
Data-Dependent Hashing via Nonlinear Spectral Gaps
Alexandr Andoni

Columbia University

United States

andoni@cs.columbia.edu

Assaf Naor

Princeton University

United States

naor@math.princeton.edu

Aleksandar Nikolov

University of Toronto

Canada

anikolov@cs.toronto.edu

Ilya Razenshteyn

Microsoft Research Redmond

United States

ilyaraz@microsoft.com

Erik Waingarten

Columbia University

United States

eaw@cs.columbia.edu

ABSTRACT
We establish a generic reduction from nonlinear spectral gaps of

metric spaces to data-dependent Locality-Sensitive Hashing, yield-

ing a new approach to the high-dimensional Approximate Near

Neighbor Search problem (ANN) under various distance functions.

Using this reduction, we obtain the following results:

For general d-dimensional normed spaces and n-point datasets,
we obtain a cell-probe ANN data structure with approximation

O (
logd
ε2), space dO (1)n1+ε , and dO (1)nε cell probes per query, for

any ε > 0. No non-trivial approximation was known before in

this generality other than the O (
√
d) bound which follows from

embedding a general norm into ℓ2.

For ℓp and Schatten-p norms, we improve the data structure

further, to obtain approximation O (p) and sublinear query time.

For ℓp , this improves upon the previous best approximation 2
O (p)

(which required polynomial as opposed to near-linear in n space).

For the Schatten-p norm, no non-trivial ANN data structure was

known before this work.

Previous approaches to the ANN problem either exploit the low

dimensionality of a metric, requiring space exponential in the di-

mension, or circumvent the curse of dimensionality by embedding

a metric into a “tractable” space, such as ℓ1. Our new generic re-

duction proceeds differently from both of these approaches using a

novel partitioning method.

CCS CONCEPTS
•Mathematics of computing→ Dimensionality reduction; •
Theory of computation → Random projections and metric
embeddings; Computational geometry; Design and analysis of

algorithms;

KEYWORDS
Nearest neighbor search, nonlinear spectral gaps, randomized space

partitions, locality-sensitive hashing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00

https://doi.org/10.1145/3188745.3188846

ACM Reference Format:
AlexandrAndoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik

Waingarten. 2018. Data-Dependent Hashing via Nonlinear Spectral Gaps.

In Proceedings of 50th Annual ACM SIGACT Symposium on the Theory of

Computing (STOC’18). ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3188745.3188846

1 INTRODUCTION
The c-Approximate Near Neighbor Search (c-ANN) problem is de-

fined as follows. Given an n-point dataset P ⊂ X lying in a metric

space (X ,dX), we want to preprocess P to answer approximate near

neighbor queries quickly. Namely, given a query point q ∈ X such

that there is a data point p∗ ∈ P with dX (q,p∗) ≤ r , the algorithm
should return a data point p̂ ∈ X with dX (q, p̂) ≤ cr . We refer to

c > 1 as the approximation and r > 0 as the distance scale; both pa-

rameters are known during the preprocessing. The main quantities

to optimize are the space the data structure occupies and the time it

takes to answer a query. In addition to being an indispensable tool

for data analysis, ANN data structures have spawned two decades

of theoretical developments (see, e.g., the surveys [4, 7] and the

thesis [47] for an overview).

1.1 ANN for General Distances Functions
The best-studied metrics in the context of ANN are the Ham-

ming/Manhattan (ℓ1) and the Euclidean (ℓ2) distances. Both ℓ1
and ℓ2 are very common in applications and admit efficient algo-

rithms based on hashing: in particular, Locality-Sensitive Hashing

(LSH) [3, 27] and its data-dependent counterparts [6, 9, 11]. Hashing-

based algorithms for ANN over ℓ1 and ℓ2 have now been the subject

of a long line of work, leading to a comprehensive understanding

of the respective time–space trade-offs.

Beyond ℓ1 and ℓ2, the ANN landscape is much more mysterious

despite having received significant attention (see Section 1.4 for an

overview). In summary, we are still very far from having a general

recipe for ANN data structures for generalmetrics with a non-trivial

approximation. This state of affairs motivates the following broad

question.

Problem 1. For a given approximation c > 1, which metric spaces

allow efficient ANN algorithms?

An algorithm for general metrics is highly desirable both in

theory and in practice. From the theoretical perspective, we are in-

terested in a theory of ANN algorithms for a wide class of distance

787

https://doi.org/10.1145/3188745.3188846
https://doi.org/10.1145/3188745.3188846
https://doi.org/10.1145/3188745.3188846

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

functions. Such a theory would yield data structures (or impossi-

bility results) for a variety of important distances for which we

still do not know efficient ANN algorithms (e.g. the Earth Mover’s

Distance (EMD), the edit distance, generalized versions of the Ham-

ming distance
1
, etc). Perhaps even more tantalizing is the question

of understanding what geometric properties of a metric space gov-

ern the hardness of ANN. In addition to the theoretical interest,

in practice, one often needs to tune the distance function to the

specifics of the application, and hence generic ANN algorithms are

also preferred.

In this paper, we focus on the following important case of Prob-

lem 1, which was first raised in 2010 [2].

Problem 2. Solve Problem 1 for d-dimensional normed spaces.

Most metrics arising in applications are actually norms (e.g.,

the ℓp distances, matrix norms, the Earth Mover’s Distance, etc.).

Besides that, norms are geometrically nicer than general metrics,

so there is more hope for a coherent theory (e.g., for the problems

of sketching and streaming norms, see the general results of [8, 17],

for ANN over general symmetric norms, see a recent result [10]).

1.2 Main Results
In this paper, we make progress towards resolving Problem 2. Our

main contribution is a data structure for theO (logd)-ANN problem

over a general d-dimensional norm in the cell-probe model intro-

duced by Yao [50]. Prior to this work, the only other ANN data

structure for general norms achieved approximation O (
√
d) (see

Section 1.4).

Theorem 1.1. Let 0 < ε < 1. Suppose that (Rd , ∥ · ∥) is a d-
dimensional normed space. Then there exists a randomized data struc-

ture for O
(
logd
ε2

)
-ANN over ∥ · ∥ with the following parameters:

• The space used by the data structure is n1+ε · dO (1)
;

• The query procedure probesnε ·dO (1)
words in memory, where

words consist of O (logn) bits2.

Let us emphasize that we do not claim any time bound on the

query procedure. We only restrict the number of memory locations

the data structure is allowed to probe (see Section 4 for a further

discussion of the model). Nonetheless, we conjecture that one can

in fact obtain a data structure for O (logd)-ANN with sublinear

time query complexity (as opposed to cell probe complexity only),

provided a suitable oracle access to the norm.

Irrespective of the conjecture, our theorem can be thought of as

a barrier for proving impossibility of efficient ANN data structures

with approximation O (logd) for general norms. This is because

all known unconditional data structure lower bounds proceed by

proving a cell-probe lower bound [39]. Thus, a potential strong

lower bound for the ANN problem would require a completely new

approach to data structure lower bounds.

The main tool behind Theorem 1.1 is a new random partition

for sets of points in a general normed space, and is of independent

interest. In particular, we show how to convert an estimate on the

1
E.g., a metric of interest in applications is (Xd , ρXd), whereX is a metric itself, with

the distance between vectors x, y ∈ Xd
defined as ρXd (x, y) =

∑d
i=1 dX (xi , yi).

2
We assume that all the coordinates of the dataset and query points as well as r can

be stored in O (logn) bits.

nonlinear spectral gap of a metric space into a data-dependent

Locality-Sensitive Hashing (LSH) family (see Section 1.3 for an

overview).

Finally, our technique also gives a natural approach to designing

data structures for specific metric spaces with better parameters,

including sublinear time. Indeed, we instantiate our technique with

the ℓp and Schatten-p norms, for which, with additional work, we

obtain data structures with better approximations and sublinear

time. For the ℓp norms, we obtain approximation c = O (p), which

improves exponentially over the approximation factor of 2
O (p)

from [15, 43] (see Section 1.4).

Theorem 1.2. Let 0 < ε < 1 and 2 < p ≤ ∞. There exists a
randomized data structure for O (p/ε)-ANN over the ℓp norm with

the following parameters:

• The space used by the data structure is n1+ε · dO (1)
;

• The query procedure takes time nε · dO (1)
.

Generalizing the theorem from above to Schatten-p norms, we

obtain the first ANN data structures with a non-trivial approxima-

tion factor. Recall that the Schatten-p norm ∥ · ∥Sp of a matrix is

the ℓp norm of the vector of its singular values
3
. The challenge of

designing ANN under Schatten norms was posed in [2].

We state our Schatten-p results for regimes 1 ≤ p ≤ 2 and

2 < p < ∞ separately.

Theorem 1.3. Let 0 < ε < 1 and 1 ≤ p ≤ 2. There exists a

randomized data structure for c-ANN over the Schatten-p norm, where

c = O
(

1

ε2/p
)
with the following parameters:

• The space used by the data structure is n1+ε · dO (1)
;

• The query procedure takes time nε · dO (1)
.

We now state the data structure for Schatten-p norms with p > 2.

Compared to the ℓp algorithm from Theorem 1.2, the result for

Schatten-p has worse dependence on the dimension for the space

and query time. We note that for p > logd , the norm ∥x ∥Sp is a

constant factor from ∥x ∥S
logd ; thus, it suffices to consider the cases

when 2 < p ≤ logd .

Theorem 1.4. Let 0 < ε < 1 and 2 < p ≤ ∞. There exists

a randomized data structure for c-ANN over the Schatten-p norm,

where c = O (p/ε) with the following parameters:

• The space used by the data structure is n1+ε · dO (p)
;

• The query procedure takes time nε · dO (p)
.

See Section 1.4 for a more detailed exposition of how Theorem 1.3

and Theorem 1.4 relate to previously known results.

Let us note that the preprocessing procedures in all the new data

structures are inefficient. Improving the preprocessing time is left

as an interesting open problem.

1.3 Techniques

Nonlinear spectral gaps. At the conceptual level, the main con-

tribution of the paper is a reduction from bounds on the nonlinear

spectral gap to a data-dependent Locality-Sensitive Hashing (LSH)

3
The Schatten-1 norm is known under the names of the nuclear or trace norm, the

Schatten-2 norm is simply the Frobenius norm, and Schatten-∞ is known as the

spectral or the operator norm.

788

Data-Dependent Hashing via Nonlinear Spectral Gaps STOC’18, June 25–29, 2018, Los Angeles, CA, USA

family for a general metric space. Let A = (ai j) ∈ R
m×m

be a sym-

metric doubly stochasticm ×m matrix. Then, for a metric space

(X ,dX) and q ≥ 1 the nonlinear spectral gap γ (A,d
q
X) is the small-

est number for which the following holds. For every set of points

x1,x2, . . . ,xm ∈ X ,

1

m
·

m∑
i=1

m∑
j=1

dX (xi ,x j)
q ≤ γ (A,d

q
X) ·

m∑
i=1

m∑
j=1

ai j · dX (xi ,x j)
q .

For the ℓ2 norm, γ (A, ∥ · ∥2
2
) = 1

1−λ2 (A)
, where λ2 (A) is the second

largest eigenvalue of A; i.e. in this case γ (A, ∥ · ∥2
2
) is the inverse of

the usual spectral gap ofA. A systematic study of nonlinear spectral

gaps of metric spaces was initiated in [37]. Similar inequalities

can be found in earlier works (see, e.g., the introduction of [38]

for a thorough literature review); we single out the reference [36]

which is instrumental for our results. In the above-mentionedworks,

bounds on the nonlinear spectral gap were primarily used to show

strong non-embeddability results.

We use the following recent result from [40] in order to build a

cell-probe data structure for ANN over a general norm, as claimed

in Theorem 1.1.

Theorem 1.5 ([40]). For every norm ∥ · ∥ defined on Rd , one has:

γ (A, ∥ · ∥2) = O

(
log

2 d

(1 − λ2 (A))2

)
.

We present a simplified proof of this theorem with a slight gen-

eralization to a weighted setting (which we need for the actual

reduction) in Section 6.

At a high level, a strong enough upper bound on γ (·,d
q
X) in

terms of γ (·, ∥ · ∥2
2
) gives a cell-probe data structure for ANN over

a given metric space (X ,dX) using the reduction given in this

paper. For the time-efficient data structures over ℓp and Schatten-

p spaces (Theorem 1.2 and Theorem 1.4), we need the nonlinear

spectral gap inequality in a strong Rayleigh quotient form. For the

ℓp norms, such a stronger inequality was shown by Matoušek [36].

We adapt Matoušek’s inequality to the weighted setting in the full

version. For Schatten-p, the corresponding inequality is stated and

proved in the full version. The new inequality is an extension of

the Matoušek’s inequality to the matrix setting using estimates

from [48]. An additional twist compared to [36] is the need for a

fixed-point statement similar to the Brouwer’s theorem.

Data-dependent LSH. We now briefly describe how to utilize

Theorem 1.5 to obtain a data-dependent LSH family for a general

norm. Informally, for a given dataset, we would like to design a

random partition of Rd that separates a query point from far data

points often, while not separating a query point from close data

points too often. With such a random partition, we can build the

data structure as simply a collection of random decision trees. In

each node, we sample a partition from the family, split the dataset

among child nodes accordingly, and recurse on each child node.

This connection has already been used in [9, 11, 24] (however, let

us note that in [24] space partitions are used in a fundamentally

different way; see the discussion in Section 1.5).

The construction of the data-dependent LSH incorporates three

main ideas.

• We use the multiplicative weights update algorithm (MWU)

[13] to reduce the problem of constructing a random parti-

tion to the problem of finding a deterministic partition that

works on average with respect to a given distribution over

points. This step is non-trivial since the resulting random

partition must depend on the dataset fairly weakly so that a

sample from it can be stored in poly(d) space. We end up us-

ing two levels of MWU, where the “outer” part is responsible

for “guessing” the dataset iteratively, while the “inner” part

finds the required random partition for the current guess.

• The problem of finding a deterministic partition can be seen

as finding a sparse cut in an undirected graph embedded in

(Rd , ∥ · ∥) so that the following conditions hold. First, we as-
sume that the distance between the endpoints of every edge

is at most 1. Additionally, we may assume that the distance

between a typical pair of vertices is ≫ logd . It suffices to

prove that this graph cannot be a spectral expander, since

we may then employ Cheeger’s inequality [19, 20] to obtain

a sparse cut.

• Finally, Theorem 1.5 directly implies that expanders do not

embed into (Rd , ∥ ·∥), so the above graph cannot be a spectral
expander. In fact, if A ∈ Rm×m is a normalized adjacency

matrix of a graph and x1,x2, . . . ,xm ∈ R
d
are the points the

vertices are mapped to, then the following holds. Since every

edge has length at most 1,

m∑
i=1

m∑
j=1

ai j · ∥xi − x j ∥
2 ≤

m∑
i=1

m∑
j=1

ai j =m. (1)

Since a typical pair of vertices is at distance≫ logd apart,

1

m
·

m∑
i=1

m∑
j=1
∥xi − x j ∥

2 ≫m · log2 d . (2)

Combining (1) and (2) with Theorem 1.5, we get that 1 −

λ2 (A) ≪ 1, which implies that the graph is not an expander.

Algorithmically, we construct a randomized space partition by

combining the two-level MWU algorithm together with a spectral

partitioning procedure. The new data-dependent LSH construction

gives a generic approach to ANN, which departs substantially from

the commonly-used embeddings technique.

Partitions of normed spaces. As mentioned briefly, Theorems

1.1, 1.2, 1.3, and 1.4 follow from new partitioning results for sets

of points lying in normed spaces. The specific partitioning results

are given in Sections 6 and the full version. Let us now state the

partitioning results for ℓp spaces and for general normed spaces.

A box in Rd is an intersection of sets of the form {x ∈ Rd | xk ≤

u} or {x ∈ Rd | xk ≥ u}, where 1 ≤ k ≤ d and u ∈ R. In the full

version, we obtain the following partitioning result for ℓp spaces.

Theorem 1.6. Let 0 < ε < 1, 2 < p < ∞ and R > 0. Consider any

dataset P ⊂ Rd of n points lying in Bp (0,R) = {x ∈ R
d | ∥x ∥p ≤ R}.

Either there is an ℓp -ball of radius O (p/ε) containing Ω(n) points
from P , or there exists a distribution D over boxes such that:

(1) For every u,v ∈ Bp (0,R) with ∥u − v ∥p ≤ 1, a random box

S ∼ D separates u and v with probability at most ε .

789

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

(2) For every box S from the support of D, the number of points

in P lying in S is between Ω(n) and
(
1 − Ω(1)

)
· n.

Now let us state the partitioning result for general normed spaces,

proved in Section 6.

Theorem 1.7. Let 0 < ε < 1, X = (Rd , ∥ · ∥X) be a normed

space and 0 < R ≤ 2
poly(d)

. There exists a collection C of measurable

subsets of BX (0,R) = {x ∈ Rd | ∥x ∥X ≤ R} with log |C| ≤ poly(d)

such that the following holds. Consider any dataset P ⊂ Rd of n

points lying in BX (0,R). Either there is an X -ball of radiusO
(
logd
ε2

)
containing Ω(n) points from P , or there exists a distribution D over

the elements of C such that:

(1) For every u,v ∈ BX (0,R) with ∥u − v ∥X ≤ 1, a random set

S ∼ D separates u and v with probability at most ε .
(2) For every set S from the support of D, the number of points in

P lying in S is between Ω(n) and
(
1 − Ω(1)

)
· n.

1.4 Related Work
Prior to our work, the quest for efficient ANN data structures in

high-dimensional spaces beyond ℓ1 and ℓ2 has proceeded via em-

beddings. The idea is to embed the original space into an algorith-

mically tractable target space, for which one then builds a data

structure. The common targets are ℓ1 and ℓ2 which can be handled

with O (1)-approximation by [9], ℓ∞ which can be handled with

O (log logd)-approximation with [24], and ℓp -direct sums of these

spaces, which can be handled with approximation poly(log logn)
by [1, 5, 25, 26]. This approach gives the best known ANN data

structure for a general norm with approximation O (
√
d) [14, 29].

It has also been successful for a poly(log logd)-approximation for

the Ulam metric [5], a O (logd)-approximation for EMD [18, 28], a

2
Õ (
√
logd)

-approximation for edit distance [46], and a poly(logd)-
approximation for Frechét distance [25].

In a similar vein, the recent work [10] gives an ANN data struc-

ture for general symmetric normswith poly(log logn)-approximation.

It proceeds via a linear embedding of a d-dimensional symmetric

norm into a dO (1)
-dimensional tractable universal space. However,

the same paper shows that this approach fails for general norms.

For ANN under ℓp norms, constant factor approximations were

known for 1 ≤ p ≤ 2 for near-linear space and sub-linear time

[45]. The case when p ≥ 2 is less clear. Prior to this work, the

best algorithm for ℓp norms of [15, 43] achieved approximation

2
O (p)

with polynomial space (as opposed to near-linear space) and

poly-logarithmic query time. For large p, there is a better algorithm
with approximation O (log logd) [1, 5].

For ANN under Schatten-p norm, the previous best algorithm

has polynomial in d approximation and follows from the relation

between Schatten-p and ℓ2 norms. An approximation 2
O (p)

using

polynomial space follows implicitly from a combination of the re-

sults from [15, 43] with the estimate from [48]. The related questions

of streaming, sketching and dimension reduction of Schatten-p norms

have been actively studied over the past few years [8, 32–35, 42].

For metrics with low intrinsic dimension, efficient ANN algo-

rithms are known for any metric space [16, 21, 30, 31]. These results

depend exponentially on the intrinsic dimension, and therefore

the latter is assumed to be low. This is in contrast to this paper,

where we do not make such assumptions, and focus on the high-

dimensional regime (when ω (logn) ≤ d ≤ no (1)), where we cannot
afford to have an exponential dependence on the dimension.

1.5 Lower Bounds
We complement our new algorithms with two impossibility results.

Limitation of efficient cuts. The reason that Theorem 1.1 is re-

stricted to the cell-probe model is due to the inability to bound the

time complexity of evaluating the random space partitions from

Theorem 3.6 when working with general norms (even though we

bound their space complexity). In constrast, for ℓp and Schatten-

p norms, we manage to bound the time complexity and obtain

time-efficient data structures. To explain this disparity, consider the

following general scenario.

Let G = (V ,E) be a large graph embedded into an arbitrary

normed space (Rd , ∥ · ∥) with edges between points at distance at

most 1, and typical pair of vertices being well-separated. Following

the discussion in Section 1.3, the graph G must have a sparse cut;

however, the cut may not be induced by a “geometrically nice”

subset of Rd . During the algorithm from the proof of Theorem 1.1,

graphs will have dΩ(d)
vertices, so we cannot afford to store the cut

explicitly. Therefore, the query procedure re-computes the cuts on

the fly. In order to achieve a time-efficient data structure for general

norms, one would need to find geometrically nice cuts which can

be evaluated efficiently.

For ℓp norms, we always find a sparse cut that is realized by a

coordinate cut (that is, {v ∈ V | f (v)k ≤ u} for some 1 ≤ k ≤ d
and u ∈ R). In our reduction we need to take intersections of cuts,

which, in the case of coordinate cuts, are boxes, which are the main

objects of Theorem 1.6. Thus, we store the boxes by storing the 2d
values (lower and upper limits for each coordinate), and then we

can easily evaluate on which side of a cut a given point lies. For

Schatten-p norms, the argument is more delicate, but we are also

able to store and compute cuts in an efficient manner.

In the full version, we show that it is not enough to consider a

fixed family of cuts with small description complexity for general

norms; these include coordinate cuts and hyperplane cuts. More

generally, the result says that families of cuts used must be tailored

to the particular normed space. We use a random norm construction

similar to the one used by Gluskin in [22]. We note that this lower

bound does not rule out ball cuts or other families of cuts that

depend on the particular norm.

Optimality of data-dependent LSH.We show that for ℓp spaces,

any data-dependent LSH family with sufficiently good parameters

requires approximation Ω(min{p, logd }),4 thus our construction is

optimal within the data-dependent LSH framework. To show this,

we embed a large expander into ℓp using a result from [36]. We

apply a similar argument to [12] to the embedded expander to show

the desired lower bound. Thus, at least in some cases, embeddability

of expanders captures the complexity of LSH precisely.

4
Note that when p > logd , ℓp isO (1)-close to ℓ

logd , so an Ω(p) lower bound when

1 ≤ p ≤ logd covers all interesting values of p .

790

Data-Dependent Hashing via Nonlinear Spectral Gaps STOC’18, June 25–29, 2018, Los Angeles, CA, USA

This result should be contrasted with theO (log logd)-ANN data

structure for ℓ∞ from [24]. It also proceeds by certain
5
space parti-

tions; the difference is that a dataset point is duplicated when inside

some parts. This duplication allows the result of [24] to overcome

the above-mentioned Ω(logd) lower bound.

1.6 Open Problems
We state several natural open problems which seem approachable

in light of the techniques developed in this paper.

• Can we get a time-efficient O (logd)-ANN data structure for

general norms? As mentioned in Section 1.5, randomized

partitions from a family of “geometrically nice” cuts must

be tailored to the norm of interest.

• Can we improve the approximation for general norms to

O (log logd) (even in the cell-probe model)? To accomplish

this, we need to step out of the data-dependent LSH frame-

work (see Section 1.5) to resemble the techniques from [24].

A related (perhaps easier) question is to obtain an O (logp)-
ANN data structure over the ℓp or Schatten-p norm.

• Can we make the preprocessing time polynomial in n and d ,
even for the ℓp case?

• For the edit distance defined on {0, 1}d , can we obtain a

(logd)O (1)
-ANN data structure by bounding the nonlinear

spectral gap? The best known ANN data structure proceeds

by embedding the metric into ℓ1 with distortion 2
Õ (
√
logd)

[46].

• For the Earth Mover’s Distance on [d]2, can we obtain a

o(logd)-ANN data structure by bounding the nonlinear spec-

tral gap? The best known ANN data structure (aside from

the cell-probe data structure from Theorem 1.1) proceeds by

embedding into ℓ1 with distortion O (logd) [18, 28, 44].

1.7 Organization of the Paper
In Section 3, we show how to construct a data-dependent LSH

family for a general finite metric space assuming a good enough

bound on the spectral gap. We state this result in terms of a cutting

modulus of a metric space, a quantity we introduce in Section 3.1.

In Section 4, we show how to use this LSH family to construct a

cell-probe ANN data structure for a finite metric. In order to handle

general normed spaces defined over Rd (and not just finite metrics),

we discretize the ambient space; the corresponding argument is

standard and appears in Section 5. In Section 6, we show a minor

generalization of Theorem 1.5, which bounds the spectral gap of a

general norm. This allows us to give an upper bound on the cutting

modulus of a normed space.

Using the results from Sections 4 and 5, we obtain a cell-probe

data structure for O (logd)-ANN, as claimed in Theorem 1.1. In the

full version, we address the case of ℓp norms and prove Theorem 1.2,

show a new spectral gap inequality for Schatten-p norms which

implies Theorems 1.3 and 1.4, and show the two impossibility results

discussed in Section 1.5.

5
Deterministic.

2 PRELIMINARIES
We write χE as the indicator variable of event E. For anym > 0,

we denote by ∆(m) ⊂ Rm×m the space of symmetric matrices

G = (дi j) with non-negative entries such that

∑m
i=1

∑m
j=1 дi j = 1.

For G ∈ ∆(m), we denote the row sums as ρG (i) =
∑m
j=1 дi j . The

Laplacian of G is given by them ×m matrix

LG = D −G,

and the normalized Laplacian of G is given by them ×m matrix

LG = Im − D
−1/2GD−1/2,

where D = diag(ρG (1), ρG (2), . . . , ρG (m)) and Im is the m ×m
identity matrix. We denote 0 = λ1 (LG) ≤ λ2 (LG) ≤ . . . ≤
λm (LG) the eigenvalues of the normalized Laplacian of G, and
ν1 (LG), . . . ,νm (LG) ∈ R

m
be the corresponding eigenvectors.

For a subset S ⊆ [m], we write S = [m]\S and ρG (S) =
∑
i ∈S ρG (i).

We will frequently refer to sequences ofm points inX , as the tuples

x = (x1, . . . ,xm) ∈ Xm
. We will associate a subset S ⊂ [m] with

the corresponding subset of points Sx ⊂ X with Sx = {xi : i ∈ S };
and we often drop the subscript and refer to Sx as S when the

sequence x is clear. In addition, for S ⊂ X , we write S : X → {0, 1}
for the map S (x) = χ {x ∈S } . For some finite subset P ⊂ X and x ∈ X ,

we let S (x , P) = {p ∈ P : S (x) = S (p)}.
For a fixed matrix G ∈ ∆(m) and S ⊂ [m], the conductance of S

with matrix G is given by:

ΦG (S) =

∑
i ∈S
j<S

дi j

min

{
ρG (S), ρG (S)

} .

Definition 2.1. For any G ∈ ∆(m), any metric space (X ,dX), and
any x = (x1, . . . ,xm) ∈ Xm

, we define the Rayleigh quotient of x

and G with respect to d
p
X by

R(x ,G,dpX) =

∑m
i=1

∑m
j=1 дi jdX (xi ,x j)

p∑m
i=1

∑m
j=1 ρG (i)ρG (j)dX (xi ,x j)p

.

Via a straight-forward calculation, we have that when the metric

space isRwithdX (xi ,x j) = |xi−x j |, if x ∈ R
m

and

∑m
i=1 ρG (i)xi =

0,

R(x ,G, | · |2) =

∑m
i=1

∑m
j=1 дi j |xi − x j |

2∑m
i=1

∑m
j=1 ρG (i)ρG (j) |xi − x j |2

=
xT LGx

xTdx
.

I.e. in this case R(x ,G, | · |2) is the Rayleigh quotient
yT LGy
yT y for y =

D1/2x . Using this observation, we may state Cheeger’s inequality

with respect to R(x ,G, | · |2).

Theorem 2.2 (Cheeger’s Ineqality, [19, 20], see also [49]).

For x ∈ Rm with

∑m
i=1 ρG (i)xi = 0, there exists t ∈ R for which the

set St = {i ∈ [m] : xi < t } satisfies:

ΦG (St) ≤

√
R(x ,G, | · |2)

2

.

Letting x = D−1/2ν2 (LG), there exists a subset S ⊂ [m] which

satisfies:

ΦG (S) ≤
√
2 · λ2 (LG).

791

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

Remark 1 (Oracle access to a norm). When working with

a general normed space (Rd , ∥ · ∥X), we assume oracle access to

the function ∥ · ∥ : Rd → R≥0. We also assume John’s ellipsoid

of (Rd , ∥ · ∥X), i.e. the maximum volume centered ellipsoid in Rd

contained in the unit ball of ∥ · ∥X , is given by the d vectors in Rd

specifying the ellipsoid.

3 PARTITIONING GENERAL METRICS
In this section, we give a general approach for constructing LSH

schemes for general metric spaces. Section 3.1 defines the cutting

modulus of a metric space. At a high level, the cutting modulus

captures the following property of a metric space (X ,dX): for any
probability distribution on pairs of close points in X , either X con-

tains a small ball withmost of themass (with respect to themarginal

distribution), or there is a balanced partition of X which separates

a small fraction of neighboring pairs.

The cutting modulus determines the approximation of the data

structure and is an interface between the data structure description

and nonlinear spectral gaps. We describe the data structure with

cutting modulus as a parameter of the metric space, and we bound

the cutting modulus of various metric spaces with bounds on the

non-linear spectral gap.

3.1 Cutting Modulus of a Metric Space
We consider a metric space (X ,dX). The goal of this section is to

define the cutting modulus of a metric space.

Definition 3.1. Fix some G ∈ ∆(m). We say x = (x1, . . . ,xm) ∈
Xm

has a β-dense ball of radius R if there exists a point c ∈ X such

that ρG ({i ∈ [m] : xi ∈ BX (c,R)}) ≥ β .

Definition 3.2. Let S be family of subsets of the metric space

X . We say that G ∈ ∆(m) has the (R, ε)-ball-or-cut property with

respect toS if for everym points x = (x1, . . . ,xm) ∈ Xm
where

dX (xi ,x j) ≤ 1 if дi j > 0, one of the two properties hold:

• Either x has a
1

2
-dense ball of radius R, or

• There exists a subset S ∈ S such that Sx = {i : xi ∈ S }
satisfies ΦG (Sx) ≤ ε .

If S contains all finite subsets of X , then we say that G has the

(R, ε)-ball-or-cut property.

We may now formally define the notion of cutting modulus of a

metric space.

Definition 3.3. We say that the ε-cutting modulus of a metric

space (X ,dX) with respect to a familyS of subsets of X , ΞS (X , ε),
is the infimum over R > 0 such that for everym ∈ N every matrix

G ∈ ∆(m) has (R, ε)-ball-or-cut property w.r.t.S.

IfS contains all finite subsets of X , we denote ΞS (X , ε) simply

by Ξ(X , ε).

At a high level, the ε-cutting modulus of a metric space will gov-

ern the approximation ratio one may achieve with space poly(d) ·

n1+O (ε)
and query time poly(d) · nO (ε)

. In particular, suppose the

normed space (X ,dX) has Ξ(X , ε) = R. Consider any sequence of

points x1, . . . ,xm ∈ X , and form a graph by connecting points

lying at distance at most 1. The graph defines a normalized adja-

cency matrixG ∈ ∆(m) which has the (R, ε)-ball-or-cut property. If

there exists a dense ball, then we know that a constant fraction of

the points lie close to each other (within distance 2R). Otherwise,
there is a sparse cut of the points which does not cut many edges

of G. Roughly speaking, the data-dependent LSH will be built by

recursively applying this procedure, and using the multiplicative

weights update rule in order to handle any possible distribution

over datasets and queries. For our cell-probe algorithms we will

allow S to contain all finite subsets of X . However, our efficient

data structures will use a restricted familyS which allows us to

quickly determine which side of a cut a point lies on.

3.2 Partitioning Theorems
The goal of this section is to prove the main partitioning theorem.

We consider a metric space (X ,dX) which consists of N points. Let

0 < ε < ε0 be a small positive parameter and R = Ξ(X , ε).
We first define the notion of balanced collections of balls and

cuts.

Definition 3.4. Let S be a collection of subsets S1, . . . , Sm ⊆ X .
We sayS is ε-sparse if for every two points x ,y ∈ X withdX (x ,y) ≤
1, at most an ε-fraction of subsets from S split x and y, i.e.,

Pr

i∼[m]

[Si (x) , Si (y)] ≤ ε .

Definition 3.5. Consider a dataset P ⊆ X of n points. Let S be a

collection of subsets S1, . . . , Sm ⊆ X . We say that S is γ -balanced
under P if for any S ∈ S we have

(1 − γ)n ≤ |S ∩ P | ≤ γn.

These two notions of sparsity and balancedness will measure the

quality of the data-dependent LSH. Intuitively, the data-dependent

LSH is constructed by recursively partitioning the space with a

random subset from a particular collection. We want the collection

to be balanced, to ensure the algorithm makes progress, and sparse,

to maintain a low probability of error. Lastly, we want collections

of subsets which can be written succinctly; such a condition will

ensure the querying algorithm can utilize the data-dependent LSH.

We ensure our collection can be written succinctly by requiring

there are not too many of them, and that the collections do not

have too many sets.

We may now state the main partitioning theorem for general

metric spaces.

Theorem 3.6. Let R = Ξ(X , ε) for some ε ∈ (0, 1
4
), and fix any

n ∈ N. There exists a collection C of subsets of X with log |C| =

O (log(N) log(log(N)/ε)) such that for any dataset P ⊆ X of n points,

• Either there exists a point x0 ∈ X with |P ∩ BX (x0,R) | ≥
n
50
,

or

• There exists a subcollection S ⊆ C of subsets of X such that:

– S is 50ε-sparse,
– S is

49

50
-balanced under P .

Theorem 3.6 suggests a very natural data-dependent LSH. At

each step of the algorithm, either we have a dense ball, or we

have a collection of subsets with a distribution which decreases

the size of the dataset and does not split the query from its dataset

point too often. Note that the set C does not depend on P . This
means the querying algorithm will know C, and needs to read

792

Data-Dependent Hashing via Nonlinear Spectral Gaps STOC’18, June 25–29, 2018, Los Angeles, CA, USA

O (log(N) log(log(N)/ε)/ε) many bits from the data-structure in

order to specify any particular set S ∈ C.
We now turn to proving Theorem 3.6. The proof is algorith-

mic and requires a few lemmas, which correspond to particular

subroutines.

3.2.1 Partitioning with the (R, ε)-ball-or-cut property. Let X =
{x1, . . . ,xN } be the points of the metric space of size N . For the

remainder of the section, let G ∈ ∆(N) be a fixed matrix with

дi j > 0 only if dX (xi ,x j) ≤ 1. We will frequently interchange

between subsets S ⊆ X and S ⊆ [N] by associating xi ∈ X with

i ∈ [N]. In addition, we frequently write S = [N] \ S . The goal

of this section is to use the (R, ε)-ball-or-cut property to give a

subroutine which when given a matrixG ∈ ∆(N), outputs a dense
ball with respect to G, or a particular subset of vertices which cuts

few edges with respect to G.

Lemma 3.7. Let R = Ξ(X , ε) for some ε ∈ (0, 1
4
). Then there either

exists a
1

4
-dense ball of radius R with respect to G, or there exists a

subset S ⊆ X where

1

3

≤ ρG (S) ≤
3

4

and

∑
i ∈S, j<S

дi j ≤ 2ε .

Proof. We give an iterative procedure which begins with a set

S := ∅, and at each step, either finds a dense ball of radius R, or adds
some points to S while keeping ρG (S) ≤ 3

4
and

∑
i ∈S, j<S дi j ≤ 2ε .

At the beginning of an iteration, assume ρG (S) < 1

3
. We repeat

the following procedure:

(1) Consider the matrix G̃ ∈ ∆(|S |) obtained by restrictingG on

the rows and columns corresponding to S and scaling the

entries so they sum to 1. Note that we still have дi j > 0 only

if dX (xi ,x j) ≤ 1.

(2) The matrix G̃ has the (R, ε)-ball-or-cut property, so either

there exists a
1

2
-dense ball of radius R in S with respect to G̃ ,

or there exists a subset S̃ ⊂ S with ΦG̃ (S̃) ≤ ε .

(a) Suppose S has a
1

2
-dense ball of radius R with respect to G̃ .

Then, that ball is
1

4
-dense with respect to G, since G̃ was

rescaled by at least 1 − ρG (S) − 2ερG (S) ≥ 1

2
.

(b) Suppose S̃ ⊂ S is a subset with ΦG̃ (S̃) ≤ ε , and assume,

without loss of generality, that S̃ has 0 < ρG̃ (S̃) ≤ 1

2
, since

otherwise, we can switch S̃ and S \ S̃ . Then, let S ← S ∪ S̃ .

The quantity ρG (S) is monotonically increasing with the iterations,

and the procedure terminates when ρG (S) ≥ 1

3
. Thus, we just need

to show that, as long as we do not return a
1

4
-dense ball with respect

to G, we always have ρG (S) ≤ 3

4
and ΦG (S) ≤ 2ε .

Consider the final iteration of the algorithm before S is returned;

we have that S ⊂ [N] satisfies ρG (S) < 1

3
and ρG̃ (S̃) ≤ 1

2
. Addi-

tionally, assume ΦG (S) ≤ 2ε and ΦG̃ (S̃) ≤ ε . Then,∑
i ∈S∪S̃
j<S∪S̃

дi j ≤
∑
i ∈S
j<S

дi j +
∑
i ∈S̃

j<S∪S̃

дi j ≤ 2ε · ρG (S) + ε · ρG̃ (S̃)

≤ 2ε
(
ρG (S) + ρG (S)

)
= 2ε · ρG (S ∪ S̃),

where we used the fact that ρG̃ (S̃) ≤ 2ρG (S̃), because the matrix

G̃ was normalized by a factor of at least
1

2
. Therefore, we have

ΦG (S ∪ S̃) ≤ 2ε . Finally, note that:

ρG (S ∪ S̃) ≤ ρG (S) + ρG (S̃)

≤ ρG (S) +
1

2

(1 − ρG (S) − ΦG (S)) + ΦG (S)

≤
2

3

+
ε

3

≤
3

4

.

□

3.2.2 Inner multiplicative weights update. The goal of this sub-
section is to use the partitioning procedure from Lemma 3.7 in

order to either find a dense ball (with respect to a given distribution

over X), or build a sparse collection of subsets. For the rest of the

section, we let E be the set of unordered pairs of close points in X
(at distance at most 1).

Lemma 3.8. Let R = Ξ(X , ε) for some ε ∈ (0, 1
4
), and let ν be a

probability measure over points in X . Then, either there exists a ball

B of radius R such that ν (B) ≥ 1

6
, or there exists a collection S of

O
(
logN
ε

)
subsets S ⊆ X such that:

• S is 50ε-sparse, and
• Every S ∈ S satisfies

1

4
≤ ν (S) ≤ 5

6
.

Proof. We prove the lemma by giving an algorithm which pro-

duces the collection S via the multiplicative weights update algo-

rithm. More specifically, we give an iterative procedure where for

t = 0, . . . ,O
(
logN
ε

)
, maintains at most N 2

weights,wt : E → R
≥0
.

At each step, the procedure produces a matrixG ∈ ∆(N), checks the
conditions of Lemma 3.7, and either outputs a dense ball or updates

the weightswt+1. Fix δ =
1

10
. The procedure does the following:

(1) For t = 0, . . . ,T =
⌈
log

2
N

ε

⌉
, maintain weightswt : E → R

≥0
,

where initially, w0 (x ,y) = 1 for all (x ,y) ∈ E, and Ψt =∑
(x,y)∈E wt (x ,y). Start with S = ∅.

(2) Let G (t) ∈ ∆(N) be given by:

д
(t)
i j =




δ ·
wt (xi ,x j)

2Ψt
i , j, (xi ,x j) ∈ E

0 i , j, (xi ,x j) < E
(1 − δ)ν (xi) i = j

,

and consider the possible outcomes of Lemma 3.7 withmatrix

G (t)
:

(a) If there exists a
1

4
-dense ball B of radius R with respect to

G (t)
, then

1

4

≤ ρG (t) (B) =
∑
i ∈B

(1 − δ)ν (i) +
∑
i ∈B

∑
j,i

δ
wt (xi ,x j)

2Ψt

≤ (1 − δ)ν (B) +
δ

2

.

Return B, since ν (B) ≥ 1

6
.

(b) If there exists a subset S (t) ⊂ X with
1

3
≤ ρG (t) (S (t)) ≤ 3

4

and

∑
i ∈S (t), j<S (t) д

(t)
i j ≤ 2ε , then let S ← S ∪ {S (t) } and

for all (x ,y) ∈ E, we let:

wt+1 (x ,y) = wt (x ,y)
(
1 + χ {S (t) (x),S (t) (y) }

)
.

793

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

(3) After T iterations, if the procedure has not returned a ball,

return S.

It remains to show that if the procedure does not return a ball B,

then the collection S is 50ε-sparse, and every S (t) ∈ S satisfies

1

4
≤ ν (S (t)) ≤ 5

6
. Note that |S| = O

(
logN
ε

)
since T = O

(
logN
ε

)
.

In order to show that
1

4
≤ ν (S) ≤ 5

6
for all S (t) ∈ S, note that,

similarly to the case with B,

1

3

≤ ρG (t) (S (t)) ≤
δ

2

+ (1 − δ)ν (S (t))

and

(1 − δ)ν (S (t)) ≤ ρG (t) (S (t)) ≤
3

4

,

where the claim follows since δ = 1

10
. We now turn to showing that

S is 50ε-sparse. On the one hand, we have:

Ψt+1 =
∑

(x,y)∈E

wt+1 (x ,y) =
∑

(x,y)∈E

wt (x ,y)
(
1 + χ {S (t) (x),S (t) (y) }

)
≤ Ψt + Ψt ·

2

δ

∑
i ∈S (t), j<S (t)

δ ·
wt (xi ,x j)

2Ψt
≤ Ψt

(
1 +

4ε

δ

)
,

(3)

since δ ·
wt (xi ,x j)

2Ψt
= дi j for every close pair (xi ,x j), and∑

i ∈S (t), j<S (t)

дi j ≤ 2ε .

Thus,

ΨT+1 ≤ Ψ0

(
1 +

4ε

δ

)T
≤ N 2

(
1 +

4ε

δ

)T
.

On the other hand, for each pair (x ,y) ∈ E,

ΨT+1 ≥ 2
p (x,y) ·T , (4)

where p (x ,y) = Prt ∈[T][S
(t) (x) , S (t) (y)]. Combining (3) and (4),

and taking logarithms, we have:

p (x ,y) ≤
2 log

2
N

T
+ log

2

(
1 +

4ε

δ

)
≤

2 log
2
N

T
+
4ε

δ
≤ 2ε + 40ε ≤ 50ε .

□

3.2.3 Outer multiplicative weights update: proof of Theorem 3.6.
The goal of this subsection is to prove Theorem 3.6. Similarly to

Lemma 3.8, we use the multiplicative weights update rule to de-

sign an algorithm which incorporates (limited) information about

the dataset P ; in each update round, we call Lemma 3.8. We an-

alyze this outer multiplicative weights update process using KL-

divergence as a potential function. In particular, we use the follow-

ing lemma, which is well known (see Theorem 2.4. in [13]), and

has been used, for example, in the literature on differential privacy

(Lemma IV.1. in [23]). We give the short proof here for completeness.

Below, KL divergence will be defined with respect to the natural

logarithm, i.e. for two measures µ and ν on X we have

DKL (µ∥ν) =
∑
x ∈X

µ (x) ln
µ (x)

ν (x)
.

Lemma 3.9. Let µ and ν be probability measures over X . For a
subset S ⊆ X , let σ = sign(µ (S) −ν (S)), and define a new probability

measure ν ′ over X by

ν ′(x) =
ν (x)eησS (x)∑

y∈X ν (y)eησS (y)
.

Then,

DKL (µ∥ν
′) − DKL (µ∥ν) ≤ −η |µ (S) − ν (S) | + η

2.

Proof. By the definition of KL-divergence we have

DKL (µ∥ν
′) − DKL (µ∥ν) =

∑
x ∈X

µ (x) ln
ν (x)

ν ′(x)

=
∑
x ∈X

µ (x) ln

∑
y∈X ν (y)eησS (y)

eησS (x)

= −ησµ (S) + ln
∑
y∈X

ν (y)eησS (y)

≤ −ησµ (S)

+ ln
∑
y∈X

ν (y) (1 + ησS (y) + η2S (y))

= −ησµ (S) + ln(1 + ησν (S) + η2ν (S))

≤ −ησ (µ (S) − ν (S)) + η2

= −η |µ (S) − ν (S) | + η2.

The first inequality above follows from ez ≤ 1+z+z2 for all |z | ≤ 1.

The second inequality follows from ln(1 + z) ≤ z. □

In particular, notice that Lemma 3.9 implies that if |µ (S)−ν (S) | >
α , and we set η = α

2
, then the KL-divergence dicreases by at least

α 2

4
.

Proof of Theorem 3.6. Similarly to Lemma 3.8, we give an it-

erative procedure where at each time step t = 0, . . . ,T = O (logN),
we maintain N weights,wt : X → R

≥0
. At each step, the procedure

produces a probability measure ν supported on points in X and

uses Lemma 3.8 to get a collection of subsets of X . The procedure
is defined as follows:

(1) For t = 0, . . . ,T = 400 lnN , maintainweightswt : X → R
≥0
,

where initially,w0 (x) = 1 for all x ∈ X .

(2) Let ν (t) be the probability measure supported on X given

by ν (t) (x) =
wt (x)∑

y∈X wt (x)
. Consider the possible outcomes of

Lemma 3.8 with measure ν (t) :
(a) If there exists a ball B (t)

of radius R such that ν (t) (B) ≥ 1

6

and |P ∩ B | ≥ n
50
, then return B = B (t)

.

(b) If there exists a ball B (t)
of radius R such that ν (t) (B) ≥ 1

6

but |P ∩ B | < n
50
, then set

wt+1 (x) = wt (x)e
−B (t) (x)/20,

and continue with the next iteration.

(c) If there exists a collection S (t)
of subsets of X satisfying

the conditions of Lemma 3.8, and
n
25
≤ |S ∩ P | ≤ 24n

25
for

all S ∈ S (t)
, then return S = S (t)

.

794

Data-Dependent Hashing via Nonlinear Spectral Gaps STOC’18, June 25–29, 2018, Los Angeles, CA, USA

(d) If there exists a collection S (t)
of subsets of X satisfy-

ing the conditions of Lemma 3.8, and for some S ∈ S (t)

we have |S ∩ P | < n
25

or |S ∩ P | > 24n
25

, then set σ =

sign

(
|S∩P |
n − ν (t) (S)

)
, update the weights as

wt+1 (x) = wt (x)e
σS (x)/20,

and continue with the next iteration.

Note that the procedure returns B = B (t)
only if it is a ball of ra-

dius R that contains at least
n
50

points, and it returns the collection

S = S (t)
only if it is 50ε-sparse and 49

50
-balanced. So, if the proce-

dure returns B or S, then we know it satisfies the condition of the

theorem. Therefore, we just need to show that the procedure will

return B or S in the first T iterations, and that S is a subcollection

of a sufficiently small collection C. Since in each iteration we either

return B or S, or we update wt , for the first claim it is enough

to show that wt is updated fewer than T times. We do so using

KL-divergence as a potential function.

Let µ be the empirical distribution induced by the dataset, i.e.

µ (x) = 1

n for every x ∈ P and µ (x) = 0 for every x ∈ X \ P . At step
0, we have

DKL (µ∥ν
(0)) = lnN − H (µ) ≤ lnN , (5)

where H (µ) is the Shannon entropy of µ, which is always non-

negative. If we update wt because there exists a ball B (t)
with

ν (t) (B (t)) ≥ 1

6
but µ (B (t)) = |P∩B |n < 1

50
, then we have |µ (B (t)) −

ν (t) (B (t)) | > 1

6
− 1

50
> 1

10
, so, by Lemma 3.9

DKL (µ∥ν
(t+1)) < DKL (µ∥ν

(t)) −
1

400

. (6)

Similarly, if we updatewt because there exists a set S ∈ S
(t)

with

µ (S) = |S∩P |n < 1

25
or µ (S) > 24

25
, then, by Lemma 3.8 we know that

1

4
≤ ν (t) ≤ 5

6
, and, therefore,

|µ (B) − ν (t) (B) | >
24

25

−
5

6

>
1

10

.

So, by Lemma 3.9, the inequality (6) holds in this case, too. By (5)

and (6), and because KL-divergence is always non-negative, we

have thatwt can be updated at most 400 lnN ≤ T times. Therefore,

after one of the T iterations the procedure will return either a ball

B or a collection S satisfying the conditions of the theorem.

To finish the proof, we need to argue that S is a subcollection of

a small collection C of subsets ofX . LetM be the number of distinct

collections S that the iterative procedure can return. Lemma 3.8

guarantees that, for any such collection, |S| = O (logN /ε), and if

we define C to be the union of all possible S, then we have the

bound |C| = O (M log(N /ε)). To boundM , observe that S depends

on the dataset P only to determine, for each t = 1, . . . ,T , whether
the procedure has returned B or S, or, otherwise, to determine the

identity of a set S ∈ S (t)
such that µ (S) = |S∩P |n < 1

25
or µ (S) > 24

25
,

and the sign of µ (S)−ν (t) (S). Since |S (t) | = O (logN /ε), any set S ∈

S (t)
can be specified in O (log(log(N)/ε)) bits. Overall, S depends

only on O (T (1 + log(log(N)/ε))) = O (logN log(log(N)/ε)) bits
from P , which gives the desired bound on M , and, therefore, on

log |C|. □

4 CELL-PROBE DATA STRUCTURE FOR
GENERAL METRICS

Here, we describe a cell-probe data structure solving c-ANN for

(X ,dX), where |X | = N . Along the way, we use Theorem 3.6 as the

main tool.

We first define the cell-probe model (as used in Theorem 1.1).

Given a dataset, the cell-probe algorithm is allowed unbounded pre-

processing time and eventually stores some memory as a sequence

of cells ofO (logn) bits each. Then, given a query point, a cell-probe

algorithm is allowed to probe some cells (possibly adaptively) to

read the contents of a cell. The algorithm performs unbounded aux-

iliary computations and uses unbounded auxiliary memory. The

complexity of a cell-probe algorithm is measured by the number

of cells, or the space, the data structure uses, and the number of

probes the algorithm makes during a query. We will assume that

log logN = O (logn) and that any point in X can be specified using

O (logN) cells.
The main theorem in this section is:

Theorem 4.1. For any metric space X of size N , and α ∈ (0, 1
4
),

there exists a cell-probe data structure for (2 · Ξ(X ,Θ(α)) + 1)-ANN
that uses O (n1+α · logN) words of space and O (nα · logn · logN)
cell probes per query.

While we do not measure time complexity in this section, we

note the cell-probe algorithm described may be implemented with

preprocessing time and query time which depend exponentially on

the dimension.

In the rest of this section we fix R = Ξ(X , ε) for a parameter

ε = Θ(α), to be determined later.

Preprocessing. Next we describe how to build the data structure

(for the pseudocode, see Figure 1). Let P ⊂ X be a dataset of n
points. The data structure is a collection of independently generated

random decision trees. Each node v of a tree stores the following

fields:

• v .type: the type of the node;
• v .P : a subset of the dataset points;
• v .center: a point in X ;

• v .S : O (log(N) log(log(N)/ε)) bits used to indicate a set S in

the collection C guaranteed by Theorem 3.6, defining a cut

node;

• v .left and v .right: pointers to child nodes.

We keep a counter ℓ, which denotes the current level of the tree

we are processing. Initially, ℓ = 0, and it is incremented on each

recursive call. Once ℓ reaches some threshold t (to be specified

shortly), we store a leaf node v and save the points of the dataset

which reached v in v .P . Thus the depth of the tree is bounded by t
a priori.

(1) If there exists a point x0 ∈ X such that |P ∩ BX (x0,R) | ≥
n
50
,

we build a ball node. In this case, the ball node saves x0
in v .center and P ∩ BX (x0,R) in v .P . We then recurse by

building a data structure on P \BX (x0,R). (See ProcessBall
in Figure 1).

(2) Otherwise, the second condition of Theorem 3.6 holds, and

the set C guaranteed by the theorem contains a subcollection

S ⊆ C of subsets of X which is 50ε sparse and 96

100
-balanced.

795

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

function Process(P , ℓ, v)
if ℓ = t or |P | ≤ 100 then

v .type← “leaf.”

v .P ← P .
else if ∃x0 such that |P ∩ BX (x0, R) | ≥

|P |
50

then
call ProcessBall(P, x0, ℓ, v)

else
S ← MWU(P).
v .mwu← mwu

sample S uniformly from S

store bits necessary to identify S ∈ C in v .S
ProcessCut(P, S, ℓ, v).

functionMWU(P)
S ⊆ C obtained from Theorem 3.6 with P .
return S.

function ProcessBall(P , x , ℓ, v)
v .type← “ball.”

v .center← x .
v .P ← P ∩ BX (x, R).
Process(P \ BX (x0, R), ℓ + 1, v .left).

function ProcessCut(P, S, ℓ, v)
v .type← “cut.”

Pl = P ∩ Si , Pr = P \ S .
Process(Pl , ℓ + 1, v .left).
Process(Pr , ℓ + 1, v .right).
v .P ← ∅.

Figure 1: Pseudocode for constructing the data structure

functionQuery(q, v)
if v .type = “leaf” then

for p ∈ v .P do
return p if dX (q, p) ≤ 2R + 1.

return ⊥.
if v .type = “ball” then

p ←QueryBall(q, v).
return p if p , ⊥.

if v .type = “cut” then
p ←QueryCut(q, v).
return p if p , ⊥.

functionQueryBall(q , v)
x0 ← v .center.
if dX (x0, q) ≤ R + 1 then

return any p ∈ v .P .
returnQuery(q, v .left).

functionQueryCut(q, v)
Identify S ∈ C from v .S
if q ∈ S then

returnQuery(q, v .left).
returnQuery(q, v .right).

Figure 2: Pseudocode for querying the data structure

We sample a uniformly random S ∈ S, and we build a cut

node v . We store theO (log(N) log(log(N)/ε)) bits necessary
to identify S in v .S , and recursively create two child nodes,

holding the points P ∩ S and P \ S . (See ProcessCut in

Figure 1).

The final data structure consists of k = O (nα) independent trees,
rooted at the nodes v1, . . . ,vk , where the i-th tree was built by a

call to Process(P , 0,vi).

Querying the Data Structure.We now specify how to query the

data structure; the pseudocode is given in Figure 2. For each of the

k trees in the data structure, we start the query procedure at the

root of the tree, and proceed by cases, according to the type of node,

as follows:

• Leaf nodes: If a query q ∈ X queries a leaf node v , then the

query scans v .P and returns the first point which lies within

distance 2R + 1. If no such point is found, return ⊥.

• Ball nodes: If a query q ∈ X queries a ball node v , we test
whether our query is close to the ball centered at v .center of
radius R. In particular, ifdX (q,v .center) ≤ R+1 andv .P , ∅,
we return an arbitrary p ∈ v .P . Otherwise, we recurse on
the child node of v .
• Cut nodes: If a query q ∈ X queries a cut node v , the query-
ing algorithm runs the multiplicative weights algorithm,

accessing the values stored in v .mwu. Once it determines

the collection S, the querying algorithm checks the index

of the set Si ∈ S, which is stored in v .S . If q ∈ Si , then the

querying algorithm recurses on the left child, otherwise, it

recurses on the right child of v .

We collect some simple facts about the data structure which we

use later in the analysis.

Claim 1. The following statements are true:

• The sets v .P for nodes v partition the dataset P .
• If Query(q,v) returns a point p ∈ P , then dX (p,q) ≤ 2R + 1.

Analysis.

It remains to set the parameters t and ε . We let t =
⌈

logn
log(50/49)

⌉

and ε =
⌊
α ·log(50/49)

50

⌋
in order to have (1 − 50ε)t ≥ n−α .

Consider a fixed dataset P , and let q ∈ X be any query, which

is promised to have a point p ∈ P with dX (p,q) ≤ 1. If there are

multiple such points for q, we fix one arbitrarily. Let v be a node

of the data structure built by a call to Process(Pv , ℓ,v) for some

Pv ⊂ P and ℓ < t . We letU = C (v,q) be the random variable (over

the random choice of Si ∈ S if v is a cut node) which specifies the

child node followed byQuery(q,v), and ⊥ ifQuery(q,v) does not
recurse down a child. We also consider the random variable PU
consisting of the dataset involved in the call Process(PU , ℓ + 1,U)
which builds the nodeU whenU , ⊥.

We first claim that for any nodev of the data structure, if p ∈ Pv ,
then,

Pr[p ∈ PU | U , ⊥] ≥ 1 − 50ε . (7)

To see this, first consider the case in which Process(Pv , ℓ,v) calls
ProcessBall, and let x be the center of the ball. If U , ⊥, then
QueryBall(q,v) did not return any point and dX (x ,q) > R + 1, so
p < BX (x ,R). Then p ∈ Pv \ BX (x ,R) = PU with probability 1. For

the remaining case, when Process calls ProcessCut, we have:

Pr

S∼S
[p ∈ PU] = Pr

S∼S
[S (p) = S (q)] ≥ 1 − 50ε,

since S is guaranteed to be 50ε-sparse by Theorem 3.6.

By Claim 1, any point p′ returned byQuery(q,vi), where vi is
the root of one of the data structure trees, satisfiesdX (p′,q) ≤ 2R+1.
To prove correctness, it remains to argue that, with sufficiently high

probability, at least one of the Query(q,vi) calls, for i = 1, . . . ,k ,
does in fact return a point. Fix some i between 1 and k , and define a
random sequenceU0,U1, . . . ,Us of nodes of the tree rooted atvi by

796

Data-Dependent Hashing via Nonlinear Spectral Gaps STOC’18, June 25–29, 2018, Los Angeles, CA, USA

U0 = vi andUℓ = C (Uℓ−1,q);Us is the first node in this sequence

for which C (Us ,q) = ⊥. Notice that s ≤ t . Clearly, Query(q,vi)
will return a point if p ∈ PUs . By (7) and the choice of t , this
happens with probability at least (1 − 50ε)s ≥ (1 − 50ε)t ≥ n−α .
By picking the number k of trees in the data structure to be a

sufficiently large multiple of nα , we can guarantee that with large

constant probability the data structure returns a point p′ such that

dX (p′,q) ≤ 2R + 1.
To finish the analysis, we need to bound the number of cells

stored by the data structure, and the number of cell probes made

by the query procedure. Each of the points stored in the leaves of

each tree form a partition of the point set P , so each tree has at

most n internal nodes. Each internal node stores O (log(N)) cells,
and all the leaves together use O (n logN) cells of space (O (logN)
per point in P). Therefore, the total space used by the data structure
is O (n1+α logN) cells.

The query procedure probesO (logN) cells at each internal node

of a tree. The number of cells probed at a leaf nodev is proportional

to O (|v .P | · logN). We claim that v .P is bounded by a constant.

Suppose that u is a child of a node v , and also that v was created by

a call to Process(Pv , ℓ,v) and u by a call to Process(Pu , ℓ + 1,u).
Then, by the guarantees of Theorem 3.6, |Pu | ≤

49

50
|Pv |, so the

number of points that can reach a leaf of a tree is bounded by

n
(
49

50

)t
. By the choice of t , this number is bounded by a constant, as

we claimed. Therefore, the total number of cells probed by the query

procedure is O (kt logN) = O (nα logn logN). This completes the

proof of Theorem 4.1.

5 DISCRETIZING THE SPACE
Let ∥ · ∥ be a norm onRd with unit ballK . Let E be the John Ellipsoid

of K , i.e. the largest volume ellipsoid contained inside K . By John’s

theorem [29],

E ⊂ K ⊂
√
d · E .

We let C ⊃ E be the smallest rotated box (with side-length 2 in

∥ · ∥) containing E. More formally, consider the affine transform

F : Rd → Rd which maps Bd
2
(the unit ball of ∥ · ∥2) to E. Then

C = F (Bd∞). Note that the collection

Hs = {F (2s · x) + s · C ⊂ R
d
: x ∈ Zd },

partitions Rd into disjoint translated copies of C with side-length

2s .
In this section, we reduce the problem of c-ANN for ∥ · ∥ over

Rd to the problem of c-ANN for ∥ · ∥ over a finite set of points. We

first reduce to the case when the dataset and query are bounded by

a high-dimensional box, then we will show how to discretize the

boxes in order to reduce to a finite set of points.

Lemma 5.1. Let A be a data structure solving c-ANN for ∥ · ∥ over

s · C where s = O (d) with success probability
9

10
, query time T (n)

and space S (n) = Ω(dn). Then there exists a data structureA′ solving

c-ANN for ∥ · ∥ over Rd which solves the problem with probability

8

10
, query time T (n) +O (d) and space S (n) +O (dn).

Proof. The data structure A′, upon receiving the dataset P , pro-
ceeds in the following way:

• Partition the space by a randomly shifted s · C where s = 5d

(with respect to ∥ · ∥). More formally, we sample y ∼ [0, 2s]d

and consider the collection:

Hs,y = {F (y) + H ⊂ R
d
: H ∈ Hs }.

• For each H ∈ Hs,y , we take the dataset P ∩ H falling inside

this location, translate the dataset by the center of H and

invoke the data structureA on the translated points of P ∩H .

On a query q, we identify the location q ∈ H ∈ Hs,y . We translate

the query by the center of H , and query the corresponding data

structure holding P ∩ H .

We say that two points p,q ∈ Rd are split if they lie in different

cells of the partition Hs,y . For any p and q with ∥p − q∥ ≤ 1, we

have

Pr[p and q split] ≤
d · ∥p − q∥

2s
≤

1

10

where we used the fact that after the affine transform F which maps

e1, . . . , ed to the major axes of E, we have the probability that we

split points p and q is at most

1

2s

d∑
i=1
|(F−1 (p − q))i | =

1

s

F
−1 (p) − F−1 (q)

1

≤

√
d

2s

F
−1 (p) − F−1 (q)

2

=

√
d

2s

p − q

E ≤

∥p − q∥

2s
.

Thus, with probability
9

10
, the query point and the dataset point

fall in the same grid location. The query time of T (n) + O (d) is
immediate, and the space S (n) +O (dn) follows from the fact that

we must store a hash of the non-empty values of P ∩ H where

H ∈ Hs,y , as well as y, as well as the fact that S (n) = Ω(n). □

We now proceed to the second step where we reduce to the case

the dataset and query lie within a fixed set of points. We let X be a

greedily constructed γ -net of s · C (where distances are measured

with respect to ∥ · ∥). Let (X , ∥ · ∥) be the metric space obtained by

restricting the norm to T .
A standard volume argument gives the following fact.

Fact 1. We have that |X | ≤ exp (O (d log(d/γ))).

Since X is a γ -net, we may identify points with their closest

neighbor in X . The following lemma is immediate, and finishes the

reduction.

Lemma 5.2. Let A be a data structure solving c-ANN for (X , ∥ · ∥)
with success probability

9

10
, time T (n) and space S (n). There exists

a data structure A′ solving c · (
1+2γ
1−2γ)-ANN for ∥ · ∥ over s · C with

success probability
9

10
in time T (n) +O (d) and space S (n).

6 BOUNDING THE CUTTING MODULUS OF A
NORMED SPACE

For G = (дi j) ∈ ∆(m), we denote the diagonalm ×m matrix D =

diag(ρG (1), ρG (2), . . . , ρG (m)). We set A = (ai j) = D−1/2GD−1/2,

so that ai j =
дi j√

ρG (i)ρG (j)
and LG = I − A. For a metric space

797

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

(M,dM) and q > 0, we define (the inverse of) the nonlinear spec-

tral gap γ (G,d
q
M

) to be the infimum over γ > 0 such that for every

u1,u2, . . . ,um ∈ M, one has:

m∑
i, j=1

ρG (i)ρG (j) · dM (ui ,uj)
q ≤ γ

m∑
i, j=1

дi j · dM (ui ,uj)
q .

Note that this definition agrees with the one from the Introduction

if G is (a multiple of) a doubly-stochastic matrix.

In this section, we show that for every d-dimensional normed

space X = (Rd , ∥ · ∥X) and every 0 < ε < 1/2, one has Ξ(X , ε) ≲
logd
ε2 .

6
This bound easily follows (see Theorem 6.4) from a slight

extension of Theorem 1.5 to the case when A is not necessarily

doubly stochastic. This extension can be obtained by examining the

proof from [40], but instead we present a new, shorter and more

elementary argument, which constitutes the bulk of the present

section (for a slightly different exposition of the same argument,

see [41]).

Recall that for normed spaces X = (Rd , ∥ · ∥X) and Y = (Rd , ∥ ·

∥Y) and a linear map T : Rd → Rd , the operator norm ∥T ∥X→Y
is defined as follows: ∥T ∥X→Y = sup∥x ∥X=1 ∥Tx ∥Y . The Banach–
Mazur distance dBM (X ,Y) between X and Y is defined as follows:

dBM (X ,Y) = infT : Rd→Rd ∥T ∥X→Y · ∥T
−1∥Y→X . By John’s theo-

rem, one always has: dBM (X , ℓd
2
) ≤
√
d .

Theorem 6.1. For every normed space X = (Rd , ∥ · ∥X) and

every G = (дi j) ∈ ∆(m), one has γ (G, ∥ · ∥2X) ≲
(
1+log d
λ2 (LG)

)
2

, where

d = dBM (X , ℓd
2
) ≤
√
d . In particular, one always has: γ (G, ∥ · ∥2X) ≲(

logd
λ2 (LG)

)
2

.

Let V ⊂ (Rd)m be the following codimension-1 subspace:

V =


(v1,v2, . . . ,vm) ∈ (Rd)m

������

m∑
i=1

√
ρG (i) · vi = 0



.

We denote VX = (V , ∥ · ∥VX) the normed space where for v =

(v1,v2, . . . ,vm) ∈ V , the norm is given by ∥v ∥VX =
√∑m

i=1 ∥vi ∥
2

X .

DenoteA : V → V the following linearmap: (Av)i =
∑m
j=1 ai jvj =∑m

j=1
дi jvj√

ρG (i)ρG (j)
. In words, A acts on a tuple of d-dimensional

vectors the same way asA = D−1/2GD−1/2 acts on a tuple of scalars.
It is immediate to check that the image of A indeed lies in V ; this

follows from the fact

(√
ρG (1),

√
ρG (2), . . . ,

√
ρG (m)

)
is an eigen-

vector of A. Let I : V → V be the identity map.

Let us show that Theorem 6.1 readily follows from the following

lemma.

Lemma 6.2. One has:

(I − A)−1

VX→VX

≲ 1+log d
λ2 (LG) .

Proof of the implication “Lemma 6.2⇒ Theorem 6.1”. An

immediate reformulation of Lemma 6.2 is that for every vi ∈ R
d

such that

∑m
i=1

√
ρG (i) · vi = 0, one has:

m∑
i=1
∥vi ∥

2

X ≲

(
1 + log d
λ2 (L)

)
2

·
∑
i=1

vi −

m∑
j=1

дi jvj√
ρG (i)ρG (j)

2

X

. (8)

6
Here the notation a ≲ b means that there exists a constant C , independent of all

other parameters, such that a ≤ Cb .

Our goal is to show that for every u1,u2, . . . ,um ∈ R
d
, one has:

m∑
i, j=1

ρG (i)ρG (j) · ∥ui −uj ∥
2

X ≲

(
1 + log d
λ2 (LG)

)
2

·

m∑
i, j=1

дi j · ∥ui −uj ∥
2

X .

(9)

Without loss of generality, we can assume that

∑m
i=1 ρG (i) · ui = 0.

We setvi =
√
ρG (i) ·ui . Hence,

∑m
i=1

√
ρG (i) ·vi = 0 and (8) applies.

On the one hand, one has:

m∑
i, j=1

ρG (i)ρG (j) · ∥ui − uj ∥
2

X

≤

m∑
i, j=1

ρG (i)ρG (j) ·
(
∥ui ∥X + ∥uj ∥X

)
2

≤ 2

m∑
i, j=1

ρG (i)ρG (j) ·
(
∥ui ∥

2

X + ∥uj ∥
2

X

)

= 4

m∑
i=1

ρG (i) · ∥ui ∥
2

X = 4

m∑
i=1
∥vi ∥

2

X . (10)

On the other hand, one has:

m∑
i=1

vi −

m∑
j=1

дi jvj√
ρG (i)ρG (j)

2

X

=

m∑
i=1

m∑
j=1

дi j√
ρG (i)

· *
,

vi√
ρG (i)

−
vj√
ρG (j)

+
-

2

X

=

m∑
i=1

m∑
j=1

дi j√
ρG (i)

· (ui − uj)

2

X

≤

m∑
i=1

*.
,

m∑
j=1

дi j√
ρG (i)

·

ui − uj

X
+/
-

2

≤

m∑
i, j=1

дi j ·

ui − uj

2

X
, (11)

where the third step is due to the triangle inequality, and the fourth

step is due to Jensen’s inequality. Combining (8), (10) and (11), we

obtain (9). □

Now let us show the proof of Lemma 6.2. For this we will need

to relate the geometry of X and the Euclidean geometry. Let H =

(Rd , ∥ · ∥H) be a Hilbert space such that for every v ∈ Rd , one has
∥v ∥H ≤ ∥v ∥X ≤ d · ∥v ∥H . We define the normed spaceVH = (V , ∥ ·
∥VH) similarly toVX : the norm ∥v ∥VH forv = (v1,v2, . . . ,vm) ∈ V

is defined as follows: ∥v ∥VH =
√∑m

i=1 ∥vi ∥
2

H . Clearly, for every

v ∈ V , one has:

∥v ∥VH ≤ ∥v ∥VX ≤ d · ∥v ∥VH . (12)

Finally, we define Ã = A+I
2

and Ã = A+I
2

. Let us observe that

(I − A)−1

VX→VX
≲

(I − Ã)−1

VX→VX

, thus it is enough to

show that

(I − Ã)−1

VX→VX
≲

1 + log d
λ2 (LG)

. (13)

798

Data-Dependent Hashing via Nonlinear Spectral Gaps STOC’18, June 25–29, 2018, Los Angeles, CA, USA

One can see that (13) is an immediate corollary of the following

three statements together with (12). Let us note that Lemma 6.3 is

the place, where the logarithmic dependence on d shows up.

Claim 2. One has ∥Ã∥VX→VX ≤ 1.

Claim 3. One has ∥Ã∥VH→VH ≤ 1 −
λ2 (LG)

2
.

Lemma 6.3. Let ∥ · ∥P and ∥ · ∥Q be two norms on Rd
′

such that

for some Φ ≥ 1 for every u ∈ Rd
′

one has ∥u∥Q ≤ ∥u∥P ≤ Φ · ∥u∥Q .

Suppose that T : Rd
′

→ Rd
′

is a linear map such that ∥T ∥P→P ≤ 1

and ∥T ∥Q→Q ≤ 1 − ε for some 0 < ε < 1. Then, ∥ (I −T)−1∥P→P ≲
1+logΦ

ε .

Proof of Claim 2. One has for everyv = (v1,v2, . . . ,vm) ∈ V :

∥Av ∥2VX =

m∑
i=1
∥ (Av)i ∥

2

X =

m∑
i=1

m∑
j=1

дi jvj√
ρG (i)ρG (j)

2

X

≤

m∑
i=1

*.
,

m∑
j=1

дi j

ρG (i)

√
ρG (i)

ρG (j)
· vj

X

+/
-

2

≤

m∑
i=1

m∑
j=1

дi j

ρG (i)

√
ρG (i)

ρG (j)
· vj

2

X

=

m∑
i=1

m∑
j=1

дi j

ρG (j)

vj

2

X
=

m∑
j=1

vj

2

X
= ∥v ∥2VX ,

where the third step is by the triangle inequality, and the fourth

step is by the Jensen’s inequality. Hence, ∥A∥VX→VX ≤ 1. But this

implies that ∥Ã∥VX→VX ≤ 1 as well. □

Proof of Claim 3. Let us first observe that for every u ∈ Rm

such that

∑m
i=1

√
ρG (i) · ui = 0, one has:

∥Ãu∥2 ≤

(
1 −

λ2 (LG)

2

)
· ∥u∥2, (14)

since Ã is positive semidefinite, the largest eigenvalue is 1, the

corresponding eigenvector is (
√
ρG (i))mi=1, and the second largest

eigenvalue is 1 − λ2 (LG)/2.
The desired inequality reduces to (14) as follows. Since H is

a Hilbert space, there exists an orthogonal basis e1, e2, . . . , ed ∈

Rd such that for every u ∈ Rm , one has ∥u∥2H =
∑m
i=1⟨u, ei ⟩

2
.

For 1 ≤ i ≤ d and v = (v1,v2, . . . ,vm) ∈ V , define πi (v) =
(⟨v1, ei ⟩, . . . , ⟨vm , ei ⟩) ∈ R

m
. Then, ∥v ∥2VH

=
∑d
i=1 ∥πi (v)∥

2

2
. One

has:

∥Ãv ∥2VH =

d∑
i=1
∥πi (Ãv)∥

2

2
=

d∑
i=1
∥Ãπi (v)∥

2

2

≤

(
1 −

λ2 (LG)

2

)
2 d∑
i=1
∥πi (v)∥

2

2

=

(
1 −

λ2 (LG)

2

)
2

∥v ∥2VH .

□

Proof of Lemma 6.3. For every k ≥ 1, one has ∥T k ∥P→P ≤

Φ·(1−ε)k . Thus, we can choosek∗ ≲ 1+logΦ
ε such that ∥T k

∗

∥P→P ≤

1/2. Finally, we have:

∥ (I −T)−1∥P→P ≤

∞∑
k=0

∥T k ∥P→P ≤ k∗ ·
∞∑
i=0
∥T ik

∗

∥P→P

≤ k∗ ·
∞∑
i=0

(1/2)i ≲ k∗ ≲
1 + logΦ

ε

as desired. □

Theorem 6.4. For every normed space X = (Rd , ∥ · ∥X) with

dBM (X , ℓd
2
) = d ≤

√
d , and every 0 < ε < 1/2, one has: Ξ(X , ε) ≲

1+log d
ε2 . In particular, one always has: Ξ(X , ε) ≲ logd

ε2 .

Proof. Let R > 0 be a parameter to be fixed later. LetG ∈ ∆(m)
and let x = (x1,x2, . . . ,xm) ∈ Xm

be such that ∥xi − x j ∥X ≤ 1 if

дi j > 0. Suppose that x has no 1/2-dense ball of radius R. Then,

m∑
i, j=1

ρG (i)ρG (j) · ∥xi − x j ∥
2

X ≥
R2

2

. (15)

On the other hand, we have:

m∑
i, j=1

дi j · ∥xi − x j ∥
2

X ≤ 1, (16)

since ∥xi − x j ∥
2

X ≤ 1 whenever дi j > 0. Thus, combining (15),

(16) and Theorem 6.1, we get: λ2 (LG) ≲
1+log d

R . Thus, by setting

R ≲ 1+log d
ε2 and using Cheeger’s inequality (Theorem 2.2), we

conclude that G has a cut with conductance at most ε . □

Note that Theorems 3.6 and 6.4, together with a standard dis-

cretization argument imply Theorem 1.7. Indeed, given a norm

∥ · ∥X on Rd , and a radius R so that logR is polynomial in d , we
can greedily find N points x1, . . . xN so that the balls BX (x1,γ),
. . ., BX (xN ,γ) cover BX (0,R), and logN = O (d log(R/γ)). We can

then use Theorem 3.6 with the metric space of size N induced on

{x1, . . . ,xN } and the cutting modulus bound given in Theorem 6.4.

We identify any set S in the collection C guaranteed by Theorem 3.6

with the union of the balls BX (xi ,γ) that cover the elements of S .
It is easy to verify that any two points u,v ∈ BX (0,R) that lie at
a distance at most 1 − 2γ apart are separated by a uniformly ran-

dom set in the subcollection S with probability at most 50ε . The
guarantee of Theorem 1.7 then follows by a simple rescaling.

ACKNOWLEDGMENTS
We thank Richard Peng and Tselil Schramm for useful discussions.

The first-named author was supported in part by the Simons

Foundation (#491119), NSF grants CCF-1617955, CCF-1740833, and

Google Research Award. The second-named author was supported

in part by the NSF grant CCF-1412958, the Packard Foundation and

the Simons Foundation. The third-named author was supported in

part by the NSF grant CCF-1740425 and NSERC Discovery Grant.

The fourth-named author was supported in part by the Simons

Junior Fellowship. The fifth-named author was supported in part

799

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Andoni, Naor, Nikolov, Razenshteyn, Waingarten

by the NSF grants CCF-1563155, CCF-1420349, CCF-1149257, CCF-

1423100), and the NSF Graduate Research Fellowship (DGE-16-

44869).

The work was done in part while the third-named author was

visiting Simons Institute for the Theory of Computing and while the

fourth-named author was a graduate student at MIT and a postdoc

at Columbia University. This work was was carried out under the

auspices of the Simons Algorithms and Geometry (A&G) Think

Tank.

REFERENCES
[1] Alexandr Andoni. 2009. Nearest Neighbor Search: the Old, the New, and the

Impossible. Ph.D. Dissertation. MIT.

[2] Alexandr Andoni. 2010. Nearest Neighbor Search in high-dimensional spaces.

(2010). Invited talk at the Workshop on Barriers in Computational Complexity

II, http://www.mit.edu/~andoni/nns-barriers.pdf.

[3] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms

for Approximate Nearest Neighbor in High Dimensions. In Proceedings of the

47th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’2006).

459–468.

[4] Alexandr Andoni and Piotr Indyk. 2017. Nearest Neighbors in High-Dimensional

Spaces. In Handbook of Discrete and Computational Geometry, Jacob E. Goodman,

Joseph O’Rourke, and Csaba D. Tóth (Eds.). CRC Press LLC, 1133–1153.

[5] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. 2009. Overcoming the

ℓ1 Non-Embeddability Barrier: Algorithms for Product Metrics. In Proceedings of

the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2009). 865–874.

[6] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. 2014. Be-

yond Locality-SensitiveHashing. In Proceedings of the 25th ACM-SIAM Symposium

on Discrete Algorithms (SODA ’2014). 1018–1028. Available as arXiv:1306.1547.

[7] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. 2018. Approximate Nearest

Neighbor Search in High Dimensions. In Proceedings of ICM 2018 (to appear).

[8] Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. 2015. Sketch-

ing and Embedding are Equivalent for Norms. In Proceedings of the 47th ACM

Symposium on the Theory of Computing (STOC ’2015). 479–488. Available as

arXiv:1411.2577.

[9] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. 2017.

Optimal Hashing-based Time–Space Trade-offs for Approximate Near Neigh-

bors. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms

(SODA ’2017). 47–66. Available as arXiv:1608.03580.

[10] Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya Razenshteyn, and

Erik Waingarten. 2017. Approximate Near Neighbors for General Symmetric

Norms. In Proceedings of the 49th ACM Symposium on the Theory of Computing

(STOC ’2017). 902–913. Available as arXiv:1611.06222.

[11] Alexandr Andoni and Ilya Razenshteyn. 2015. Optimal Data-Dependent Hashing

for Approximate Near Neighbors. In Proceedings of the 47th ACM Symposium on

the Theory of Computing (STOC ’2015). 793–801. Available as arXiv:1501.01062.

[12] Alexandr Andoni and Ilya Razenshteyn. 2016. Tight Lower Bounds for Data-

Dependent Locality-Sensitive Hashing. In Proceedings of the 32nd International

Symposium on Computational Geometry (SoCG ’2016). 9:1–9:11. Available as

arXiv:1507.04299.

[13] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights

Update Method: a Meta-Algorithm and Applications. Theory of Computing 8, 1

(2012), 121–164.

[14] Keith Ball. 1997. An Elementary Introduction to Modern Convex Geometry. MSRI

Publications, Vol. 31. Cambridge University Press.

[15] Yair Bartal and Lee-Ad Gottlieb. 2015. Approximate Nearest Neighbor Search for

ℓp -Spaces (2 < p < ∞) via Embeddings. (2015). Available as arXiv:1512.01775.

[16] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover Trees for

Nearest Neighbor. In Proceedings of the 23rd International Conference on Machine

Learning (ICML ’2006). 97–104.

[17] Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer,

and Lin F. Yang. 2017. Streaming Symmetric Norms viaMeasure Concentration. In

Proceedings of the 49th ACM Symposium on the Theory of Computing (STOC ’2017).

Available as arXiv:1511.01111.

[18] Moses Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-

rithms. In Proceedings of the 34th ACM Symposium on the Theory of Computing

(STOC ’2002). 380–388.

[19] Jeff Cheeger. 1969. A Lower Bound for the Smallest Eigenvalue of the Laplacian.

In Proceedings of the Princeton conference in honor of Professor S. Bochner. 195–199.

[20] F. R. K. Chung. 1996. Laplacians of graphs and Cheeger’s inequalities. In Com-

binatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993). Bolyai Soc. Math. Stud.,

Vol. 2. János Bolyai Math. Soc., Budapest, 157–172.

[21] Kenneth L. Clarkson. 1999. Nearest Neighbor Queries in Metric Spaces. Discrete

and Computational Geometry 22, 1 (1999), 63–93.

[22] Efim D. Gluskin. 1981. Diameter of the Minkowski Compactum is Approximately

Equal to n. Functional Analysis and Its Applications 15, 1 (1981), 57–58.
[23] Moritz Hardt and Guy N. Rothblum. 2010. A Multiplicative Weights Mechanism

for Privacy-Preserving Data Analysis. In 51th Annual IEEE Symposium on Foun-

dations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,

USA. IEEE Computer Society, 61–70. https://doi.org/10.1109/FOCS.2010.85

[24] Piotr Indyk. 2001. On Approximate Nearest Neighbors under ℓ∞ Norm. J.

Comput. System Sci. 63, 4 (2001), 627–638.

[25] Piotr Indyk. 2002. Approximate Nearest Neighbor Algorithms for Fréchet Dis-

tance via Product Metrics. In Proceedings of the 18th ACM Symposium on Compu-

tational Geometry (SoCG ’2002). 102–106.

[26] Piotr Indyk. 2004. Approximate Nearest Neighbor under Edit Distance via Product

Metrics. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms

(SODA ’2004). 646–650.

[27] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In Proceedings of the 30th ACM Symposium

on the Theory of Computing (STOC ’1998). 604–613.

[28] Piotr Indyk and Nitin Thaper. 2003. Fast Color Image Retrieval via Embeddings.

(2003). Workshop on Statistical and Computational Theories of Vision (at ICCV).

[29] Fritz John. 1948. Extremum Problems with Inequalities as Subsidiary Conditions.

In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948.

Interscience Publishers, Inc., New York, N. Y., 187–204.

[30] David R. Karger and Matthias Ruhl. 2002. Finding Nearest Neighbors in Growth-

Restricted Metrics. In Proceedings of the 34th ACM Symposium on the Theory of

Computing (STOC ’2002). 741–750.

[31] Robert Krauthgamer and James R. Lee. 2004. Navigating Nets: Simple Algorithms

for Proximity Search. In Proceedings of the 15th ACM-SIAM Symposium on Discrete

Algorithms (SODA ’2004). 798–807.

[32] Yi Li, Huy L. Nguyên, and David P. Woodruff. 2014. On Sketching Matrix Norms

and the Top Singular Vector. In Proceedings of the 25th ACM-SIAM Symposium

on Discrete Algorithms (SODA ’2014). 1562–1581.

[33] Yi Li and David P. Woodruff. 2016. On Approximating Functions of the Singular

Values in a Stream. In Proceedings of the 48th ACM Symposium on the Theory of

Computing (STOC ’2016). 726–739.

[34] Yi Li and David P.Woodruff. 2016. Tight Bounds for Sketching the Operator Norm,

Schatten Norms, and Subspace Embeddings. In Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques, 19th International

Workshop, APPROX ’2016, and 20th International Workshop, RANDOM ’2016. 39:1–

39:11.

[35] Yi Li and David P. Woodruff. 2017. Embeddings of Schatten Norms with Appli-

cations to Data Streams. In Proceedings of the 44th International Colloquium on

Automata, Languages and Programming (ICALP ’2017). 60:1–60:14.

[36] Jiří Matoušek. 1997. On Embedding Expanders into ℓp Spaces. Israel Journal of

Mathematics 102 (1997), 189–197.

[37] Manor Mendel and Assaf Naor. 2014. Nonlinear Spectral Calculus and Super-

Expanders. Publications Mathématiques de l’IHÉS 119, 1 (2014), 1–95.

[38] ManorMendel and Assaf Naor. 2015. Expanders with Respect to Hadamard Spaces

and Random Graphs. Duke Mathematical Journal 164, 8 (2015), 1471–1548.

[39] Peter Bro Miltersen. 1999. Cell Probe Complexity – a Survey. In Advances in Data

Structures.

[40] Assaf Naor. 2017. A Spectral Gap Precludes Low-Dimensional Embeddings. In

Proceedings of the 33rd International Symposium on Computational Geometry

(SoCG ’2017). 50:1–50:16.

[41] Assaf Naor. 2018. Metric Dimension Reduction: a Snapshot of the Ribe Program.

In Proceedings of ICM 2018 (to appear).

[42] Assaf Naor, Gilles Pisier, and Gideon Schechtman. 2018. Impossibility of Di-

mension Reduction in the Nuclear Norm. In Proceedings of the 29th ACM-SIAM

Symposium on Discrete Algorithms (SODA ’2018).

[43] Assaf Naor and Yuval Rabani. 2006. On Approximate Nearest Neighbor Search

in ℓp , p > 2. (2006). Manuscript, available on request.

[44] Assaf Naor and Gideon Schechtman. 2007. Planar Earthmover is not in L1 . SIAM
J. Comput. 37, 3 (2007), 804–826.

[45] Huy L. Nguyên. 2014. Algorithms for High Dimensional Data. Ph.D. Dis-

sertation. Princeton University. Available as http://arks.princeton.edu/ark:

/88435/dsp01b8515q61f.

[46] Rafail Ostrovsky and Yuval Rabani. 2007. Low Distortion Embedding for Edit

Distance. J. ACM 54, 5 (2007), 23:1–23:16.

[47] Ilya Razenshteyn. 2017. High-Dimensional Similarity Search and Sketching: Algo-

rithms and Hardness. Ph.D. Dissertation. Massachusetts Institute of Technology.

[48] Éric Ricard. 2015. Hölder Estimates for the Noncommutative Mazur Map. Archiv

der Mathematik 104, 1 (2015), 37–45.

[49] Daniel A. Spielman. 2015. Conductance, the Normalized Laplacian, and Cheeger’s

Inequality. Lecture Notes. http://www.cs.yale.edu/homes/spielman/561/lect06-15.

pdf

[50] Andrew Chi-Chih Yao. 1981. Should Tables be Sorted? J. ACM 28, 3 (1981),

615–628.

800

http://www.mit.edu/~andoni/nns-barriers.pdf
https://doi.org/10.1109/FOCS.2010.85
http://arks.princeton.edu/ark:/88435/dsp01b8515q61f
http://arks.princeton.edu/ark:/88435/dsp01b8515q61f
http://www.cs.yale.edu/homes/spielman/561/lect06-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect06-15.pdf

	Abstract
	1 Introduction
	1.1 ANN for General Distances Functions
	1.2 Main Results
	1.3 Techniques
	1.4 Related Work
	1.5 Lower Bounds
	1.6 Open Problems
	1.7 Organization of the Paper

	2 Preliminaries
	3 Partitioning general metrics
	3.1 Cutting Modulus of a Metric Space
	3.2 Partitioning Theorems

	4 Cell-probe data structure for general metrics
	5 Discretizing the space
	6 Bounding the cutting modulus of a normed space
	References

