfors
transform by Bañuelos and Méndez-Hernández [4]. Formulations in the UMD-valued setting appear
in [41, 42, 43]. The version below is essentially a combination of some of these earlier results but
it does not appear as stated in the literature, so its proof is included here.

In what follows, we will use some aspects of the theory of vector-valued stochastic integration
with respect to a Brownian motion {B(t) = (B1(t), . . . , Bn(t))}t∈(0,∞) in Rn, starting at 0. Here
and below, a Brownian motion in Rn is always understood to be a standard Brownian motion.

It should be noted that for our purposes it is enough to consider finite-dimensional-valued func-
tions, in which case the stochastic integrals can be defined coordinate-wise in the classical sense.
We refer to [51, Chapter 3] for the relevant background (and much more). It might be helpful to
note that the formulae in [51], which often involve the quadratic variation 〈M,N〉t of two stochastic
processes M and N , take a simpler form in the Brownian case of our interest, by using the identities
〈Bi, Bj〉t = δijt (see [51, Theorem 3.3.16]).

In particular, Itô’s formula (see [51, Theorem 3.3.6]) is valid in our setting, since it holds true
for each scalar-valued coordinate function. For a comprehensive theory of vector-valued stochastic
integration, whose full strength is not needed here, see [78, 77].

Before stating Theorem 24 we describe some preliminary background and simple estimates that
will be used in its proof. First, we recall the following decoupling inequalities due to Garling [32].

Theorem 22 (Garling’s decoupling inequalities). For n ∈ N, let {B(t) = (B1(t), . . . , Bn(t))}t∈(0,∞)

be a Brownian motion in Rn, starting at 0. Also, let {C(t) = (C1(t), . . . , Cn(t))}t∈(0,∞) be an
independent copy of {B(t)}t∈(0,∞). Suppose that (Y, ‖ ·‖Y ) is a UMD Banach space and p ∈ (1,∞).
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Let V = (V1, . . . , Vn) : (0,∞)→ Y n be a stochastic process that is adapted to the same filtration as
{B(t))}t∈(0,∞), takes values in a finite-dimensional subspace of Y n, and satisfies

E
[(ˆ ∞

0

n∑
j=1

‖Vj(t)‖2Y dt
) p

2

]
<∞ (53)

The finite dimensionality assumption and the integrability assumption (53) guarantee the existence
of the stochastic integrals below by the scalar-valued theory. Then

E
[∥∥∥ˆ ∞

0

n∑
j=1

Vj(t)dBj(t)
∥∥∥p
Y

]
6 β−p (Y )pE

[∥∥∥ˆ ∞
0

n∑
j=1

Vj(t)dCj(t)
∥∥∥p
Y

]
,

and

E
[∥∥∥ˆ ∞

0

n∑
j=1

Vj(t)dCj(t)
∥∥∥p
Y

]
6 β+

p (Y )pE
[∥∥∥ˆ ∞

0

n∑
j=1

Vj(t)dBj(t)
∥∥∥p
Y

]
.

Continuing with the notation of Theorem 22, for every (operator-valued) measurable1 mapping
Φ : (0,∞)→ L(Y, Y ) we have

E
[∥∥∥ˆ ∞

0

n∑
j=1

Φ(t)Vj(t)dCj(t)
∥∥∥p
Y

]
6 Rp (Φ)p E

[∥∥∥ˆ ∞
0

n∑
j=1

Vj(t)dCj(t)
∥∥∥p
Y

]
, (54)

where we use the notation

Rp(Φ)
def
= Rp

(
{Φ(t)}t∈(0,∞)

)
. (55)

The estimate (54) follows directly from the definition of R-boundedness by approximating the
integrals by Riemann sums; see Exercise 4 in Section 9.4 of [76]. Alternatively, inequality (54)
follows by combining Theorem 6.14 and Theorem 9.13 of [76]. By (54) and Theorem 22 we see that

E
[∥∥∥ˆ ∞

0

n∑
j=1

Φ(t)Vj(t)dBj(t)
∥∥∥p
Y

]
6 β+

p (Y )pβ−p (Y )pRp(Φ)pE
[∥∥∥ˆ ∞

0

n∑
j=1

Vj(t)dBj(t)
∥∥∥p
Y

]
. (56)

In the same vein as the above discussion, by approximating the integrals by Riemann sums it
follows from (50) that if φ : (0,∞)→ R is measurable then

E
[∥∥∥ˆ ∞

0

n∑
j=1

φ(t)Vj(t)dBj(t)
∥∥∥p
Y

]
6 βp(Y )p‖φ‖pL∞(0,∞)E

[∥∥∥ˆ ∞
0

n∑
j=1

Vj(t)dBj(t)
∥∥∥p
Y

]
. (57)

We record for future use the following simple estimate.

Lemma 23. Fix n ∈ N and let {B(t) = (B1(t), . . . , Bn(t))}t∈[0,∞) be a Brownian motion in Rn,
starting at 0. For every Banach space (Y, ‖ · ‖Y ), every p ∈ (1,∞) and every smooth and compactly
supported h : Rn → Y with a finite-dimensional range, we have

lim sup
τ→∞

(ˆ
Rn

E
[∥∥∥ n∑

j=1

ˆ τ

0

∂

∂xj
e
τ−t
2

∆h(B(t) + x)dBj(t)
∥∥∥p
Y

]
dx

) 1
p

6 ‖h‖Lp(Rn,Y ). (58)

1Here, and in what follows, given two Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) and an open subset Ω ⊆ Rn,
when we say that an operator-valued mapping Φ : Ω→ L(X,Y ) is measurable we mean measurability in the strong
operator topology, i.e., we require that for every x ∈ X the mapping w 7→ Φ(w)x from Ω to Y has the property that
the inverse image of every Borel subset of Y is Lebesgue-measurable.
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Proof. If ϕ ∈ L1(Rn) then E[ϕ(B(t) + x)] = e
t
2

∆ϕ(x) for every t ∈ [0,∞) and x ∈ Rn. Hence,ˆ
Rn

E[ϕ(B(t) + x)]dx =

ˆ
Rn
e
t
2

∆ϕ(x)dx =

ˆ
Rn
ϕ(x)dx. (59)

For (x, t) ∈ Rn × (0,∞), let u(x, t)
def
= e

t
2

∆h(x) denote the heat extension of h. By Itô’s formula
(see [51, Theorem 3.3.6]) applied to the function t 7→ u(B(t) + x, τ − t), for every x ∈ Rn we have

n∑
j=1

ˆ τ

0

∂u

∂xj
(B(t) + x, τ − t)dBj(t)

= u(B(τ) + x, 0)− u(x, τ)−
ˆ τ

0

(
− ∂u

∂t
+

1

2
∆xu

)
(B(t) + x, τ − t)dt (60)

= h(B(τ) + x)− e
τ
2

∆h(x). (61)

Consequently, ( ˆ
Rn

E
[∥∥∥ n∑

j=1

ˆ τ

0

∂

∂xj
e
τ−t
2

∆h(B(t) + x)dBj(t)
∥∥∥p
Y

]
dx

) 1
p

(60)

6

(ˆ
Rn

E
[
‖h(B(τ) + x)‖pY

]
dx

) 1
p

+

(ˆ
Rn

E
[∥∥∥e τ2 ∆h(x)

∥∥∥p
Y

]
dx

) 1
p

(59)
= ‖h‖Lp(Rn,Y ) +

∥∥∥e τ2 ∆h
∥∥∥
Lp(Rn,Y )

. (62)

To deduce the desired bound (58) from (62), it remains to note that

∀ p ∈ (1,∞), lim
τ→∞

‖e
τ
2

∆h‖Lp(Rn,Y ) = 0. (63)

Indeed, by Young’s inequality we have the following point-wise estimate

∀x ∈ Rn,
∥∥∥e τ2 ∆h(x)

∥∥∥
Y

=
∥∥∥k τ

2
∗ h(x)

∥∥∥
Y
6
∥∥∥k τ

2

∥∥∥
Lq(Rn)

‖h‖Lp(Rn,Y ), (64)

where k : Rn → R is the heat kernel and q = p/(p− 1). Since q ∈ (0,∞), the Lq-norm of the heat

kernel kτ/2 converges to 0 as τ →∞. Moreover, ‖e
τ
2

∆h‖Y is dominated point-wise by the Hardy–
Littlewood maximal function M‖h‖Y ∈ Lp(Rn). Hence (63) follows from (64) by an application of
the dominated convergence theorem. �

The following theorem is the main result of the present section: it establishes an estimate that
will be used several times in the ensuing discussion.

Theorem 24. Fix n ∈ N and p ∈ (1,∞). Suppose that for t ∈ (0,∞) we are given a bounded
operator A(t) : Y → Y such that the mapping A : (0,∞) → L(Y, Y ) is bounded and measurable.
Also, suppose that T : Lp(Rn, Y ) → Lp(Rn, Y ) is a linear operator that has the following dual
representation. For every sufficiently nice f in a dense subspace of Lp(Rn, Y ), and g∗ in a dense
subspace of Lq(Rn, Y ∗), where q = p/(p− 1), we haveˆ

Rn
g∗(x) (Tf(x)) dx =

n∑
j=1

ˆ ∞
0

ˆ
Rn

(
∂

∂xj
e
t
2

∆g∗(x)

)(
A(t)

∂

∂xj
e
t
2

∆f(x)

)
dxdt. (65)

Then, recalling the notation (55),

‖T‖Lp(Rn,Y )→Lp(Rn,Y ) 6 β
+
p (Y )β−p (Y )Rp(A). (66)

Moreover, in the special case A : (0,∞)→ C we have

‖T‖Lp(Rn,Y )→Lp(Rn,Y ) 6 βp(Y ) ‖A‖L∞(0,∞) . (67)

19



Proof. By duality and the identity (65), the desired estimate (66) would follow if we show that for
every sufficiently nice f ∈ Lp(Rn, Y ) and g∗ ∈ Lq(Rn, Y ∗),

lim sup
τ→∞

n∑
j=1

ˆ τ

0

ˆ
Rn

(
∂

∂xj
e
s
2

∆g∗(x)

)(
A(s)

∂

∂xj
e
s
2

∆f(x)

)
dxds

6 β+
p (Y )β−p (Y )Rp(A)‖f‖Lp(Rn,Y )‖g∗‖Lq(Rn,Y ∗). (68)

Let us consider f, g smooth and compactly supported, and taking values in finite-dimensional
subspaces of Y and Y ∗, respectively.

For every (x, s) ∈ Rn × (0,∞) denote for the sake of simplicity

γ∗j (x, s)
def
=

∂

∂xj
e
s
2

∆g∗(x) and φj(x, s)
def
= A(s)

∂

∂xj
e
s
2

∆f(x).

Let {B(t) = (B1(t), . . . , Bn(t))}t∈[0,∞) be a Brownian motion in Rn, starting at 0. It follows from
the identity (59) that for every τ ∈ (0,∞),

n∑
j=1

ˆ τ

0

ˆ
Rn

(
∂

∂xj
e
s
2

∆g∗(x)

)(
A(s)

∂

∂xj
e
s
2

∆f(x)

)
dxds

=

ˆ
Rn

E
[ n∑
j=1

ˆ τ

0
γ∗j (B(t) + x, τ − t) (φj(B(t) + x, τ − t)) dt

]
dx =

ˆ
Rn

E [G∗τ (x)(Fτ (x))] dx, (69)

where we introduce the notations

Fτ (x)
def
=

n∑
j=1

ˆ τ

0
A(τ − t) ∂

∂xj
e
τ−t
2

∆f(B(t) + x)dBj(t), (70)

and

G∗τ (x)
def
=

n∑
j=1

ˆ τ

0

∂

∂xj
e
τ−t
2

∆g∗(B(t) + x)dBj(t). (71)

(69) is a well-known identity (see [51, Proposition 2.17]) for scalar-valued functions, and it follows
from this for the vector-valued functions with a finite-dimensional range that we consider here.

By Hölder’s inequality it follows from (69) that

n∑
j=1

ˆ τ

0

ˆ
Rn

(
∂

∂xj
e
s
2

∆g∗(x)

)(
A(s)

∂

∂xj
e
s
2

∆f(x)

)
dxds

6

(ˆ
Rn

E
[
‖Fτ (x)‖pY

]
dx

) 1
p
(ˆ

Rn
E
[
‖G∗τ (x)‖qY ∗

]
dx

) 1
q

. (72)

Recalling (71), by Lemma 23 we have

lim sup
τ→∞

(ˆ
Rn

E
[
‖G∗τ (x)‖qY ∗

]
dx

) 1
q

6 ‖g∗‖Lq(Rn,Y ∗). (73)

Recalling (70), it follows from (56) and (57) that if we set K = β+
p (Y )β−p (Y )Rp(A) if Y 6= R, and

K = βp(Y )‖A‖L∞(0,∞) if A is scalar-valued, then

ˆ
Rn

E
[
‖Fτ (x)‖pY

]
dx 6 KpE

[∥∥∥ n∑
j=1

ˆ τ

0

∂

∂xj
e
τ−t
2

∆f(B(t) + x)dBj(t)
∥∥∥p
Y

]
.

20



Another application of Lemma 23 now implies that

lim sup
τ→∞

(ˆ
Rn

E
[
‖Fτ (x)‖pY

]
dx

) 1
p

6 ‖f‖Lq(Rn,Y ). (74)

The desired estimate (68) is a consequence of (72), (73) and (74). �

4.2. Vector-valued multipliers. Let (Y, ‖ · ‖Y ) be a Banach space. The Fourier transform of
f ∈ L1(Rn, Y ) will be denoted below by Ff : Rn → Y , where we use the normalization

Ff(x)
def
=

1

(2π)n/2

ˆ
Rn
e−i〈x,y〉f(x)dy.

A possible formulation of Parseval’s identity in this vector-valued setting is to say that for functions
f : Rn → Y and g∗ : Rn → Y ∗ that are either smooth and compactly supported, or Fourier
transforms of such functions, we haveˆ

Rn
Fg∗(x)(Ff(x))dx =

ˆ
Rn
g∗(x)(f(−x))dx. (75)

If (X, ‖·‖X) is an additional Banach space and m : Rn → L(X,Y ) is measurable then the multiplier
associated to m is defined as usual by considering for every smooth and compactly supported
f : Rn → X (or the Fourier transform of such a function) the function Tmf : Rn → Y given by

Tmf
def
= (F−1m) ∗ f = F−1 (x 7→ m(x)Ff(x)) .

If m is smooth and locally bounded at least away from the coordinate hyperplanes, and the Fourier
transform of f : Rn → X is smooth and compactly supported away from these hyperplanes, then
also Tmf has a smooth and compactly supported Fourier transform. Hence, for such f and smooth
and compactly supported g∗ : Rn → Y ∗ (or the Fourier transform of such a function), Parseval’s
identity applies and givesˆ

Rn
g∗(x)(Tmf(x))dx =

ˆ
Rn
Fg∗(x) (m(−x)Ff(−x)) dx. (76)

Also, under our choice of normalization of the Fourier transform, −∆ = Tm for m(x) = ‖x‖22.
Theorem 24 can be used to bound the following multipliers, which arise as Laplace transforms of

−∆. (Another approach to such multipliers appears in the recent survey [25, Section 2.2.1]; while
it is presented there for scalar-valued functions, it is based on principles that are valid in any UMD
space.) Suppose that A : (0,∞)→ L(Y, Y ) is measurable and define α : R→ L(Y, Y ) by

∀ y ∈ Y, α(s)
def
= s

ˆ ∞
0

e−stA(t)ydt.

Then Theorem 24 applies to α(−∆), i.e., to the operator Tm where m : Rn → L(Y, Y ) is given by

∀(x, y) ∈ Rn × Y, m(x)y = α(‖x‖22)y = ‖x‖22
ˆ ∞

0
e−t‖x‖

2
2A(t)ydt. (77)

Indeed, by Parseval’s identity (76), the representation (65) is a direct consequence of (77). We
therefore have the following dimension independent bound, which holds true for every p ∈ (1,∞).∥∥∥∥∆

ˆ ∞
0

et∆A(t)dt

∥∥∥∥
Lp(Rn,Y )→Lp(Rn,Y )

6 βp(Y )2Rp(A),

where we recall the notation (55). Also, if A takes values in C then∥∥∥∥∆

ˆ ∞
0

et∆A(t)dt

∥∥∥∥
Lp(Rn,Y )→Lp(Rn,Y )

6 βp(Y )‖A‖L∞(0,∞). (78)
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Later we shall use (78) as a source of dimension-independent bounds for multipliers that corre-
spond to imaginary powers of the Laplacian. Specifically, for every s ∈ (0,∞) and u ∈ R,

siu = s−(1−iu)s =
s

Γ(1− iu)

ˆ ∞
0

t−iue−stdt.

It therefore follows from (78) that∥∥(−∆)iu
∥∥
Lp(Rn,Y )→Lp(Rn,Y )

6
βp(Y )

|Γ(1− iu)|
� βp(Y )

e|u| arctan |u|√
1 + |u|

� βp(Y )
e
π|u|
2√

1 + |u|
, (79)

where the penultimate step in (79) is a consequence of Stirling’s formula. For ease of later reference,
we record the bound that we have just proved as Corollary 25 below. The reverse implication, i.e.,
that the boundedness (−∆)iu on Lp(Rn, Y ) implies that Y is UMD, is also true; in fact it was pointed
out in [41] that [36] implicitly contains the estimate βp(Y ) 6 lim infu→0 ‖(−∆)iu‖Lp(Rn,Y )→Lp(Rn,Y ).

Corollary 25. Suppose that p ∈ (1,∞) and (Y, ‖ · ‖Y ) is a UMD Banach space. Then for every
u ∈ R and n ∈ N we have ∥∥(−∆)iu

∥∥
Lp(Rn,Y )→Lp(Rn,Y )

. βp(Y )
e
π|u|
2√

1 + |u|
.

Our next corollary of Theorem 24 is a dimension-independent bound for a multiplier that will be
used in the ensuing proof of Theorem 5. We shall use below the following integral representation.

∀(θ, α) ∈ (0, 1)× [0,∞),
1

(1 + α)θ
=

sin(πθ)

π

ˆ 1

0

ds

s1−θ(1− s)θ(1 + αs)
. (80)

To verify the validity of (80), simply apply the change of variable s = t/(1 + α− αt).
Corollary 26. Fix a ∈ (0, 2] and n ∈ N. Define ma : Rn → R by setting

∀, x = (x1, . . . , xn) ∈ Rn r {0}, ma(x)
def
=
|x1|a

‖x‖a2
. (81)

Suppose that (Y, ‖ · ‖Y ) is a UMD Banach space and that p ∈ (1,∞). Then

‖Tma‖Lp(Rn,Y )→Lp(Rn,Y ) 6 β
+
p (Y )2β−p (Y ) 6 βp(Y )3. (82)

Remark 27. When Y = C in Corollary 26, Bañuelos and Bogdan [3] obtained the bound

‖Tma‖Lp(Rn,R)→Lp(Rn,R) 6 max

{
p,

p

p− 1

}
− 1. (83)

Note that βp(C) = max{p, p/(p−1)}−1, by a theorem of Burkholder [16]. We are unable to recover
the better estimate (83) for the scalar-valued case of Corollary 26 using our method.

Proof of Corollary 26. Write each x ∈ Rn as x = (x1, x
′), where x′ = (x2, . . . , xn) ∈ Rn−1. For

every s ∈ (0, 1] define γs : Rn → R by

∀x ∈ Rn, γs(x)
def
=

x2
1

x2
1 + s‖x′‖22

=

ˆ ∞
0

x2
1e
−(x21+s‖x′‖22)tdt. (84)

Then γ1 = m2, and if a ∈ (0, 2) then by (80) with θ = a/2 ∈ (0, 1) and α = ‖x′‖22/x2
1 we have

ma =

ˆ 1

0
γsdµa(s),

where µa is the probability measure on (0, 1) whose density is proportional to s
a
2
−1(1 − s)−

a
2 .

Therefore, in order to prove the desired estimate (82) it suffices to show that for every s ∈ (0, 1),

‖Tγs‖Lp(Rn,Y )→Lp(Rn,Y ) 6 β
+
p (Y )2β−p (Y ).
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Consider the UMD Banach space Z
def
= Lp(Rn−1, Y ). By the identification Lp(Rn, Y ) ∼= Lp(R, Z),

the multiplier Tγs can be thought of as an operator from Lp(R, Z) to Lp(R, Z); this is how Theo-
rem 24 will be applied next, i.e., with Y replaced by Z, while noting that β±p (Z) = β±p (Y ).

We consider a test function f : Rn → Y that is finite linear combination of functions of the form
x 7→ f1(x1)f2(x2) · · · fn(xn)y, where y ∈ Y and each fi has a smooth Fourier transform, compactly
supported away from 0, and a similar function g∗ : Rn → Y ∗. Note that such functions are dense in
Lp(R, Z) ∼= Lp(Rn, Y ) and in Lq(R, Z∗) = Lq(R, Lq(Rn−1, Y ∗)) ∼= Lq(Rn, Y ∗), respectively, where
q = p/(p− 1). Then by the Parseval identity (76) we haveˆ

R
g∗(x1)(Tγsf(x1))dx1 =

ˆ
Rn
g∗(x)(Tγsf(x))dx =

ˆ
Rn
Fg∗(x)

(
x2

1

x2
1 + s‖x′‖22

Ff(−x)

)
dx.

Consequently, by the second equality in (84),
ˆ
R
g∗(x1)(Tγsf(x1))dx1 =

ˆ ∞
0

ˆ
Rn
x1e
− t

2
x21Fg∗(x)

(
e−ts‖x

′‖22x1e
− t

2
x21Ff(−x)

)
dxdt

=

ˆ ∞
0

ˆ
Rn
F
(

∂

∂x1
e
t
2

(
∂
∂x1

)2

g∗
)

(x)

(
F
(
−ets∆′ ∂

∂x1
e
t
2

(
∂
∂x1

)2

f

))
(−x)dxdt,

where ∆′ denotes the Laplacian on Rn−1, i.e., with respect to the variable x′. By the vector-valued
Parseval identity (75), we therefore haveˆ

R
g∗(x1)(Tγsf(x1))dx1 =

ˆ ∞
0

ˆ
R

(
∂

∂x1
e
u
2

(
∂
∂x1

)2

g∗(x1)

)(
A(u)

∂

∂x1
e
u
2

(
∂
∂x1

)2

f

)
(x1)dx1du,

where A(u)
def
= −eus∆′ : Lp(R, Z) → Lp(R, Z). Recalling Corollary 21, it therefore follows from

Theorem 24 that

‖Tγs‖Lp(Rn,Y )→Lp(Rn,Y ) = ‖Tγs‖Lp(R,Z)→Lp(R,Z)

6 β+
p (Z)β−p (Z)Rp

({
et∆

′
: Lp(Rn−1, Y )→ Lp(Rn−1, Y )

}
t∈(0,∞)

)
6 β+

p (Y )2β−p (Y ). �

4.3. Littlewood–Paley decomposition. We need to introduce notation for the usual multi-scale
bump functions that occur in Littlewood–Paley decompositions. Let φ : R → [0,∞) be smooth
and supported on [−2,−1/2] ∪ [1/2, 2]; for concreteness we can take

∀x ∈ R, φ(x)
def
=

{
e
− 1

(|x|−1/2)(2−|x|) if |x| ∈ (1/2, 2),
0 if |x| ∈ [0, 1/2] ∪ [2,∞).

(85)

For k ∈ Z define ψk : R→ R by

∀x ∈ R, ψk(x)
def
=

φ(2kx)∑
j∈Z φ(2jx)

. (86)

We also define ωk : R→ R by

∀x ∈ R, ωk(x)
def
= ψk−1(x) + ψk(x) + ψk+1(x). (87)

Thus ωkψk = ψk, and therefore the corresponding multipliers satisfy the identity TωkTψk = Tψk .
For every k ∈ Z define ϑk : R→ [0,∞) by

∀x ∈ R, ϑk(x)
def
=

sin4(2kx)

(2kx)2
. (88)

Like ψk, the function ϑk is roughly localized around |x| � 2−k, but unlike ψk, it has long tails that
are supported over all of R. The importance of the special “pseudo-bump functions” {ϑk}k∈Z stems
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from the fact that they can be directly related to averages of dyadic martingales, which leads to
the following form of the Littlewood–Paley inequality with a good constant.

Proposition 28. Suppose that p ∈ (1,∞) and let (Y, ‖ · ‖Y ) be a UMD Banach space. Then

∀ f ∈ Lp(R, Y ),

(
Eε∈{−1,1}Z

∥∥∥∑
j∈Z

εjTϑjf
∥∥∥p
Lp(R,Y )

) 1
p

6 β+
p (Y )‖f‖Lp(R,Y ) 6 βp(Y )‖f‖Lp(R,Y ).

Proposition 28 is due implicitly to Bourgain [12], where it is proved as an intermediate step to-
wards a more usual form of the Littlewood–Paley inequality involving the localized bump functions
{ψk}k∈Z in place of {ϑk}k∈Z, but with a more complicated dependence on the UMD constant. The
above formulation of Proposition 28 appears explicitly as the special case h = k = 1[0,1/2] − 1[1/2,1]

of Proposition 5.10 in [40] (where we are using here the notation of [40, Proposition 5.10]).
In subsequent arguments we shall use Proposition 28 in addition to some auxiliary estimates

concerning the bump functions {ψk}k∈Z , which are valid for arbitrary Banach space targets. These
estimates rely on the fact that if m ∈ L1(R) then by Young’s inequality we have

∀ f ∈ Lp(R, Y ), ‖Tmf‖Lp(R,Y ) =
∥∥(F−1m

)
∗ f
∥∥
Lp(R,Y )

6
∥∥F−1m

∥∥
L1(R)

‖f‖Lp(R,Y ). (89)

Lemma 29. Suppose that p ∈ [1,∞] and that (Y, ‖ · ‖Y ) is a Banach space. Then for every k ∈ Z,

∀ f ∈ Lp(R, Y ), ‖Tψkf‖Lp(R,Y ) . ‖Tϑkf‖Lp(R,Y ). (90)

Proof. Since for every x ∈ R and k ∈ Z we have ϑk(x) = ϑ0(2kx) and ψk(x) = ψ0(2kx), we also
have Tϑkf(x) = Tϑ0(y 7→ f(2ky))(2−kx) and Tψkf(x) = Tψ0(y 7→ f(2ky))(2−kx). Consequently,
it suffices to prove (90) when k = 0. Since ϑ0 is nonzero on the support of ψ0, we can write
Tψ0f = Tψ0/ϑ0Tθ0f . The function ψ0/ϑ0 is smooth and compactly supported, therefore its inverse

Fourier transform g = F−1(ψ0/ϑ0) belongs to the Schwartz class of test functions S(R), and in
particular g ∈ L1(R). Thus (90) follows from (89) with m = ψ0/ϑ0 and Tϑ0f in place of f . �

In order to facilitate the next two applications of (89), we record the following simple observation.
If m ∈ L1(R) is smooth then for every a ∈ (0,∞) we have∥∥F−1m

∥∥
L1(R)

6

(ˆ
R

dx

1 + (ax)2

)
sup
x∈R

∣∣(1 + a2x2)
(
F−1m

)
(x)
∣∣

=
π

a

∥∥F−1(m− a2m′′)
∥∥
L∞(R)

6
π

a

∥∥m− a2m′′
∥∥
L1(R)

6
π

a
‖m‖L1(R) + πa

∥∥m′′∥∥
L1(R)

. (91)

Choosing a =
√
‖m‖L1(R)/‖m′′‖L1(R) in (91) and substituting the resulting estimate into (89) yields

∀ f ∈ Lp(R, Y ), ‖Tmf‖Lp(R,Y ) 6 2π
√
‖m‖L1(R)‖m′′‖L1(R) · ‖f‖Lp(R,Y ). (92)

Lemma 30. Fix k ∈ Z and p ∈ [1,∞]. Let (Y, ‖ · ‖Y ) be a Banach space. Then for every
f ∈ Lp(R, Y ) and y ∈ R we have(ˆ

R

∥∥Tψkf(x+ y)− Tψk(x)f(x)
∥∥p
Y

dx

) 1
p

. min

{
1,
|y|
2k

}
‖Tψkf‖Lp(R,Y ) . (93)

Proof. Write g(x)
def
= Tψkf(x+y)−Tψkf(x). The fact that the norm of g in Lp(R, Y ) is at most twice

the norm of Tψkf in Lp(R, Y ) follows from the triangle inequality in Lp(R, Y ). For the second esti-
mate in (93), note that g = TρyωkTψkf , where ρy(x) = e−ixy−1. Hence, it remains to show that for

every h ∈ Lp(R, Y ) and y ∈ [−2k, 2k] we have ‖Tρyωkh‖Lp(R,Y ) . |y|2−k‖h‖Lp(R,Y ). By (92), this will

follow if we prove that ‖ρyωk‖L1(R) · ‖(ρyωk)′′‖L1(R) . (2−ky)2. Since ρy(x)ωk(x) = (ρ2−kyω0)(2ky)
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and for every smooth m ∈ L1(R) the product ‖x 7→ m(λx)‖L1(R) · ‖(x 7→ m(λx))′′‖L1(R) is indepen-
dent of λ ∈ (0,∞), it suffices to show that

∀ z ∈ [−1, 1], ‖ρzω0‖L1(R) . |z| and ‖(ρzω0)′′‖L1(R) . |z|. (94)

The point-wise estimate |ρz(x)| 6 |zx| combined with the fact that the function x 7→ xω0(x) is
in L1(R) implies the first assertion in (94). For the second assertion in (94), compute directly that

(ρzω0)′′(x) = −z2e−ixzω0(x)− i2ze−ixzω′0(x) + (e−ixz − 1)ω′′0(x).

We therefore have the following point-wise estimate, which holds true whenever |z| 6 1.

|(ρzω0)′′(x)| 6 |z|2|ω0(x)|+ 2|zω′0(x)|+ |zxω′′0(x)| 6 |z|
(
|ω0(x)|+ 2|ω′0(x)|+ |xω′′0(x)|

)
.

The second assertion in (94) is now a consequence of the fact that the three functions ω0, ω
′
0 and

x 7→ xω′′0(x) all belong to L1(R). This concludes the proof of Lemma 30 �

Lemma 31. Fix k ∈ Z, p ∈ [1,∞] and α ∈ (0,∞). Let (Y, ‖ · ‖Y ) be a Banach space. Then for
every smooth and compactly supported f : R→ Y we have

‖Tψkf‖Lp(R,Y ) . (1 + α)22α(k+2) ‖Tψk(−∆)αf‖Lp(R,Y ) . (95)

Proof. Recalling the definition of ωk : R→ [0,∞) that is given in (87), since TωkTψk = Tψk we have
Tψkf = (−∆)−αTωkTψk(−∆)αf = TξkTψk(−∆)αf , where

∀x ∈ Rr {0}, ξk(x)
def
=

ωk(x)

|x|2α
= 22kαω0(2kx)

|2kx|2α
= 22kαξ0(2kx).

It therefore suffices to show that ξ0 is the Fourier transform of a function in L1(R) of norm at most
a constant multiple of (1 + α)24α. To this end, we will again apply the estimate (92). First, since
|x|−1 6 4 on the support of ω0 and ω0 ∈ L1(R), we have ‖ξ0‖L1(R) . 24α. Also,

∀x ∈ Rr {0}, ξ′′0 (x) =
2α(2α+ 1)

|x|2α
· ω0(x)

x2
− 4α

|x|2α
· ω
′
0(x)

|x|
+
ω′′0(x)

|x|2α
.

Using again that |x|−1 6 4 on the support of ω0, combined with the fact that the three functions
ω′′0 , x 7→ ω0(x)/x2 and x 7→ ω′0(x)/x are all in L1(R), it follows that ‖ξ′′0‖L1(R) . (2α+ 1)224α. So,

‖Tξ0‖Lp(R,Y )→Lp(R,Y )

(92)

.
√
‖ξ0‖L1(R)‖ξ′′0‖L1(R) 6

√
42α · (2α+ 1)242α . (1 + α)42α. �

4.4. Type and Cotype. For p ∈ [1, 2) and q ∈ [2,∞), the type p constant and the cotype q
constant of a Banach space (Y, ‖ · ‖Y ), denoted Tp(X) and Cq(Y ), respectively, are defined to be
the infimum over those T,C ∈ [1,∞] such that for every n ∈ N and every x1, . . . , xn ∈ Y ,

1

C

( n∑
j=1

‖xj‖qY
) 1
q
6 E

[∥∥∥ n∑
j=1

εjxj

∥∥∥
Y

]
6 T

( n∑
j=1

‖xj‖pY
) 1
p
, (96)

where the expectation is with respect to ε = (ε1, . . . , εn) ∈ {−1, 1}n chosen uniformly at random.
The smallest T,C ∈ (0,∞] for which (96) holds true are denoted Tp(Y ), Cq(Y ), respectively. Any
UMD Banach space (Y, ‖ · ‖Y ) admits an equivalent uniformly convex norm [61, 1], and hence it
has finite cotype [29, 66]. The following lemma makes this qualitative statement quantitative in
the case of cotype. A similar (and simpler) argument yields a quantitative bound in the case of
type as well (see Remark 33 below), but in what follows only the case of cotype will be used.

Lemma 32 (Cotype in terms of β(Y )). There exists a universal constant κ ∈ (1,∞) such that for
every β ∈ [1,∞), if (Y, ‖ · ‖Y ) is a UMD Banach space with β(Y ) 6 β then then (Y, ‖ · ‖Y ) it has
cotype κβ, and moreover Cκβ(Y ) 6 κ.
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Proof. The proof below is a (somewhat tedious) combination of several results that appear in the
literature. The key step is an examination of the proof of Pisier’s quantitative version [68] of the
Maurey–Pisier theorem [63] for stable type. For p ∈ (1, 2) let STp(Y

∗) be the stable type p constant
of the dual space Y ∗. Namely, STp(Y

∗) is the infimum over those S ∈ (0,∞] such that for every
n ∈ N, every x∗1, . . . , x

∗
n ∈ Y ∗ satisfy

E
[∥∥∥ n∑

j=1

θjx
∗
j

∥∥∥
Y ∗

]
6 S

( n∑
j=1

∥∥x∗j∥∥pY ∗ ) 1
p
, (97)

where in (97) the expectation is with respect to i.i.d. standard symmetric p-stable random variables
{θj}nj=1, i.e., the characteristic function of θ1 is

∀ t ∈ R, E
[
eitθ1

]
= e−|t|

p
. (98)

It follows from (98) that E [|θ1|] � 1/(p − 1); see e.g. [28, Sec. XVII]. By Jensen’s inequality and
Kahane’s inequality, this implies that Tp(Y

∗) 6 (p − 1)STp(Y
∗). Since Cq(Y ) 6 Tp(Y

∗), where
q = p/(p− 1) (see e.g. [62, Sec. 6]), we deduce that

STp(Y
∗) &

Cq(Y )

p− 1
� qCq(Y ). (99)

Suppose from now on that p ∈ (1, 3/2] (in the argument below we only use that p is bounded
away from 2 by a universal constant). Equivalently, q ∈ [3,∞). It follows from the proof of the
main theorem of [68] that there exists a universal constant c ∈ (0, 1) such that if m ∈ N satisfies

m
1
q 6

c

q
STp(Y

∗) 6 c(p− 1)STp(Y
∗). (100)

then Y ∗ contains a 2-isomorphic copy of `mp . Unfortunately, while the dependence of m on STp(Y
∗)

that is stated in (100) is also stated explicitly in [68], the dependence on p, which is crucial for us
here, is not computed in [68]. However, one can verify (100) by examining the dependencies on p
of certain constants that appear in [68], and substituting these dependencies into the proof of [68].
Specifically, the constant Cp of Proposition 1.3 of [68] was computed in [58] to be

Cp =

(
1´∞

0
sin v
vp dv

) 1
p

= 2

 Γ
(
p+1

2

)
√
πΓ
(
1− p

2

)


1
p

.

Thus, recalling that p ∈ (1, 3/2), we see that Cp is bounded above and below by positive universal
constants. The parameter Φ of Lemma 1.4 of [68] can be estimated via a direct computation
(e.g., using the last line of page 975 of [31]) to give Φ . 1/(p − 1). The proof of [68] uses only
two additional unspecified parameters, denoted K and η, that appear in Lemma 1.5 of [68]. In
Proposition 2 of [47] it is shown that one can take K = 2 and η = (2 − p)/(8p(q + 1)q). A direct
substitution of these estimates into the proof of Theorem 2.1 of [68] now yields (100).

Note that

β(`mp ) & min
{
q, (logm)

1
p

}
= min

{
q, (logm)

1− 1
q

}
. (101)

While (101) is folklore, we did not find it in the literature so we briefly sketch the relevant com-
putation. Let k ∈ N be the largest integer such that 2k 6 m. Let µ be the uniform probability
measure on the discrete hypercube {−1, 1}k, and think of `mp as containing an isometric copy of

Lp(µ). Define M0, . . . ,Mk : {−1, 1}k → Lp(µ) by setting M0 ≡ 1 and for j ∈ {1, . . . , k} defining

∀ ε, δ ∈ {−1, 1}k, Mj(ε)(δ)
def
=

k∏
`=1

(1 + ε`δ`) = 2k1{(ε1,...,εj)=(δ1,...,δj)}.
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Then {Mj}kj=0 is a martingale with respect to the natural coordinate filtration of {−1, 1}k.
Observe that ( ˆ

{−1,1}k
‖Mk(ε)‖2Lp(µ) dµ(ε)

) 1
2

= 2
k(p−1)
p = 2

k
q . (102)

For every ε, δ ∈ {−1, 1}k write j(ε, δ) = 0 if ε1 6= δ1 and otherwise let j(ε, δ) be the largest
j ∈ {1, . . . , k} such that εi = δi for all i ∈ {1, . . . , j}. With this notation,

S(ε, δ)
def
=
( k∑
j=1

(Mj(ε)(δ)−Mj−1(ε)(δ))2
) 1

2 � 2j(ε,δ) − 1. (103)

Note that for every j ∈ {0, . . . , k} we have

µ× µ
({

(ε, δ) ∈ {−1, 1}k × {−1, 1}k : j(ε, δ) = j
})
� 1

2j
. (104)

Hence, using the triangle inequality in Lp(µ) and Khinchine’s inequality, we have(ˆ
{−1,1}k

ˆ
{−1,1}k

∥∥∥ k∑
j=1

ηj (Mj(ε)−Mj−1(ε))
∥∥∥2

Lp(µ)
dµ(ε)dµ(η)

) 1
2

&

(ˆ
{−1,1}k

ˆ
{−1,1}k

S(ε, δ)pdµ(ε)dµ(δ)

) 1
p (103)∧(104)

&
( k∑
j=1

2j(p−1)
) 1
p � 2

k
q ·min

{
q, k

1
p

}
,

which, when contrasted with (102), implies (101).
A combination of (99), (100) and (101) implies that there exist universal a, b ∈ (0, 1/2) such that

∀ q ∈ [3,∞), β(X) > amin
{
q,
(
q log (1 + bCq(X))

)1− 1
q

}
.

For every q > β(X)/a this gives a(q log (1 + bCq(X)))2/3 6 a(q log (1 + bCq(X)))1−1/q 6 β(X).

Hence, Cq(X) 6 e3a/(2e)/(ba3/2), since q > β(X)/a. By choosing κ = max{1/a, e3a/(2e)/(ba3/2)},
the proof of Lemma 32 is complete. �

Remark 33. The same argument as in the proof of Lemma 32, without the need to use duality,
shows that Tκβ/(κβ−1)(Y ) 6 κ. Since we shall not need this fact below, the details are omitted.

4.5. UMD-valued Riesz potentials, Sobolev spaces and interpolation. Fix n ∈ N and
s, p ∈ (0,∞). Suppose that (Y, ‖ · ‖Y ) is a Banach space. If f : Rn → Y is smooth and compactly
supported then its homogeneous (s, p)-Riesz potential (semi)norm is defined as usual by

‖f‖Hs,p(Rn,Y )
def
=
∥∥∥(−∆)

s
2 f
∥∥∥
Lp(Rn,Y )

=
∥∥∥Tξ 7→‖ξ‖s2f∥∥∥Lp(Rn,Y )

. (105)

(‖ · ‖Hs,p(Rn,Y ) is sometimes denoted ‖ · ‖Ḣs,p(Rn,Y ), but we use a simpler notation since nonhomo-

geneous Riesz potentials do not occur in what follows.) The Banach space Hs,p(Rn, Y ) is the com-
pletion of the smooth and compactly support functions f : Rn → Y under the norm ‖ · ‖Hs,p(Rn,Y ).

Throughout the ensuing discussion we shall use standard notation and basic facts from complex
interpolation theory, as appearing in [9]. The following lemma provides quantitative control on the
behavior of the spaces Hs,p(Rn, Y ) under complex interpolation when Y is a UMD Banach space.

Lemma 34. Let (Y, ‖ · ‖Y ) be a UMD Banach space. Fix p ∈ [1,∞) and s, σ ∈ (0,∞) with s < σ.
Suppose also that θ ∈ (0, 1) and define t = (1− θ)s+ θσ. Then every f ∈ Ht,p(Rn, Y ) satisfies

‖f‖[Hs,p(Rn,Y ),Hσ,p(Rn,Y )]θ
. βp(Y )e

π(σ−s)
4

√
θ(1−θ) ‖f‖Ht,p(Rn,Y ) .
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Proof. Consider the strip S
def
= {z ∈ C : <z ∈ (0, 1)}. For every M ∈ (0,∞) define an auxiliary

mapping ΦM : S → Hs,p(Rn, Y ) +Hσ,p(Rn, Y ) by

∀ z ∈ S, ΦM (z)
def
= eM(z(z−1)−θ(θ−1))(−∆)

t−s−z(σ−s)
2 f.

Then ΦM is holomorphic on S and satisfies ΦM (θ) = f . By the definition of the complex interpo-
lation space [Hs,p(Rn, Y ), Hσ,p(Rn, Y )]θ, we therefore have

‖f‖[Hs,p(Rn,Y ),Hσ,p(Rn,Y )]θ
6 inf

M>0
sup
b∈R

max
{
‖ΦM (ib)‖Hs,p(Rn,Y ), ‖ΦM (1 + ib)‖Hσ,p(Rn,Y )

}
. (106)

For every (a, b) ∈ [0, 1]× R we have

(−∆)
s+a(σ−s)

2 ΦM (a− bi) = eMa(a−1)+Mθ(1−θ)−Mb2−M(2a−1)bi(−∆)
ib(σ−s)

2 (−∆)
t
2 f.

Recalling (105), we therefore obtain the estimate

‖ΦM (a+ bi)‖Hs+a(σ−s),p(Rn,Y )

6 eMa(a−1)+Mθ(1−θ)−Mb2
∥∥∥(−∆)

ib(σ−s)
2

∥∥∥
Lp(Rn,Y )→Lp(Rn,Y )

‖f‖Ht,p(Rn,Y )

. βp(Y )eMa(a−1)+Mθ(1−θ) · e−Mb2+
π|b|(σ−s)

4 ‖f‖Ht,p(Rn,Y ), (107)

where in (107) we used Corollary 25. The function b 7→ −Mb2 +π|b|(σ− s)/4 attains its maximum
on R at b = π(σ − s)/(8M). It therefore follows from (107) that

sup
b∈R

max
{
‖ΦM (ib)‖Hs,p(Rn,Y ), ‖ΦM (1 + ib)‖Hσ,p(Rn,Y )

}
. βp(Y )eMθ(1−θ)+π2(σ−s)2

64M ‖f‖Ht,p(Rn,Y ).

In combination with (106) we therefore have

‖f‖[Hs,p(Rn,Y ),Hσ,p(Rn,Y )]θ
. βp(Y )

(
inf

M∈(0,∞)
eMθ(1−θ)+π2(σ−s)2

64M

)
‖f‖Ht,p(Rn,Y )

= βp(Y )e
π(σ−s)

4

√
θ(1−θ) ‖f‖Ht,p(Rn,Y ) , (108)

where for (108) the optimal choice of M ∈ (0,∞) is M = π(σ − s)/(8
√
θ(1− θ)). �

Suppose that Ω ⊆ Rn is open (for our purposes Ω will always be either a multiple of Bn or all of
Rn). If (Y, ‖ · ‖Y ) is a Banach space and p ∈ [1,∞] then for every smooth f : Ω→ Y denote

‖f‖W1,p(Ω,Y )
def
=

n∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
Lp(Ω,Y )

. (109)

Thus ‖ · ‖Wp,1(Ω,Y ) is the (homogeneous) first order Sobolev (semi)norm of f . The corresponding

Sobolev space Wp,1(Ω, Y ) is the completion of the space of all smooth and compactly supported
functions f : Rn → Y under the norm ‖·‖Wp,1(Ω,Y ). For (s, p) ∈ (0, 1)×[1,∞), the order s fractional

(homogeneous) Sobolev (semi)norm of f : Ω→ Y is defined by

‖f‖Ws,p(Ω,Y )
def
=

(¨
Ω×Ω

‖f(x)− f(y)‖pY
‖x− y‖n+ps

2

dxdy

) 1
p

. (110)

While the notation ‖ · ‖Ẇs,p(Ω,Y ) is sometimes used in the literature, we shall use the above simpler

notation because nonhomogeneous Sobolev norms do not occur in what follows.
Our next goal is to relate UMD-valued Riesz potentials to Sobolev norms. The following lemma

treats the case of first order Sobolev norms, and also contains a comparison between Riesz potentials
that will be needed later; it is a simple consequence of the boundedness of the Hilbert transform
on UMD Banach spaces, combined with the method of rotations.
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Lemma 35. Suppose that (Y, ‖ · ‖Y ) is a UMD Banach space, n ∈ N and p ∈ (1,∞). Then every
f ∈W1,p(Rn, Y ) satisfies

‖f‖H1,p(Rn,Y ) 6 βp(Y )2‖f‖W1,p(Rn,Y ).

Moreover, if s ∈ (1,∞) and j ∈ {1, . . . , n} then for every smooth f : Rn → Y we have∥∥∥∥ ∂f∂xj
∥∥∥∥
Hs−1,p(Rn,Y )

6 βp(Y )2‖f‖Hs,p(Rn,Y ). (111)

Proof. Suppose that K : Rn → Y is odd, continuous on Rn r {0}, and positively homogeneous
of order −n, i.e., K(tx) = t−nK(x) for every t ∈ (0,∞) and x ∈ Rn r {0}. For f ∈ Lp(Rn, X)
consider the corresponding Calderòn–Zygmund singular integral

∀x ∈ Rn, TKf(x)
def
=

ˆ
Rn
K(x− y)f(y)dy. (112)

It follows from the method of rotations, as presented by Iwaniec and Martin in [44], that

‖TK‖Lp(Rn,Y )→Lp(Rn,Y ) 6
π

2

(ˆ
Sn−1

|K(z)|dσ(z)

)
‖H‖Lp(R,Y )→Lp(R,Y ), (113)

where σ is the surface area measure on the Euclidean sphere Sn−1 and H : Lp(R, Y ) → Lp(R, Y )
is the Hilbert transform, i.e.,

∀ϕ ∈ Lp(R, Y ), Hϕ(x)
def
=

1

π

ˆ
R

ϕ(y)

x− y
dy. (114)

The integrals in (112) and (114) exist in the sense of principal values. The estimate (113) is
presented in [44, Proposition 5.1] in the case Y = C, but the same proof applies to the Banach
space-valued setting without any change (the proof is based on an integral identity that is estimated
using convexity of the norm. As such, the vector-valued and scalar-valued cases are identical; here
the Banach space Y can be general and the UMD property isn’t used).

For j ∈ {1, . . . , n} consider the Riesz transform given by

∀x ∈ Rn, Rjf(x)
def
=

Γ(n+1
2 )

π
n+1
2

ˆ
Rn

xj − yj
‖x− y‖n+1

2

f(y)dy.

By (113) we have,

‖Rj‖Lp(Rn,Y )→Lp(Rn,Y ) 6
πΓ(n+1

2 )
´
Sn−1 |z1|dσ(z)

2π
n+1
2

‖H‖Lp(R,Y )→Lp(R,Y )

= ‖H‖Lp(R,Y )→Lp(R,Y ) 6 βp(Y )2, (115)

where the bound ‖H‖Lp(R,Y )→Lp(R,Y ) 6 βp(Y )2 that was used in (115) is implicit in the important
work of Burkholder [15] and explicit in [32, Theorem 3].

Note that for every j ∈ {1, . . . , n} we have Rj = (−∆)−1/2 ∂
∂xj

, as follows directly by computing

the Fourier transform (see e.g. [72, Chapter III])). Consequently,

‖f‖H1,p(Rn,Y )
(105)
=
∥∥∥(−∆)−

1
2 ∆f

∥∥∥
Lp(Rn,Y )

=
∥∥∥ n∑
j=1

Rj
∂f

∂xj

∥∥∥
Lp(Rn,Y )

(109)∧(115)

6 βp(Y )2‖f‖W1,p(Rn,Y ).
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Finally, to deduce (111), proceed as follows.∥∥∥∥ ∂f∂xj
∥∥∥∥
Hs−1,p(Rn,Y )

(105)
=

∥∥∥∥(−∆)
s−1
2
∂f

∂xj

∥∥∥∥
Lp(Rn,Y )

=

∥∥∥∥(−∆)−
1
2
∂

∂xj
(−∆)

s
2 f

∥∥∥∥
Lp(Rn,Y )

=
∥∥∥Rj(−∆)

s
2 f
∥∥∥
Lp(Rn,Y )

(115)

6 βp(Y )2
∥∥∥(−∆)

s
2 f
∥∥∥
Lp(Rn,Y )

(105)
= βp(Y )2‖f‖Hs,p(Rn,Y ). �

The following theorem asserts a useful comparison between UMD-valued fractional Sobolev
norms and the corresponding Riesz potentials.

Theorem 36. Fix n ∈ N, s ∈ (0, 1) and p ∈ [2,∞). Suppose that (Y, ‖ · ‖Y ) is a UMD Banach
space of cotype p. Then every f ∈ Hs,p(Rn, Y ) satisfies

‖f‖Ws,p(Rn,Y ) .
Cp(Y )βp(Y )4(nVn)

1
p

s(1− s)
‖f‖Hs,p(Rn,Y ), (116)

Proof of Theorem 36. The proof below proceeds via a reduction to a slightly stronger statement in
the one dimensional case n = 1. So, assume for the moment that we already proved that

∀ g ∈ Hs,p(R, Y ), ‖g‖Ws,p(R,Y ) .
Cp(Y )βp(Y )

s(1− s)
‖g‖Hs,p(R,Y ). (117)

We shall now deduce the desired estimate (116) from (117), and then proceed to prove (117).
For every z ∈ Sn−1 and w ∈ z⊥ ⊆ Rn define gz,w : R→ Y by setting

∀ t ∈ R, gz,w(t)
def
= f(w + tz). (118)

By changing to polar coordinates we see that

‖f‖pWs,p(Rn,Y )

(110)
=

¨
Rn×Rn

‖f(x+ y)− f(x)‖pY
‖y‖n+ps

2

dxdy

=
1

2

˚
Sn−1×Rn×R

‖f(x+ rz)− f(x)‖pY
|r|1+ps

dσ(z)dxdr

(110)∧(118)
=

1

2

ˆ
Sn−1

dσ(z)

ˆ
z⊥
‖gz,w‖pWs,p(R,Y )dw.

Hence, using (117) we deduce that

‖f‖Ws,p(Rn,Y ) .
Cp(Y )βp(Y )

s(1− s)

(ˆ
Sn−1

dσ(z)

ˆ
z⊥
‖gz,w‖pHs,p(R,Y )dw

) 1
p

. (119)

For every z ∈ Sn−1, w ∈ z⊥ and t ∈ R denote

hz,w(t)
def
=
(
−〈z,∇〉2

) s
2 f(w + tz)

(118)
=

(
− ∂2

∂t2

) s
2

gz,w(t).

With this notation, for every z ∈ Sn−1 we have

ˆ
z⊥
‖gz,w‖pHs,p(R,Y )dw

(105)
=

ˆ
z⊥
‖hz,w‖pLp(R,Y ) dw =

∥∥∥(−〈z,∇〉2) s2 f∥∥∥p
Lp(Rn,Y )

=
∥∥∥(−〈z,∇〉2) s2 (−∆)−

s
2 (−∆)

s
2 f
∥∥∥p
Lp(Rn,Y )

(105)

6 ‖Tmz‖
p
Lp(Rn,Y )→Lp(Rn,Y ) ‖f‖

p
Hs,p(Rn,Y ) , (120)
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where we set mz(x) = |〈z, x〉|s/‖x‖s2 for x ∈ Rn and z ∈ Sn−1. By rotation invariance, it follows
from Corollary 26 that the norm of the multiplier Tmz as an operator from Lp(Rn, Y ) to itself is at
most a constant multiple of βp(Y )3. By combining this bound with (119) and (120), we get

‖f‖Ws,p(Rn,Y ) .
Cp(Y )βp(Y )4σ(Sn−1)

1
p

s(1− s)
‖f‖Hs,p(Rn,Y ) .

Since σ(Sn−1) = nVn, this concludes the deduction of (116) from (117).
It remains to prove (117). The case Y = R of (117) is given in [9, Theorem 6.2.5], without

explicit dependence on the relevant parameters. The proof of (117) below consists of an adaptation
of the argument of [9, Theorem 6.2.5] to the UMD-valued setting, while tracking the bounds.

Recalling the Littlewood–Paley partition of unity {ψj}j∈Z given in (86), for every y ∈ R we have(ˆ
R
‖g(x+ y)− g(x)‖pY dx

) 1
p

6
∑
j∈Z

(ˆ
R

∥∥∥Tψjg(x+ y)− Tψj(x)g(x)
∥∥∥p
Y

dx

) 1
p

(121)

.
∑
j∈Z

min
{

1,
|y|
2j

}∥∥Tψjg∥∥Lp(R,Y )
, (122)

where in (121) we used the fact that
∑

j∈Z ψj ≡ 1 and the triangle inequality in Lp(R, Y ), and

in (122) we used Lemma 30. Now,

‖g‖Ws,p(R,Y )

(122)

.
(∑
r∈Z

ˆ 2r+1

2r

(∑
j∈Z

min
{

1,
|y|
2j

}∥∥Tψjg∥∥Lp(R,Y )

)p dy

|y|1+ps

) 1
p

(123)

�
(∑
r∈Z

(∑
u∈Z

min {1, 2u}
2su

· 2−s(r−u)
∥∥Tψr−ug∥∥Lp(R,Y )

)p) 1
p

(124)

6
∑
u∈Z

(∑
r∈Z

min {1, 2pu}
2psu

· 2−ps(r−u)
∥∥Tψr−ug∥∥pLp(R,Y )

) 1
p

(125)

=
(∑
j∈Z

2−psj
∥∥Tψjg∥∥pLp(R,Y )

) 1
p
∑
u∈Z

min {1, 2u}
2su

� 1

s(1− s)

(∑
j∈Z

2−psj
∥∥Tψjg∥∥pLp(R,Y )

) 1
p
, (126)

where for (124) use the fact that for each r ∈ Z in the integrand of the corresponding summand
that appears in the right hand side of (123) we have |y| � 2r, and make the change of variable
u = r − j, and for (125) use the triangle inequality in `p(Z).

Recalling the functions {ϑj}j∈Z given in (88), an application of Proposition 28 shows that

Eε∈{−1,1}Z

[∥∥∥∑
j∈Z

εjTϑj (−∆)
s
2 g
∥∥∥
Lp(R,Y )

]
6 βp(Y )

∥∥∥(−∆)
s
2 g
∥∥∥
Lp(R,Y )

= βp(Y )‖g‖Hs,p(R,Y ). (127)

At the same time, since Lp(R, Y ) has cotype p with constant Cp(Y ),

Eε∈{−1,1}Z

[∥∥∥∑
j∈Z

εjTϑj (−∆)
s
2 g
∥∥∥
Lp(R,Y )

]
&

1

Cp(Y )

(∑
j∈Z

∥∥∥Tϑj (−∆)
s
2 g
∥∥∥p
Lp(R,Y )

) 1
p

&
1

Cp(Y )

(∑
j∈Z

∥∥∥Tψj (−∆)
s
2 g
∥∥∥p
Lp(R,Y )

) 1
p
&

1

Cp(Y )

(∑
j∈Z

2−psj
∥∥Tψjg∥∥pLp(R,Y )

) 1
p
, (128)
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where in the penultimate step of (128) we used Lemma 90 and in the final step of (128) we used
Lemma 31. By combining (127) and (128), we see that(∑

j∈Z
2−psj

∥∥Tψjg∥∥pLp(R,Y )

) 1
p
. Cp(Y )βp(Y )‖g‖Hs,p(R,Y ). (129)

A substitution of (129) into (126) now yields the desired estimate (117). �

Remark 37. The left side of (129) is the Besov norm ‖g‖Bsp,p(R,Y ). Hence (129) asserts a quanti-

tative embedding of Hs,p(R, Y ) into Bs
p,p(R, Y ) when Y is a UMD space of cotype p. A qualitative

embedding statement of this type was recently established by Veraar [79, Proposition 3.1].

Remark 38. One can prove a reverse inequality to that of Theorem 36 under the assumption that
(Y, ‖ · ‖Y ) is a UMD Banach space of type p ∈ (1, 2], in which case one obtains an upper bound on
‖f‖Hs,p(Rn,Y ) in terms of ‖f‖Ws,p(Rn,Y ). Specifically, we have the following estimate for s > 0.

∀f ∈Ws,p(Rn, Y ), ‖f‖Hs,p(Rn,Y ) .
Tp(Y )βp(Y )4n

s
2

(p− 1)(nVn)
1− 1

p

‖f‖Ws,p(Rn,Y ). (130)

Since (130) is not needed below, we omit its proof (which is available on request). By Remark 33,
one can take in (130) p− 1 � 1/β(Y ), in which case Tp(Y ) � 1 and, by (49), βp(Y ) . β(Y )2. Note
that, by Kwapien’s theorem [52], unless Y is isomorphic to a Hilbert space, its type and cotype do
not coincide, and therefore by combining Theorem 36 with (130) one does not obtain an equivalence
between the norms ‖ · ‖Hs,p(Rn,Y ) and ‖ · ‖Ws,p(Rn,Y ) for non-Hilbertian targets Y . See [38] for a
related characterization of Hilbert space.

Recalling the notation that was introduced in Section 2, we end this section by deducing a
corollary of Theorem 36 that will be very important in what follows.

Corollary 39. Fix p ∈ [2,∞) and (s, σ) ∈ (0, 1) × (1, 2). Let (Y, ‖ · ‖Y ) be a UMD Banach space
of cotype p. Then every measurable f : Rn → Y satisfies(˚

Rn×Bn×(0,∞)

‖fx(uy)− P 1
uf

x(uy)‖pY
Vnups+1

dxdydu

) 1
p

.
√
pnCp(Y )βp(Y )4

s(1− s)
‖f‖Hs,p(Rn,Y ), (131)

and(˚
Rn×Bn×(0,∞)

‖fx(uy)− P 1
uf

x(uy)‖pY
Vnupσ+1

dxdydu

) 1
p

.
√
pn

3
2Cp(Y )βp(Y )6

(σ − 1)(2− σ)
‖f‖Hσ,p(Rn,Y ). (132)

Proof. By integrating the conclusion of Corollary 14 (with q = ps) over x ∈ Rn we see that(
1

Vn

˚
Rn×Bn×(0,∞)

‖fx(uy)− P 1
uf

x(uy)‖pY
ups+1

dxdydu

) 1
p

.
√
pn

(nVn)
1
p

‖f‖Ws,p(Rn,Y ). (133)

A substitution of the conclusion of Theorem 36 into (133) yields (131).
Next, by integrating the conclusion of Corollary 15 (with q = pσ > p) over x ∈ Rn we see that(

1

Vn

˚
Rn×Bn×(0,∞)

‖fx(uy)− P 1
uf

x(uy)‖pY
upσ+1

dxdydu

) 1
p

.
√
pn

(nVn)
1
p

n∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
Wσ−1,p(Rn,Y )

. (134)

By Theorem 36 applied to ∂f
∂xj

for each j ∈ {1, . . . , n} and with s replaced by σ − 1 ∈ (0, 1),

∀ j ∈ {1, . . . , n},
∥∥∥∥ ∂f∂xj

∥∥∥∥
Wσ−1,p(Rn,Y )

.
Cp(Y )βp(Y )4(nVn)

1
p

(σ − 1)(2− σ)

∥∥∥∥ ∂f∂xj
∥∥∥∥
Hσ−1,p(Rn,Y )

. (135)
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Moreover, by the second assertion of Lemma 35 we have

max
j∈{1,...,n}

∥∥∥∥ ∂f∂xj
∥∥∥∥
Hσ−1,p(Rn,Y )

. β2
p(Y ) ‖f‖Hσ,p(Rn,Y ) . (136)

By substituting (136) into (135), and then substituting the resulting estimate into (134), we obtain
the desired estimate (132). �

5. Proof of Theorem 19

We shall prove here the following theorem.

Theorem 40. Fix p ∈ [2,∞) and suppose that (Y, ‖ · ‖Y ) is a UMD Banach space of cotype p.
Then every smooth f : Rn → Y satisfies(˚

Rn×Bn×(0,∞)

∥∥fx(uy)− P 1
uf

x(uy)
∥∥p
Y

Vnup+1
dxdydu

) 1
p

.
√
pnCp(Y )βp(Y )7 log(βp(Y )n)

n∑
j=1

(ˆ
Rn

∥∥∥ ∂f
∂xj

(x)
∥∥∥p
Y

dx

) 1
p

. (137)

Note that Theorem 19 follows from Theorem 40. Indeed, if (Y, ‖ · ‖Y ) is a UMD Banach space
with β = β(Y ) then by Lemma 32 there exists a universal constant κ ∈ (0,∞) such that if we set
p = κβ then Cp(Y ) . 1 (in particular we necessarily have κβ > 2). Moreover, by (49) we have
βp(Y ) . β2. To deduce Theorem 19, take f : Rn → Y that is Lipschitz and compactly supported.
By convolving f with a smooth bump function whose support has small diameter we may also
assume that f is smooth. It now follows from Theorem 40 that(˚

Rn×Bn×(0,∞)

∥∥fx(uy)− P 1
uf

x(uy)
∥∥κβ
Y

Vnuκβ+1
dxdydu

) 1
κβ

. β
29
2
√
n log(βn)

n∑
j=1

(ˆ
Rn

∥∥∥ ∂f
∂xj

(x)
∥∥∥κβ
Y

dx

) 1
κβ

6 β15n
5
2
(
vol(supp(f))

) 1
κβ ‖f‖Lip,

where we used the fact that, due to (8), for every x ∈ Rn and j ∈ {1, . . . , n} we have∥∥∥ ∂f
∂xj

(x)
∥∥∥
Y

= lim
t→0

‖f(x+ tej)− f(x)‖Y
|t|

6 ‖f‖Lip‖ej‖X
(8)

6 ‖f‖Lip

√
n.

Proof of Theorem 40. For every s ∈ (0,∞) let νs be the measure on (0,∞)×Rn×Bn whose density
is given by

∀(u, x, y) ∈ (0,∞)× Rn ×Bn, ϕs(u, x, y)
def
=

1

Vn|u|ps+1
. (138)

Define a linear operator S : Hs,p(Rn, Y )→ Lp(νs, Y ) by setting for every f ∈ Hs,p(Rn, Y ),

∀(u, x, y) ∈ (0,∞)× Rn ×Bn, Sf(u, x, y)
def
= fx(uy)− P 1

uf
x(uy), (139)

where we recall the notations (9) and (15) for fx and P 1
u , respectively. In what follows we let Ms

denote the norm of S as an operator from Hs,p(Rn, Y ) to Lp(νs, Y ), i.e.,

∀ s ∈ (0,∞), Ms
def
= ‖S‖Hs,p(Rn,Y )→Lp(νs,Y ).

Suppose that s, σ, θ ∈ R satisfy

(s, σ, θ) ∈ (0, 1)× (1, 2)× (0, 1) and 1 = (1− θ)s+ θσ.
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Then ϕ1 = ϕ1−θ
s ϕθσ, so by Stein’s interpolation theorem [71, Theorem 2] for every f in the complex

interpolation space [Hs,p(Rn, Y ), Hσ,p(Rn, Y )]θ we have(˚
Rn×Bn×(0,∞)

∥∥fx(uy)− P 1
uf

x(uy)
∥∥p
Y

Vnup+1
dxdydu

) 1
p

(138)∧(139)
= ‖Sf‖Lp(ν1,Y ) 6M

1−θ
s M θ

σ‖f‖[Hs,p(Rn,Y ),Hσ,p(Rn,Y )]θ . (140)

We note that Stein’s interpolation theorem is stated in [71] for real-valued function spaces, but the
standard proofs of this theorem (see also [74] or [9, Section 5.4]) work without additional effort
for vector-valued spaces as well, which is what we are using here. Alternatively, the vector-valued
setting is treated explicitly by Calderón in [18, Section 13.6]. Every f ∈W1,p(Rn, Y ) satisfies

‖f‖[Hs,p(Rn,Y ),Hσ,p(Rn,Y )]θ

(∗)
. βp(Y )‖f‖H1,p(Rn,Y )

(∗∗)
. βp(Y )3‖f‖W1,p(Rn,Y ). (141)

where in (∗) we used Lemma 34 and in (∗∗) we used Lemma 35. Hence,(˚
Rn×Bn×(0,∞)

∥∥fx(uy)− P 1
uf

x(uy)
∥∥p
Y

Vnup+1
dxdydu

) 1
p

(109)∧(140)∧(141)

. βp(Y )3

(
inf

(s,σ,θ)∈(0,1)×(1,2)×(0,1)

(1−θ)s+θσ=1

M1−θ
s M θ

σ

) n∑
j=1

(ˆ
Rn

∥∥∥ ∂f
∂xj

(x)
∥∥∥p
Y

dx

) 1
p

. (142)

Corollary 39 asserts that

∀(s, σ) ∈ (0, 1)× (1, 2), Ms .
√
pnCp(Y )βp(Y )4

s(1− s)
and Mσ .

√
pn

3
2Cp(Y )βp(Y )6

(σ − 1)(2− σ)
.

Hence,

inf
(s,σ,θ)∈(0,1)×(1,2)×(0,1)

(1−θ)s+θσ=1

M1−θ
s M θ

σ . inf
(s,σ,θ)∈(0,1)×(1,2)×(0,1)

(1−θ)s+θσ=1

(√
pnCp(Y )βp(Y )4

s(1− s)

)1−θ(√pn 3
2Cp(Y )βp(Y )6

(σ − 1)(2− σ)

)θ
.
√
pnCp(Y )βp(Y )4 log(βp(Y )n), (143)

where (143) arises by choosing s = 1 − 1/ log(βp(Y )n) and σ = 2 − 1/ log(βp(Y )n), in which
case necessarily θ = 1/ log(βp(Y )n). We note that these choices essentially yield the best possible
estimate in (143) (up to constant factors), but one could also choose here, say, s = 1/2 and
σ = 3/2, yielding a worse dependence on n which is of lesser importance for our present purposes.
A substitution of (143) into (142) yields the desired estimate (137). �
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Added in proof. In the forthcoming work [39], Question 8 is resolved positively by showing that
Theorem 2 holds true for any uniformly convex target Y (in which case the parameter β is replaced
by a quantity that depends on the modulus of uniform convexity of Y ). Also, the dependence on
n that appears in (7) is improved in [39]. This is achieved in [39] by following the vector-valued
Littlewood–Paley strategy that we introduced here to bound rX→Y (ε), but while implementing it
via a method that differs markedly from the argument that appears in the present work. Specifically,
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[39] follows more closely Bourgain’s original strategy [13] for proving his discretization theorem,
though with major differences. In particular, the proof in [39] even yields a new approach to
Dorronsoro’s influential classical work [26] in the scalar-valued setting.
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