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Abstract

A metric space X has Markov type 2, if for any reversible finite-state Markov chain {Zt} (with
Z0 chosen according to the stationary distribution) and any map f from the state space to X,
the distance Dt from f(Z0) to f(Zt) satisfies E(D2

t ) ≤ K2 tE(D2
1) for some K = K(X) < ∞.

This notion is due to K. Ball (1992), who showed its importance for the Lipschitz extension
problem. However until now, only Hilbert space (and metric spaces which embed bi-Lipschitzly
into it) were known to have Markov type 2. We show that every Banach space with modulus
of smoothness of power type 2 (in particular, Lp for p > 2) has Markov type 2; this proves a
conjecture of Ball. We also show that trees, hyperbolic groups and simply connected Riemannian
manifolds of pinched negative curvature have Markov type 2. Our results are applied to settle
several conjectures on Lipschitz extensions and embeddings. In particular, we answer a question
posed by Johnson and Lindenstrauss in 1982, by showing that for 1 < q < 2 < p < ∞, any
Lipschitz mapping from a subset of Lp to Lq has a Lipschitz extension defined on all of Lp.

1 Introduction

K. Ball [2] introduced the notion of Markov type of metric spaces, defined as follows. Recall that a
Markov chain {Zt}∞t=0 with transition probabilities aij := Pr(Zt+1 = j | Zt = i) on the state space
{1, . . . , n} is stationary if πi := Pr(Zt = i) does not depend on t and it is reversible if πi aij = πj aji

for every i, j ∈ {1, . . . , n}.
Definition 1.1 (Ball [2]). Given a metric space (X, d) and p ∈ [1,∞), we say that X has Markov
type p if there exists a constant K > 0 such that for every stationary reversible Markov chain
{Zt}∞t=0 on {1, . . . , n}, every mapping f : {1, . . . , n} → X and every time t ∈ N,

E d(f(Zt), f(Z0))p ≤ Kp tE d(f(Z1), f(Z0))p.

(Here and throughout, we omit some parentheses and write Exp for E(xp), etc.) The least such K
is called the Markov type p constant of X, and is denoted Mp(X).
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Ball introduced this concept in his profound study of the Lipschitz extension problem [2] (see
Section 2), and the notion of Markov type has since found applications in the theory of bi-Lipschitz
embeddings [46, 4]. The main theorem in [2] states that Lipschitz functions from a subset of a
metric space X having Markov type 2 into a Banach space with modulus of convexity of power
type 2 (see the definition in (3) below) extend to Lipschitz functions defined on all of X. Ball showed
that M2(L2) = 1, yet apart from Hilbert space and spaces which embed bi-Lipschitzly into Hilbert
space, no other metric spaces were known to have Markov type 2. Ball asked in [2] whether Lp for
2 < p < ∞ has Markov type 2, and more generally, whether every Banach space with modulus of
smoothness of power type 2 has Markov type 2. Recall that X has modulus of smoothness of
power type 2 if for all x, y in the unit sphere of X, we have ‖x + τy‖ + ‖x − τy‖ − 2 ≤ KSτ2

for some constant KS = KS(X) < ∞ and all τ > 0 (see also (5) below). Here we answer Ball’s
question positively, and prove:

Theorem 1.2. Every normed space with modulus of smoothness of power type 2 has Markov type
2. Moreover, for every 2 ≤ p < ∞, we have M2(Lp) ≤ 4

√
p− 1.

In conjunction with Ball’s extension theorem [2], this implies the following non-linear version
of Maurey’s extension theorem [49] (see below), answering a question posed by Johnson and Lin-
denstrauss in [29].

Theorem 1.3. Let X be a Banach space with modulus of smoothness of power type 2 and let Y be a
Banach space with modulus of convexity of power type 2. Then there exists a constant C = C(X,Y )
such that for every subset A ⊆ X and every Lipschitz mapping f : A → Y , it is possible to extend
f to f̃ : X → Y such that ‖f̃‖Lip ≤ C‖f‖Lip.

In particular, for X = Lp and Y = Lq with 1 < q < 2 < p < ∞, we can take C =
O(

√
(p− 1)/(q − 1)) (but even the finiteness of C in this case wasn’t known). Additional geo-

metric applications of Theorem 1.3 will be discussed later in this introduction.
Our methods yield Markov type 2 for several new classes of spaces; in particular we have the

following result, which answers positively a question posed in [56].

Theorem 1.4. There exists a universal constant C > 0 such that for every tree T with arbitrary
positive edge lengths,

M2(T ) ≤ C.

In this theorem, as well as in Theorem 1.5 and Corollary 1.6 below, one can take e.g. C = 30.
On the other hand, we show in Section 8 that the infinite 3-regular tree satisfies M2(T ) ≥ √

3.
In fact, Theorem 1.4 is a particular case of the following result which holds for arbitrary Gromov

hyperbolic spaces. One of many alternative definitions for Gromov-hyperbolic spaces is as follows
(background material on this topic can be found in the monographs [23, 8, 24, 64]). Let (X, d) be
a metric space. For x, y, r ∈ X the Gromov product with respect to r is defined as:

〈x|y〉r :=
d(x, r) + d(y, r)− d(x, y)

2
. (1)

For δ ≥ 0, the metric space X is said to be δ-hyperbolic if for every x, y, z, r ∈ X,

〈x|y〉r ≥ min {〈x|z〉r, 〈y|z〉r} − δ, (2)

and X is Gromov-hyperbolic if it is δ-hyperbolic for some δ < ∞.
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For trees, 〈x|y〉r is precisely the distance of the least common ancestor of x and y from the root
r. It is easy to conclude (and is well known) that every tree is 0-hyperbolic. Thus, the following
theorem generalizes Theorem 1.4

Theorem 1.5. There exists a universal constant C > 0 such that for every δ-hyperbolic metric
space X, every stationary reversible Markov chain {Zt}∞t=0 on {1, . . . , n}, every f : {1, . . . , n} → X
and every time t ≥ 1,

E d(f(Zt), f(Z0))2 ≤ C2 tE d(f(Z1), f(Z0))2 + C2 δ2 (log t)2.

Hyperbolic groups are finitely generated groups on which the word metric is δ-hyperbolic for
some 0 ≤ δ < ∞ (see [23]). Since the minimal distance in such metric spaces is 1, we have the
following corollary of Theorem 1.5:

Corollary 1.6. There exists a universal constant C > 0 such that for every δ-hyperbolic group G
equipped with word metric,

M2(G) ≤ C(1 + δ).

In Section 5 we also prove the following result:

Theorem 1.7. Let X be an n dimensional, complete, simply connected Riemannian manifold
with pinched negative sectional curvature, i.e., its sectional curvature takes values in the interval
[−R,−r], where 0 < r < R < ∞. Then X has Markov type 2 and M2(X) can be bounded by a
function of n, r,R.

This paper is organized as follows. In Section 2 we discuss the history and motivation of Ball’s
Markov type 2 problem, as well as the background we require from the geometry of Banach spaces.
In Section 3 we briefly describe some applications of our results to the extension problem for
Hölder functions and bi-Lipschitz embeddings. Section 4 deals with the behavior of Markov chains
in smooth normed spaces, and contains the solution of Ball’s Markov type 2 problem. Section 5
deals with the case of trees and hyperbolic metric spaces. Section 7 proves that the Laakso graphs
have Markov type 2. It is also proved there that doubling spaces and planar graphs have a weak
form of Markov type 2. Finally, Section 8 contains some open problems.

2 Linear and non-linear type and cotype; the linear and Lipschitz
extension problems

The classical Jordan-von Neumann theorem [31] states that Hilbert space is characterized among
Banach spaces by the parallelogram identity ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2. Induc-
tively it follows that the generalized parallelogram identity 2−n

∑
εi∈{−1,+1} ‖ε1x1 + . . .+ εnxn‖2 =∑n

i=1 ‖xi‖2 encodes the rich geometric structure of Hilbert space. In the early 1970’s, the work
of Dubinsky-PeÃlczyńsky-Rosenthal [15], Hoffmann-Jørgensen [27], Kwapien [36], Maurey [48] and
Maurey-Pisier [52] has led to the notions of (Rademacher) type and cotype, which are natural re-
laxations of the generalized parallelogram identity. A Banach space X is said to have type p > 0 if
there exists a constant T > 0 such that for every n and every x1, . . . , xn ∈ X,

1
2n

∑

εi∈{−1,1}

∥∥∥
n∑

i=1

εixi

∥∥∥
p
≤ T p

n∑

i=1

‖xi‖p.
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The least such constant T is called the type p constant of X, and is denoted Tp(X). Similarly, X is
said to have cotype q if there exists a constant C > 0 such that for every n and every x1, . . . , xn ∈ X,

1
2n

∑

εi∈{−1,1}

∥∥∥
n∑

i=1

εixi

∥∥∥
q
≥ 1

Cq

n∑

i=1

‖xi‖q.

The least such constant C is called the cotype q constant of X, and is denoted Cq(X).
These seemingly simple parameters turn out to encode a long list of geometric and analytic

properties of a normed space X, and in the past three decades the theory of type and cotype has
developed into a deep and rich theory. We refer to the survey article [51], the books [44, 53, 60,
66, 14] and the references therein for numerous results and techniques in this direction.

A fundamental result of Maurey [49] states that any bounded linear operator from a linear
subspace of a Banach space with type 2 into a Banach space of cotype 2 extends to a bounded
linear operator defined on the entire space. More precisely:

Theorem 2.1 (Maurey’s extension theorem). Let X,Y be Banach spaces, Z a linear subspace
of X and T : Z → Y a bounded linear operator. Then there exists a linear operator T̃ : X → Y
such that T̃ |Z = T and ‖T̃‖ ≤ T2(X) C2(Y ) ‖T‖.

The extension problem for linear operators between Banach spaces is a linear variant of the
classical Lipschitz extension problem which asks for conditions on a pair of metric spaces X,Y
implying that every Lipschitz function defined on a subset of X taking values in Y can be extended
to a Lipschitz function defined on all of X, with only a bounded multiplicative loss in the Lipschitz
constant. Formally, let X, Y be metric spaces and denote by e(X,Y ) the least constant K such
that for every Z ⊆ X every Lipschitz function f : Z → Y can be extended to a function f̃ : X → Y
satisfying ‖f̃‖Lip ≤ K‖f‖Lip (if no such K exists we set e(X,Y ) = ∞). Estimating e(X, Y ) under
various geometric conditions on X and Y is a classical problem which dates back to the 1930’s.
We refer to [65, 6, 41] and the references therein for an account of known results on Lipschitz
extension.

The modern theory of the Lipschitz extension problem between normed spaces starts with the
work of Marcus-Pisier [47] and Johnson-Lindenstrauss [29]. In [29] it is asked if there is a non-
linear analog of Maurey’s extension theorem. To investigate this question it is clearly necessary
to develop non-linear variants of type and cotype. While there has been substantial progress in
the past 20 years on non-linear notions of type, a satisfactory notion of non-linear cotype remains
elusive. Enflo [17, 18, 19] studied the notion of roundness of metric spaces and subsequently in [20],
generalized roundness to a notion which is known today as Enflo type. Let X be a metric space
and fix n ∈ N. An n-dimensional cube in X is a mapping ε 7→ xε from {−1, 1}n to X. X is said to
have Enflo type p with constant K if for every n and every n dimensional cube x : {−1, 1}n → X,

∑

ε∈{−1,1}n

d(xε, x−ε)p ≤ Kp
∑

ε∼ε′
d(xε, xε′)p,

where ε ∼ ε′ if ‖ε− ε′‖1 = 2.
In the case of normed spaces X, Enflo type p clearly implies Rademacher type p — this follows

by considering cubes of the form xε =
∑n

i=1 εi yi, where y1, . . . , yn ∈ X. A variant of Enflo type
was introduced and studied by Bourgain, Milman and Wolfson in [9] (see also [59]). In [56], it was
shown that for a wide class of normed spaces, Rademacher type p implies Enflo type p. Despite
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the usefulness of these notions of non-linear type to various embedding problems, they have not
yielded extension theorems for Lipschitz functions.

A breakthrough on the Lipschitz extension problem was obtained in the paper of Ball [2], where
he introduced the notion of Markov type p (which, as shown in [56], implies Enflo type p).

To state the main result of [2] we need to recall the notions of uniform convexity and smoothness
of normed spaces (see [44] for a detailed account of this theory). Let (X, ‖ · ‖) be a normed space.
The modulus of uniform convexity of X is defined for ε ∈ [0, 2] as

δX(ε) = inf
{

1− ‖x + y‖
2

: x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
. (3)

The normed space X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Furthermore,
X is said to have modulus of convexity of power type q if there exists a constant c such that
δ(ε) ≥ c εq for all ε ∈ [0, 2]. It is straightforward to check that in this case q ≥ 2. By Proposition
7 in [3] (see also [21]), X has modulus of convexity of power type q if and only if there exists a
constant K > 0 such that for every x, y ∈ X

2 ‖x‖q +
2

Kq
‖y‖q ≤ ‖x + y‖q + ‖x− y‖q. (4)

The least K for which (4) holds is called the q-convexity constant of X, and is denoted Kq(X).
The modulus of uniform smoothness of X is defined for τ > 0 as

ρX(τ) = sup
{‖x + τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
. (5)

X is said to be uniformly smooth if limτ→0
ρX(τ)

τ = 0. Furthermore, X is said to have modulus of
smoothness of power type p if there exists a constant K such that ρX(τ) ≤ Kτp for all τ > 0. It is
straightforward to check that in this case necessarily p ≤ 2. By Proposition 7 in [3], ρX(τ) ≤ Kτp

for every τ > 0 if and only if there exists a constant S > 0 such that for every x, y ∈ X

‖x + y‖p + ‖x− y‖p ≤ 2 ‖x‖p + 2 Sp ‖y‖p. (6)

The least S for which (6) holds is called the p-smoothness constant of X, and is denoted Sp(X).
It was shown in [3] (see also [21]) that K2(Lp) ≤ 1/

√
p− 1 for 1 < p ≤ 2, and S2(Lp) ≤

√
p− 1

for 2 ≤ p < ∞ (the order of magnitude of these constants was first calculated in [25]).
In [22, 21] (see also [44], Theorem 1.e.16.) it is shown that if a Banach space X has modulus of

convexity of power type q then X also has cotype q. Similarly, if X has modulus of smoothness of
power type p then X has type p. Observe that L1 has cotype 2 (see [44, 53]), but it is clearly not
uniformly convex. There also exist spaces of type 2 which are not uniformly smooth [28, 61], but
these spaces are much harder to construct. For all the classical reflexive spaces, the power type of
smoothness and convexity coincide with their type and cotype, respectively.

Thus, in the context of uniformly convex and uniformly smooth spaces, one can ask the following
variant of the Johnson-Lindenstrauss question: is it true that e(X,Y ) < ∞ whenever X is a Banach
space with modulus of smoothness of power type 2 and Y is a Banach space with modulus of
convexity of power type 2? This is precisely the problem studied by Ball in [2], who proved the
following theorem:

Theorem 2.2 (Ball’s extension theorem). Let X be a metric space, and Y a Banach space
with modulus of convexity of power type 2. Then e(X, Y ) ≤ 6M2(X) K2(Y ).
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In particular, Ball showed that M2(L2) = 1, whence e(L2, Lp) ≤ 6/
√

p− 1 for 1 < p ≤ 2.
Subsequently, in a difficult paper that is not based on the Markov type approach, Tsar’kov [63]
showed that every Banach space X with modulus of smoothness of power type 2 satisfies e(X,L2) <
∞.

Here we prove the following result:

Theorem 2.3. Fix 1 < q ≤ 2 and let X be a normed space with modulus of smoothness of power-
type q. Then

Mq(X) ≤ 8
(2q+1 − 4)1/q

Sq(X).

In particular, for every 2 ≤ p < ∞,

M2(Lp) ≤ 4
√

p− 1.

In conjunction with Ball’s extension theorem, we obtain a non-linear analog of Maurey’s exten-
sion theorem:

Theorem 2.4. For every two Banach spaces X,Y ,

e(X,Y ) ≤ 24 S2(X) K2(Y ).

In particular, for 2 ≤ p < ∞ and 1 < q ≤ 2,

e(Lp, Lq) ≤ 24
√

p− 1
q − 1

.

3 Some additional geometric applications

In [55] the extension problem for Hölder functions was studied. Let X, Y be metric spaces. Recall
that a function f : X → Y is α Hölder with constant K if for every x, y ∈ X, d(f(x), f(y)) ≤
Kd(x, y)α. Following [55] We denote by A(X, Y ) the set of all α > 0 such that for all D ⊆ X
any α Hölder function f : D → Y can be extended to an α Hölder function defined on all of X
with the same constant. Analogously, B(X, Y ) denotes the set of all α > 0 for which there exists
a constant C > 0 such that for all D ⊆ X any function f : D → Y which is α Hölder with
constant K can be extended to a function defined on all of X which is α Hölder with constant CK.
In [55] the following theorem was proved, which shows that the isometric and isomorphic extension
problems for Hölder functions between Lp spaces exhibit a phase transition: for 1 < p, q ≤ 2 we
have A(Lp, Lq) = (0, p/q∗] while B(Lp, Lq) = (0, p/2], where q∗ = q/(q−1) (note that for 1 < q < 2
we have p/q∗ < p/2). Additionally, for any p/2 < α ≤ 1 there is an α Hölder function from a subset
of Lp to Lq which cannot be extended to an α Hölder function defined on all of Lp.

The sets A(Lp, Lq) were calculated in [65] for all values of p, q. It is shown there that:

A(Lp, Lq) =





(0, p/q∗] , if 1 < p, q ≤ 2,
(0, p/q] , if 1 < p ≤ 2 ≤ q < ∞,
(0, p∗/q] , if 2 ≤ p, q < ∞,
(0, p∗/q∗] , if 2 ≤ p < ∞ and 1 < q ≤ 2.
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As noted in [55], the solution of Ball’s Markov type 2 problem (i.e., Theorem 2.3) completes the
computation of the sets B(Lp, Lq):

B(Lp, Lq) =





(0, p/2] , if 1 < p, q ≤ 2,
(0, p/q] , if 1 < p ≤ 2 ≤ q < ∞,
(0, 2/q] , if 2 ≤ p, q < ∞,
(0, 1] , if 2 ≤ p < ∞ and 1 < q ≤ 2.

We end with some applications of our results to the theory of bi-Lipschitz embeddings of finite
metric spaces into normed spaces. Given two metric spaces X, Y and a one-to-one mapping f :
X ↪→ Y , its distortion is defined as dist(f) = ‖f‖Lip · ‖f−1‖Lip. In [46, 4] it was shown that if G is
a finite graph with girth g (i.e., the length of the shortest closed cycle in G is g) and average degree
δ > 2, then every embedding of G (with the graph metric) into Hilbert space incurs distortion at
least δ−2

2δ

√
g. In fact, the same proof shows that any embedding of G into a metric space X of

Markov type p incurs distortion at least δ−2
2Mp(X)g

(p−1)/p. We thus obtain new classes of spaces into
which large girth graphs cannot embed with low distortion. In particular, any embedding of G into
Lp for p > 2, incurs at least the distortion δ−2

8δ

√
g/p.

In [4] the metric Ramsey problem for the Hamming cube Ωd = {0, 1}d (with the L1 metric)
was studied, and it was shown that if A ⊆ Ωd embeds in Hilbert space with distortion D, then
|A| ≤ |Ωd|1−c∗/D2

. (Here, c∗ is a universal constant. This estimate is shown in [4] to be optimal up
to logarithmic terms.) The proof of this fact is heavily based on the analysis of Markov chains on
subsets of the cube, and on the fact that Hilbert space has Markov type 2. The same result holds
true for embeddings into any metric space X of Markov type 2, with the constant c replaced by
c∗/M2(X)2.

In [56] it was shown that any embedding of the Hamming cube {0, 1}d into Lp, p > 2, incurs
distortion at least cp

√
d, where cp depends only on p. Using Theorem 2.3 it is possible to obtain the

optimal dependence of cp on p, namely any embedding of {0, 1}d into Lp, p > 2, incurs distortion
at least 1

20 max{1,
√

d/p}. This follows directly from Theorem 2.3 by considering the Markov chain
corresponding to the standard random walk on the Hamming cube. The fact that this lower bound
is optimal follows from the following embedding. Let ε1, . . . εd be i.i.d. symmetric ±1 valued
Bernoulli random variables and map x ∈ {0, 1}d to the random variable Yx :=

∑d
i=1 xiεi. It is well

known (see e.g. [39]) that for every integer k ≤ d,
(
E

∣∣∣∑k
i=1 εi

∣∣∣
p)1/p

= Θ
(
min{k,

√
pk}), implying

that for p ≤ d and x, y ∈ {0, 1}d, c
√

p/d · ‖x − y‖1 ≤ (E|Zx − Zy|p)1/p ≤ ‖x − y‖1, where c is a
universal constant. Thus the embedding x 7→ Zx incurs distortion Ω(

√
d/p). An application of

having good bounds in terms of p on the Lp distortion of the Hamming cube is the following. In [42]
it was shown that if {0, 1}d embeds into `k∞ with distortion D then k ≥ 2Ω(d/D2). This fact easily
follows from the above discussion via an argument similar to that of [40]: By Hölder’s inequality
`k∞ and `k

p are O(1) equivalent when p = log k. Thus, the fact that {0, 1}d embeds into `k∞ with
distortion D implies that D ≥ Ω(

√
d/p) = Ω(

√
d/ log k), which simplifies to give the claimed lower

bound on k.

4 Markov chains in smooth normed spaces

We begin by recalling why the real line has Markov type 2. Let {Zt}∞t=0 be a stationary reversible
Markov chain on {1, . . . , n}, with transition matrix A = (aij), and stationary distribution π. The
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Markov type 2 inequality (with constant 1) for R simply says that for every x1, . . . , xn ∈ R, we
have

∑
i,j πi (At)ij (xi − xj)2 ≤ t

∑
i,j πi aij (xi − xj)2. In fact, the stronger inequality

∑

i,j

πi (At)ij (xi − xj)2 ≤ Λ(t)
∑

i,j

aij πi (xi − xj)2 (7)

holds, where Λ(t) := 1−λt

1−λ = 1 + λ + · · ·+ λt−1 and λ is the second largest eigenvalue of A. (Recall
that −1 ≤ λ < 1.) Indeed, since πi (At)ij = πj (At)ji, expanding the square in (7) shows that
inequality may be rewritten

〈
(I −At)x, x

〉
π
≤ Λ(t)

〈
(I −A)x, x

〉
π

, (8)

where x is the column vector (x1, . . . , xn), and 〈·, ·〉π refers to the inner product in L2(π). If x is
an eigenvector, then (7) is clear; the general case follows by a spectral decomposition (note that A
is self-adjoint on L2(π)).

The proof of the following lemma is a slight modification of the proof of Lemma 3.1 in [2]. Let
Lq(X) denote the collection of Borel measurable f : [0, 1] → X with E‖f‖q =

∫ 1
0 ‖f‖q < ∞. It is a

Banach space with norm
(
E‖f‖q

)1/q. (Of course, the choice of the interval [0, 1] as the domain for
f is rather arbitrary. It may be replaced with any probability space equivalent to [0, 1].)

Lemma 4.1. Fix 1 < q ≤ 2 and let Z ∈ Lq(X). Then

E‖Z‖q ≤ ‖EZ‖q +
Sq(X)q

2q−1 − 1
· E‖Z − EZ‖q.

Proof. Let θ ≥ 0 be the largest constant such that for every Z ∈ Lq(X),

θ (E‖Z‖q − ‖EZ‖q) ≤ E‖Z − EZ‖q.

Our goal is to show that θ ≥ (2q−1 − 1)Sq(X)−q. To this end, fix ε > 0 and Z ∈ Lq(X) such that

(θ + ε) (E‖Z‖q − ‖EZ‖q) > E‖Z − EZ‖q.

By the definition (6) of Sq(X) applied to the vectors x = (Z + EZ)/2 and y = (Z − EZ)/2, we
have the pointwise inequality:

‖Z‖q + ‖EZ‖q ≤ 2
∥∥∥1
2
Z +

1
2
EZ

∥∥∥
q
+ 2 Sq(X)q

∥∥∥1
2
Z − 1

2
EZ

∥∥∥
q
.

Taking expectations, we find that

1
θ + ε

E‖Z − EZ‖q < E‖Z‖q − ‖EZ‖q

≤ 2
(
E

∥∥∥1
2
Z +

1
2
EZ

∥∥∥
q
−

∥∥∥E
(

1
2
Z +

1
2
EZ

)∥∥∥
q
)

+ 2 Sq(X)q E
∥∥∥1
2
Z − 1

2
EZ

∥∥∥
q

≤ 2
θ
E

∥∥∥1
2
Z − 1

2
EZ

∥∥∥
q
+ 2 Sq(X)q E

∥∥∥1
2
Z − 1

2
EZ

∥∥∥
q
.

It follows that 2q

θ+ε ≤ 2
θ + 2Sq(X)q. Letting ε tend to zero, and simplifying, yields the required

result.
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The following theorem, first proved in [57] (without the explicit constant), is a simple corollary
of Lemma 4.1 (see also Proposition 3.3 in [2]).

Theorem 4.2 (Pisier). Fix 1 < q ≤ 2 and let {Mk}n
k=0 ⊆ Lq(X) be a martingale in X. Then

E‖Mn −M0‖q ≤ Sq(X)q

2q−1 − 1
·

n−1∑

k=0

E‖Mk+1 −Mk‖q.

Proof. Assume that {Mk}n
k=0 is a martingale with respect to the filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn−1;

that is, E (Mi+1|Fi) = Mi for i = 0, 1, . . . , n − 1. By Lemma 4.1 with conditioned expectation
replacing expectation,

E (‖Mn −M0‖q| Fn−1) ≤ ‖Mn−1 −M0‖q +
Sq(X)q

2q−1 − 1
· E(‖Mn −Mn−1‖q|Fn−1).

Hence
E‖Mn −M0‖q ≤ E ‖Mn−1 −M0‖q +

Sq(X)q

2q−1 − 1
· E‖Mn −Mn−1‖q,

and the required inequality follows by induction.

The following lemma is motivated by the continuous martingale decompositions of Stochastic
integrals constructed in [45].

Lemma 4.3. Let X be a normed space, {Zt}∞t=0 a stationary reversible Markov chain on {1, . . . , n}
and f : {1, . . . , n} → X. Then for every t ∈ N there are two X-valued martingales {Ms}t

s=0 and
{Ns}t

s=0 (with respect to two different filtrations) with the following properties:

1. For every 1 ≤ s ≤ t− 1 we have that

f(Zs+1)− f(Zs−1) = (Ms+1 −Ms)− (Nt−s+1 −Nt−s). (9)

2. For every 0 ≤ s ≤ t− 1 and q ≥ 1,

max {E‖Ms+1 −Ms‖q,E‖Ns+1 −Ns‖q} ≤ 2q E‖f(Z1)− f(Z0)‖q. (10)

Proof. Let A = (aij) be the transition matrix of Zt, and let πi := Pr(Z0 = i). Define

Lf(i) =
n∑

j=1

aij [f(j)− f(i)] =
n∑

j=1

aijf(j)− f(i).

Then
E(f(Zs)|Z0, . . . , Zs−1) = E(f(Zs)|Zs−1) = Lf(Zs−1) + Zs−1.

Since {Zs}∞s=0 is reversible, we also have that for every 0 ≤ s < t,

E(f(Zs)|Zs+1, . . . , Zt) = Lf(Zs+1) + f(Zs+1).

It follows that if we define M0 = f(Z0) and for s ≥ 1:

Ms := f(Zs)−
s−1∑

r=0

Lf(Zr).

9



then

E(Ms|Z0, . . . , Zs−1) = Lf(Zs−1) + f(Zs−1)−
s−1∑

r=0

Lf(Zr) = Ms−1,

i.e., {Ms}∞s=0 is a martingale with respect to the natural filtration induced by {Zs}∞s=0.
Now, define N0 := f(Zt) and for 1 ≤ s ≤ t

Ns := f(Zt−s)−
t∑

r=t−s+1

Lf(Zr).

Then for s ≥ 1,
E(Ns|Zt−s+1, . . . , Zt) = Ns−1,

i.e., {Ns}t
s=0 is a martingale with respect to the natural filtration induced by Zt, Zt−1, . . . , Z0 (in

probabilistic terminology, {Nt−s}t
s=0 is a reverse martingale).

The identities

Ms+1 −Ms = f(Zs+1)− f(Zs)− Lf(Zs), Ns+1 −Ns = f(Zt−s−1)− f(Zt−s)− Lf(Zt−s).

imply (9). To prove (10) observe that for every s ≥ 0 and q ≥ 1,

E‖Lf(Zs)‖q =
n∑

i=1

πi

∥∥∥
n∑

j=1

aij [f(j)− f(i)]
∥∥∥

q
≤

n∑

i=1

n∑

j=1

πiaij‖f(j)− f(i)‖q = E‖f(Z1)− f(Z0)‖q.

Therefore,

E‖Ms+1 −Ms‖q = E‖f(Zs+1)− f(Zs)− Lf(Zs)‖q

≤ 2q−1 E‖f(Zs+1)− f(Zs)‖q + 2q−1 E‖Lf(Zs)‖q ≤ 2q E‖f(Z1)− f(Z0)‖q,

and similarly, E‖Ns+1 −Ns‖q ≤ 2q E‖f(Z1)− f(Z0)‖q.

Proof of Theorem 2.3. Let {Zs}t
s=0, f , {Ms}t

s=0 and {Ns}t
s=0 be as in Lemma 4.3. Assume first

that t is even, and write t = 2m. Summing the identity (9) over s = 1, 3, 5, . . . , 2m− 1 we get

f(Zt)− f(Z0) =
t/2∑

k=1

(M2k −M2k−1)−
t/2∑

k=1

(N2k −N2k−1).

By Theorem 4.2 (applied to the martingales
∑s

k=1(M2k − M2k−1) and
∑s

k=1(N2k − N2k−1)), we
conclude that

E‖f(Zt)− f(Z0)‖q ≤ 2q−1E
∥∥∥

t/2∑

k=1

(M2k −M2k−1)
∥∥∥

q
+ 2q−1E

∥∥∥
t/2∑

k=1

(N2k −N2k−1)
∥∥∥

q

≤ 2q−1Sq(X)q

2q−1 − 1

t/2∑

k=1

(
E ‖M2k −M2k−1‖q + E ‖N2k −N2k−1‖q

)

≤ 2q−1Sq(X)q

2q−1 − 1
t

2
2q+1E ‖f(Z1)− f(Z0)‖q.
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When t is odd, apply the above reasoning at time t− 1, to get

E ‖f(Zt)− f(Z0)‖q ≤ 2q−1E ‖f(Zt−1)− f(Z0)‖q + 2q−1E ‖f(Zt)− f(Zt−1)‖q

≤
(

23q−2Sq(X)q

2q−1 − 1
(t− 1) + 2q−1

)
E ‖f(Z1)− f(Z0)‖q

≤ 23q−2Sq(X)q

2q−1 − 1
tE ‖f(Z1)− f(Z0)‖q.

There are various natural variants of the notion of Markov type. The following theorem deals
with other moment inequalities for Markov chains in uniformly smooth normed spaces:

Theorem 4.4. For every p ∈ (1,∞) and q ∈ (1, 2] there is a constant C(p, q) ∈ (0,∞) with the
following properties. Let X be a normed space with modulus of smoothness of power type q. Then
for every reversible Markov chain on {1, . . . , n}, {Zt}∞t=0, and every f : {1, . . . , n} → X, if p ≤ q,
then

E ‖f(Zt)− f(Z0)‖p ≤ C(p, q) Sq(X)q tE ‖f(Z1)− f(Z0)‖p,

i.e., X has Markov type p. If p > q, then

E ‖f(Zt)− f(Z0)‖p ≤ C(p, q) Sq(X)p tp/q E ‖f(Z1)− f(Z0)‖p.

Proof. Observe that by the definition of Sq(X), for every τ > 0, ρX(τ) ≤ Sq(X)q τ q. Since ρX(τ) ≤
τ , assuming p < q and ρX(τ) ≤ Kτ q, where K ≥ 1, we have ρX(τ) ≤ Kτp. By (the proof of)
Proposition 7 in [3], it follows that for 1 < p ≤ q, Sp(X) ≤ C Sq(X)q/p, where C depends only on
p, q. The first result now follows from Theorem 2.3.

Assume now that p > q. To prove the second assertion, observe that by a theorem of Figiel [21]
(combined with [3, Proposition 7]), Sq(Lp(X)) ≤ CSq(X), where C depends only on p, q. Recall
that a sequence of elements x1, x2, . . . in a Banach space Y is called a monotone basic sequence if
for every a1, a2, . . . ∈ R and every integer n,

∥∥∥
n∑

i=1

aixi

∥∥∥ ≤
∥∥∥

n+1∑

i=1

aixi

∥∥∥.

By a result of Lindenstrauss [43] (see also [57, Proposition 2.2]), for a Banach space Y , if ρY (τ) ≤
Kτ q for all τ , then for every monotone basic sequence {xi}i≥0 in Y ,

∥∥∥
n∑

i=1

xi

∥∥∥
q
≤ 4q K

n∑

i=1

‖xi‖q.

Let {Mi}i≥0 ⊆ Lp(X) be an X-valued martingale. By convexity, it follows that {(Mi −Mi−1)}i≥1

is a monotone basic sequence in Lp(X). Moreover, ρY (τ) ≤ Sq(Y )q τ q for every normed space Y .
Hence, for every n,

‖Mn −M0‖q
Lp(X) ≤ [4CSq(X)]q

n∑

i=1

‖Mi −Mi−1‖q
Lp(X).
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In other words,

E ‖Mn −M0‖p ≤ [4CSq(X)]p
(

n∑

i=1

(E ‖Mi −Mi−1‖p)q/p

)p/q

= [4CSq(X)]p np/q E ‖M1 −M0‖p.

We now conclude the proof exactly as in the proof of Theorem 2.3.

We now state the case X = R, q = 2 of the second part of Theorem 4.4 with explicit constants.

Theorem 4.5. Let p ∈ (2,∞). for every reversible stationary finite Markov chain {Zt}∞t=0 on
{1, . . . , n} and every f : {1, . . . , n} → R, we have for all t ≥ 1:

(E|f(Zt)− f(Z0)|p)1/p ≤ 16
√

p t (E|f(Z1)− f(Z0)|p)1/p .

The proof follows from the above argument, using S2(Lp) ≤
√

p− 1 for p > 2 ([3], see also [21]).
By considering the standard random walk on {1, 2, . . . , n} it follows that the dependence on p in
Theorem 4.5 is optimal, up to a universal multiplicative factor.

5 Markov chains in trees and hyperbolic metric spaces

In this section we prove Theorem 1.5 and Theorem 1.7. We do not attempt to optimize the
constants. In particular, in the case of trees a more careful analysis shows that one may take C = 8
in Theorem 1.4. Since we do not believe that this is the optimal constant, we use rougher estimates.
In Section 8 we show that the infinite 3-regular tree satisfies M2(T ) ≥ √

3.

Lemma 5.1. Let {Zt}∞t=0 be a reversible Markov chain on {1, . . . , n} and f : {1, . . . , n} → R. Then
for every time t > 0,

E max
0≤s≤t

[f(Zs)− f(Z0)]2 ≤ 100 tE[f(Z1)− f(Z0)]2.

Naturally, the proof relies on Doob’s L2 maximal inequality for submartingales

E max
0≤s≤t

M2
s ≤ 4E|Mt|2 . (11)

See, e.g., [16, §4.4].

Proof. Let {Ms}t
s=0 and {Ns}t

s=0 be as in Lemma 4.3. Observe that

max
0≤s≤t

[f(Zs)− f(Z0)]2 ≤ 2 max
0≤s≤t
s even

[f(Zs)− f(Z0)]2 + 2 max
1≤s≤t
s odd

[f(Zs)− f(Zs−1)]2.

≤ 2 max
0≤s≤t
s even

[f(Zs)− f(Z0)]2 + 2
∑

1≤s≤t
s odd

[f(Zs)− f(Zs−1)]2.

Therefore,

E max
0≤s≤t

[f(Zs)− f(Z0)]2 ≤ 2E max
0≤s≤t
s even

[f(Zs)− f(Z0)]2 + (t + 1)E[f(Z1)− f(Z0)]2. (12)
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For even s we have as in the proof of Theorem 2.3 that

f(Zs)− f(Z0) =
s/2∑

k=1

(M2k −M2k−1)−
s/2∑

k=1

(N2k −N2k−1).

Thus, Doob’s inequality gives

E max
0≤s≤t
s even

[f(Zs)− f(Z0)]2 ≤ 2E max
0≤i≤t/2

[
i∑

k=1

(M2k −M2k−1)

]2

+ 2E max
0≤i≤t/2

[
i∑

k=1

(N2k −N2k−1)

]2

≤ 8E



bt/2c∑

k=1

(M2k −M2k−1)




2

+ 8E



bt/2c∑

k=1

(N2k −N2k−1)




2

= 8
bt/2c∑

k=1

E(M2k −M2k−1)2 + 8
bt/2c∑

k=1

E(N2k −N2k−1)2 (13)

≤ 32 tE[f(Z1)− f(Z0)]2,

where in (13) we have used the fact that the martingale differences are orthogonal and for the next
inequality we used (10).

Together with (12), this concludes the proof.

In what follows we use the notation of the Gromov product (1).

Lemma 5.2. Let X be a δ-hyperbolic metric space. Then for every m ≥ 1 and r, x0, . . . , xm ∈ X

d(x0, xm)2 ≤ 4 max
0≤j<m

[d(x0, r)− d(xj , r)]2 + 4 max
0<j≤m

[d(xm, r)− d(xj , r)]2 +

+ 4
m−1∑

j=0

d(xj , xj+1)2 + 16 δ2dlog2 me2.

Proof. Suppose first that m is a power of 2, m = 2k. Then (2) gives

〈x0|xm〉r ≥ min
{〈x0|xm/2〉r, 〈xm/2|xm〉r

}− δ.

Hence, induction gives,

〈x0|xm〉r ≥ min
{〈xi|xi+1〉r : i = 0, 1, . . . , m− 1

}− k δ . (14)

This also holds when m is not a power of two, provided we take k := dlog2 me (for instance, define
xi := xm for m < i ≤ 2k). Let j be the index i ∈ {0, 1, . . . , m − 1} giving the minimum in (14).
Then

d(x0, xm) = d(x0, r) + d(xm, r)− 2 〈x0, xm〉
≤ 2 k δ + d(x0, r) + d(xm, r)− 2〈xj |xj+1〉
= 2 k δ +

(
d(x0, r)− d(xj , r)

)
+

(
d(xm, r)− d(xj+1, r)

)
+ d(xj , xj+1) .

This implies

d(x0, xm)2 ≤ 4 (2 k δ)2 + 4
(
d(x0, r)− d(xj , r)

)2 + 4
(
d(xm, r)− d(xj+1, r)

)2 + 4 d(xj , xj+1)2 .

The lemma follows.
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We can now prove Theorem 1.5:

Proof of Theorem 1.5. Fix r ∈ X. By Lemma 5.2 for every t ≥ 1,

E d(f(Zt), f(Z0))2 ≤ 4E max
0≤j≤t−1

[d(f(Z0), r)− d(f(Zj), r)]2 +

+ 4E max
0≤j≤t−1

[d(f(Zt), r)− d(f(Zj+1), r)]2 + 4 tE d(f(Z1), f(Z0))2 +

+ 16 δ2dlog2 te2.

By Lemma 5.1 applied to the function g(i) := d(f(i), r) we get

E max
0≤j≤t−1

[d(f(Z0), r)−d(f(Zj), r)]2 ≤ 100 tE [d(f(Z1), r)−d(f(Z0), r)]2 ≤ 100 tE d(f(Z1), f(Z0))2.

Similarly, since the Markov chain is reversible,

E max
0<j≤t

[d(f(Zt), r)− d(f(Zj), r)]2 ≤ 100 tE d(f(Z1), f(Z0))2.

The proof of Theorem 1.5 is thus complete.

5.1 A lower bound for the Markov type constant of trees

The following example shows that the infinite 3-regular tree Γ3 satisfies M2(Γ3) ≥
√

3. Fix an
integer h and let Th be the complete binary tree of depth h rooted at r. For z ∈ Th denote
|z| = d(z, r). Consider the following transition kernel on Th. If z has three neighbors, it goes to its
neighbor closer to r with probability 1/2 and to each of the other two neighbors with probability
1/4. Otherwise (z has a single neighbor or z = r), it goes to any of its neighbors with equal
probability. This is the transition kernel for a stationary reversible Markov chain {Zt}∞t=0 with
stationary distribution Pr(Z0 = z) = 2−|z|/(h + 1). Denote S̃t = |Z0| − |Zt| and observe that for
every positive integer n, conditioned on the event {n ≤ |Z0| ≤ h−n}, the sequence {S̃t}t≤n has the
same distribution as {St}t≤n, the simple random walk on Z starting at 0. Denote Mn := maxt≤n St

and M̃n := maxt≤n S̃t. By a theorem of Pitman [62], {2Mn − Sn}n≥0 has the same distribution as
{Sn}n≥0 conditioned on Sn > 0 for all n > 0 (which is defined as the limit as m →∞ of {Sn}n≥0

conditioned to hit m before revisiting 0). Let Ŝn denote this conditioned walk, which is a Markov
chain with transition probabilities p(x, x ± 1) = (x ± 1)/(2x). Induction easily gives EŜ2

n = 3 n,
and therefore,

E
(
(2M̃n − S̃n)2

∣∣ n ≤ |Z0| ≤ h− n
)

= 3 n .

Since Pr(|Z0| ∈ [n, h− n]) = 1− 2n
h+1 , we get

E(2M̃n − S̃n)2 ≥ 3
(
1− 2n

h + 1

)
n . (15)

Let v be the (unique) vertex in {Z0, . . . , Zn} closest to the root, so that |Z0| − |v| = M̃n. Note
that v need not be on the geodesic connecting Z0 to Zn. Nevertheless, it is unlikely to be far
from this geodesic. We now make this precise. Conditioned on Z0, v, M̃n and S̃n, the vertex Zn

is distributed uniformly among the vertices u such that |u| = S̃n that are descendents of v (that
is, the simple path in Th from u to the root contains v). Therefore conditioned on Z0, v, M̃n the
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random variable d(Z0, Zn) is distributed as follows: d(Z0, Zn) = 2 M̃n − S̃n − 2 k with probability
2−k−1 for integers k satisfying 0 ≤ k < min{M̃n, M̃n − S̃n} and the conditioned probability is 2−k

for k = min{M̃n, M̃n − S̃n}. Thus, setting ` = min{M̃n, M̃n − S̃n} we have that

E(d(Z0, Zn)2 | Z0, v, M̃n, S̃n) =
`−1∑

k=0

2−k−1(2 M̃n − S̃n − 2 k)2 + 2−`(2 M̃n − S̃n − 2 `)2

≥ (2 M̃n − S̃n)2 − (2 M̃n − S̃n) ·
∞∑

k=0

4k

2k

= (2 M̃n − S̃n)2 − 8(2 M̃n − S̃n).

Taking expectations and applying Jensen’s inequality gives

E d(Z0, Zn)2 ≥ E(2 M̃n − S̃t)2 − 8
(
E(2 M̃n − S̃n)2

)1/2
.

Now, (15) yields

E d(Z0, Zn)2 ≥ 3
(
1− 2n

h + 1

)
n− 8

√
3n .

By considering, say, h = n2, we deduce that suph M2(Th)2 ≥ 3. It follows that M2(Γ3)2 ≥ 3 for the
infinite 3-regular tree Γ3, since it contains all the finite trees Th.

6 Embeddings in products of R-trees and proof of Theorem 1.7

In what follows, given two metric spaces (X, dX) and (Y, dY ), the metric space X × Y is always
assumed to be equipped with the metric d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′).

A metric d on a space X is a path metric if for every x, y ∈ X there is a path in X from x to y
whose length is d(x, y).

An R-tree is a path metric space (T, d) such that for every two distinct points x, y ∈ T there is
a unique simple path from x to y in T (see [13, 54]). (Some definitions appearing in the literature
also require the metric to be complete.) Equivalently, an R-tree is a 0-hyperbolic metric space
whose metric is a path metric.

An r-separated set A in a metric space (X, d) is a subset A ⊆ X such that d(x, x′) ≥ r for every
x 6= x′ in A. An r-net is a maximal r-separated set. If A ⊆ X is an r-net, then X ⊆ ⋃

a∈A B(a, r).
Clearly, every metric space has an r-net for every r > 0.

Lemma 6.1. Fix an integer n and let Z be an n-dimensional normed space. Let (X, d) be a metric
space and D, ε > 0. Assume that every ball of radius ε in X embeds bi-Lipschitzly in Z with
distortion at most D. Then there is an integer N = N(n,D), a constant ∆ = ∆(n, ε, D) < ∞ and
a mapping F : X → ZN which is Lipschitz with constant ∆ and for every x, y ∈ X

d(x, y) ≤ ε

8
=⇒ d(x, y) ≤ ‖F (x)− F (y)‖.

Proof. Write X0 := X. Having defined Xi ⊆ X, let Ai be an ε-net in Xi. Define Xi+1 =
Xi \

⋃
x∈Ai

B(x, ε/4). Observe that if x ∈ Xi then for all j ∈ {1, . . . , i + 1} there is a point
aj ∈ Aj such that d(x, aj) ≤ ε. Moreover, for j 6= j′, d(aj , aj′) > ε/4. Our assumption is
that for every x ∈ X there is a function ψx : B(x, ε) → Z such that ψx(x) = 0 and for all
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y, z ∈ B(x, ε) we have d(y, z) ≤ ‖ψx(y) − ψx(z)‖ ≤ D d(y, z). Then ‖ψx(aj)‖ ≤ ε D and the
balls B

(
ψx(aj), ε/8

)⊆ B(0, ε (D + 1/8)) ⊆ Z are disjoint. Comparison of volumes therefore gives
i + 1 ≤ (8D + 1)n. We have shown that there exists an integer N ≤ (8D + 1)n and disjoint subsets
A1, . . . , AN ⊆ X such that for each j, if a, b ∈ Aj then d(a, b) > ε and X ⊆ ⋃N

j=1

⋃
a∈Aj

B(a, ε/4).
For every j ≤ N define for a ∈ Aj and x ∈ B(a, ε/2),

fj(x) :=

{
ψa(x) if d(x, a) ≤ 3ε/8,(
4− 8 ε−1 d(x, a)

)
ψa(x) if 3ε/8 < d(x, a) ≤ ε/2.

We also set fj to be 0 on X \⋃
a∈Aj

B(x, ε/2). (Observe that this defines a function on X since the
balls {B(a, ε/2)}a∈Aj are disjoint.) It is straightforward to verify that fj is Lipschitz with constant
4D.

Now define F : X → ZN by F = f1 ⊕ f2 ⊕ · · · ⊕ fN . Then F is Lipschitz with constant
4N D. Moreover, fix x, y ∈ X with d(x, y) ≤ ε/8. There exists 1 ≤ j ≤ N and a ∈ Aj such that
d(x, a) ≤ ε/4. Hence d(y, a) ≤ d(x, y) + d(x, a) ≤ 3ε/8; so that x, y ∈ B(a, 3 ε /8) and

‖F (x)− F (y)‖ ≥ ‖fj(x)− fj(y)‖ = ‖ψa(x)− ψa(y)‖ ≥ d(x, y).

In what follows, a subset A of a metric space X is called ε-dense, if for every x ∈ X there is an
a ∈ A such that d(x, a) ≤ ε.

Corollary 6.2. Let c ∈ (0, 1]. Let X, Y be metric spaces, Z an n-dimensional normed space,
A ⊆ X an ε dense subset and ϕ : X → Y a 1 Lipschitz mapping such that for every a, b ∈ A,
d(ϕ(a), ϕ(b)) ≥ c d(a, b). Assume that every ball of radius 64ε

c in X embeds bi-Lipschitzly in Z with
distortion at most D. Then there exists an integer N = N(n,D) and a K = K(n, ε, c,D) such that
X embeds bi-Lipschitzly with distortion K into Y × ZN .

Proof. Let F, N and ∆ be as in Lemma 6.1 applied with ε replaced by 64 ε/c. Define g : X → Y×ZN

by g(x) = (ϕ(x), F (x)). Then g has Lipschitz constant bounded by ∆ + 1. Moreover, if x, y ∈ X
are such that d(x, y) ≤ 8 ε/c then d(g(x), g(y)) ≥ ‖F (x) − F (y)‖ ≥ d(x, y). If, on the other hand,
d(x, y) > 8 ε/c, then take x′, y′ ∈ A satisfying d(x, x′) ≤ ε and d(y, y′) ≤ ε. It follows that

d(g(x), g(y)) ≥ d(ϕ(x′), ϕ(y′))− d(ϕ(x), ϕ(x′))− d(ϕ(y), ϕ(y′))
≥ c d(x′, y′)− d(x, x′)− d(y, y′)
≥ c [d(x, y)− d(x, x′)− d(y, y′)]− d(x, x′)− d(y, y′)

≥ c d(x, y)− 2 ε (c + 1) ≥ c

2
d(x, y).

The following lemma is known (it follows, for example, by specializing the results of [33]).
However, since we could not locate a clean reference, we will include a short proof.

Lemma 6.3. Let X be a metric space, and let φ : A → T be a Lipschitz map from a subset A ⊂ X
to a complete R-tree T . Then φ may be extended to a map φ̃ : X → T that agrees with φ on A and
has the same Lipschitz constant as φ.
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Proof. With no loss of generality, assume that the Lipschitz constant of φ is 1. We will use dX and
dT to denote the metrics in X and T , respectively. Consider first the case where X contains only
one point that is not in A. Say, X = A ∪ {x0}. For any point a ∈ A, let Ba be the closed ball
B

(
φ(a), dX(x0, a)

)
in T . Then any point in

⋂
a∈A Ba may be chosen as φ̃(x0). Thus, we have to

show that this intersection is nonempty. Consider a, a′ ∈ A. The triangle inequality in X shows
that the sum of the radii of the two balls Ba, Ba′ is at least as large as the distance between the
centers. Thus, Ba ∩Ba′ contains a point on the unique simple path joining φ(a) and φ(a′) in T .

We claim that R-trees satisfy the following Helly-type theorem. If F is a nonempty finite
collection of convex subsets of T and every two elements F, F ′ ∈ F intersect, F ∩ F ′ 6= ∅, then the
whole collection intersects,

⋂
F∈F F 6= ∅. (Here, F convex means that the metric of T restricted to

F is a path metric.) Indeed, suppose first that F = {F1, F2, F3}. Let t1 ∈ F2∩F3, t2 ∈ F1∩F3 and
t3 ∈ F1∩F2. Since there are no cycles in T , it follows that the three paths, one joining t1 to t2, one
joining t2 to t3 and one joining t1 to t3 intersect. This intersection point will be in F1 ∩ F2 ∩ F3.
Now, suppose that F = {F1, F2, . . . , Fn}, where n > 3. By the previous case, we know that any
two sets in the collection F ′ := {F2 ∩ F1, F3 ∩ F1, . . . , Fn ∩ F1} intersect. Induction then implies
that the whole collection F ′ intersects, which implies that F intersects.

Since balls in T are clearly convex, it follows that every finite subcollection of {Ba}a∈A intersects.
To prove that

⋂
a∈A Ba 6= ∅, we must invoke completeness. Suppose now that B(t, r) and B(t′, r′)

are two closed balls in T which intersect and none of these contains the other. Observe that
B(t, r) ∩ B(t′, r′) is also a closed ball in T whose center is the unique point in T at distance(
dT (t, t′) + r − r′

)
/2 from t and at distance

(
dT (t, t′) + r′ − r

)
/2 from t′, and whose radius is(

r+r′−dT (t, t′)
)
/2 (here, a single point is considered as a ball of zero radius). Thus, the intersection

I(A′) :=
⋂

a∈A′ Ba, where A′ ⊂ A is finite, is a nonempty ball. Let r∞ be the infimum radius of
any such ball, and let a1, a2, . . . be a sequence in A such that the radius of the ball I({a1, . . . , an})
converge to r∞. Let cn be the center of I({a1, . . . , an}) and let rn be the radius. If r∞ > 0, then
the above formula for the radius of the intersection of two balls shows that cn ∈ Ba for every
a ∈ A and for every n such that rn < 2 r∞. Thus, clearly,

⋂
a∈A Ba 6= ∅ in this case. In the case

r∞ = 0, we have rn ↘ 0, and it follows that cn is a Cauchy sequence. Invoking completeness, we
conclude that the limit c∞ := limn cn exists. It follows that c∞ ∈ Ba for every a ∈ A, because
I({a, a1, . . . , an}) 6= ∅ for every n. This completes the proof in the case X = A∪{x0}. The general
case follows by transfinite induction.

Theorem 6.4. Fix δ > 0, and assume that X is a δ-hyperbolic metric space whose metric is a path
metric. Assume that there exists D, ε > 0 and n ∈ N such that every ball of radius ε in X embeds
in Rn with distortion at most D. Then there exists an integer N and a K > 0 such that X embeds
bi-Lipschitzly into a product of N R-trees with distortion at most K.

The trees in the statement of the theorem are infinite degree simplicial trees whose edge lengths
may be taken as 1. Though we will not need this, one can actually prove this with bounded degree
trees [5] of edge length 1.

Proof. Since balls of radius ε embed in Rn with distortion at most D, there is an upper bound
(depending only on n and D) for the cardinality of any ε/2-separated set in X whose diameter is
less than ε. In the terminology of [7], this means that X has bounded growth in some scale. By
a theorem of Bonk and Schramm [7], there exists an integer m such that X is quasi-isometric to a
subset of the m dimensional hyperbolic space Hm. This means that there are constants a, a′, b > 0
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and a mapping f : X → Hm such that for all x, y ∈ X,

a d(x, y)− b ≤ d(f(x), f(y)) ≤ a′ d(x, y) + b.

(Actually, one may even take a = a′.) By a theorem of Buyalo and Schroeder [11], there is an
R-tree T such that Hm is quasi-isometric to a subset of Tm. It follows that there is some R > 0,
an R-net A of X and a bi-Lipschitz embedding g : A → Tm. Since the completion of an R-tree
is an R-tree, we may as well assume that T is complete. Lemma 6.3 implies then that there is a
Lipschitz extension ϕ : X → Tm of g. By scaling the distances in T we may also assume that ϕ is
1 Lipschitz and for every x, y ∈ A, d(ϕ(x), ϕ(y)) ≥ c d(x, y) for some constant c > 0.

Let A′ be an ε/8 net in X. Set Ψ(r) := supa∈A′ |A′ ∩ B(a, r)|. We claim that Ψ(r) < ∞ for
every r > 0. This holds true for r = ε, because balls of radius ε in X embed in Rn with distortion at
most D. Now let a1 ∈ A′, and let x ∈ B(a1, r). Since X has a path metric, there is a point x′ ∈ X
satisfying d(x′, a1) = d(x′, x) = d(a1, x)/2 ≤ r/2. Let a′ be a point in A′ satisfying d(a′, x′) < ε/8.
Then a′ ∈ B(a1, r/2 + ε/8) and x ∈ B(a′, r/2 + ε/8). Thus,

B(a1, r) ⊆
⋃

a′∈A′∩B(a1,r/2+ε/8)

B(a′, r/2 + ε/8) .

Consequently, Ψ(r) ≤ Ψ(r/2 + ε/8)2, which now implies that Ψ(r) < ∞ for every r.
We now show that for every r > 0 there is an n′ = n′(r) and a D′ = D′(r), both finite, such

that every ball in X of radius r embeds in Rn′ with distortion at most D′. Indeed, let x ∈ X. Set
A′x = A′x(r) := A′ ∩B(x, r). Clearly, |A′x| ≤ Ψ(r + ε/8). For every a ∈ A′ let ψa : B(a, ε) → Rn be
a bi-Lipschitz embedding with distortion at most D satisfying ψa(a) = 0, and let

φa(x) :=





ψa(x) if d(a, x) < ε/2,
2 (1− ε−1 d(a, x))ψa(x) if ε/2 ≤ d(a, x) ≤ ε,
0 otherwise.

Now the required bi-Lipschitz embedding from B(x, r) into Rn′ is given by x 7→ (
φa(x)

)
a∈A′x

(with
a padding of zeros to make n′ independent from x). It is immediate that this maps satisfies the
requirements. Now an application of Corollary 6.2 completes the proof of the theorem (since the
real line R itself is an R-tree).

The following corollary contains Theorem 1.7:

Corollary 6.5. Let X be an n dimensional complete simply connected Riemannian manifold with
pinched negative sectional curvature (i.e., its sectional curvature takes values in the compact interval
[−R,−r] ⊂ (−∞, 0)). Then there is an integer N = N(n, r,R) and D = D(n, r,R) > 0 such that
X embeds bi-Lipschitzly into a product of N trees with distortion D. In particular, by Theorem 1.4,
X has Markov type 2 and M2(X) can be bounded by a function of n, r,R.

Proof. It is a standard fact [8] that X is δ hyperbolic (with δ proportional to 1/r). The fact that
there exists ε > 0 such that all the balls of of radius ε in X embed bi-Lipschitzly in Rn follows from
Rauch’s comparison theorem (see [12] and Chapter 8+ in [24]). Thus the required result follows
from Theorem 6.4.
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Figure 1: The Laakso graphs.

7 The Laakso graphs, doubling spaces and weak Markov type

Recall that a metric space X is said to be doubling with constant λ if every ball in X can be
covered by λ balls of half the radius. Assouad’s theorem [1] states that if (X, d) is doubling with
constant λ then for every ε > 0, (X, d1−ε) embeds in Hilbert space with distortion C(λ, ε) < ∞.
Thus X has Markov type 2 − ε with constant depending only on λ and ε. Similarly, it is shown
in [42] that if G is a planar graph equipped with the graph metric dG, then for every ε ∈ (0, 1),
(G, d1−ε

G ) embeds in Hilbert space with distortion O(1/
√

ε) (and the dependence on ε is optimal).
Thus G has Markov type 2−ε with constant O(1/

√
ε). Is it true that a metric space with doubling

constant λ has Markov type 2 with constant depending only on λ? Similarly, is it true that planar
graphs have Markov type 2 with a universally bounded constant (this would be a generalization of
our theorem on trees)? More generally, is it true that a Riemannian surface of genus g has Markov
type 2 with constant depending only on g? The above embedding results are all optimal, so a proof
of the Markov type 2 property for such spaces cannot go through embeddings in Hilbert space. The
standard example showing that in both embedding results we must pass to a power of the metric
is the family of graphs known as the Laakso graphs [37, 38], which are planar graphs whose graph
metric is uniformly doubling, yet they do not uniformly embed into Hilbert space. These graphs
Gk are defined recursively as in Figure 1.

Proposition 7.1. The Laakso graphs are uniformly of Markov type 2; that is supk M2(Gk) < ∞.

This proposition may be viewed as some very limited indication that doubling spaces and planar
graphs have Markov type 2.

Proof. Fix k ∈ N. Let r be the leftmost point of Gk, and for an arbitrary vertex v in Gk set
|v| := d(v, r). We claim that if v0, v1, . . . , vt is a path in Gk, then there is some j ∈ {0, 1, . . . , t}
such that

d(v0, vt) ≤
∣∣|v0| − |vj |

∣∣ +
∣∣|vj | − |vt|

∣∣. (16)

Indeed, let r′ be the rightmost endpoint of Gk. Note that for every vertex v in Gk we have
d(v, r′) = |r′| − |v|. If v0 and vn are on a geodesic path from r to r′, then d(v0, vt) =

∣∣|v0| − |vt|
∣∣,
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and hence we may take j = 0. We now assume that there is no geodesic from r to r′ containing
{v0, vt}. Let β be a geodesic path from v0 to r, and let γ be a geodesic path from vt to r. Let u
be the vertex in β ∩ γ at maximal distance from r. Similarly, we define u′ in the same way with r′

replacing r. It is easy to verify that {u, u′} separates v0 from vt and separates {v0, vt} from {r, r′}.
Consequently, there is some j ∈ {0, 1, . . . , t} such that vj ∈ {u, u′} and that j satisfies (16).

Now suppose that Z0, Z1, . . . , Zt are steps of a reversible stationary Markov chain on {1, . . . , n}
and g is a mapping from {0, 1, . . . , n} to the vertices of Gk. Set Wj := g(Zj). For each i =
1, 2, . . . , t, consider a path in Gk from Wi−1 to Wi whose length is d(Wi−1,Wi). Putting these
paths together gives a path (v0, v1, . . . , vn) passing through the points W0, . . . , Wt whose length
n is

∑t
i=1 d(Wi,Wi−1). Set ji :=

∑i
s=1 d(Ws,Ws−1). Then vji = Wi. Let j satisfy (16) and let

i0 ∈ {1, . . . , t} be such that ji0−1 ≤ j ≤ ji0 . Then we have

d(W0,Wt) ≤ ∣∣|W0| − |vj |
∣∣ +

∣∣|vj | − |Wt|
∣∣

≤ ∣∣|W0| − |Wi0−1|
∣∣ + d(Wi0−1,Wi0) +

∣∣|Wi0 | − |Wt|
∣∣

≤ 2
∣∣|W0| − |Wi0−1|

∣∣ + d(Wi0−1,Wi0) +
∣∣|W0| − |Wt|

∣∣.

Thus

d(W0,Wt)2 ≤ 3
(
2

∣∣|W0| − |Wi0−1|
∣∣)2 + 3 d(Wi0−1,Wi0)

2 + 3
∣∣|W0| − |Wt|

∣∣2

≤ 15 max
0≤i≤t

{(|W0| − |Wi|)2}+ 3
t∑

i=1

d(Wi−1,Wi)2 .

Consequently, the proof is completed by two applications of Lemma 5.1, one with f(Z) = |g(Z)|
and the other with f(Z) = −|g(Z)|.

It turns out that in many situations a similar argument proves a weak version of Markov type 2.

Definition 7.2. A metric space X has weak Markov type 2 if there is a finite constant C such that
for every reversible stationary Markov chain Z on {1, . . . , n} and every map f : {1, . . . , n} → X,
we have

∀t ∈ N, ζ > 0 Pr(d(f(Z0), f(Zt))2 ≥ t ζ) ≤ C2 ζ−1 E(d(f(Z0), f(Z1))2) .

The least C satisfying this inequality will be called the weak Markov type 2 constant of X and will
be denoted Mw

2 (X).

Note that Chebyshev’s inequality gives M2(X) ≥ Mw
2 (X).

Theorem 7.3. Let X be a metric space with doubling constant λ < ∞. Then X has weak Markov
type 2, and Mw

2 (X) is bounded by a finite function of λ.

Proof. Let R > 0 and let A be an R-net in X. Set E = {(a, a′) ∈ A × A : d(a, a′) ≤ 16 R}. Then
G := (A,E) is a graph. Since every ball of radius 16R in X can be covered by λ5 balls of radius
R/2, it follows that the maximal degree in G is at most λ5. Thus, the chromatic number of G is
at most λ5 + 1. Consequently, there is a partition A =

⋃N
j=1 Aj of A into (16R)-separated subsets

with N ≤ λ5 + 1. Define fj(x) := d(x,Aj), j = 1, 2, . . . , N . Then fj(x)− fj(y) ≤ d(x, y) holds for
x, y ∈ X.
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Now suppose that x, y ∈ X satisfy d(x, y) ∈ [3R, 4R]. Let a ∈ A be such that d(a, x) ≤ R
and let j ∈ {1, . . . , N} be the index such that a ∈ Aj . Then fj(x) ≤ d(a, x) ≤ R. Note that
d(a, y) ≤ d(a, x) + d(x, y) ≤ 5R, and since Aj is (16R)-separated, it follows that fj(y) = d(a, y) ≥
d(y, x)− d(a, x) ≥ 2R.

Let (Zt) be a reversible stationary Markov chain on {1, 2, . . . , n} and let f : {1, 2, . . . , n} →
X. Set Wi := f(Zi). Fix t ∈ N. Let A be the event that d(W0,Wt) ≥ 4R, let Bi be the
event that d(Wi−1,Wi) ≥ R, let Ci be the event d(W0,Wi) ∈ [3R, 4R], and let Cj

i be the event
|fj(W0)− fj(Wi)| ≥ 2R. Clearly,

A ⊆
(

t⋃

i=1

Bi

)⋃(
t⋃

i=1

Ci

)
.

The previous paragraph shows that

Ci ⊆
N⋃

j=1

Cj
i .

Consequently,

Pr(A) ≤
t∑

i=1

Pr(Bi) +
N∑

j=1

Pr
(

max
1≤i≤t

|fj(W0)− fj(Wi)| ≥ 2R

)
.

The first of these sums is bounded by tE(d(W0,W1)2) R−2, while Lemma 5.1 shows that the second
sum is bounded by 50N tE(d(W0,W1)2) R−2. The theorem follows by choosing R to satisfy 16R2 =
t ζ.

Let (X, dX), (Y, dY ) be metric spaces. We shall say that (X, dX) embeds weakly into (Y, dY )
with distortion K if for every ∆ > 0 there is a 1 Lipschitz mapping g∆ : X → Y such that if x, y ∈ X
satisfy dX(x, y) ≥ ∆ then dY (g∆(x), g∆(y)) ≥ ∆/K. Observe that in this case Mw

2 (X) ≤ KMw
2 (Y ).

Indeed fix a reversible stationary Markov chain Z on {1, . . . , n} and a map f : {1, . . . , n} → X.
For every time t ∈ N and every ζ > 0,

Pr(dX(f(Z0), f(Zt))2 ≥ tζ) ≤ Pr
(

dY (g√tζ(f(Z0)), g√tζ(f(Zt)))2 ≥ tζ

K2

)

≤ Mw
2 (Y )2K2ζ−1 E

(
dY (g√tζ(f(Z0)), g√tζ(f(Zt)))2

)

≤ Mw
2 (Y )2K2ζ−1 E

(
dX(f(Z0), f(Zt))2

)
.

It follows from the results of [42, 35] that if X is doubling with constant λ then X embeds weakly
into Hilbert space with distortion O(log λ). This yields an alternative proof of Theorem 7.3, with
the concrete estimate Mw

2 (X) = O(log λ). Moreover, the results of [42, 35] (specifically, see the
proof of Lemma 5.2 in [42]) imply that any planar graph embeds weakly into Hilbert space with
O(1) distortion. More generally, in combination with Corollary 3.15 in [41], any Riemannian surface
S of genus g embeds weakly into Hilbert space with distortion O(g + 1). Thus Mw

2 (S) = O(g + 1).
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8 Discussion and open problems

1. In [59] (see also a related previous result in [9]) it is shown that for every p > 1, if a Banach
space X has Rademacher type p then it also has Enflo type q for every q < p. No such result
is known for Markov type. In [56] it is shown that if X is a UMD Banach space (see [10]
for details on UMD spaces) of Rademacher type p, then X also has Enflo type p. It would
be desirable to obtain a result stating that for a certain class of Banach spaces, the notions
of Rademacher type p and Markov type p coincide (or almost coincide). The most daring
conjecture would be that for every Banach space, Rademacher type p implies Enflo type p, or
even Markov type p. This amounts to proving that for Banach spaces of type greater than 1
(also known as K-convex space. See [58] for the geometric and analytic ramifications of this
assumption), the Rademacher type and Enflo type (or Markov type) coincide.

One simple example of a class of spaces for which we can prove that there is a strong connection
between Rademacher type and Markov is Banach lattices. A Banach lattice is a Banach space
(X, ‖ · ‖) which is partially ordered and satisfies the following axioms. For every x, y, z ∈ X,
if x ≤ y then x + z ≤ y + z, and for every scalar α ∈ [0,∞), x ≥ 0 implies that αx ≥ 0. It is
also required that for all x, y ∈ X there exists a least upper bound x∨ y and a greatest lower
bound x ∧ y. For x ∈ X denote |x| = x ∨ (−x). The final requirement is that the partial
ordering is compatible with the norm in the sense that if |x| ≤ |y| then ‖x‖ ≤ ‖y‖. Examples
of Banach lattices are the classical function and sequence spaces, with the point-wise partial
order. We refer to [44] for an account of the beautiful theory of Banach lattices.

A combination of a theorem of Figiel [21] and a theorem of Maurey [50] (see Theorem 1.f.1.
and Proposition 1.f.17. in [44]) implies that a Banach lattice X of type 2 can be renormed to
have a modulus of smoothness of power type 2. Thus by Theorem 2.3 X has Markov type 2.

2. Under what conditions on a metric space does Enflo type p imply Markov type p?

3. Is it true that if a metric space has Markov type p then it also has Markov type q for every
q < p? For normed spaces this is indeed the case, by a straightforward application of Kahane’s
inequality [32].

4. We conjecture that the factor of 24 in Theorem 2.4 is redundant. In particular it seems likely
that for 2 ≤ p < ∞ and 1 < q ≤ 2, e(Lp, Lq) ≤

√
(p− 1)/(q − 1). If true, this would be a

generalization of Kirszbraun’s classical extension theorem [34] (see also [65, 6]).

5. Since L1 has cotype 2 but isn’t uniformly convex, there is no known non-linear analog of
Maurey’s extension theorem for L1-valued mappings. In particular, it isn’t known whether
e(L2, L1) is finite or infinite.

6. What is the best Markov type 2 constant for trees? More precisely, define M2(tree) to be
supM2(T ) over all trees T . (It is clear that this sup is a max.) One can show using the
methods of the present paper that M2(tree) ≤ 8. The example in Subsection 5.1 shows that
M2(tree) ≥

√
3.

7. As discussed in Section 7, we believe that planar graphs and doubling spaces have Markov
type 2. Also, it seems likely that CAT(0) spaces have Markov type 2 (see [8] for a discussion
of CAT(0) spaces).
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8. Say that a metric space X has maximal Markov type p, if there exists a constant K
such that for every finite stationary reversible Markov chain {Zt}∞t=0 on {1, . . . , n} and every
mapping f : {1, . . . , n} → X, we have

E max
1≤s≤t

d(f(Zs), f(Z0))p ≤ KptE d(f(Z1), f(Z0))p.

for all t ∈ N. In all the cases in which we proved that a metric space X has Markov type 2, the
argument actually shows that it has maximal Markov type 2. This was explicit in the proofs
for trees and hyperbolic spaces. To see this in the setting of Banach spaces with modulus of
smoothness of power type 2, it suffices to note that Doob’s L2 maximal inequality (11) is also
valid for a martingale {Ms}s≥0 in a Banach space, since by Jensen’s inequality, {‖Ms‖}s≥0 is
a submartingale for the same filtration. We do not know whether in general, Markov type p
implies maximal Markov type p.

Acknowledgement. We are grateful to Russ Lyons for helpful discussions at an early stage of
this work, and to Terry Lyons for sending us his paper [45] with T. S. Zhang.

References

[1] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France 111 429–448 (1983).

[2] K. Ball. Markov Chains, Riesz Transforms and Lipschitz Maps. Geom. Funct. Anal. 2, 137–172
(1992).

[3] K. Ball, E. A. Carlen and E. H. Lieb. Sharp uniform convexity and smoothness inequalities
for trace norms. Invent. math. 115, 463–482 (1994).

[4] Y. Bartal, N. Linial, M. Mendel and A. Naor. On metric Ramsey-type phenomena. Ann. Math.,
to appear.

[5] I. Benjamini and O. Schramm. In preparation.

[6] Y. Benyamini and J. Lindenstrauss. Geometric Nonlinear Functional Analysis, volume 1. Amer.
Math. Soc. Coll. Publ. 48 (2000).

[7] M. Bonk and O. Schramm. Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal. 10,
266–306 (2000).

[8] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Springer-Verlag,
Berlin (1999).

[9] J. Bourgain, V. Milman and H. Wolfson. On type of metric spaces. Trans. Amer. Math. Soc.
294, no. 1, 295–317 (1986).

[10] D. L. Burkholder. Martingales and Singular integrals in Banach spaces. Handbook of the Ge-
ometry of Banach Spaces, volume 1, W. B. Johnson and J. Lindenstrauss eds., Elsevier, Am-
sterdam, 233–269 (2001).

23



[11] S. Buyalo and V. Schroeder. Embedding of hyperbolic spaces in the product of trees. Preprint
(2004), available at http://arxiv.org/abs/math.GT/0311524.

[12] J. Cheeger and D. Ebin. Comparison Theorems in Riemannian Geometry. North Holland, New
York (1975).

[13] I. M. Chiswell. Length functions and free products of groups Proc. London Math. Soc. 42,
42–58 (1981).

[14] J. Diestel, H. Jarchow and A. Tonge. Absolutely Summing Operators. Cambridge University
Press (1995).
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ity. Geom. Funct. Anal. 10, no. 1, 111–123 (2000).

[38] U. Lang and C. Plaut. Bilipschitz embeddings of metric spaces into space forms. Geom. Dedi-
cata, 87 (1–3), 285–307 (2001).

[39] R. LataÃla. Estimation of moments of sums of independent real random variables. Ann. Probab.
25, no. 3, 1502–1513 (1997).

[40] J. R. Lee and A. Naor. Embedding the diamond graph in Lp and dimension reduction in L1.
Geom. Funct. Anal. 14, no. 4, 745–747 (2004).

[41] J. R. Lee and A. Naor. Extending Lipschitz functions via random metric partitions. Invent.
math., to appear.

[42] J. R. Lee, M. Mendel and A. Naor. Metric structures in L1: Dimension, snowflakes, and average
distortion. European Journal of Combinatorics, to appear.

[43] J. Lindenstrauss. On the modulus of smoothness and divergent series in Banach spaces. Michi-
gan Math. J., 10, 241–252 (1963).

[44] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces II. Springer-Verlag (1979).

[45] T. J. Lyons and T. S. Zhang. Decomposition of Dirichlet processes and its applications. Ann.
Probab. 22, 494–524 (1994).

25



[46] A. Magen, N. Linial and A. Naor. Girth and Euclidean distortion. Geom. Funct. Anal. 12, no.
2, 380–394 (2002).

[47] M. B. Marcus and G. Pisier. Characterizations of almost surely continuous p-stable random
Fourier series and strongly stationary processes. Acta Math. 152 (3–4), 245–301 (1984).

[48] B. Maurey. Espaces de cotype p, 0 < p ≤ 2. Séminaire Maurey-Schwartz 1972/73, École
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