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Abstract. We survey connections of the Grothendieck inequality and its variants to com-
binatorial optimization and computational complexity.
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1. Introduction

The Grothendieck inequality asserts that there exists a universal constant K ∈ (0,∞)
such that for every m,n ∈ N and every m× n matrix A = (aij) with real entries we have

max

{
m∑
i=1

n∑
j=1

aij〈xi, yj〉 : {xi}mi=1, {yj}nj=1 ⊆ Sn+m−1

}

6 K max

{
m∑
i=1

n∑
j=1

aijεiδj : {εi}mi=1, {δj}nj=1 ⊆ {−1, 1}

}
. (1)

Here, and in what follows, the standard scalar product on Rk is denoted 〈x, y〉 =
∑k

i=1 xiyi
and the Euclidean sphere in Rk is denoted Sk−1 = {x ∈ Rk :

∑k
i=1 x

2
i = 1}. We refer

to [34, 56] for the simplest known proofs of the Grothendieck inequality; see Section 2.2 for
a proof of (1) yielding the best known bound on K. Grothendieck proved the inequality (1)
in [45], though it was stated there in a different, but equivalent, form. The formulation of
the Grothendieck inequality appearing in (1) is due to Lindenstrauss and Pe lczyński [83].

The Grothendieck inequality is of major importance to several areas, ranging from Banach
space theory to C∗ algebras and quantum information theory. We will not attempt to indicate
here this wide range of applications of (1), and refer instead to [83, 114, 100, 55, 37, 34, 19, 1,
40, 33, 102, 101] and the references therein. The purpose of this survey is to focus solely on
applications of the Grothendieck inequality and its variants to combinatorial optimization,
and to explain their connections to computational complexity.

The infimum over those K ∈ (0,∞) for which (1) holds for all m,n ∈ N and all m × n
matrices A = (aij) is called the Grothendieck constant, and is denoted KG. Evaluating the
exact value of KG remains a long-standing open problem, posed by Grothendieck in [45].
In fact, even the second digit of KG is currently unknown, though clearly this is of lesser
importance than the issue of understanding the structure of matrices A and spherical config-
urations {xi}mi=1, {yj}nj=1 ⊆ Sn+m−1 which make the inequality (1) “most difficult”. Following
a series of investigations [45, 83, 107, 77, 78], the best known upper bound [21] on KG is

KG <
π

2 log
(
1 +
√

2
) = 1.782..., (2)

and the best known lower bound [105] on KG is

KG >
π

2
eη

2
0 = 1.676..., (3)

where η0 = 0.25573... is the unique solution of the equation

1− 2

√
2

π

∫ η

0

e−z
2/2dz =

2

π
e−η

2

.

In [104] the problem of estimating KG up to an additive error of ε ∈ (0, 1) was reduced to an
optimization over a compact space, and by exhaustive search over an appropriate net it was
shown that there exists an algorithm that computes KG up to an additive error of ε ∈ (0, 1)
in time exp(exp(O(1/ε3))). It does not seem likely that this approach can yield computer
assisted proofs of estimates such as (2) and (3), though to the best of our knowledge this
has not been attempted.
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In the above discussion we focused on the classical Grothendieck inequality (1). However,
the literature contains several variants and extensions of (1) that have been introduced for
various purposes and applications in the decades following Grothendieck’s original work.
In this survey we describe some of these variants, emphasizing relatively recent develop-
ments that yielded Grothendieck-type inequalities that are a useful tool in the design of
polynomial time algorithms for computing approximate solutions of computationally hard
optimization problems. In doing so, we omit some important topics, including applications
of the Grothendieck inequality to communication complexity and quantum information the-
ory. While these research directions can be viewed as dealing with a type of optimization
problem, they are of a different nature than the applications described here, which belong to
classical optimization theory. Connections to communication complexity have already been
covered in the survey of Lee and Shraibman [81]; we refer in addition to [84, 80, 85, 86]
for more information on this topic. An explanation of the relation of the Grothendieck
inequality to quantum mechanics is contained in Section 19 of Pisier’s survey [101], the
pioneering work in this direction being that of Tsirelson [114]. An investigation of these
questions from a computational complexity point of view was initiated in [28], where it was
shown, for example, how to obtain a polynomial time algorithm for computing the entan-
gled value of an XOR game based on Tsirelson’s work. We hope that the developments
surrounding applications of the Grothendieck inequality in quantum information theory will
eventually be surveyed separately by experts in this area. Interested readers are referred
to [114, 37, 28, 1, 54, 98, 102, 61, 22, 80, 86, 106, 101]. Perhaps the most influential variants
of the Grothendieck inequality are its noncommutative generalizations. The noncommuta-
tive versions in [99, 49] were conjectured by Grothendieck himself [45]; additional extensions
to operator spaces are extensively discussed in Pisier’s survey [101]. We will not describe
these developments here, even though we believe that they might have applications to op-
timization theory. Finally, multi-linear extensions of the Grothendieck inequality have also
been investigated in the literature; see for example [115, 112, 20, 109] and especially Blei’s
book [19]. We will not cover this research direction since its relation to classical combinato-
rial optimization has not (yet?) been established, though there are recent investigations of
multi-linear Grothendieck inequalities in the context of quantum information theory [98, 80].

Being a mainstay of functional analysis, the Grothendieck inequality might attract to
this survey readers who are not familiar with approximation algorithms and computational
complexity. We wish to encourage such readers to persist beyond this introduction so that
they will be exposed to, and hopefully eventually contribute to, the use of analytic tools in
combinatorial optimization. For this reason we include Sections 1.1, 1.2 below; two very basic
introductory sections intended to quickly provide background on computational complexity
and convex programming for non-experts.

1.1. Assumptions from computational complexity. At present there are few uncondi-
tional results on the limitations of polynomial time computation. The standard practice in
this field is to frame an impossibility result in computational complexity by asserting that
the polynomial time solvability of a certain algorithmic task would contradict a benchmark
hypothesis. We briefly describe below two key hypotheses of this type.

A graph G = (V,E) is 3-colorable if there exists a partition {C1, C2, C3} of V such that
for every i ∈ {1, 2, 3} and u, v ∈ Ci we have {u, v} /∈ E. The P 6= NP hypothesis as-
serts that there is no polynomial time algorithm that takes an n-vertex graph as input and
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determines whether or not it is 3-colorable. We are doing an injustice to this important
question by stating it this way, since it has many far-reaching equivalent formulations. We
refer to [39, 108, 31] for more information, but for non-experts it suffices to keep the above
simple formulation in mind.

When we say that assuming P 6= NP no polynomial time algorithm can perform a certain
task T (e.g., evaluating the maximum of a certain function up to a predetermined error) we
mean that given an algorithm ALG that performs the task T one can design an algorithm
ALG′ that determines whether or not any input graph is 3-colorable while making at most
polynomially many calls to the algorithm ALG, with at most polynomially many additional
Turing machine steps. Thus, if ALG were a polynomial time algorithm then the same would
be true for ALG′, contradicting the P 6= NP hypothesis. Such results are called hardness
results. The message that non-experts should keep in mind is that a hardness result is
nothing more than the design of a new algorithm for 3-colorability, and if one accepts the
P 6= NP hypothesis then it implies that there must exist inputs on which ALG takes super-
polynomial time to terminate.

The Unique Games Conjecture (UGC) asserts that for every ε ∈ (0, 1) there exists a prime
p = p(ε) ∈ N such that no polynomial time algorithm can perform the following task. The
input is a system of m linear equations in n variables x1, . . . , xn, each of which has the form
xi − xj ≡ cij mod p (thus the input is S ⊆ {1, . . . , n} × {1, . . . , n} and {cij}(i,j)∈S ⊆ N).
The algorithm must determine whether there exists an assignment of an integer value to
each variable xi such that at least (1 − ε)m of the equations are satisfied, or whether no
assignment of such values can satisfy more than εm of the equations. If neither of these
possibilities occur, then an arbitrary output is allowed.

As in the case of P 6= NP , saying that assuming the UGC no polynomial time algorithm
can perform a certain task T is the same as designing a polynomial time algorithm that
solves the above linear equations problem while making at most polynomially many calls to
a “black box” that can perform the task T . The UGC was introduced in [62], though the
above formulation of it, which is equivalent to the original one, is due to [64]. The use of
the UGC as a hardness hypothesis has become popular over the past decade; we refer to the
survey [63] for more information on this topic.

To simplify matters (while describing all the essential ideas), we allow polynomial time
algorithms to be randomized. Most (if not all) of the algorithms described here can be turned
into deterministic algorithms, and corresponding hardness results can be stated equally well
in the context randomized or deterministic algorithms. We will ignore these distinctions,
even though they are important. Moreover, it is widely believed that in our context these
distinctions do not exist, i.e., randomness does not add computational power to polynomial
time algorithms; see for example the discussion of the NP 6⊆ BPP hypothesis in [11].

1.2. Convex and semidefinite programming. An important paradigm of optimization
theory is that one can efficiently optimize linear functionals over compact convex sets that
have a “membership oracle”. A detailed exposition of this statement is contained in [46],
but for the sake of completeness we now quote the precise formulation of the results that
will be used in this article.

Let K ⊆ Rn be a compact convex set. We are also given a point z ∈ Qn and two radii
r, R ∈ (0,∞)∩Q such that B(z, r) ⊆ K ⊆ B(z, R), where B(z, t) = {x ∈ Rn : ‖x−z‖2 6 t}.
In what follows, stating that an algorithm is polynomial means that we allow the running time
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to grow at most polynomially in the number of bits required to represent the data (z, r, R).
Thus, if, say, z = 0, r = 2−n and R = 2n then the running time will be polynomial in the
dimension n. Assume that there exists an algorithm ALG with the following properties. The
input of ALG is a vector y ∈ Qn and ε ∈ (0, 1)∩Q. The running time of ALG is polynomial
in n and the number of bits required to represent the data (ε, y). The output of ALG is the
assertion that either the distance of y from K is at most ε, or that the distance of y from
the complement of K is at most ε. Then there exists an algorithm ALG′ that takes as input
a vector c = (c1, . . . , cn) ∈ Qn and ε ∈ (0, 1) ∩Q and outputs a vector y = (y1, . . . , yn) ∈ Rn

that is at distance at most ε from K and for every x = (x1, . . . , xn) ∈ K that is at distance
greater than ε from the complement of K we have

∑n
i=1 ciyi >

∑n
i=1 cixi − ε. The running

time of ALG′ is allowed to grow at most polynomially in n and the number of bits required
to represent the data (z, r, R, c, ε). This important result is due to [57]; we refer to [46] for
an excellent account of this theory.

The above statement is a key tool in optimization, as it yields a polynomial time method
to compute the maximum of linear functionals on a given convex body with arbitrarily
good precision. We note the following special case of this method, known as semidefinite
programming. Assume that n = k2 and think of Rn as the space of all k×k matrices. Assume
that we are given a compact convex setK ⊆ Rn that satisfies the above assumptions, and that
for a given k×k matrix (cij) we wish to compute in polynomial time (up to a specified additive

error) the maximum of
∑k

i=1

∑k
j=1 cijxij over the set of symmetric positive semidefinite

matrices (xij) that belong to K. This can indeed be done, since determining whether a given
symmetric matrix is (approximately) positive semidefinite is an eignevalue computation and
hence can be performed in polynomial time. The use of semidefinite programming to design
approximation algorithms is by now a deep theory of fundamental importance to several
areas of theoretical computer science. The Goemans-Williamson MAX-CUT algorithm [42]
was a key breakthrough in this context. It is safe to say that after the discovery of this
algorithm the field of approximation algorithms was transformed, and many subsequent
results, including those presented in the present article, can be described as attempts to
mimic the success of the Goemans-Williamson approach in other contexts.

2. Applications of the classical Grothendieck inequality

The classical Grothendieck inequality (1) has applications to algorithmic questions of
central interest. These applications will be described here in some detail. In Section 2.1 we
discuss the cut norm estimation problem, whose relation to the Grothendieck inequality was
first noted in [8]. This is a generic combinatorial optimization problem that contains well-
studied questions as subproblems. Examples of its usefulness are presented in Sections 2.1.1,
2.1.2, 2.1.3, 2.1.4. Section 2.2 is devoted to the rounding problem, including the (algorithmic)
method behind the proof of the best known upper bound on the Grothendieck constant.

2.1. Cut norm estimation. Let A = (aij) be an m× n matrix with real entries. The cut
norm of A is defined as follows

‖A‖cut = max
S⊆{1,...,m}
T⊆{1,...,n}

∣∣∣∣∣∣∣
∑
i∈S
j∈T

aij

∣∣∣∣∣∣∣ . (4)
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We will now explain how the Grothendieck inequality can be used to obtain a polynomial
time algorithm for the following problem. The input is an m× n matrix A = (aij) with real
entries, and the goal of the algorithm is to output in polynomial time a number α that is
guaranteed to satisfy

‖A‖cut 6 α 6 C‖A‖cut, (5)

where C is a (hopefully not too large) universal constant. A closely related algorithmic goal
is to output in polynomial time two subsets S0 ⊆ {1, . . . ,m} and T0 ⊆ {1, . . . , n} satisfying∣∣∣∣∣∣∣

∑
i∈S0
j∈T0

aij

∣∣∣∣∣∣∣ >
1

C
‖A‖cut. (6)

The link to the Grothendieck inequality is made via two simple transformations. Firstly,
define an (m+ 1)× (n+ 1) matrix B = (bij) as follows.

B =


a11 a12 . . . a1n −

∑n
k=1 a1k

a21 a22 . . . a2n −
∑n

k=1 a2k
...

...
. . .

...
...

am1 am2 . . . amn −
∑n

k=1 amk
−
∑m

`=1 a`1 −
∑m

`=1 a`2 . . . −
∑m

`=1 a`n
∑n

k=1

∑m
`=1 a`k

 . (7)

Observe that
‖A‖cut = ‖B‖cut. (8)

Indeed, for every S ⊆ {1, . . . ,m + 1} and T ⊆ {1, . . . , n + 1} define S∗ ⊆ {1, . . . ,m} and
T ∗ ⊆ {1, . . . , n} by

S∗ =

{
S if m+ 1 /∈ S,
{1, . . . ,m}r S if m+ 1 ∈ S, and T ∗ =

{
T if n+ 1 /∈ T,
{1, . . . , n}r T if n+ 1 ∈ T.

One checks that for all S ⊆ {1, . . . ,m+ 1} and T ⊆ {1, . . . , n+ 1} we have∣∣∣∣∣∣∣
∑
i∈S
j∈T

bij

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑
i∈S∗
j∈T ∗

aij

∣∣∣∣∣∣∣ ,
implying (8). We next claim that

‖B‖cut =
1

4
‖B‖∞→1, (9)

where

‖B‖∞→1 = max

{
m+1∑
i=1

n+1∑
j=1

bijεiδj : {εi}m+1
i=1 , {δj}n+1

j=1 ⊆ {−1, 1}

}
. (10)

To explain this notation observe that ‖B‖∞→1 is the norm of B when viewed as a linear
operator from `n∞ to `m1 . Here, and in what follows, for p ∈ [1,∞] and k ∈ N the space `kp
is Rk equipped with the `p norm ‖ · ‖p, where ‖x‖pp =

∑k
`=1 |x`|p for x = (x1, . . . , xk) ∈ Rk

(for p =∞ we set as usual ‖x‖∞ = maxi∈{1,...,n} |xi|). Though it is important, this operator
theoretic interpretation of the quantity ‖B‖∞→1 will not have any role in this survey, so it
may be harmlessly ignored at first reading.
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The proof of (9) is simple: for {εi}m+1
i=1 , {δj}n+1

j=1 ⊆ {−1, 1} define S+, S− ⊆ {1, . . . ,m+ 1}
and T+, T− ⊆ {1, . . . , n + 1} by setting S± = {i ∈ {1, . . . ,m + 1} : εi = ±1} and T± =
{j ∈ {1, . . . , n+ 1} : δj = ±1}. Then

m+1∑
i=1

n+1∑
j=1

bijεiδj =
∑
i∈S+

j∈T+

bij +
∑
i∈S−

j∈T−

bij −
∑
i∈S+

j∈T−

bij −
∑
i∈S−

j∈T+

bij 6 4‖B‖cut. (11)

This shows that ‖B‖∞→1 6 4‖B‖cut (for any matrix B, actually, not just the specific choice
in (7); we will use this observation later, in Section 2.1.3). In the reverse direction, given
S ⊆ {1, . . . ,m+1} and T ⊆ {1, . . . , n+1} define for i ∈ {1, . . . ,m+1} and j ∈ {1, . . . , n+1},

εi =

{
1 if i ∈ S,
−1 if i /∈ S, and δj =

{
1 if j ∈ T,
−1 if j /∈ T.

Then, since the sum of each row and each column of B vanishes,∑
i∈S
j∈T

bij =
m+1∑
i=1

n+1∑
j=1

bij
1 + εi

2
· 1 + δj

2
=

1

4

m+1∑
i=1

n+1∑
j=1

bijεiδj 6
1

4
‖B‖∞→1.

This completes the proof of (9). We summarize the above simple transformations in the
following lemma.

Lemma 2.1. Let A = (aij) be an m × n matrix with real entries and let B = (bij) be the
(m+ 1)× (n+ 1) matrix given in (7). Then

‖A‖cut =
1

4
‖B‖∞→1.

A consequence of Lemma 2.1 is that the problem of approximating ‖A‖cut in polynomial
time is equivalent to the problem of approximating ‖A‖∞→1 in polynomial time in the sense
that any algorithm for one of these problems can be used to obtain an algorithm for the other
problem with the same running time (up to constant factors) and the same (multiplicative)
approximation guarantee.

Given an m× n matrix A = (aij) consider the following quantity.

SDP(A) = max

{
m∑
i=1

n∑
j=1

aij〈xi, yj〉 : {xi}mi=1, {yj}nj=1 ⊆ Sn+m−1

}
. (12)

The maximization problem in (12) falls into the framework of semidefinite programming
as discussed in Section 1.2. Therefore SDP(A) can be computed in polynomial time with
arbitrarily good precision. It is clear that SDP(A) > ‖A‖∞→1, because the maximum in (12)
is over a bigger set than the maximum in (10). The Grothendieck inequality says that
SDP(A) 6 KG‖A‖∞→1, so we have

‖A‖∞→1 6 SDP(A) 6 KG‖A‖∞→1.

Thus, the polynomial time algorithm that outputs the number SDP(A) is guaranteed to be
within a factor of KG of ‖A‖∞→1. By Lemma 2.1, the algorithm that outputs the number
α = 1

4
SDP(B), where the matrix B is as in (7), satisfies (5) with C = KG.

Section 7 is devoted to algorithmic impossibility results. But, it is worthwhile to make
at this juncture two comments regarding hardness of approximation. First of all, unless
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P = NP , we need to introduce an error C > 1 in our requirement (5). This was observed
in [8]: the classical MAXCUT problem from algorithmic graph theory was shown in [8] to
be a special case of the problem of computing ‖A‖cut, and therefore by [51] we know that
unless P = NP there does not exist a polynomial time algorithm that outputs a number α
satisfying (5) with C strictly smaller than 17

16
. In fact, by a reduction to the MAX DICUT

problem one can show that C must be at least 13
12

, unless P = NP ; we refer to Section 7
and [8] for more information on this topic.

Another (more striking) algorithmic impossibility result is based on the Unique Games
Conjecture (UGC). Clearly the above algorithm cannot yield an approximation guarantee
strictly smaller than KG (this is the definition of KG). In fact, it was shown in [104] that
unless the UGC is false, for every ε ∈ (0, 1) any polynomial time algorithm for estimating
‖A‖cut whatsoever, and not only the specific algorithm described above, must make an
error of at least KG − ε on some input matrix A. Thus, if we assume the UGC then the
classical Grothendieck constant has a complexity theoretic interpretation: it equals the best
approximation ratio of polynomial time algorithms for the cut norm problem. Note that [104]
manages to prove this statement despite the fact that the value of KG is unknown.

We have thus far ignored the issue of finding in polynomial time the subsets S0, T0

satisfying (6), i.e., we only explained how the Grothendieck inequality can be used for
polynomial time estimation of the quantity ‖A‖cut without actually finding efficiently sub-
sets at which ‖A‖cut is approximately attained. In order to do this we cannot use the
Grothendieck inequality as a black box: we need to look into its proof and argue that it
yields a polynomial time procedure that converts vectors {xi}mi=1, {yj}nj=1 ⊆ Sn+m−1 into
signs {εi}mi=1, {δj}nj=1 ⊆ {−1, 1} (this is known as a rounding procedure). It is indeed pos-
sible to do so, as explained in Section 2.2. We postpone the explanation of the rounding
procedure that hides behind the Grothendieck inequality in order to first give examples why
one might want to efficiently compute the cut norm of a matrix.

2.1.1. Szemerédi partitions. The Szemerédi regularity lemma [111] (see also [72]) is a general
and very useful structure theorem for graphs, asserting (informally) that any graph can be
partitioned into a controlled number of pieces that interact with each other in a pseudo-
random way. The Grothendieck inequality, via the cut norm estimation algorithm, yields a
polynomial time algorithm that, when given a graph G = (V,E) as input, outputs a partition
of V that satisfies the conclusion of the Szemerédi regularity lemma.

To make the above statements formal, we need to recall some definitions. Let G = (V,E)
be a graph. For every disjoint X, Y ⊆ V denote the number of edges joining X and Y by
e(X, Y ) = |{(u, v) ∈ X × Y : {u, v} ∈ E}|. Let X, Y ⊆ V be disjoint and nonempty, and
fix ε, δ ∈ (0, 1). The pair of vertex sets (X, Y ) is called (ε, δ)-regular if for every S ⊆ X and

T ⊆ Y that are not too small, the quantity e(S,T )
|S|·|T | (the density of edges between S and T ) is

essentially independent of the pair (S, T ) itself. Formally, we require that for every S ⊆ X
with |S| > δ|X| and every T ⊆ Y with |T | > δ|Y | we have

∣∣∣∣ e(S, T )

|S| · |T |
− e(X, Y )

|X| · |Y |

∣∣∣∣ 6 ε. (13)
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The almost uniformity of the numbers e(S,T )
|S|·|T | as exhibited in (13) says that the pair (X, Y ) is

“pseudo-random”, i.e., it is similar to a random bipartite graph where each (x, y) ∈ X × Y
is joined by an edge independently with probability e(X,Y )

|X|·|Y | .

The Szemerédi regularity lemma says that for all ε, δ, η ∈ (0, 1) and k ∈ N there exists
K = K(ε, δ, η, k) ∈ N such that for all n ∈ N any n-vertex graph G = (V,E) can be
partitioned into m-sets S1, . . . , Sm ⊆ V with the following properties

• k 6 m 6 K,
• |Si| − |Sj| 6 1 for all i, j ∈ {1, . . . ,m},
• the number of i, j ∈ {1, . . . ,m} with i < j such that the pair (Si, Sj) is (ε, δ)-regular

is at least (1− η)
(
m
2

)
.

Thus every graph is almost a superposition of a bounded number of pseudo-random graphs,
the key point being that K is independent of n and the specific combinatorial structure of
the graph in question.

It would be of interest to have a way to produce a Szemerédi partition in polynomial time
with K independent of n (this is a good example of an approximation algorithm: one might
care to find such a partition into the minimum possible number of pieces, but producing any
partition into boundedly many pieces is already a significant achievement). Such a polyno-
mial time algorithm was designed in [5] (see also [73]). We refer to [5, 73] for applications
of algorithms for constructing Szemerédi partitions, and to [5] for a discussion of the com-
putational complexity of this algorithmic task. We shall now explain how the Grothendieck
inequality yields a different approach to this problem, which has some advantages over [5, 73]
that will be described later. The argument below is due to [8].

Assume that X, Y are disjoint n-point subsets of a graph G = (V,E). How can we deter-
mine in polynomial time whether or not the pair (X, Y ) is close to being (ε, δ)-regular? It
turns out that this is the main “bottleneck” towards our goal to construct Szemerédi parti-
tions in polynomial time. To this end consider the following n×n matrix A = (axy)(x,y)∈X×Y .

axy =

{
1− e(X,Y )

|X|·|Y | if {x, y} ∈ E,
− e(X,Y )
|X|·|Y | if {x, y} /∈ E.

(14)

By the definition of A, if S ⊆ X and T ⊆ Y then∣∣∣∣∣∣∣
∑
x∈S
y∈T

axy

∣∣∣∣∣∣∣ = |S| · |T | ·
∣∣∣∣ e(S, T )

|S| · |T |
− e(X, Y )

|X| · |Y |

∣∣∣∣ . (15)

Hence if (X, Y ) is not (ε, δ)-regular then ‖A‖cut > εδ2n2. The approximate cut norm al-
gorithm based on the Grothendieck inequality, together with the rounding procedure in
Section 2.2, finds in polynomial time subsets S ⊆ X and T ⊆ Y such that

min

{
n|S|, n|T |, n2

∣∣∣∣ e(S, T )

|S| · |T |
− e(X, Y )

|X| · |Y |

∣∣∣∣} (15)

>

∣∣∣∣∣∣∣
∑
x∈S
y∈T

axy

∣∣∣∣∣∣∣ >
1

KG

εδ2n2 >
1

2
εδ2n2.

This establishes the following lemma.
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Lemma 2.2. There exists a polynomial time algorithm that takes as input two disjoint n-
point subsets X, Y of a graph, and either decides that (X, Y ) is (ε, δ)-regular or finds S ⊆ X
and T ⊆ Y with

|S|, |T | > 1

2
εδ2n and

∣∣∣∣ e(S, T )

|S| · |T |
− e(X, Y )

|X| · |Y |

∣∣∣∣ > 1

2
εδ2.

From Lemma 2.2 it is quite simple to design a polynomial algorithm that constructs a
Szemerédi partition with bounded cardinality; compare Lemma 2.2 to Corollary 3.3 in [5]
and Theorem 1.5 in [73]. We will not explain this deduction here since it is identical to
the argument in [5]. We note that the quantitative bounds in Lemma 2.2 improve over the
corresponding bounds in [5, 73] yielding, say, when ε = δ = η, an algorithm with the best
known bound on K as a function of ε (this bound is nevertheless still huge, as must be the
case due to [44]; see also [30]). See [8] for a precise statement of these bounds. In addition,
the algorithms of [5, 73] worked only in the “dense case”, i.e., when ‖A‖cut, for A as in (14),
is of order n2, while the above algorithm does not have this requirement. This observation
can be used to design the only known polynomial time algorithm for sparse versions of the
Szemerédi regularity lemma [4] (see also [41]). We will not discuss the sparse version of the
regularity lemma here, and refer instead to [71, 72] for a discussion of this topic. We also
refer to [4] for additional applications of the Grothendieck inequality in sparse settings.

2.1.2. Frieze-Kannan matrix decomposition. The cut norm estimation problem was origi-
nally raised in the work of Frieze and Kannan [38] which introduced a method to design
polynomial time approximation schemes for dense constraint satisfaction problems. The key
tool for this purpose is a decomposition theorem for matrices that we now describe.

An m × n matrix D = (dij) is called a cut matrix if there exist subsets S ⊆ {1, . . . ,m}
and T ⊆ {1, . . . , n}, and d ∈ R such that for all (i, j) ∈ {1, . . . ,m} × {1, . . . , n} we have,

dij =

{
d if (i, j) ∈ S × T,
0 if (i, j) /∈ S × T. (16)

Denote the matrix D defined in (16) by CUT (S, T, d). In [38] it is proved that for every
ε > 0 there exists an integer s = O(1/ε2) such that for any m × n matrix A = (aij) with
entries bounded in absolute value by 1, there are cut matrices D1, . . . , Ds satisfying∥∥∥∥∥A−

s∑
k=1

Dk

∥∥∥∥∥
cut

6 εmn. (17)

Moreover, these cut matrices D1, . . . , Ds can be found in time C(ε)(mn)O(1). We shall now
explain how this is done using the cut norm approximation algorithm of Section 2.1.

The argument is iterative. Set A0 = A, and assuming that the cut matrices D1, . . . , Dr

have already been defined write Ar = (aij(r)) = A−
∑r

k=1Dk. We are done if ‖Ar‖cut 6 εmn,
so we may assume that ‖Ar‖cut > εmn. By the cut norm approximation algorithm we can
find in polynomial time S ⊆ {1, . . . ,m} and T ⊆ {1, . . . , n} satisfying∣∣∣∣∣∣∣

∑
i∈S
j∈T

aij(r)

∣∣∣∣∣∣∣ > c‖Ar‖cut > cεmn, (18)

10



where c > 0 is a universal constant. Set

d =
1

|S| · |T |
∑
i∈S
j∈T

aij(r).

Define Dr+1 = CUT (S, T, d) and Ar+1 = (aij(r + 1)) = Ar −Dr+1. Then by expanding the
squares we have,

m∑
i=1

n∑
j=1

aij(r + 1)2 =
m∑
i=1

n∑
j=1

aij(r)
2 − 1

|S| · |T |

∑
i∈S
j∈T

aij(r)


2

(18)

6
m∑
i=1

n∑
j=1

aij(r)
2 − c2ε2mn.

It follows inductively that if we can carry out this procedure r times then

0 6
m∑
i=1

n∑
j=1

aij(r)
2 6

m∑
i=1

n∑
j=1

a2
ij − rc2ε2mn 6 mn− rc2ε2mn,

where we used the assumption that |aij| 6 1. Therefore the above iteration must terminate
after d1/(c2ε2)e steps, yielding (17). We note that the bound s = O(1/ε2) in (17) cannot be
improved [6]; see also [89, 30] for related lower bounds.

The key step in the above algorithm was finding sets S, T as in (18). In [38] an algorithm
was designed that, given an m × n matrix A = (aij) and ε > 0 as input, produces in time

21/εO(1)
(mn)O(1) subsets S ⊆ {1, . . . ,m} and T ⊆ {1, . . . , n} satisfying∣∣∣∣∣∣∣

∑
i∈S
j∈T

aij

∣∣∣∣∣∣∣ > ‖A‖cut − εmn. (19)

The additive approximation guarantee in (19) implies (18) only if ‖A‖cut > ε(c+ 1)mn, and
similarly the running time is not polynomial if, say, ε = n−Ω(1). Thus the Kannan-Frieze
method is relevant only to “dense” instances, while the cut norm algorithm based on the
Grothendieck inequality applies equally well for all values of ‖A‖cut. This fact, combined
with more work (and, necessarily, additional assumptions on the matrix A), was used in [29]
to obtain a sparse version of (17): with εmn in the right hand side of (17) replaced by
ε‖A‖cut and s = O(1/ε2) (importantly, here s is independent of m,n).

We have indicated above how the cut norm approximation problem is relevant to Kannan-
Frieze matrix decompositions, but we did not indicate the uses of such decompositions since
this is beyond the scope of the current survey. We refer to [38, 6, 15, 29] for a variety of
applications of this methodology to combinatorial optimization problems.

2.1.3. Maximum acyclic subgraph. In the maximum acyclic subgraph problem we are given
as input an n-vertex directed graph G = ({1, . . . , n}, E). Thus E consists of a family of
ordered pairs of distinct elements in {1, . . . , n}. We are interested in the maximum of∣∣{(i, j) ∈ {1, . . . , n}2 : σ(i) < σ(j)} ∩ E

∣∣− ∣∣{(i, j) ∈ {1, . . . , n}2 : σ(i) > σ(j)} ∩ E
∣∣

over all possible permutations σ ∈ Sn (Sn denotes the group of permutations of {1, . . . , n}).
In words, the quantity of interest is the maximum over all orderings of the vertices of the
number of edges going “forward” minus the number of edges going “backward”. Note that it
is trivial to get at least half of the edges to go forward by considering a random permutation,
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so in essence we are measuring here the advantage of the best possible ordering over a random
ordering. The best known approximation algorithm for this problem was discovered in [26]
as an application of the cut norm approximation algorithm.

It is most natural to explain the algorithm of [26] for a weighted version of the maximum
acyclic subgraph problem. Let W : {1, . . . , n} × {1, . . . , n} → R be skew symmetric, i.e.,
W (u, v) = −W (v, u) for all u, v ∈ {1, . . . , n}. For σ ∈ Sn define

W (σ) =
∑

u,v∈{1,...,n}
u<v

W (σ(u), σ(v)).

Thus W (σ) is the sum of the entries of W that lie above the diagonal after the rows and
columns of W have been permuted according to the permutation σ. We are interested in the
quantity MW = maxσ∈SnW (σ). The case of a directed graph G = ({1, . . . , n}, E) described
above corresponds to the matrix W (u, v) = 1{(u,v)∈E} − 1{(v,u)∈E}.

Theorem 2.3 ([26]). The exists a polynomial time algorithm that takes as input an n×n skew
symmetric W : {1, . . . , n} × {1, . . . , n} → R and outputs a permutation σ ∈ Sn satisfying1

W (σ) &
MW

log n
.

Proof. The proof below is a slight variant of the reasoning of [26]. By the cut norm approx-
imation algorithm one can find in polynomial time two subsets S, T ⊆ {1, . . . , n} satisfying∑

u∈S
v∈T

W (u, v) > c‖W‖cut, (20)

where c ∈ (0,∞) is a universal constant. Note that we do not need to take the absolute
value of the left hand side of (20) because W is skew symmetric. Observe also that since W
is skew symmetric we have

∑
u,v∈S∩T W (u, v) = 0 and therefore∑

u∈S
v∈T

W (u, v) =
∑

u∈SrT
v∈TrS

W (u, v) +
∑

u∈SrT
v∈S∩T

W (u, v) +
∑
u∈S∩T
v∈TrS

W (u, v).

By replacing the pair of subsets (S, T ) by one of {(SrT, TrS), (SrT, S∩T ), (S∩T, TrS)},
and replacing the constant c is (20) by c/3, we may assume without loss of generality that (20)
holds with S and T disjoint. Denote R = {1, . . . , n}r (S ∪ T ) and write S = {s1, . . . , s|S|},
T = {t1, . . . , t|T |} and R = {r1, . . . , r|R|}, where s1 < · · · < s|S|, t1 < · · · < t|T | and
r1 < · · · < r|R|.

Define two permutations σ1, σ2 ∈ Sn as follows.

σ1(u) =

 su if u ∈ {1, . . . , |S|},
tu−|S| if u ∈ {|S|+ 1, . . . , |S|+ |T |},
ru−|S|−|T | if u ∈ {|S|+ |T |+ 1, . . . , n},

and

σ2(u) =

 r|R|−u+1 if u ∈ {1, . . . , |R|},
s|R|+|S|−u+1 if u ∈ {|R|+ 1, . . . , |R|+ |S|},
tn−u+1 if u ∈ {|R|+ |S|+ 1, . . . , n}.

1Here, and in what follows, the relations &,. indicate the corresponding inequalities up to an absolute
factor. The relation � stands for & ∧ ..
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In words, σ1 orders {1, . . . , n} by starting with the elements of S in increasing order, then the
elements of T in increasing order, and finally the elements of R in increasing order. At the
same time, σ2 orders {1, . . . , n} by starting with the elements of R in decreasing order, then
the elements of S in decreasing order, and finally the elements of T in decreasing order. The
quantity W (σ1)+W (σ2) consists of a sum of terms of the form W (u, v) for u, v ∈ {1, . . . , n},
where if (u, v) ∈ (S×S)∪ (T ×T )∪ (R×{1, . . . , n}) then both W (u, v) and W (v, u) appear
exactly once in this sum, and if (u, v) ∈ S × T then W (u, v) appears twice in this sum
and W (v, u) does not appear in this sum at all. Therefore, using the fact that W is skew
symmetric we have the following identity.

W (σ1) +W (σ2) = 2
∑
u∈S
v∈T

W (u, v).

It follows that for some ` ∈ {1, 2} we have

M(σ`) >
∑
u∈S
v∈T

W (u, v)
(20)

> c‖W‖cut.

The output of the algorithm will be the permutation σ`, so it suffices to prove that

‖W‖cut &
MW

log n
. (21)

We will prove below that

‖W‖cut &
1

log n

∑
u,v∈{1,...,n}

u<v

W (u, v). (22)

Inequality (21) follows by applying (22) to W ′(u, v) = W (σ(u), σ(v)) for every σ ∈ Sn.
To prove (22) first note that ‖W‖cut > 1

4
‖W‖∞→1; we have already proved this inequality

as a consequence of the simple identity (11). Moreover, we have

‖W‖∞→1 & max

{
n∑
u=1

n∑
v=1

W (u, v) sin(αu − βv) : {αu}nu=1, {βv}nv=1 ⊆ R

}
. (23)

Inequality (23) is a special case of (1) with the choice of vectors xu = (sinαu, cosαu) ∈ R2 and
yv = (cos βv,− sin βv) ∈ R2. We note that this two-dimensional version of the Grothendieck
inequality is trivial with the constant in the right hand side of (23) being 1

2
, and it is shown

in [78] that the best constant in the right hand side of (23) is actually 1√
2
.

For every θ1, . . . , θn ∈ R, an application of (23) when αu = βu = θu and αu = βu = −θu
yields the inequality

‖W‖cut &

∣∣∣∣∣
n∑
u=1

n∑
v=1

W (u, v) sin (θu − θv)

∣∣∣∣∣ = 2

∣∣∣∣∣∣∣
∑

u,v∈{1,...,n}
u<v

W (u, v) sin (θu − θv)

∣∣∣∣∣∣∣ , (24)
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where for the equality in (24) we used the fact that W is skew symmetric. Consequently, for
every k ∈ N we have

‖W‖cut &

∣∣∣∣∣∣∣
∑

u,v∈{1,...,n}
u<v

W (u, v) sin

(
π(v − u)k

n

)∣∣∣∣∣∣∣ . (25)

By the standard orthogonality relation for the sine function, for every u, v ∈ {1, . . . , n}
such that u < v we have

2

n

n−1∑
k=1

n−1∑
`=1

sin

(
π(v − u)k

n

)
sin

(
πk`

n

)
= 1. (26)

Readers who are unfamiliar with (26) are referred to its derivation in the appendix of [26];
it can be proved by substituting sin (π(v − u)k/n) = (eiπ(v−u)k/n − e−iπ(v−u)k/n)/(2i) and
sin(πk`/n) = (eiπk`/n − e−iπk`/n)/(2i) into the left hand side of (26) and computing the
resulting geometric sums explicitly. Now,∑

u,v∈{1,...,n}
u<v

W (u, v)
(26)
=

2

n

∑
u,v∈{1,...,n}

u<v

W (u, v)
n−1∑
k=1

n−1∑
`=1

sin

(
π(v − u)k

n

)
sin

(
πk`

n

)

6
2

n

n−1∑
k=1

∣∣∣∣∣
n−1∑
`=1

sin

(
πk`

n

)∣∣∣∣∣ ·
∣∣∣∣∣∣∣
∑

u,v∈{1,...,n}
u<v

W (u, v) sin

(
π(v − u)k

n

)∣∣∣∣∣∣∣
(25)

.

∑n−1
k=1

∣∣∑n−1
`=1 sin

(
πk`
n

)∣∣
n

‖W‖cut.

Hence, the desired inequality (22) will follow from
∑n−1

k=1

∣∣∑n−1
`=1 sin (πk`/n)

∣∣ . n log n. To

establish this estimate observe that by writing sin(πk`/n) = (eiπk`/n − e−iπk`/n)/(2i) and
computing geometric sums explicitly, one sees that

∑n−1
`=1 sin (πk`/n) = 0 if k is even and∑n−1

`=1 sin (πk`/n) = cot(πk/(2n)) if k is odd (see the appendix of [26] for the details of this
computation). Hence, since cot(θ) < 1/θ for every θ ∈ (0, π/2), we have

n−1∑
k=1

∣∣∣∣∣
n−1∑
`=1

sin

(
πk`

n

)∣∣∣∣∣ =

bn2−1c∑
j=0

cot

(
π(2j + 1)

2n

)
6

2n

π

bn2−1c∑
j=0

1

2j + 1
. n log n �

2.1.4. Linear equations modulo 2. Consider a system E of N linear equations modulo 2 in
n Boolean variables z1, . . . , zn such that in each equation appear only three distinct vari-
ables. Let MAXSAT(E) be the maximum number of equations in E that can be satisfied
simultaneously. A random {0, 1} assignment of these variables satisfies in expectation N/2
equations, so it is natural to ask for a polynomial time approximation algorithm to the quan-
tity MAXSAT(E) − N/2. We describe below the best known [65] approximation algorithm
for this problem, which uses the Grothendieck inequality in a crucial way. The approxima-
tion guarantee thus obtained is O(

√
n/ log n). While this allows for a large error, it is shown

in [52] that for every ε ∈ (0, 1) if there were a polynomial time algorithm that approximates

MAXSAT(E)−N/2 to within a factor of 2(logn)1−ε in time 2(logn)O(1)
then there would be an
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algorithm for 3-colorability that runs in time 2(logn)O(1)
, a conclusion which is widely believed

to be impossible.
Let E be a system of linear equations as described above. Write aijk = 1 if the equation

zi + zj + zk = 0 is in the system E . Similarly write aijk = −1 if the equation zi + zj + zk = 1
is in E . Finally, write aijk = 0 if no equation in E corresponds to zi + zj + zk. Assume that
the assignment (z1, . . . , zn) ∈ {0, 1}n satisfies m of the equations in E . Then

n∑
i=1

n∑
j=1

n∑
k=1

aijk(−1)zi+zj+zk = m− (N −m) = 2

(
m− N

2

)
.

It follows that

max

{
n∑
i=1

n∑
j=1

n∑
k=1

aijkεiεjεk : {εi}ni=1 ⊆ {−1, 1}

}
= 2

(
MAXSAT(E)− N

2

)
def
= M. (27)

We will now present a randomized polynomial algorithm that outputs a number α ∈ R
which satisfies with probability at least 2

3
,

1

20KG

√
log n

n
M 6 α 6M. (28)

Fix m ∈ N that will be determined later. Choose ε1, . . . , εm ∈ {−1, 1}n independently and
uniformly at random and consider the following random variable.

α =
1

10KG

max
`∈{1,...,m}

max

{
n∑
i=1

n∑
j=1

n∑
k=1

aijkε
`
i〈yj, zk〉 : {yj}nj=1, {zk}nk=1 ⊆ S2n−1

}
. (29)

By the Grothendieck inequality we know that

α 6
1

10
max

{
n∑
i=1

n∑
j=1

n∑
k=1

aijkεiδjζk : {εi}ni=1, {δj}nj=1, {ζk}nk=1 ⊆ {−1, 1}

}
6M. (30)

The final step in (30) follows from an elementary decoupling argument; see [65, Lem. 2.1].
We claim that

Pr

[
α >

1

20KG

√
log n

n
M

]
> 1− e−cm/ 4√n. (31)

Once (31) is established, it would follow that for m � 4
√
n we have α > 1

20KG

√
logn
n
M with

probability at least 2
3
. This combined with (30) would complete the proof of (28) since

α as defined in (29) can be computed in polynomial time, being the maximum of O ( 4
√
n)

semidefinite programs.
To check (31) let ‖ · ‖ be the norm on Rn defined for every x = (x1, . . . , xn) ∈ Rn by

‖x‖ = max

{
n∑
i=1

n∑
j=1

n∑
k=1

aijkxi〈yj, zk〉 : {yj}nj=1, {zk}nk=1 ⊆ S2n−1

}
.

Define K = {x ∈ Rn : ‖x‖ 6 1} and let K◦ = {w ∈ Rn : supx∈K〈x,w〉 6 1} be the
polar of K. Then max{‖w‖1 : w ∈ K◦} = max{‖x‖ : ‖x‖∞ 6 1} > M , where the first
equality is straightforward duality and the final inequality is a consequence of the definition
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of ‖ · ‖ and M . It follows that there exists w ∈ K◦ with ‖w‖1 > M . Hence, recalling that
α = 1

10KG
max`∈{1,...,m} ‖ε`‖, we have

Pr

[
α >

1

20KG

√
log n

n
M

]
(29)
= 1−

m∏
`=1

Pr

[
‖ε`‖ < 1

2

√
log n

n
M

]

> 1−

(
Pr

[
n∑
i=1

ε1
iwi <

1

2

√
log n

n

n∑
i=1

|wi|

])m

.

In order to prove (31) it therefore suffices to prove that if ε is chosen uniformly at random

from {−1, 1}n and a ∈ Rn satisfies ‖a‖1 = 1 then Pr
[∑n

i=1 εiai >
√

log n/(4n)
]
> 1−c/ 4

√
n,

where c ∈ (0,∞) is a universal constant. This probabilistic estimate for i.i.d. Bernoulli sums
can be proved directly; see [65, Lem. 3.2].

2.2. Rounding. Let A = (aij) be an m×n matrix. In Section 2.1 we described a polynomial
time algorithm for approximating ‖A‖cut and ‖A‖∞→1. For applications it is also important
to find in polynomial time signs ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1} for which

∑m
i=1

∑n
j=1 aijεiδj

is at least a constant multiple of ‖A‖∞→1. This amounts to a “rounding problem”: we
need to find a procedure that, given vectors x1, . . . , xm, y1, . . . , yn ∈ Sm+n−1, produces signs
ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1} whose existence is ensured by the Grothendieck inequality,
i.e.,

∑m
i=1

∑n
j=1 aijεiδj is at least a constant multiple of

∑m
i=1

∑n
j=1 aij〈xi, yj〉. For this pur-

pose one needs to examine proofs of the Grothendieck inequality, as done in [8]. We will now
describe the rounding procedure that gives the best known approximation guarantee. This
procedure yields a randomized algorithm that produces the desired signs; it is also possible
to obtain a deterministic algorithm, as explained in [8].

The argument below is based on a clever two-step rounding method due to Krivine [77].
Fix k ∈ N and assume that we are given two centrally symmetric measurable partitions of
Rk, or equivalently two odd measurable functions f, g : Rk → {−1, 1}. Let G1, G2 ∈ Rk

be independent random vectors that are distributed according to the standard Gaussian
measure on Rk, i.e., the measure with density x 7→ e−‖x‖

2
2/2/(2π)k/2. For t ∈ (−1, 1) define

Hf,g(t)
def
= E

[
f

(
1√
2
G1

)
g

(
t√
2
G1 +

√
1− t2√

2
G2

)]
=

1

πk(1− t2)k/2

∫
Rk

∫
Rk
f(x)g(y) exp

(
−‖x‖2

2 − ‖y‖2
2 + 2t〈x, y〉

1− t2

)
dxdy. (32)

Then Hf,g extends to an analytic function on the strip {z ∈ C : <(z) ∈ (−1, 1)}. The pair
of functions {f, g} is called a Krivine rounding scheme if Hf,g is invertible on a neighborhood
of the origin, and if we consider the Taylor expansion H−1

f,g (z) =
∑∞

j=0 a2j+1z
2j+1 then there

exists c = c(f, g) ∈ (0,∞) satisfying
∑∞

j=0 |a2j+1|c2j+1 = 1.

For (f, g) as above and unit vectors {xi}mi=1, {yj}nj=1 ⊆ Sm+n−1, one can find new unit

vectors {ui}mi=1, {vj}nj=1 ⊆ Sm+n−1 satisfying the identities

∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, 〈ui, vj〉 = H−1
f,g (c(f, g)〈xi, yj〉). (33)

We refer to [21] for the proof that {ui}mi=1, {vj}nj=1 exist. This existence proof is not via an
efficient algorithm, but as explained in [8], once we know that they exist the new vectors
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can be computed efficiently provided H−1
f,g can be computed efficiently; this simply amounts

to computing a Cholesky decomposition or, alternatively, solving a semidefinite program
corresponding to (33). This completes the first (preprocessing) step of a generalized Krivine
rounding procedure. The next step is to apply a random projection to the new vectors thus
obtained, as in Grothendieck’s original proof [45] or the Goemans-Williamson algorithm [42].

Let G : Rm+n → Rk be a random k × (m + n) matrix whose entries are i.i.d. standard
Gaussian random variables. Define random signs {εi}mi=1, {δj}nj=1 ⊆ {−1, 1} by

∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, εi
def
= f

(
1√
2
Gui

)
and δj

def
= g

(
1√
2
Gvj

)
. (34)

Now,

E

[
m∑
i=1

n∑
j=1

aijεiδj

]
(∗)
= E

[
m∑
i=1

n∑
j=1

aijHf,g (〈ui, vj〉)

]
(33)
= c(f, g)

m∑
i=1

n∑
j=1

aij〈xi, yj〉, (35)

where (∗) follows by rotation invariance from (34) and (32). The identity (35) yields the
desired polynomial time randomized rounding algorithm, provided one can bound c(f, g)
from below. It also gives a systematic way to bound the Grothendieck constant from above:
for every Krivine rounding scheme f, g : Rk → {−1, 1} we have KG 6 1/c(f, g). Krivine
used this reasoning to obtain the bound KG 6 π/

(
2 log

(
1 +
√

2
))

by considering the case
k = 1 and f0(x) = g0(x) = sign(x). One checks that {f0, g0} is a Krivine rounding scheme
with Hf0,g0(t) = 2

π
arcsin(t) (Grothendieck’s identity) and c(f0, g0) = 2

π
log
(
1 +
√

2
)
.

Since the goal of the above discussion is to round vectors {xi}mi=1, {yj}nj=1 ⊆ Sm+n−1 to
signs {εi}mi=1, {δj}nj=1 ⊆ {−1, 1}, it seems natural to expect that the best possible Krivine
rounding scheme occurs when k = 1 and f(x) = g(x) = sign(x). If true, this would imply
that KG = π/

(
2 log

(
1 +
√

2
))

; a long-standing conjecture of Krivine [77]. Over the years
additional evidence supporting Krivine’s conjecture was discovered, and a natural analytic
conjecture was made in [76] as a step towards proving it. We will not discuss these topics
here since in [21] it was shown that actually KG 6 π/

(
2 log

(
1 +
√

2
))
−ε0 for some effective

constant ε0 > 0.
It is known [21, Lem. 2.4] that among all one dimensional Krivine rounding schemes

f, g : R → {−1, 1} we indeed have c(f, g) 6 2
π

log
(
1 +
√

2
)
, i.e., it does not pay off to

take partitions of R which are more complicated than the half-line partitions. Somewhat
unexpectedly, it was shown in [21] that a certain two dimensional Krivine rounding scheme
f, g : R2 → {−1, 1} satisfies c(f, g) > 2

π
log
(
1 +
√

2
)
. The proof of [21] uses a Krivine

rounding scheme f, g : R2 → {−1, 1} when f = g corresponds to the partition of R2 as the
sub-graph and super-graph of the polynomial y = c (x5 − 10x3 + 15x), where c > 0 is an
appropriately chosen constant. This partition is depicted in Figure 1.

As explained in [21, Sec. 3], there is a natural guess for the “best” two dimensional Krivine
rounding scheme based on a certain numerical computation which we will not discuss here.
For this (conjectural) scheme we have f 6= g, and the planar partition corresponding to f
is depicted in Figure 2. Of course, once Krivine’s conjecture has been disproved and the
usefulness of higher dimensional rounding schemes has been established, there is no reason
to expect that the situation won’t improve as we consider k-dimensional Krivine rounding
schemes for k > 3. A positive solution to an analytic question presented in [21] might even
lead to an exact computation of KG; see [21, Sec. 3] for the details.

17



Figure 1. The partition of
R2 used in [21] to show that
KG is smaller than Krivine’s
bound; the shaded regions
are separated by the graph
y = c (x5 − 10x3 + 15x).

Figure 2. The “tiger parti-
tion” restricted to the square
[−20, 20]2. This is the con-
jectured [21] optimal parti-
tion of R2 for the purpose of
Krivine-type rounding.

3. The Grothendieck constant of a graph

Fix n ∈ N and let G = ({1, . . . , n}, E) be a graph on the vertices {1, . . . , n}. We assume
throughout that G does not contain any self loops, i.e., E ⊆ {S ⊆ {1, . . . , n} : |S| = 2}.
Following [7], define the Grothendieck constant of G, denoted K(G), to be the smallest
constant K ∈ (0,∞) such that every n× n matrix (aij) satisfies

max
x1,...,xn∈Sn−1

∑
i,j∈{1,...,n}
{i,j}∈E

aij〈xi, xj〉 6 K max
ε1,...,εn∈{−1,1}

∑
i,j∈{1,...,n}
{i,j}∈E

aijεiεj. (36)

Inequality (36) is an extension of the Grothendieck inequality since (1) is the special case
of (36) when G is a bipartite graph. Thus

KG = sup
n∈N
{K(G) : G is an n−vertex bipartite graph} . (37)

The opposite extreme of bipartite graphs is G = Kn, the n-vertex complete graph. In this
case (36) boils down to the following inequality

max
x1,...,xn∈Sn−1

∑
i,j∈{1,...,n}

i 6=j

aij〈xi, xj〉 6 K(Kn) max
ε1,...,εn∈{−1,1}

∑
i,j∈{1,...,n}

i 6=j

aijεiεj. (38)

It turns out that K(Kn) � log n. The estimate K(Kn) . log n was proved in [94, 91, 60, 27].
In fact, as shown in [7, Thm. 3.7], the following stronger inequality holds true for every n×n
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matrix (aij); it implies that K(Kn) . log n by the Cauchy-Schwartz inequality.

max
x1,...,xn∈Sn−1

∑
i,j∈{1,...,n}

i 6=j

aij〈xi, xj〉

. log

 ∑
i∈{1,...,n}

∑
j∈{1,...,n}r{i} |aij|√∑

i∈{1,...,n}
∑

j∈{1,...,n}r{i} a
2
ij

 max
ε1,...,εn∈{−1,1}

∑
i,j∈{1,...,n}

i 6=j

aijεiεj.

The matching lower bound K(Kn) & log n is due to [7], improving over a result of [60].
How can we interpolate between the two extremes (37) and (38)? The Grothendieck

constant K(G) depends on the combinatorial structure of the graph G, but at present our
understanding of this dependence is incomplete. The following general bounds are known.

logω . K(G) . log ϑ, (39)

and
K(G) 6

π

2 log

(
1+
√

(ϑ−1)2+1

ϑ−1

) , (40)

where (39) is due to [7] and (40) is due to [23]. Here ω is the clique number of G, i.e.,
the largest k ∈ {2, . . . , n} such that there exists S ⊆ {1, . . . , n} of cardinality k satisfying
{i, j} ∈ E for all distinct i, j ∈ S, and

ϑ = min

{
max

i∈{1,...,n}

1

〈xi, y〉2
: x1, . . . , xn, y ∈ Sn ∧ ∀{i, j} ∈ E, 〈xi, xj〉 = 0

}
. (41)

The parameter ϑ is known as the Lovász theta function of the complement of G; an
important graph parameter that was introduced in [87]. We refer to [59] and [7, Thm. 3.5]
for alternative characterizations of ϑ. It suffices to say here that it was shown in [87] that
ϑ 6 χ, where χ is the chromatic number of G, i.e., the smallest integer k such that there
exists a partition {A1, . . . , Ak} of {1, . . . , n} such that {i, j} /∈ E for all (i, j) ∈

⋃k
`=1A`×A`.

Note that the upper bound in (39) is superior to (40) when ϑ is large, but when ϑ = 2 the
bound (40) implies Krivine’s classical bound [77] KG 6 π/

(
2 log

(
1 +
√

2
))

.
The upper and lower bounds in (39) are known to match up to absolute constants for a

variety of graph classes. Several such sharp Grothendieck-type inequalities are presented in
Sections 5.2 and 5.3 of [7] . For example, as explained in [7], it follows from (39), combined
with combinatorial results of [87, 9], that for every n× n× n 3-tensor (aijk) we have

max
{xij}ni,j=1⊆Sn

2−1

∑
i,j,k∈{1,...,n}

i 6=j 6=k

aijk 〈xij, xjk〉 . max
{εij}ni,j=1⊆{−1,1}

∑
i,j,k∈{1,...,n}

i 6=j 6=k

aijkεijεjk.

While (39) is often a satisfactory asymptotic evaluation of K(G), this isn’t always the
case. In particular, it is unknown whether K(G) can be bounded from below by a function
of ϑ that tends to ∞ as ϑ → ∞. An instance in which (39) is not sharp is the case of
Erdős-Rényi [36] random graphs G(n, 1/2). For such graphs we have ω � log n almost
surely as n → ∞; see [90] and [10, Sec. 4.5]. At the same time, for G(n, 1/2) we have [58]
ϑ �
√
n almost surely as n→∞. Thus (39) becomes in this case the rather weak estimate

log log n . K(G(n, 1/2)) . log n. It turns out [3] that K(G(n, 1/2)) � log n almost surely as
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n→∞; we refer to [3] for additional computations of this type of the Grothendieck constant
of random and psuedo-random graphs. An explicit evaluation of the Grothendieck constant
of certain graph families can be found in [79]; for example, if G is a graph of girth g that is

not a forest and does not admit K5 as a minor then K(G) = g cos(π/g)
g−2

.

3.1. Algorithmic consequences. Other than being a natural variant of the Grothendieck
inequality, and hence of intrinsic mathematical interest, (36) has ramifications to discrete
optimization problems, which we now describe.

3.1.1. Spin glasses. Perhaps the most natural interpretation of (36) is in the context of solid
state physics, specifically the problem of efficient computation of ground states of Ising spin
glasses. The graph G represents the interaction pattern of n particles; thus {i, j} /∈ E if and
only if the particles i and j cannot interact with each other. Let aij be the magnitude of
the interaction of i and j (the sign of aij corresponds to attraction/repulsion). In the Ising
model each particle i ∈ {1, . . . , n} has a spin εi ∈ {−1, 1} and the total energy of the system
is given by the quantity −

∑
{i,j}∈E aijεiεj. A spin configuration (ε1, . . . , εn) ∈ {−1, 1}n is

called a ground state if it minimizes the total energy. Thus the problem of finding a ground
state is precisely that of computing the maximum appearing in the right hand side of (36).
For more information on this topic see [88, pp. 352–355].

Physical systems seek to settle at a ground state, and therefore it is natural to ask whether
it is computationally efficient (i.e., polynomial time computable) to find such a ground state,
at least approximately. Such questions have been studied in the physics literature for several
decades; see [18, 16, 13, 22]. In particular, it was shown in [16] that if G is a planar graph
then one can find a ground state in polynomial time, but in [13] it was shown that when G
is the three dimensional grid then this computational task is NP-hard.

Since the quantity in the left hand side of (36) is a semidefinite program and therefore
can be computed in polynomial time with arbitrarily good precision, a good bound on
K(G) yields a polynomial time algorithm that computes the energy of a ground state with
correspondingly good approximation guarantee. Moreover, as explained in [7], the proof of
the upper bound in (39) yields a polynomial time algorithm that finds a spin configuration
(σ1, . . . , σn) ∈ {−1, 1}n for which∑

i,j∈{1,...,n}
{i,j}∈E

aijσiσj &
1

log ϑ
· max
{εi}ni=1⊆{−1,1}

∑
i,j∈{1,...,n}
{i,j}∈E

aijεiεj. (42)

An analogous polynomial time algorithm corresponds to the bound (40). These algorithms
yield the best known efficient methods for computing a ground state of Ising spin glasses on
a variety of interaction graphs.

3.1.2. Correlation clustering. A different interpretation of (36) yields the best known poly-
nomial time approximation algorithm for the correlation clustering problem [14, 25]; this con-
nection is due to [27]. Interpret the graph G = ({1, . . . , n}, E) as the “similarity/dissmilarity
graph” for the items {1, . . . , n}, in the following sense. For {i, j} ∈ E we are given a sign
aij ∈ {−1, 1} which has the following meaning: if aij = 1 then i and j are deemed to be
similar, and if aij = −1 then i and j are deemed to be different. If {i, j} /∈ E then we do
not express any judgement on the similarity or dissimilarity of i and j.
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Assume that A1, . . . , Ak is a partition (or “clustering”) of {1, . . . , n}. An agreement be-
tween this clustering and our similarity/dissmilarity judgements is a pair i, j ∈ {1, . . . , n}
such that aij = 1 and i, j ∈ Ar for some r ∈ {1, . . . , k} or aij = −1 and i ∈ Ar, j ∈ As
for distinct r, s ∈ {1, . . . , k}. A disagreement between this clustering and our similar-
ity/dissmilarity judgements is a pair i, j ∈ {1, . . . , n} such that aij = 1 and i ∈ Ar, j ∈ As
for distinct r, s ∈ {1, . . . , k} or aij = −1 and i, j ∈ Ar for some r ∈ {1, . . . , k}. Our goal is to
cluster the items while encouraging agreements and penalizing disagreements. Thus, we wish
to find a clustering of {1, . . . , n} into an unspecified number of clusters which maximizes the
total number of agreements minus the total number of disagreements.

It was proved in [27] that the case of clustering into two parts is the “bottleneck” for this
problem: if there were a polynomial time algorithm that finds a clustering into two parts
for which the total number of agreements minus the total number of disagreements is at
least a fraction α ∈ (0, 1) of the maximum possible (over all bi-partitions) total number of
agreements minus the total number of disagreements, then one could find in polynomial time
a clustering which is at least a fraction α/(2 +α) of the analogous maximum that is defined
without specifying the number of clusters.

One checks that the problem of finding a partition into two clusters that maximizes the
total number of agreements minus the total number of disagreements is the same as the
problem of computing the maximum in the right hand side of (36). Thus the upper bound
in (39) yields a polynomial time algorithm for correlation clustering with approximation
guarantee O(log ϑ), which is the best known approximation algorithm for this problem.
Note that when G is the complete graph then the approximation ratio is O(log n). As
will be explained in Section 7, it is known [69] that for every γ ∈ (0, 1/6), if there were a
polynomial time algorithm for correlation clustering that yields an approximation guarantee
of (log n)γ then there would be an algorithm for 3-colorability that runs in time 2(logn)O(1)

, a
conclusion which is widely believed to be impossible.

4. Kernel clustering and the propeller conjecture

Here we describe a large class of Grothendieck-type inequalities that is motivated by
algorithmic applications to a combinatorial optimization problem called Kernel Clustering.
This problem originates in machine learning [110], and its only known rigorous approximation
algorithms follow from Grothendieck inequalities (these algorithms are sharp assuming the
UGC). We will first describe the inequalities and then the algorithmic application.

Consider the special case of the Grothendieck inequality (1) where A = (aij) is an n × n
positive semidefinite matrix. In this case we may assume without loss of generality that
in (1) xi = yi and εi = δi for every i ∈ {1, . . . , n} since this holds for the maxima on either
side of (1) (see also the explanation in [8, Sec. 5.2]). It follows from [45, 107] (see also [95])
that for every n× n symmetric positive semidefinite matrix A = (aij) we have

max
x1,...,xn∈Sn−1

n∑
i=1

n∑
j=1

aij〈xi, xj〉 6
π

2
· max
ε1,...,εn∈{−1,1}

n∑
i=1

n∑
j=1

aijεiεj, (43)

and that π
2

is the best possible constant in (43).

A natural variant of (43) is to replace the numbers −1, 1 by general vectors v1, . . . , vk ∈ Rk,
namely one might ask for the smallest constant K ∈ (0,∞) such that for every symmetric
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positive semidefinite n× n matrix (aij) we have:

max
x1,...,xn∈Sn−1

n∑
i=1

n∑
j=1

aij〈xi, xj〉 6 K max
u1,...,un∈{v1,...,vk}

n∑
i=1

n∑
j=1

aij〈ui, uj〉. (44)

The best constant K in (44) can be characterized as follows. Let B = (bij = 〈vi, vj〉) be the
Gram matrix of v1, . . . , vk. Let C(B) be the maximum over all partitions {A1, . . . , Ak} of

Rk−1 into measurable sets of the quantity
∑k

i=1

∑k
j=1 bij〈zi, zj〉, where for i ∈ {1, . . . , k} the

vector zi ∈ Rk−1 is the Gaussian moment of Ai, i.e.,

zi =
1

(2π)(k−1)/2

∫
Ai

xe−‖x‖
2
2/2dx.

It was proved in [67] that (44) holds with K = 1/C(B) and that this constant is sharp.
Inequality (44) with K = 1/C(B) is proved via the following rounding procedure. Fix unit

vectors x1, . . . , xn ∈ Sn−1. Let G = (gij) be a (k − 1) × n random matrix whose entries
are i.i.d. standard Gaussian random variables. Let A1, . . . , Ak ⊆ Rk−1 be a measurable
partition of Rk−1 at which C(B) is attained (for a proof that the maximum defining C(B) is
indeed attained, see [67]). Define a random choice of ui ∈ {v1, . . . , vk} by setting ui = v` for
the unique ` ∈ {1, . . . , k} such that Gxi ∈ A`. The fact that (44) holds with K = 1/C(B) is
a consequence of the following fact, whose proof we skip (the full details are in [67]).

E

[
n∑
i=1

n∑
j=1

aij〈ui, uj〉

]
> C(B)

n∑
i=1

n∑
j=1

aij〈xi, xj〉. (45)

Determining the partition of Rk−1 that achieves the value C(B) is a nontrivial problem in
general, even in the special case when B = Ik is the k× k identity matrix. Note that in this
case one desires a partition {A1, . . . , Ak} of Rk−1 into measurable sets so as to maximize the
following quantity.

k∑
i=1

∥∥∥∥ 1

(2π)(k−1)/2

∫
Ai

xe−‖x‖
2
2/2dx

∥∥∥∥2

2

.

As shown in [66, 67], the optimal partition is given by simplicial cones centered at the origin.
When B = I2 we have C(I2) = 1

π
, and the optimal partition of R into two cones is the

positive and the negative axes. When B = I3 it was shown in [66] that C(I3) = 9
8π

, and the
optimal partition of R2 into three cones is the propeller partition, i.e., into three cones with
angular measure 120◦ each.

Though it might be surprising at first sight, the authors posed in [66] the propeller con-
jecture: for any k > 4, the optimal partition of Rk−1 into k parts is P ×Rk−3 where P is the
propeller partition of R2. In other words, even if one is allowed to use k parts, the propeller
conjecture asserts that the best partition consists of only three nonempty parts. Recently,
this conjecture was solved positively [53] for k = 4, i.e., for partitions of R3 into four mea-
surable parts. The proof of [53] reduces the problem to a concrete finite set of numerical
inequalities which are then verified with full rigor in a computer-assisted fashion. Note that
this is the first nontrivial (surprising?) case of the propeller conjecture, i.e., this is the first
case in which we indeed drop one of the four allowed parts in the optimal partition.
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We now describe an application of (44) to the Kernel Clustering problem; a general frame-
work for clustering massive statistical data so as to uncover a certain hypothesized struc-
ture [110]. The problem is defined as follows. Let A = (aij) be an n× n symmetric positive
semidefinite matrix which is usually normalized to be centered, i.e.,

∑n
i=1

∑n
j=1 aij = 0. The

matrix A is often thought of as the correlation matrix of random variables (X1, . . . , Xn) that
measure attributes of certain empirical data, i.e., aij = E [XiXj]. We are also given another
symmetric positive semidefinite k × k matrix B = (bij) which functions as a hypothesis, or
test matrix. Think of n as huge and k as a small constant. The goal is to cluster A so as
to obtain a smaller matrix which most resembles B. Formally, we wish to find a partition
{S1, . . . , Sk} of {1, . . . , n} so that if we write cij =

∑
(p,q)∈Si×Sj apq then the resulting clus-

tered version of A has the maximum correlation
∑k

i=1

∑k
j=1 cijbij with the hypothesis matrix

B. In words, we form a k× k matrix C = (cij) by summing the entries of A over the blocks
induced by the given partition, and we wish to produce in this way a matrix that is most
correlated with B. Equivalently, the goal is to evaluate the number:

Clust(A|B) = max
σ:{1,...,n}→{1,...,k}

k∑
i=1

k∑
j=1

aijbσ(i)σ(j). (46)

The strength of this generic clustering framework is based in part on the flexibility of
adapting the matrix B to the problem at hand. Various particular choices of B lead to well
studied optimization problems, while other specialized choices of B are based on statistical
hypotheses which have been applied with some empirical success. We refer to [110, 66] for
additional background and a discussion of specific examples.

In [66] it was shown that there exists a randomized polynomial time algorithm that takes
as input two positive semidefinite matrices A,B and outputs a number α that satisfies
Clust(A|B) 6 E[α] 6

(
1 + 3π

2

)
Clust(A|B). There is no reason to believe that the approxi-

mation factor of 1 + 3π
2

is sharp, but nevertheless prior to this result, which is based on (44),
no constant factor polynomial time approximation algorithm for this problem was known.

Sharper results can be obtained if we assume that the input matrices are normalized
appropriately. Specifically, assume that k > 3 and restrict only to inputs A that are
centered, i.e.,

∑n
i=1

∑n
j=1 aij = 0, and inputs B that are either the identity matrix Ik,

or satisfy
∑k

i=1

∑k
j=1 bij = 0 (B is centered as well) and bii = 1 for all i ∈ {1, . . . , k}

(B is “spherical”). Under these assumptions the output of the algorithm of [66] satisfies
Clust(A|B) 6 E[α] 6 8π

9

(
1− 1

k

)
Clust(A|B). Moreover, it was shown in [66] that assum-

ing the propeller conjecture and the UGC, no polynomial time algorithm can achieve an
approximation guarantee that is strictly smaller than 8π

9

(
1− 1

k

)
(for input matrices normal-

ized as above). Since the propeller conjecture is known to hold true for k = 3 [66] and k = 4
[53], we know that the UGC hardness threshold for the above problem is exactly 16π

27
when

k = 3 and 2π
3

when k = 4.
A finer, and perhaps more natural, analysis of the kernel clustering problem can be ob-

tained if we fix the matrix B and let the input be only the matrix A, with the goal being, as
before, to approximate the quantity Clust(A|B) in polynomial time. Since B is symmetric
and positive semidefinite we can find vectors v1, . . . , vk ∈ Rk such that B is their Gram
matrix, i.e., bij = 〈vi, vj〉 for all i, j ∈ {1, . . . , k}. Let R(B) be the smallest possible radius
of a Euclidean ball in Rk which contains {v1, . . . , vk} and let w(B) be the center of this ball.

23



We note that both R(B) and w(B) can be efficiently computed by solving an appropriate
semidefinite program. Let C(B) be the parameter defined above.

It is shown in [67] that for every fixed symmetric positive semidefinite k × k matrix B
there exists a randomized polynomial time algorithm which given an n×n symmetric positive
semidefinite centered matrix A, outputs a number Alg(A) such that

Clust(A|B) 6 E [Alg(A)] 6
R(B)2

C(B)
Clust(A|B).

As we will explain in Section 7, assuming the UGC no polynomial time algorithm can achieve
an approximation guaranty strictly smaller than R(B)2/C(B).

The algorithm of [67] uses semidefinite programming to compute the value

SDP(A|B) = max

{
n∑
i=1

n∑
j=1

aij 〈xi, xj〉 : x1, . . . , xn ∈ Rn ∧ ‖xi‖2 6 1 ∀i ∈ {1, . . . , n}

}

= max

{
n∑
i=1

n∑
j=1

aij 〈xi, xj〉 : x1, . . . , xn ∈ Sn−1

}
, (47)

where the last equality in (47) holds since the function (x1, . . . , xn) 7→
∑n

i=1

∑n
j=1 aij 〈xi, xj〉

is convex (by virtue of the fact that A is positive semidefinite). We claim that

Clust(A|B)

R(B)2
6 SDP(A|B) 6

Clust(A|B)

C(B)
, (48)

which implies that if we output the number R(B)2SDP(A|B) we will obtain a polynomial

time algorithm which approximates Clust(A|B) up to a factor of R(B)2

C(B)
. To verify (48) let

x∗1, . . . , x
∗
n ∈ Sn−1 and σ∗ : {1, . . . , n} → {1, . . . , k} be such that

SDP(A|B) =
n∑
i=1

n∑
j=1

aij
〈
x∗i , x

∗
j

〉
and Clust(A|B) =

n∑
i=1

n∑
j=1

aijbσ∗(i)σ∗(j).

Write (aij)
n
i,j=1 = (〈ui, uj〉)ni,j=1 for some u1, . . . , un ∈ Rn. The assumption that A is

centered means that
∑n

i=1 ui = 0. The rightmost inequality in (48) is just the Grothendieck

inequality (44). The leftmost inequality in (48) follows from the fact that
vσ∗(i)−w(B)

R(B)
has

norm at most 1 for all i ∈ {1, . . . , n}. Indeed, these norm bounds imply that

SDP(A|B) >
n∑
i=1

n∑
j=1

aij

〈
vσ∗(i) − w(B)

R(B)
,
vσ∗(j) − w(B)

R(B)

〉

=
1

R(B)2

n∑
i=1

n∑
j=1

aij
〈
vσ∗(i), vσ∗(j)

〉
− 2

R(B)2

n∑
i=1

〈
w(B), vσ∗(i)

〉〈
ui,

n∑
j=1

uj

〉
+
‖w(B)‖2

2

R(B)2

n∑
i=1

n∑
j=1

aij

=
Clust(A|B)

R(B)2
.
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This completes the proof that the above algorithm approximates efficiently the number
Clust(A|B), but does not address the issue of how to efficiently compute an assignment
σ : {1, . . . , n} → {1, . . . , k} for which the induced clustering of A has the required value.
The issue here is to find efficiently a conical simplicial partition A1, . . . , Ak of Rk−1 at which
C(B) is attained. Such a partition exists and may be assumed to be hardwired into the
description of the algorithm. Alternately, the partition that achieves C(B) up to a desired
degree of accuracy can be found by brute-force for fixed k (or k = k(n) growing sufficiently
slowly as a function of n); see [67]. For large values of k the problem of computing C(B)
efficiently remains open.

5. The Lp Grothendieck problem

Fix p ∈ [1,∞] and consider the following algorithmic problem. The input is an n × n
matrix A = (aij) whose diagonal entries vanish, and the goal is to compute (or estimate) in
polynomial time the quantity

Mp(A) = max
t1,...,tn∈R∑n
k=1 |tk|p61

n∑
i=1

n∑
j=1

aijtitj = max
t1,...,tn∈R∑n
k=1 |tk|p=1

n∑
i=1

n∑
j=1

aijtitj. (49)

The second equality in (49) follows from a straightforward convexity argument since the
diagonal entries of A vanish. Some of the results described below hold true without the van-
ishing diagonal assumption, but we will tacitly make this assumption here since the second
equality in (49) makes the problem become purely combinatorial when p =∞. Specifically,
if G = ({1, . . . , n}, E) is the complete graph then M∞(A) = maxε1,...,εn∈{−1,1}

∑
{i,j}∈E aijεiεj.

The results described in Section 3 therefore imply that there is a polynomial time algorithm
that approximates M∞(A) up to a O(log n) factor, and that it is computationally hard to
achieve an approximation guarantee smaller than (log n)γ for all γ ∈ (0, 1/6).

There are values of p for which the above problem can be solved in polynomial time.
When p = 2 the quantity M2(A) is the largest eigenvalue of A, and hence can be computed
in polynomial time [43, 82]. When p = 1 it was shown in [2] that it is possible to approximate
M1(A) up to a factor of 1 + ε in time nO(1/ε). It is also shown in [2] that the problem of
(1 + ε)-approximately computing M1(A) is W [1] complete; we refer to [35] for the definition
of this type of hardness result and just say here that it indicates that a running time of
c(ε)nO(1) is impossible.

The algorithm of [2] proceeds by showing that for every m ∈ N there exist y1, . . . , yn ∈ 1
m
Z

with
∑n

i=1 |yi| 6 1 and
∑n

i=1

∑n
j=1 aijyiyj >

(
1− 1

m

)
M1(A). The number of such vectors y

is 1 +
∑m

k=1

∑k
`=1 2`

(
n
`

)(
k−1
`−1

)
6 4nm. An exhaustive search over all such vectors will then

approximate M1(A) to within a factor of m/(m− 1) in time O(nm). To prove the existence
of y fix t1, . . . , tn ∈ R with

∑n
k=1 |tk| = 1 and

∑n
i=1

∑n
j=1 aijtitj = M1(A). Let X ∈ Rn be

a random vector given by Pr [X = sign(tj)ej] = |tj| for every j ∈ {1, . . . , n}. Here e1, . . . , en
is the standard basis of Rn. Let {Xs = (Xs1, . . . , Xsn)}ms=1 be independent copies of X
and set Y = (Y1, . . . , Yn) = 1

m

∑m
s=1Xs. Note that if s, t ∈ {1, . . . ,m} are distinct then

for all i, j ∈ {1, . . . , n} we have E [XsiXtj] = sign(ti)sign(tj)|ti| · |tj| = titj. Also, for every
s ∈ {1, . . . ,m} and every distinct i, j ∈ {1, . . . , n} we have XsiXsj = 0. Since the diagonal
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entries of A vanish it follows that

E

[
n∑
i=1

n∑
j=1

aijYiYj

]
=

1

m2

∑
s,t∈{1,...,m}

s 6=t

∑
i,j∈{1,...,n}

i 6=j

aijE [XsiXtj] =

(
1− 1

m

)
M1(A). (50)

Noting that the vector Y has `1 norm at most 1 and all of its entries are integer multiples of
1/m, it follows from (50) that with positive probability Y will have the desired properties.

How can we interpolate between the above results for p ∈ {1, 2,∞}? It turns out that
there is a satisfactory answer for p ∈ (2,∞) but the range p ∈ (1, 2) remains a mystery. To

explain this write γp = (E [|G|p])1/p, where G is a standard Gaussian random variable. One
computes that

γp =
√

2

(
Γ
(
p+1

2

)
√
π

)1/p

. (51)

Also, Stirling’s formula implies that γ2
p = p

e
+ O(1) as p → ∞. It follows from [92, 48] that

for every fixed p ∈ [2,∞) there exists a polynomial time algorithm that approximates Mp(A)
to within a factor of γ2

p , and that for every ε ∈ (0, 1) the existence of a polynomial time

algorithm that approximates Mp(A) to within a factor γ2
p − ε would imply that P = NP .

These results improve over the earlier work [70] which designed a polynomial time algorithm
for Mp(A) whose approximation guarantee is (1 + o(1))γ2

p as p → ∞, and which proved a

γ2
p − ε hardness results assuming the UGC rather than P 6= NP .
The following Grothendieck-type inequality was proved in [92] and independently in [48].

For every n× n matrix A = (aij) and every p ∈ [2,∞) we have

max
x1,...,xn∈Rn∑n
k=1 ‖xk‖

p
261

n∑
i=1

n∑
j=1

aij〈xi, xj〉 6 γ2
p max

t1,...,tn∈R∑n
k=1 |tk|p61

n∑
i=1

n∑
j=1

aijtitj. (52)

The constant γ2
p in (52) is sharp. The validity of (52) implies that Mp(A) can be computed

in polynomial time to within a factor γ2
p . This follows since the left hand side of (52) is the

maximum of
∑n

i=1

∑n
j=1 aijXij, which is a linear functional in the variables (Xij), given the

constraint that (Xij) is a symmetric positive semidefinite matrix and
∑n

i=1 X
p/2
ii 6 1. The

latter constraint is convex since p > 2, and therefore this problem falls into the framework
of convex programming that was described in Section 1.2. Thus the left hand side of (52)
can be computed in polynomial time with arbitrarily good precision.

Choosing the specific value p = 3 in order to illustrate the current satisfactory state of
affairs concretely, the NP -hardness threshold of computing max∑n

i=1 |xi|361

∑n
i=1

∑n
j=1 aijxixj

equals 2/ 3
√
π. Such a sharp NP -hardness result (with transcendental hardness ratio) is quite

remarkable, since it shows that the geometric algorithm presented above probably yields the
best possible approximation guarantee even when one allows any polynomial time algorithm
whatsoever. Results of this type have been known to hold under the UGC, but this NP -
hardness result of [48] seems to be the first time that such an algorithm for a simple to state
problem was shown to be optimal assuming P 6= NP .

26



When p ∈ [1, 2] one can easily show [92] that

max
x1,...,xn∈Rn∑n
k=1 ‖xk‖

p
261

n∑
i=1

n∑
j=1

aij〈xi, xj〉 = max
t1,...,tn∈R∑n
k=1 |tk|p61

n∑
i=1

n∑
j=1

aijtitj. (53)

While the identity (53) seems to indicate the problem of computing Mp(A) in polynomial

time might be easy for p ∈ (1, 2), the above argument fails since the constraint
∑n

i=1X
p/2
ii 6 1

is no longer convex. This is reflected by the fact that despite (53) the problem of (1 + ε)-
approximately computing M1(A) is W [1] complete [2]. It remains open whether for p ∈ (1, 2)
one can approximate Mp(A) in polynomial time up to a factor O(1), and no hardness of
approximation result is known for this problem as well.

Remark 5.1. If p ∈ [2,∞] then for positive semidefinite matrices (aij) the constant γ2
p in

the right hand side of (52) can be improved [92] to γ−2
p∗ , where here and in what follows

p∗ = p/(p− 1). For p =∞ this estimate coincides with the classical bound [45, 107] that we
have already encountered in (43), and it is sharp in the entire range p ∈ [2,∞]. Moreover,
this bound shows that there exists a polynomial time algorithm that takes as input a positive
semidefinite matrix A and outputs a number that is guaranteed to be within a factor γ−2

p∗

of Mp(A). Conversely, the existence of a polynomial time algorithm for this problem whose
approximation guarantee is strictly smaller than γ−2

p∗ would contradict the UGC [92].

Remark 5.2. The bilinear variant of (52) is an immediate consequence of the Grothendieck
inequality (1). Specifically, assume that p, q ∈ [1,∞] and x1, . . . , xm, y1, . . . , yn ∈ Rm+n

satisfy
∑m

i=1 ‖xi‖
p
2 6 1 and

∑n
j=1 ‖yj‖

q
2 6 1. Write αi = ‖xi‖2 and βj = ‖yj‖2. For an m× n

matrix (aij) the Grothendieck inequality provides ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1} such that∑m
i=1

∑n
j=1 aij〈xi, yj〉 6 KG

∑m
i=1

∑n
j=1 aijαiβjεiδj. This establishes the following inequality.

max
{xi}mi=1,{yj}nj=1⊆Rn+m∑m

i=1 ‖xi‖
p
261∑n

j=1 ‖yj‖
q
261

m∑
i=1

n∑
j=1

aij〈xi, yj〉 6 KG · max
{si}mi=1,{tj}nj=1⊆R∑m

i=1 |si|p61∑n
j=1 |tj |q61

m∑
i=1

n∑
j=1

aijsitj. (54)

Observe that the maximum on the right hand side of (54) is ‖A‖p→q∗ ; the operator norm of
A acting as a linear operator from (Rm, ‖ · ‖p) to (Rn, ‖ · ‖q∗). Moreover, if p, q > 2 then the
left hand side of (54) can be computed in polynomial time. Thus, for p > 2 > r > 1, the
generalized Grothendieck inequality (54) yields a polynomial time algorithm that takes as
input an m × n matrix A = (aij) and outputs a number that is guaranteed to be within a
factor KG of ‖A‖p→r. This algorithmic task has been previously studied in [96] (see also [93,
Sec. 4.3.2]), where for p > 2 > r > 1 a polynomial time algorithm was designed that
approximates ‖A‖p→r up to a factor 3π/

(
6
√

3− 2π
)
∈ [2.293, 2.294]. The above argument

yields the approximation factor KG < 1.783 as a formal consequence of the Grothendieck
inequality. The complexity of the problem of approximating ‖A‖p→r has been studied in [17],
where it is shown that if either p > r > 2 or 2 > p > r then it is NP -hard to approximate
‖A‖p→r up to any constant factor, and unless 3-colorability can be solved in time 2(logn)O(1)

,

for any ε ∈ (0, 1) no polynomial time algorithm can approximate ‖A‖p→r up to 2(logn)1−ε .

Remark 5.3. Let K ⊆ Rn be a compact and convex set which is invariant under reflections
with respect to the coordinate hyperplanes. Denote by CK the smallest C ∈ (0,∞) such
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that for every n× n matrix (aij) we have

max
x1,...,xn∈Rn

(‖x1‖2,...,‖xn‖2)∈K

n∑
i=1

n∑
j=1

aij〈xi, xj〉 6 C max
t1,...,tn∈R

(t1,...,tn)∈K

n∑
i=1

n∑
j=1

aijtitj. (55)

Such generalized Grothendieck inequalities are investigated in [92], where bounds on CK are
obtained under certain geometric assumptions on K. These assumptions are easy to verify
when K = {x ∈ Rn : ‖x‖p 6 1}, yielding (52). More subtle inequalities of this type for
other convex bodies K are discussed in [92], but we will not describe them here. The natural
bilinear version of (55) is: if K ⊆ Rm and L ⊆ Rn are compact and convex sets that are
invariant under reflections with respect to the coordinate hyperplanes then let CK,L denote
the smallest constant C ∈ (0,∞) such that for every m× n matrix (aij) we have

max
{xi}mi=1,{yj}nj=1⊆Rn+m

(‖x1‖2,...,‖xm‖2)∈K
(‖y1‖2,...,‖yn‖2)∈L

m∑
i=1

n∑
j=1

aij〈xi, yj〉 6 C max
{si}mi=1,{tj}nj=1⊆R

(s1,...,sm)∈K
(t1,...,tn)∈L

m∑
i=1

n∑
j=1

aijsitj. (56)

The argument in Remark 5.2 shows that CK,L 6 KG. Under certain geometric assumptions
on K,L this bound can be improved [92].

6. Higher rank Grothendieck inequalities

We have already seen several variants of the classical Grothendieck inequality (1), in-
cluding the Grothendieck inequality for graphs (36), the variant of the positive semidefinite
Grothendieck inequality arising from the Kernel Clustering problem (44), and Grothendieck
inequalities for convex bodies other than the cube (52), (54), (55), (56). The literature con-
tains additional variants of the Grothendieck inequality, some of which will be described in
this section.

Let G = ({1, . . . , n}, E) be a graph and fix q, r ∈ N. Following [23], let K(q → r,G) be
the smallest constant K ∈ (0,∞) such that for every n× n matrix A = (aij) we have

max
x1,...,xn∈Sq−1

∑
i,j∈{1,...,n}
{i,j}∈E

aij〈xi, xj〉 6 K max
y1,...,yn∈Sr−1

∑
i,j∈{1,...,n}
{i,j}∈E

aij〈yi, yj〉. (57)

Set also K(r,G) = supq∈NK(q → r,G). We similarly define K+(q → r,G) to be the
smallest constant K ∈ (0,∞) satisfying (57) for all positive semidefinite matrices A, and
correspondingly K+(r,G) = supq∈NK

+(q → r,G).
To link these definitions to what we have already seen in this article, observe that KG is

the supremum of K(1, G) over all finite bipartite graphs G, and due to the results described
in Section 4 we have

sup
n∈N

K+ (r,K	n ) = sup
n∈N

sup
x1,...,xn∈Sr−1

1

C
(
〈xi, xj〉)ni,j=1

) , (58)

where K	n is the complete graph on n-vertices with self loops. Recall that the definition of
C(B) for a positive semidefinite matrix B is given in the paragraph following (44).

An important special case of (57) is r = 2, since the supremum of K(2, G) over all finite
bipartite graphs G is at most the complex Grothendieck constant KC

G (defined analogously
to KG, but over the complex scalar field), a fundamental quantity whose value has been
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investigated in [45, 83, 99, 50, 74]. The best known bounds on KC
G are 1.338 < KC

G < 1.4049;
see [101, Sec. 4] for more information on this topic. We also refer to [32, 113] for information
of the constants K(2q → 2, G) where G is a bipartite graph. The supremum of K(q → r,G)
over all biparpite graphs G was investigated in [78] for r = 1 and in [74] for r = 2; see
also [75] for a unified treatment of these cases. The higher rank constants K(q → r,G)
when G is bipartite were introduced in [22]. Definition (57) in full generality is due to [23]
where several estimates on K(q → r,G) are given. One of the motivations of [23] is the
case r = 3 (and G a subgraph of the grid Z3), based on the connection to the polynomial
time approximation of ground states of spin glasses as described in Section 3.1.1; the case
r = 1 was discussed in Section 3.1.1 in connection with the Ising model, but the case r = 3
corresponds to the more physically realistic Heisenberg model of vector-valued spins. The
parameter supn∈NK

+ (r,K	n ) (recall (58)) was studied in [22] in the context of quantum
information theory, and in [24] it was shown that

K+ (1, K	n ) 6
π

n

(
Γ((n+ 1)/2)

Γ(n/2)

)2

=
π

2
− π

4n
+O

(
1

n2

)
, (59)

and

sup
n∈N

K+ (r,K	n ) =
r

2

(
Γ(r/2)

Γ((r + 1)/2)

)2

= 1 +
1

2r
+O

(
1

r2

)
.

We refer to [24] for a corresponding UGC hardness result. Note that (59) improves over (43)
for fixed n ∈ N.

7. Hardness of approximation

We have seen examples of how Grothendieck-type inequalities yield upper bounds on
the best possible polynomial time approximation ratio of certain optimization problems.
From the algorithmic and computational complexity viewpoint it is interesting to prove
computational lower bounds as well, i.e., results that rule out the existence of efficient
algorithms achieving a certain approximation guarantee. Such results are known as hardness
or inapproximability results, and as explained in Section 1.1, at present the state of the art
allows one to prove such results while relying on complexity theoretic assumptions such as
P 6= NP or the Unique Games Conjecture. A nice feature of the known hardness results
for problems in which a Grothendieck-type inequality has been applied is that often the
hardness results (lower bounds) exactly match the approximation ratios (upper bounds). In
this section we briefly review the known hardness results for optimization problems associated
with Grothendieck-type inequalities.

Let Kn,n-QP denote the optimization problem associated with the classical Grothendieck
inequality (the acronym QP stands for “quadratic programming”). Thus, in the problem
Kn,n-QP we are given an n× n real matrix (aij) and the goal is to determine the quantity

max

{
m∑
i=1

n∑
j=1

aijεiδj : {εi}mi=1, {δj}nj=1 ⊆ {−1, 1}

}
.

As explained in [8], the MAX DICUT problem can be framed as a special case of the
problem Kn,n-QP. Hence, as a consequence of [51], we know that for every ε ∈ (0, 1), assum-
ing P 6= NP there is no polynomial time algorithm that approximates the Kn,n-QP problem
within ratio 13

12
−ε. In [68] it is shown that the lower bound (3) on the Grothendieck constant
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can be translated into a hardness result, albeit relying on the Unique Games Conjecture.
Namely, letting η0 be as in (3), for every ε ∈ (0, 1) assuming the UGC there is no polynomial

time algorithm that approximates the Kn,n-QP problem within a ratio π
2
eη

2
0 − ε.

We note that all the hardness results cited here rely on the well-known paradigm of
dictatorship testing. A lower bound on the integrality gap of a semidefinite program, such
as the estimate KG > π

2
eη

2
0 , can be translated into a probabilistic test to check whether a

function f : {−1, 1}n 7→ {−1, 1} is a dictatorship, i.e., of the form f(x) = xi for some fixed
i ∈ {1, . . . , n}. If f is indeed a dictatorship, then the test passes with probability c and if
f is “far from a dictator” (in a formal sense that we do not describe here), the test passes
with probability at most s. The ratio c/s corresponds exactly to the UGC-based hardness
lower bound. It is well-known how to prove a UGC-based hardness result once we have the
appropriate dictatorship test; see the survey [63].

The above quoted result of [68] relied on explicitly knowing the lower bound construc-

tion [105] leading to the estimate KG > π
2
eη

2
0 . On the other hand, in [104], building on

the earlier work [103], it is shown that any lower bound on the Grothedieck constant can
be translated into a UGC-based hardness result, even without explicitly knowing the con-
struction! Thus, modulo the UGC, the best polynomial time algorithm to approximate the
Kn,n-QP problem is via the Grothendieck inequality, even though we do not know the precise
value of KG. Formally, for every ε ∈ (0, 1), assuming the UGC there is no polynomial time
algorithm that approximates the Kn,n-QP problem within a factor KG − ε.

Let Kn,n-QPPSD be the special case of the Kn,n-QP problem where the input matrix (aij) is
assumed to be positive semidefinite. By considering matrices that are Laplacians of graphs
one sees that the MAX CUT problem is a special case of the problem Kn,n-QPPSD (see [66]).
Hence, due to [51], we know that for every ε ∈ (0, 1), assuming P 6= NP there is no
polynomial time algorithm that approximates the Kn,n-QPPSD problem within ratio 17

16
− ε.

Moreover, it is proved in [66] that for every ε ∈ (0, 1), assuming the UGC there is no
polynomial time algorithm that approximates the Kn,n-QPPSD problem within ratio π

2
− ε,

an optimal hardness result due to the positive semidefinite Grothendieck inequality (43).
This follows from the more general results for the Kernel Clustering problem described later.

Let (aij) be an n× n real matrix with zeroes on the diagonal. The Kn-QP problem seeks
to determine the quantity

max

{
m∑
i=1

n∑
j=1

aijεiεj : {εi}mi=1 ⊆ {−1, 1}

}
.

In [69] it is proved that for every γ ∈ (0, 1/6), assuming that NP does not have a 2(logn)O(1)

time deterministic algorithm, there is no polynomial time algorithm that approximates the
Kn-QP problem within ratio (log n)γ. This improves over [12] where a hardness factor of
(log n)c was proved, under the same complexity assumption, for an unspecified universal
constant c > 0. Recall that, as explained in Section 3, there is an algorithm for Kn-QP
that achieves a ratio of O(log n), so there remains an asymptotic gap in our understanding
of the complexity of the Kn-QP problem. For the maximum acyclic subgraph problem,
as discussed in Section 2.1.3, the gap between the upper and lower bounds is even larger.
We have already seen that an approximation factor of O(log n) is achievable, but from the
hardness perspective we know due to [97] that there exists ε0 > 0 such that assuming
P 6= NP there is no polynomial time algorithm for the maximum acyclic subgraph problem

30



that achieves an approximation ratio less than 1 + ε0. In [47] it was shown that assuming
the UGC there is no polynomial time algorithm for the maximum acyclic subgraph problem
that achieves any constant approximation ratio.

Fix p ∈ (0,∞). As discussed in Section 5, the Lp Grothendieck problem is as follows.
Given an n × n real matrix A = (aij) with zeros on the diagonal, the goal is to determine
the quantity Mp(A) defined in (49). For p ∈ (2,∞) it was shown in [48] that for every
ε ∈ (0, 1), assuming P 6= NP there is no polynomial time algorithm that approximates the
Lp Grothendieck problem within a ratio γ2

p − ε. Here γp is defined as in (51). This result
(nontrivially) builds on the previous result of [70] that obtained the same conclusion while
assuming the UGC rather than P 6= NP .

For the Kernel Clustering problem with a k×k hypothesis matrix B, an optimal hardness
result is obtained in [67] in terms of the parameters R(B) and C(B) described in Section 4.
Specifically for a fixed k×k symmetric positive semidefinite matrix B and for every ε ∈ (0, 1),
assuming the UGC there is no polynomial time algorithm that, given an n × n matrix

A approximates the quantity Clust(A|B) within ratio R(B)2

C(B)
− ε. When B = Ik is the

k × k identity matrix, the following hardness result is obtained in [66]. Let ε > 0 be an
arbitrarily small constant. Assuming the UGC, there is no polynomial time algorithm that
approximates Clust(A|I2) within ratio π

2
− ε. Similarly, assuming the UGC there is no

polynomial time algorithm that approximates Clust(A|I3) within ratio 16π
27
− ε, and, using

also the solution of the propeller conjecture in R3 given in [53], there is no polynomial time
algorithm that approximates Clust(A|I4) within ratio 2π

3
− ε. Furthermore, for k > 5,

assuming the propeller conjecture and the UGC, there is no polynomial time algorithm that
approximates Clust(A|Ik) within ratio 8π

9

(
1− 1

k

)
− ε.
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