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Abstract

We prove that the function d : R3 × R3 → [0,∞) given by

d
(
(x, y, z), (t, u, v)

)

=
([(

(t− x)2 + (u− y)2
)2

+ (v − z + 2xu− 2yt)2
] 1

2
+ (t− x)2 + (u− y)2

) 1
2

.

is a metric on R3 such that (R3,
√

d) is isometric to a subset of Hilbert space, yet (R3, d) does
not admit a bi-Lipschitz embedding into L1. This yields a new simple counter example to the
Goemans-Linial conjecture on the integrality gap of the semidefinite relaxation of the Sparsest
Cut problem. The metric above is doubling, and hence has a padded stochastic decomposition
at every scale. We also study the Lp version of this problem, and obtain a counter example
to a natural generalization of a classical theorem of Bretagnolle, Dacunha-Castelle and Krivine
(of which the Goemans-Linial conjecture is a particular case). Our methods involve Fourier
analytic techniques, and a recent breakthrough of Cheeger and Kleiner, together with classical
results of Pansu on the differentiability of Lipschitz functions on the Heisenberg group.

1 Introduction

Let G = (V, E) be a graph, with a capacity C(e) ≥ 0 associated to every edge e ∈ E. Assume that
we are given k pairs of vertices (s1, t1), ..., (sk, tk) ∈ V × V and D1, . . . , Dk ≥ 1. We think of the si

as sources, the ti as targets, and the value Di as the demand of the terminal pair (si, ti) for some
commodity κi. The problem is said to have uniform demands if every pair u, v ∈ V occurs as some
(si, ti) pair with Di = 1. Given a non-empty subset S $ V , we write

Φ(S) =
∑

uv∈E C(uv) · |1S(u)− 1S(v)|∑k
i=1 Di · |1S(si)− 1S(ti)|

,

where 1S is the characteristic function of S. The value Φ∗ = min∅6=S$V Φ(S) is the minimum over
all cuts (partitions) of V , of the ratio between the total capacity crossing the cut and the total
demand crossing the cut. In the case of uniform demands Φ∗ is simply the edge expansion of the
graph G.
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Computing Φ∗ is NP-hard [40]. Moreover, finding a cut for which Φ∗ is (approximately) attained
is a basic step in approximation algorithms for several NP-hard problems [34, 1, 47]. The problem of
approximating Φ∗ in polynomial time is known as the Sparsest Cut problem with general demands,
and is a famous open problem in the field of approximation algorithms. The best known algorithm
for this problem is based on the following classical semidefinite relaxation (see [19, 2] for the
motivation for this relaxation).

SDP relaxtion for Sparsest Cut

min
∑

uv∈E C(uv) ‖xu − xv‖2
2

s.t. xu ∈ Rn ∀u ∈ V∑
u,v∈V D(u, v) ‖xu − xv‖2

2 = 1
‖xu − xv‖2

2 ≤ ‖xu − xw‖2
2 + ‖xw − xv‖2

2

∀u, v, w ∈ V

Goemans and Linial (see [19, 36]) observed that this SDP produces a metric space (X, d) such
that (X,

√
d) is isometric to a subset of Hilbert space. Such metrics are known in the literature as

negative type metrics or squared L2 metrics. Moreover, following the approach of London, Linial
and Rabinovich [39] (see also the work of Aumann and Rabani [5]), they noted that the cut-cone
characterization of subsets of L1 (see [17]) implies that the integrality gap of this SDP can be
bounded by the least distortion with which (X, d) embeds into L1, i.e. the smallest L > 0 for which
there is an embedding f : X → L1 satisfying for all x, y ∈ X, d(x, y) ≤ ‖f(x)− f(y)‖1 ≤ L d(x, y).
We will denote the smallest such L by c1(X) in what follows. In fact it is known that the worst-case
integrality gap of the SDP over all instances of graphs with n nodes is precisely the largest value of
c1(X) as X ranges over all n-point metric spaces of negative type. Goemans and Linial therefore
made the following conjecture (see [19, 38]), which would imply that there exists a polynomial time
algorithm which approximates Φ∗ to within a constant factor.

The Goemans-Linial conjecture: Every metric space of negative type embeds with O(1) dis-
tortion into L1.

In a recent remarkable paper [26] Khot and Vishnoi proved that this conjecture does not hold
true. In other words, there exist arbitrarily large n-point metric spaces of negative type Xn such
that limn→∞ c1(Xn) = ∞. Their construction is motivated by considerations from complexity
theory, as it is based on a hardness result that will be discussed later. In particular, the Khot-
Vishnoi spaces are quite complicated to describe. The purpose of the present paper is to give a
different simple counter-example to the Goemans-Linial conjecture which is based on a classical
and well-understood metric space— the Heisenberg group. Moreover, our example has several
additional properties which lead to a solution of related problems. We will describe the Heisenberg
group geometry later, but for concreteness we first state explicitly our counter-example.

Theorem 1.1. Define d : R3 × R3 → [0,∞) by

d
(
(x, y, z), (t, u, v)

)
=

([(
(t− x)2 + (u− y)2

)2 + (v − z + 2xu− 2yt)2
] 1

2 + (t− x)2 + (u− y)2
) 1

2

.
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Then d is a metric on R3 and (R3,
√

d) is isometric to a subset of Hilbert space (i.e. (R3, d) is a
metric space of negative type). But, (R3, d) does not embed bi-Lipschitzly into L1. Thus

lim
n→∞ c1

({0, . . . , n}3, d
)

= ∞. (1)

Our approach can be used to answer additional questions to which the Khot-Vishnoi method
does not apply. In order to motivate them we recall some background which explains why the
Goemans-Linial conjecture is a natural question. A classical theorem of Schoenberg [45] (see
also [50]) states that a metric space (X, d) is isometric to a subset of L2 if and only if d2 is a negative
definite kernel on X, i.e. for every x1, . . . , xn ∈ X and every c1, . . . , cn ∈ C with

∑n
j=1 cj = 0 we

have
∑n

j,k=1 d(xj , xk)2cjck ≤ 0. Thus (X, d) is of negative type if and only if d is negative definite
on X. More generally Schoenberg proved that for 1 ≤ p ≤ 2 the function ‖x − y‖p

p is negative
definite on Lp. It follows that L1 is of negative type (this corollary of Schoenberg’s theorem is
easy to prove directly). It also follows that for 1 ≤ p ≤ 2 the space Lp equipped with the metric
‖x− y‖p/2

p is isometric to a subset of L2. Bretagnolle, Dacunha-Castelle and Krivine [7] proved the
following beautiful converse to this result of Schoenberg in the case of normed spaces: If (X, ‖ · ‖)
is a normed space and ‖x− y‖p is negative definite then X is linearly isometric to a subset of Lp.
Stated differently, X equipped with the metric ‖x− y‖p/2 is isometric to a subset of L2 if and only
if (X, ‖ · ‖) is isometric to a subset of Lp.

Specializing the above discussion to the case p = 1 we see that the Goemans-Linial conjecture
is true for normed spaces. It is thus natural to ask if this phenomenon holds for arbitrary metric
spaces. Moreover, from a computational viewpoint, since optimization problems over L1 metrics
are so important for the analysis of the cut structure of graphs, but are intractable computation-
ally (see [17]), one might hope that the negative type property of L1 metrics characterizes L1

embeddability. This would reduce optimization problems over cuts to the Euclidean case, where
we have efficient techniques, such as semidefinite programming, at our disposal. As we have seen,
this hope fails. But as a motivation for the Goemans-Linial conjecture, the theorem of Bretagnolle,
Dacunha-Castelle and Krivine is true for all 1 < p < 2, and it is thus just as natural to ask if it
holds for general metrics. In other words, if (X, d) is a metric space such that (X, dp/2) is isometric
to a subset of L2, does X embed into Lp? The following theorem shows that the answer to this
question is negative.

Theorem 1.2. Fix 1 ≤ p < 2 and define d : R3 × R3 → [0,∞) by

d
(
(x, y, z), (t, u, v)

)
=

[(
(t− x)2 + (u− y)2

)2 + (v − z + 2xu− 2yt)2
] 1

4

·





cos


p

2
arccos


 (t− x)2 + (u− y)2

[
((t− x)2 + (u− y)2)2 + (v − z + 2xu− 2yt)2

] 1
2











1/p

.

Then d is a metric on R3 and (R3, dp/2) is isometric to a subset of Hilbert space. But, (R3, d) does
not embed bi-Lipschitzly into Lp.

Note that when p = 1 the metric in Theorem 2.2 is proportional to the metric in Theorem 1.1.
Moreover, for all 1 ≤ p < 2 the metric in Theorem 1.2 is easily seen to be bi-Lipschitz equivalent
to the metric in Theorem 2.2 (we will prove this later). Thus the fact that it does not embed into
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Lp follows from Theorem 1.1, since Lp is isometric to a subset of L1. Nevertheless, the proof of the
non-embeddability result in the case 1 < p < 2 is significantly easier, and is based on more classical
results.

An additional novel aspect of Theorem 1.1 is that the metric constructed there is decomposable.
Recall that the modulus of padded decomposability of X is the smallest α > 0 such that for every
∆ > 0 there exists a distribution over partitions of X into sets of diameter at most ∆, such that
for every x ∈ X with probability at least 1

2 the entire ball of radius ∆/α centered at x is contained
in the element of the partition to which x belongs (we refer to [33, 28] for a general discussion of
this notion). We will see that the spaces (R3, d) in Theorem 1.1 and Theorem 1.2 are doubling
(see [23] for more information on the doubling condition), so that by the results of [21] they have
a finite modulus of padded decomposability. It is a folklore problem, stated explicitly in [49],
whether decomposable spaces embed into L1. Theorem 1.1 shows that the answer to this question
is negative. On the other hand the Khot-Vishnoi spaces are easily seen not to have a uniformly
bounded modulus of padded decomposability.

Padded decomposability is a central tool in metric embeddings which is used in numerous
contexts. In particular, a theorem of Klein, Plotkin and Rao [27] states that planar graphs, or
more generally graphs which exclude a fixed minor, are decomposable. It is a famous conjecture
(stated in [37, 22]) that such metrics embed into L1. Our results show that if true, the proof of
this conjecture will have to use more information than just the fact that such graph families are
decomposable. This contrasts the fact that all known bi-Lipschitz embedding theorems for these
spaces only use the fact that they are decomposable.

In the next subsections of this introduction we describe in greater detail the Heisenberg groups,
and the ingredients of the proof of Theorem 1.1 and Theorem 1.2.

1.1 Heisenberg groups and the Koranyi norm

Let G be a group with identity element e. A function N : G → [0,∞) is called a group semi-norm
on G if N(e) = 0, every g ∈ G satisfies N(g−1) = N(g), and every g, h ∈ G satisfy N(gh) ≤
N(g) + N(h). If, in addition, N(g) = 0 implies that g = e, then N is called a group norm on
G. Observe that every group norm N on G induces a right-invariant metric ρN on G given by
ρN (g, h) = N(gh−1).

Fix an integer n ≥ 1. For z = (z1, . . . , zn) ∈ Cn denote |z| =
√
|z1|2 + . . . + |zn|2. Additionally,

we will use the standard symplectic form on Cn, defined for z, w ∈ Cn as:

[z, w] =
n∑

j=1

=(zjwj),

where here and in what follows, =(ζ) and <(ζ) denote the imaginary part and real part of the
complex number ζ, respectively.

The 2n+1 dimensional Heisenberg group H2n+1 is defined via the following (non-commutative)
group operation on Cn × R:

(z, s) · (w, t) = (z + w, t + s + 2[z, w]).

The Koranyi norm N0 on H2n+1 is defined as

N0(z, t) =
(|z|4 + t2

)1/4
.
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It is a classical fact (see [15, 48]) that N0 is indeed a group norm on H2n+1.

Remark 1.1. The Heisenberg groups are examples of the more general class of Carnot groups,
which are themselves particular cases of a class of path metrics known as sub-Riemannian geome-
tries. In particular, there is an important intrinsic geodesic metric on H2n+1, which is known as the
Carnot-Carathéodory metric. We will not need to define this metric here, and it suffices to say that
it is bi-Lipschitz equivalent the the metric induced by the Koranyi norm. However, understand-
ing the proofs of the results that we will use requires familiarity with the Carnot-Carathéodory
structure on H2n+1. Moreover, some of the results stated here carry over to general Carnot groups.
We refer the interested reader to [20, 41] for more information about the fascinating world of
sub-Riemannian geometries and Carnot groups.

Define N : H2n+1 → [0,∞) by

N(z, t) =
√√

|z|4 + t2 + |z|2 =
√

[N0(z, t)]2 + |z|2. (2)

Since for any two group semi-norms N1, N2 on a group G,
√

N2
1 + N2

2 is also a group semi-norm on
G, it follows that N is a group norm on H2n+1. Note that the metric d in Theorem 1.1 is precisely
the metric induced on H3 by the group norm N . This proves that d is indeed a metric. The heart
of Theorem 1.1 is the proof that (H2n+1,

√
ρN ) is isometric to a subset of Hilbert space, and the

non-embeddability of H2n+1 into L1. We remark that it is easy to check that (H2n+1, ρN0) is not of
negative type. Our proof that (H2n+1, ρN ) is of negative type is naturally based on Schoenberg’s
theorem [45] quoted above, and is contained in Section 2. The fact that H2n+1 does not embed into
L1 follows from a recent result of Cheeger and Kleiner— this is explained in Section 1.3 below.

In order to prove Theorem 1.2 fix p ∈ [1, 2) and define M : H2n+1 → [0,∞) by

M(z, t) =
(|z|4 + t2

)1/4

{
cos

[
p

2
arccos

(
|z|2√
|z|4 + t2

)]}1/p

. (3)

The following lemma implies that the metric d in Theorem 1.2 is indeed a metric, since it is precisely
the metric on H3 induced by the group norm M .

Lemma 1.3. M is a group norm on H2n+1 which satisfies for all g ∈ H2n+1,
√

1− p

2
·N0(g) ≤

[
cos

(πp

4

)]1/p
·N0(g) ≤ M(g) ≤ N0(g). (4)

Lemma 1.3 is proved in Section 3, as well as the fact that (H2n+1,Mp/2) is isometric to a subset
of L2 (the proof of which uses Schoenberg’s theorem once more). The non-embeddability of H2n+1

into Lp when p > 1 follows from a simple extension of a differentiability theorem of Pansu [42]
to the case of functions with values in Banach spaces with the Radon-Nikodým property, and an
elegant observation of Semmes [46]. This is described in Section 1.2 below.

Remark 1.2. It is well known (see [23]) that (H2n+1, N0) is doubling with constant O(1)n. By a
theorem of Assouad [4, 23] we know that for every ε ∈ (0, 1) the metric space (H2n+1, N1−ε

0 ) is bi-
Lipschitz equivalent to a subset of L2 (with distortion depending on n and ε). Thus the main issue
in Theorem 1.2 is to pass to an equivalent metric on H2n+1 for which the embedding is isometric.
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As a by product we see from the bounds in (3) that (H2n+1, N1−ε
0 ) embeds into Hilbert space with

distortion independent of n. This distortion is O
(

1√
ε

)
, which coincides with the general bound for

doubling spaces proved in [31].

1.2 Pansu differentiability and the Radon-Nikodým property

For every θ ∈ R define the dilation operator δθ : H2n+1 → H2n+1 by δθ(z, t) = (θz, θ2t). Observe
that for every g, h ∈ H2n+1, δθ(gh) = (δθg)(δθh) and ρN0(δθ(g), δθ(h)) = |θ|ρN0(g, h). Let X be
a Banach space and F : H2n+1 → X be a Lipschitz mapping. We shall say that F has a Pansu
derivative at g ∈ H2n+1 if for every h ∈ H2n+1 the limit

Dg
F (h) ≡ lim

θ→0

F (δθ(h)g)− F (g)
θ

exists, and Dg
F is a homomorphism, i.e. for all h1, h2 ∈ H2n+1, Dg

F (h1h
−1
2 ) = Dg

F (h1)−Dg
F (h2).

Pansu [42] proved that if X is finite dimensional then every Lipschitz mapping F : H2n+1 → X is
Pansu-differentiable (Lebesgue) almost everywhere. We remark that Pansu’s proof of this theorem
extends almost verbatim to the case when X has the Radon-Nikodým property. A Banach space
X is said to have the Radon-Nikodým property (RNP) if every Lipschitz function f : R → X is
differentiable almost everywhere. This is not the original definition of the Radon-Nikodým property,
but it is equivalent to it and is most convenient for our purposes. We refer to Chapter 3 in [6]
for more details. Examples of spaces without the RNP are L1, c0 and C(0, 1). On the other hand,
separable conjugate Banach spaces and reflexive Banach spaces are known to have the RNP [6].
For example, since `1 = c∗0 and `1 is separable, it has the RNP.

Since Pansu’s proof of his differentiability theorem into finite dimensional spaces uses only the
differentiability of Lipschitz functions along geodesics, it extends to the case when X has the RNP
(the modification of Pansu’s argument is straightforward, and will not be included here). In fact,
a very simple proof which is particularly convenient to extend to the Heisenberg case is the Preiss-
Zaj́ıček theorem [43] on the differentiability outside a σ-porous set of Lipschitz functions on Rn

with values in RNP spaces (see also the second proof of Proposition 6.41 in [6]). Recall that for a
metric space (Z, d) a set A ⊆ M is called porous if there exists a number 0 < λ < 1 such that for
every x ∈ A and every ε > 0 there is y ∈ Z such that 0 < d(x, y) < ε and A∩B(y, λd(x, y)) = ∅. A
countable union of porous sets is called σ-porous. Clearly porous sets are nowhere dense, so that
σ-porous sets are of the first category. The Lebesgue density theorem implies that σ-porous sets
on H2n+1 also have measure zero. Thus a slight strengthening of Pansu’s differentiability theorem
is that if X has the RNP then every Lipschitz function F : H2n+1 → X is Pansu-differentiable
outside a σ-porous set.

As noted by Semmes in [46], these observations imply that H2n+1 does not embed bi-Lipschitzly
into any Banach space with the RNP. Indeed, if F : H2n+1 → X were such an embedding then let
g ∈ H2n+1 be a point of Pansu differentiability of F . For every h, k ∈ H2n+1 we have Dg

F (hk) =
Dg

F (h) + Dg
F (k) = Dg

F (kh). Thus

0 = lim
θ→0

∥∥∥∥
F (δθ(hk)g)− F (g)

θ
− F (δθ(kh)g)− F (g)

θ

∥∥∥∥
X

≥ 1
‖F−1‖Lip

· lim inf
θ→0

ρN0(δθ(hk)g, δθ(kh)g)
θ

≥ ρN0(hk, kh)
‖F−1‖Lip

,
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and this is a contradiction since H2n+1 is not commutative.
Since for p > 1, Lp has the RNP, it follows that H2n+1 does not embed bi-Lipschitzly in Lp,

proving the last part of Theorem 1.2.

Remark 1.3. Since `1 has the RNP, it follows from the above discussion that H2n+1 does not
embed into `1. But this does not suffice to deduce the discretization statement in (1), since it is
not true that if a metric space does not embed into `1 then its finite subsets cannot embed into `1

with uniformly bounded distortion. Indeed, `2 does not embed into `1 (see [35]), but all its finite
subsets embed isometrically into `1. Another such example is L1 itself. For the Goemans-Linial
conjecture (and hence also for the integrality gap of the Sparsest Cut SDP), which originally deals
with finite metrics, it is crucial, and sufficient, to prove non-embeddability into L1, since L1 has
the property that if all the finite subsets of a separable metric space embed into it with uniformly
bounded distortion, then so does the entire space (see [24]).

Remark 1.4. In [13] Cheeger and Kleiner extend Pansu’s theorem in a different direction by
generalizing Cheeger’s theory of metric differentiation [10] to the case of mappings from certain
metric measure spaces to a separable dual Banach space. The fact that H2n+1 does not embed into
Lp, p > 1, follows from their results as well. In [12] they use this theory to give an example of a
doubling metric space which embeds into L1 but does not embed into `1. This result can be viewed
as an extreme infinite version of the results [8, 32, 31] that there is no dimension reduction in L1

in the spirit of the Johnson-Lindenstrauss dimension reduction lemma [25].

1.3 The Cheeger-Kleiner theorem on collapse towards the center

The crucial non-embeddability result in Theorem 1.1 does not follow from a differentiation state-
ment, since L1 does not have the RNP, and thus even Lipschitz mappings from the real line into
L1 might not have a point of differentiability (consider for example the mapping t 7→ 1[0,t]). More-
over, differentiability theorems cannot hold for mappings into general Banach spaces since H2n+1

is isometric to a subset of L∞, and this isometry cannot have a derivative in any reasonable sense.
This problem is a long standing major obstacle to proving L1 non-embeddability. In a beautiful
tour-de-force paper [11] Cheeger and Kleiner proved that in a certain sense there is a weak notion of
differentiability for mappings from H2n+1 into L1. This notion is strong enough to prove that H2n+1

does not embed into L1. We will not state here the exact (somewhat complicated) formulation of
the Cheeger-Kleiner L1 differentiation result— instead we will state its main corollary. They show
that if U ⊆ H2n+1 is an open subset, and F : U → L1 is a Lipschitz function, then for almost every
(z, t) ∈ U we have

lim
ε→0+

‖F (z, t + ε)− F (z, t)‖1√
ε

= 0. (5)

This implies that F is not bi-Lipschitz. Indeed, otherwise we would have for every (z, t) ∈ U and
ε > 0,

‖F (z, t + ε)− F (z, t)‖1 ≥ 1
‖F−1‖Lip

· ρN0((z, t + ε), (z, t)) =
1

‖F−1‖Lip
· √ε.

The statement in (5) says that Lipschitz maps on H2n+1 “collapse” in the direction of the center
of H2n+1 at almost every point, and thus they cannot be bi-Lipschitz. This in itself can be viewed
as a weak differentiation result. The proof of (5) is quite remarkable. Cheeger and Kleiner start by

7



using the cut decomposition on the image of F to induce a family of cuts on H2n+1. They observe
that in a certain sense most of these cuts are given by subsets of H2n+1 with finite perimeter. They
then apply recent results in geometric measure theory on the fine structure of subsets of H2n+1 with
finite perimeter, and use this structural information to prove (5). This geometric investigation of
the type of cuts that can appear in the cut decomposition of certain spaces is a novel approach to L1

non-embeddability and L1 differentiation, and we expect that it will have additional applications
in the future.

Remark 1.5. A natural question that occurs is what is the rate with which the distortion tends
to infinity in (1). It is not difficult to see that explicit rates would follow from a version of (5) with
an explicit rate of convergence to 0. We discuss this below in Remark 1.6. This rate at which (5)
tends to 0 is the topic of a work in progress of Cheeger, Kleiner and the second named author [14].
Heuristic considerations suggest that the rate in (1) might be c1

({0, . . . , n}3, d
) ≥ (log n)Ω(1). This

should follow from a technical (albeit tedious) “quantification” of the arguments in [11]. It is clearly
of interest to find a simpler and shorter argument— this is intended to be the main focus of [14].
We do not report a specific exponent here since the quantitative version of (5) is quite long and
involved, and it is not clear at this point what are the precise rates that are obtained. One of the
reasons for this complication is that a quantitative version of (5) involves proving effective versions
of the results from geometric measure theory that were used in [11]. Such effective versions were
not previously known, and they are of independent interest.

We remark that the Khot-Vishnoi example in [26] gives an n-point metric space Xn of nega-
tive type such that c1(Xn) ≥ (log log n)

1
6
−o(1). This was improved recently by Krauthgamer and

Rabani [29] to a lower bound of Ω(log log n). The best known upper bounds for the Euclidean
distortion (and, hence, L1 distortion) of n-point negative type metrics are due to Arora, Lee, and
Naor [2], who proved that such metrics embed into L2 with distortion O

(√
log n · log log n

)
. A

recent paper of the first named author yields a small improvement to O
(√

log n log log n
)

[30]. The
result of Khot and Vishnoi is based on the analysis of a hardness result which they proved (in
the same paper) for the Sparsest Cut problem with general demands, assuming the unique games
conjecture (such a hardness result was also obtained in [9]). Improving this (conditional) hardness
lower bound to (log n)Ω(1) remains an important challenge.

The best known integrality gap for the Goemans-Linial semidefinite relaxation of Sparsest Cut
with uniform demands, due to Arora, Rao and Vazirani [3], is O

(√
log n

)
. Very recently Devanur,

Khot, Saket and Vishnoi [16] showed that this integrality gap also tends to infinity with the number
of vertices of the graph. We remark that doubling metrics, and more generally decomposable
metrics, cannot yield an integrality gap for the SDP relaxation of uniform Sparsest Cut due to the
results of Rabinovich [44].

Remark 1.6. We now show the relationship between the rate of convergence in (5) and quantitative
lower bounds on c1(X) for finite subsets X ⊆ H3. Let B(0, r) denote the open ball of radius r
centered at 0 in (H3, ρN0). Fix δ ∈ (0, 1

2) and let X ⊆ B(0, 1) be a δ-net in B(0, 1). It is easily
checked that |X| ≤ (4/δ)4.

Assume that for some non-decreasing function R : (0, 1
4) → [0, 1] with 1 ≥ R(ε) ≥ √

ε for every
ε ∈ (0, 1

4), the following assertion holds true: For every 1-Lipschitz map F : B(0, 1) → L1 there
exists a point (z, t) ∈ B(0, 1

2) such that

‖F (z, t + ε)− F (z, t)‖1 ≤ R(ε)
√

ε. (6)
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We claim that by choosing δ = 1
4

√
ε ·R(ε) one has

c1(X) ≥ c

R
(
16 |X|−1/4

) , (7)

where c > 0 is a universal constant.
Indeed, let f : X → L1 be a bi-Lipschitz map with ‖f‖Lip ≤ 1. Since H3 is doubling, by [33, Th.

1.6] there exists a universal constant K ≥ 1 (independent of f) and a map f̃ : H3 → L1 for which
‖f̃‖Lip ≤ K and f̃ |X = f . Let F = 1

K f̃ , so that ‖F‖Lip ≤ 1. Let (z, t) ∈ B(0, 1
2) be the point which

results from applying (6) to F , and let (z1, t1), (z2, t2) ∈ X be such that ρN0((z1, t1), (z, t)) ≤ δ and
ρN0((z2, t2), (z, t + ε)) ≤ δ. Then

R(ε)
√

ε ≥ ‖F (z, t + ε)− F (z, t)‖1 ≥ ‖F (z1, t1)− F (z2, t2)‖1 − 2δ

≥ ρN0((z1, t1), (z2, t2))
K · ‖f−1‖Lip

− 2δ ≥
√

ε− 2δ

K · ‖f−1‖Lip
− 2δ.

Equivalently,

‖f−1‖Lip ≥ 1
K
·

√
ε− 2δ

R(ε)
√

ε + 2δ
≥ 1

3K ·R(ε)
.

Since |X| ≤ (4/δ)4 ≤ (16/ε)4, we conclude that (7) holds. Thus one obtains a bound of the form
c1(X) ≥ (log |X|)Ω(1) as long as R(ε)−1 ≥ (log(1

ε ))Ω(1) holds in (6).

2 A metric of negative type on the Heisenberg group

Let G be a group with identity element e. A a complex valued function K : G×G → C is called a
Hermitian kernel on G if every g, h ∈ G satisfy K(g, h) = K(h, g). A Hermitian kernel K on G is
said to be positive definite if

n∑

`,m=1

K(g`, gm)c`cm ≥ 0

for all g1, . . . , gn ∈ G and for all complex scalars c1, . . . , cn ∈ C. A Hermitian kernel K on G is
called negative definite if

n∑

`,m=1

K(g`, gm)c`cm ≤ 0

for all g1, . . . , gn ∈ G and for all complex scalars c1, . . . , cn ∈ C satisfying
∑n

j=1 cj = 0.
Let F : G → C be a function such that every g ∈ G satisfies F (g−1) = F (g). The Hermitian

kernel on G induced by F , denoted KF , is defined by KF (g, h) = F (gh−1). F is said to be positive
definite (resp. negative definite) if KF is positive definite (resp. negative definite).

We will use the following classical fact, due to Scoenberg [45] (see also the book [50] and
Proposition 8.5 in [6]).

Proposition 2.1. Let K : G×G → R be a real-valued kernel on G satisfying K(g, g) = 0 for every
g ∈ G. Then K is negative definite if and only if there exists a Hilbert space H and a function
T : G → H such that for all g, h ∈ G,

K(g, h) = ‖T (g)− T (h)‖2.

9



The main result of this section is:

Theorem 2.2. Let N be as in (2). Then (H2n+1, ρN ) is a metric space of negative type, i.e.
(H2n+1, ρN ) is a metric space and (H2n+1,

√
ρN ) embeds isometrically in Hilbert space.

By Proposition 2.1 all that remains is to show that N is a negative definite function on H2n+1,
and the remainder of this section is devoted to the proof of this fact. We remark that it is easy to
verify that the Koranyi norm itself in not negative definite on H2n+1.

Lemma 2.3. For every λ ∈ C define Φλ : H2n+1 → R by

Φλ(z, t) = e−|λ|·|z|
2+iλt.

Then Φλ is a positive definite function on H2n+1.

Proof. We have

KΦλ
((z, s), (w, t)) = Φλ((z, s) · (−w,−t))

= exp


−|λ|

n∑

j=1

|zj − wj |2 + iλ(s− t− 2
n∑

j−1

=(zjwj))




=




n∏

j=1

e−|λ|(|zj |2+|wj |2)


 · eiλ(s−t) ·




n∏

j=1

e2|λ|(<(zjwj)−i·sign(λ)=(zjwj))


 .

Since the point-wise product of positive definite kernels is positive definite (see [6], Proposition
8.2), it suffices to show that each term in the above product is a positive definite kernel on H2n+1.
The fact that eiλ(s−t) and e−|λ|(|zj |2+|wj |2) are positive definite follows the fact that for all complex
scalars c1, . . . , ck ∈ C, the matrix (c`cm)`,m is positive semidefinite. It remains to check that
e2|λ|(<(zjwj)−i·sign(λ)=(zjwj)) is positive definite. Since, for any positive definite kernel K, the kernel
eK is also positive definite (see [6], Proposition 8.2), it is enough to show that

<(zjwj)− i · sign(λ)=(zjwj)

is positive definite. This equals zjwj if λ < 0 and zjwj = zjwj if λ ≥ 0. In both cases, the kernel
is positive definite.

Proof of Theorem 2.2. Our goal is to show that N is a negative definite function on H2n+1. In
what follows, we use some notions from Fourier analysis. For a function f : R → R, we denote
its Fourier transform by f̂(t) =

∫
R eitxf(x)dx. The convolution of two functions f, g : R → R is

defined as (f ∗ g)(t) =
∫
R f(t− x)g(x)dx, so that f̂ ∗ g = f̂ · ĝ.

Fix ε > 0. The existence of symmetric 1
2 -stable distributions (see [18]) implies that there exits

a non-negative integrable function ϕε : R → [0,∞) such that, for all t ∈ R, ϕ̂ε(t) = e−ε
√
|t|.

Lemma 2.3 shows that the function Fε : H2n+1 → C given by

Fε(z, t) =
∫

R
e−|λ|·|z|

2+iλtϕε(λ) dλ

10



is positive definite on H2n+1. For every a > 0, denote

ha(x) =
a

π
· 1
a2 + x2

.

Then
∫
R ĥa(x)dx = 1 and ĥa(t) = e−a|t| for all t ∈ R (see, e.g. [18]). Denoting fε(t) = e−ε

√
|t|,

the inversion formula for the Fourier transform implies that ϕε = 1
2π f̂ε. Another application of the

inversion formula gives

Fε(z, t) =
1
2π

∫

R
eiλtĥ|z|2(λ)f̂ε(λ)dλ =

1
2π

∫

R
eiλt ̂(h|z|2 ∗ fε)(λ)dλ = (h|z|2 ∗ fε)(t).

Since Fε is positive definite on H2n+1, the function 1−Fε
ε is negative definite on H2n+1, and

lim
ε→0

1− Fε(z, t)
ε

= lim
ε→0

[
h|z|2 ∗

(
1− fε

ε

)]
(t)

= lim
ε→0

∫

R

1− e−ε
√
|x|

ε
h|z|2(t− x) dx

=
|z|2
π

∫

R

√
|x|

|z|4 + (t− x)2
dx.

The next lemma shows that the latter expression is equal to N(z, t), completing the proof.

Lemma 2.4. For every r, t ∈ R

r2

π

∫

R

√
|x|

r4 + (t− x)2
dx =

√√
r4 + t2 + r2.

Proof. Making the change of variable x = r2v and s = t/r2, our goal is to prove that
∫ ∞

0

(
1

1 + (s− v)2
+

1
1 + (s + v)2

)√
v dv = π

√√
1 + s2 + 1. (8)

By continuity, we may assume that s 6= 0. Consider the function ψ : {ζ : =(ζ) > 0} → C given
by ψ(ζ) =

(
1

1+(s−ζ)2
+ 1

1+(s+ζ)2

)√
ζ. We take here the principle branch of the square root, i.e. if

ζ = ρeiθ where ρ > 0 and θ ∈ (0, π) then
√

ζ =
√

ρeiθ/2. The poles of ψ are at i± s, so that, by the
residue theorem, the left-hand side of (8) equals < [2πiResi+s(ψ) + 2πiResi−s(ψ)]. Since the poles
of ψ are simple, a direct computation gives that the required integral equals

<
[
2πi

(√
i + s

2i
+
√

i− s

2i

)]
= π




√√
s2 + 1 + s

2
+

√√
s2 + 1− s

2


 = π

√√
1 + s2 + 1,

which is the required identity.
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3 The Lp case

We now generalize the argument of Section 2.2 to prove Theorem 1.2. The idea of the proof is the
same, and we will therefore use the same notation and be sketchy at some places. In what follows
we fix 1 ≤ p < 2.

Fix ε > 0 and let ϕε : R → [0,∞) satisfy for all t ∈ R, ϕ̂ε(t) = e−ε|t|p/2
. The existence of ϕε

follows from the existence of a symmetric p
2 -stable distribution [18]. Define Fε : H2n+1 → C by

Fε(z, t) =
∫

R
e−|λ|·|z|

2+iλtϕε(λ) dλ,

which is a positive definite function on H2n+1 by Lemma 2.3. As before, we write ha(x) = a
π · 1

a2+x2

and fε(t) = e−ε|t|p/2
. Arguing as in the proof of Theorem 2.2 we obtain the identity

lim
ε→0

1− Fε(z, t)
ε

=
|z|2
π

∫

R

|x|p/2

|z|4 + (t− x)2
dx.

Thus the mapping

(z, t) 7→ |z|2
π

∫

R

|x|p/2

|z|4 + (t− x)2
dx (9)

is negative definite on H2n+1. This integral is calculated in the following lemma.

Lemma 3.1. For every r, t ∈ R

r2

π

∫

R

|x|p/2

r4 + (t− x)2
dx = 2 cos

(pπ

4

)
· (r4 + t2)p/4 · cos

[
p

2
arccos

(
r2

√
r4 + t2

)]
.

Proof. Making the change of variable x = r2v and s = t/r2 we find that:

r2

π

∫

R

|x|p/2

r4 + (t− x)2
dx =

rp

π

∫ ∞

0

(
1

1 + (s− v)2
+

1
1 + (s + v)2

)
vp/2dv.

As in Lemma 2.4 we define ψ : {ζ : =(ζ) > 0} → C by ψ(ζ) =
(

1
1+(s−ζ)2

+ 1
1+(s+ζ)2

)
ζp/2, where if

ζ = ρeiθ for ρ > 0 and θ ∈ (0, π) then ζp/2 = ρp/2eipθ/2. By the residue theorem,

∫ ∞

0

(
1

1 + (s− v)2
+

1
1 + (s + v)2

)
vp/2dv = <

[
2πi

(
(i + s)p/2

2i
+

(i− s)p/2

2i

)]

= 2π cos
(pπ

4

)
· (1 + s2

)p/4 · cos
[
p

2
arccos

(
1√

1 + s2

)]
.

This implies the required identity.

We have thus shown that if M is as in (3) then (H2n+1, Mp/2) is isometric to a subset of
Lp (since the integral in (9) equals Mp). In order to prove Theorem 1.2 it remains to prove
Lemma 1.3. We begin with the following standard lemma, whose simple proof we include for the
sake of completeness.
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Lemma 3.2. Denote C = {(a, b) ∈ R2\{0} : a ≥ b ≥ 0}. Assume that 1 < β and γ : [1, β] → [0,∞]
is continuously differentiable, concave, γ(1) = 1, γ(β) = 0, and γ′(1) < 0. Then for every (a, b) ∈ C

there is a unique µ = µ(a, b) ∈ [a/β, a] such that b
µ = γ

(
a
µ

)
. Moreover, µ : C → [0,∞) satisfies

for every x, y ∈ C, µ(x + y) ≤ µ(x) + µ(y), and if x ≤ y coordinate-wise then µ(x) ≤ µ(y).

Proof. The assumptions imply that γ is strictly decreasing. To prove the existence of µ take
(a, b) ∈ C and for µ ∈ [a/β, a] let f(µ) = µγ

(
a
µ

)
. Direct differentiation shows that γ is strictly

increasing. Moreover f
(

a
β

)
= a

β γ(β) = 0 ≤ b and f(a) = aγ (1) = a. Thus there exists a unique µ

for which f(µ) = b.
If x, y ∈ C write x = (x1, x2), y = (y1, y2) and denote A = µ(x) + µ(y). Then by the concavity

of γ,

γ

(
x1 + y1

µ(x) + µ(y)

)
≥ µ(x)

µ(x) + µ(y)
γ

(
x1

µ(x)

)
+

µ(y)
µ(x) + µ(y)

γ

(
y1

µ(y)

)
=

x2 + y2

µ(x) + µ(y)
,

and from the above reasoning we deduce that µ(x) + µ(y) ≥ µ(x + y). Assume now that x1 ≤ y1

and x2 ≤ y2. Then denoting g(t) = tγ
(

x1
t

)
for t ∈ [x1/β, x1], we know that g is increasing

and g (µ(x1, x2)) = x2 ≤ y2 = g (µ(x1, y2)). Thus µ(x1, x2) ≤ µ(x1, y2). Assume for the sake of
contradiction that µ(y1, y2) < µ(x1, y2). Then γ

(
x1

µ(x1,y2)

)
= y2

µ(x1,y2) < y2

µ(y1,y2) = γ
(

y1

µ(y1,y2)

)
.

Since γ is decreasing we deduce that y1

µ(x1,y2) ≥ x1
µ(x1,y2) > y1

µ(y1,y2) , which is a contradiction.

The following lemma is the crucial step in proving that M is indeed a group norm on H2n+1.

Lemma 3.3. Define γ :
[
1,

[
cos

(πp
4

)]−1/p
]
→ [0,∞) by

γ(a) = a

√
cos

(
2
p

arccos
(

1
ap

))
.

Then γ satisfies the conditions of Lemma 3.2.

Before proving Lemma 3.3 we use it to prove Lemma 1.3.

Proof of Lemma 1.3. Let µ : C → [0,∞) be the function from Lemma 3.2 which corresponds to
the function γ in Lemma 3.3. Then for (a, b) ∈ C we have

b

µ(a, b)
= γ

(
a

µ(a, b)

)
=

a

µ(a, b)

√
cos

(
2
p

arccos
(

µ(a, b)p

ap

))
.

Solving this equation we see that

µ(a, b) = |a|
{

cos
[
p

2
arccos

(
b2

a2

)]}1/p

.

Thus M(z, t) = µ(N0(z, t), |z|). It follows that for every (z, t), (ζ, τ) ∈ H2n+1 we have

M ((z, t) · (ζ, τ)) = µ (N0 ((z, t) · (ζ, τ)) , |z + ζ|)
≤ µ (N0 (z, t) + N0(ζ, τ), |z|+ |ζ|)
≤ µ(N0(z, t), |z|) + µ(N0(ζ, τ), |ζ|)
= M(z, t) + M(ζ, τ).
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The right-hand inequality in (4) follows from the fact that arccos
(

|z|2√
|z|4+t2

)
∈ [0, π/2], and the

left-hand inequality in (4) is an easy elementary numerical inequality which we do not prove here
(actually we just care about the asymptotic behavior as p tend to 2, which is obvious).

Before passing to the proof of Lemma 3.3 we record some elementary numerical inequalities
that will be used in the ensuing argument.

Lemma 3.4 (Auxiliary numerical inequalities that will be used later). The following
numerical inequalities hold true in the specified ranges

1. tan(λt) ≥ λ tan t for λ ∈ [1,∞) and t ∈ [
0, π

2λ

)
.

2. 4x
π ≤ max

{
1, 3 sin2 x

}
for x ∈ [0, 1].

3. 2 sinu− u cosu− u ≥ 0 for u ∈ [0, π].

4. sin(4x)− 4x + 12x sin2 x ≥ 0 for 0 ≤ x ≤ arcsin
(

1√
3

)
.

Proof. The first inequality is simply a consequence of the convexity of the function tan(·) on [0, π/2).
To prove the second inequality note that if 4x

π ≤ 1 then there is nothing to prove, so assume that
x ∈ [π/4, 1]. We must show that in this range 3 sin2 x ≥ 4x

π . Using the elementary inequality

sinx ≥ x− x3

6 we see that it is enough to prove the inequality x
(
1− x2

6

)2
≥ 4π

3 , which is valid for
x ∈ [π/4, 1]. To prove the third inequality write ψ(u) = 2 sinu−u cosu−u. Then ψ′′(u) = u cosu.
So ψ′ is increasing on [0, π/2] and decreasing on [π/2, π]. But ψ′(0) = 0, so that ψ′ is either always
non-negative or first non-negative and then negative. Thus ψ is either increasing or first increasing
and then decreasing. In both cases the minimum of ψ is attained at one of the endpoints {0, π},
where its value is 0.

It remains to prove the fourth inequality. To this end let s = sinx, so that 0 ≤ s ≤ 1√
3
.

Note that sin(4x) = 4 sinx cosx
(
1− 2 sin2 x

)
= 4s(1 − 2s2)

√
1− s2. Thus the required inequality

becomes 4s(1− 2s2)
√

1− s2 − 4x
(
1− 3s2

) ≥ 0, or

arcsin s ≤ s(1− 2s2)
√

1− s2

1− 3s2
. (10)

To prove (10) define θ(s) = s(1−2s2)
√

1−s2

1−3s2 − arcsin s. Direct (but tedious) differentiation gives

θ′(s) =
s2(1 + 5s2 − 12s4)
(1− 3s2)2

√
1− s2

.

Since 1 + 5s2 − 12s4 ≥ 0 when 0 ≤ s ≤ 1√
3

it follows that θ′(s) ≥ 0. Thus θ(s) ≥ θ(0) = 0, which
proves (10).

Proof of Lemma 3.3. If g = γ2 satisfies the conditions of Lemma 3.3 then so does γ. One checks
that g′(1) = 2− 4

p < 0, so that it is enough to show that g′′ ≤ 0. Direct differentiation yields

g′′(a) =
2(a2p − 3)
a2p − 1

cos
(

2
p

arccos
(

1
ap

))
+

2[a2p(p− 3) + 3]
(a2p − 1)3/2

sin
(

2
p

arccos
(

1
ap

))
.
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Note that in the range 1 ≤ a ≤ [
cos

(πp
4

)]−1/p we have cos
(

2
p arccos

(
1
ap

)) ≥ 0. Thus the inequality
g′′(a) ≤ 0 is equivalent to

[
a2p(3− p)− 3

]
tan

(
2
p

arccos
(

1
ap

))
≥ (a2p − 3)

√
a2p − 1. (11)

We distinguish between two cases. If a2p(3− p)− 3 > 0 then we must show that

tan
(

2
p

arccos
(

1
ap

))
≥ (a2p − 3)

√
a2p − 1

a2p(3− p)− 3
. (12)

Observe that we are assuming that 2
p arccos

(
1
ap

) ≤ π
2 . Hence by the first inequality in Lemma 3.4

(with λ = 2
p ≥ 1) we see that

tan
(

2
p

arccos
(

1
ap

))
≥ 2

p
tan

(
arccos

(
1
ap

))
=

2
p
·
√

1− a−2p

a−p
=

2
p
·
√

a2p − 1.

Thus (12) is equivalent to a2p ≥ 1, as required.
It remains to deal with the case a2p(3 − p) − 3 < 0, which is equivalent to a2p < 3

3−p . In this
case we need to show that

tan
(

2
p

arccos
(

1
ap

))
≤ (3− a2p)

√
a2p − 1

3− a2p(3− p)
. (13)

Write x = arccos
(

1
ap

)
, so that by our assumption x ≤ πp

4 . Then the required inequality becomes

tan
(

2x

p

)
≤ 2− 3 sin2 x

p− 3 sin2 x
· tanx, (14)

where the condition a2p < 3
3−p translates to p > 3 sin2 x. For fixed x the range of p for which (14)

should hold is 2 ≥ p ≥ max
{
1, 4x

π , 3 sin2 x
}
. If this range is non-empty then 3 sin2 x ≤ 2, i.e.

x ≤ arcsin
(√

2/3
)

< 1. We will therefore assume from now on that this upper bound on x

is satisfied, in which case the second inequality in Lemma 3.4 implies that (14) should hold for
2 ≥ p ≥ max

{
1, 3 sin2 x

}
.

Denote A(p) = (p− 3 sin2 x) tan
(

2x
p

)
. We want to show that A(p) ≤ A(2). Now,

A′(p) = tan
(

2x

p

)
− 2x(p− 3 sin2 x)

p2 cos2
(

2x
p

) .

It is enough to show that A′(p) ≥ 0. Clearing the denominator and simplifying we see that it is
enough to prove that

B(p) =
p2

2
sin

(
4x

p

)
− 2x(p− 3 sin2 x) ≥ 0. (15)

Now,

B′(p) = p sin
(

4x

p

)
− 2x cos

(
4x

p

)
− 2x.
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We claim that B′(p) ≥ 0. Denoting u = 4x
p ≤ π we see that this reduces to the third inequality

in Lemma 3.4. So B′(p) ≥ 0 and hence B(p) ≥ B (p0), where p0 = max{1, 3 sin2 x} and we are
assured that 2 ≥ p0 ≥ 4x

π . If p0 = 3 sin2 x then B(p0) = p2
0
2 sin

(
4x
p0

)
≥ 0, since 4x

p0
≤ π. We

therefore assume that p0 = 1, in which case we know that 0 ≤ x ≤ arcsin
(

1√
3

)
. But B(p0) =

B(1) = 1
2 sin(4x)− 2x + 6x sin2 x ≥ 0, by the fourth inequality in Lemma 3.4. This concludes the

proof of (15), and completes the proof of Lemma 3.3.
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