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CHAPTER 1

Introduction

The moduli spaces of smooth projective curves of genus g ≥ 2, and their com-
pactifications by the moduli space of stable projective curves of genus g are, quite
possibly, the most studied of all algebraic varieties.

The aim of this book is to generalize the moduli theory of curves to surfaces
and to higher dimensional varieties. In the introduction we start to outline how
this is done, and, more importantly, to explain why the answer for surfaces is much
more complicated than for curves. On the positive side, once we get the moduli
theory of surfaces right, the higher dimensional theory works the same.

Section 1 is a quick review of the history of moduli problems, culminating in an
outline of the basic moduli theory of curves. Section 2 introduces canonical models,
which are the basic objects of moduli theory in higher dimensions. Starting from
stable curves, Section 3 leads up to the definition of stable varieties; their higher
dimensional analogs. Then we show, by a series of examples, why flat families of
stable varieties are not the correct higher dimensional analogs of flat families of
stable curves. Finding the correct replacement has been one of the main difficulties
of the whole theory.

Section 4 is a collection of examples showing how easy it is to end up with rather
horrible-looking moduli problems. Section 5 illustrates the differences between fine
and coarse moduli spaces.

1. Short history of moduli problems

Let V be a “reasonable” class of objects in algebraic geometry, for instance, V

could be all subvarieties of Pn, all coherent sheaves on Pn, all smooth curves or all
projective varieties. The aim of the theory of moduli is understand all “reasonable”
families of objects in V and to construct an algebraic variety (or scheme, or algebraic
space) whose points are in “natural” one-to-one correspondence with the objects
in V. If such a variety exists, we call it the moduli space of V and denote it by
MV. The simplest, classical examples are given by the theory of linear systems and
families of linear systems.

1 (Linear systems). Let X be a normal projective variety over an algebraically
closed field k and L a line bundle on X . The corresponding linear system is

LinSys(X, L) = {effective divisors D such that OX(D) ∼= L}.
The objects in LinSys(X, L) are in natural one-to-one correspondence with the
points of the projective space P

(

H0(X, L)∨
)

which is classically denoted by |L|.
Thus, for every effective divisors D such that OX(D) ∼= L there is a unique point
[D] ∈ |L|.

Moreover, this correspondence between divisors and points is given by a uni-
versal family of divisors over |L|. That is, there is an effective Cartier divisor
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UnivL ⊂ |L| × X with projection π : UnivL → |L| such that

π−1
(

[D]
)

= D

for every effective divisor D linearly equivalent to L,
The classical literature never differentiates between the linear system as a set

and the linear system as a projective space. There are, indeed, few reasons to
distinguish them as long as we work over a fixed base field k. If, however, we pass
to a field extension K ⊃ k, the advantages of viewing |L| as a k-variety appear. For
any K ⊃ k, the set of effective divisors D defined over K such that OX(D) ∼= L
corresponds to the K-points of |L|. Thus the scheme theoretic version automatically
gives the right answer over every field.

2 (Jacobians of curves). Let C be a smooth projective curve (or Riemann
surface) of genus g. As discovered by Abel and Jacobi, there is a variety Jac0(C) of
dimension g whose points are in natural one-to-one correspondence with degree 0
line bundles on C. As before, the correspondence is given by a universal line bundle
Luniv → C × Jac0(C). That is, for any point p ∈ Jac0(C), the restriction of Luniv

to C × {p} is the degree 0 line bundle corresponding to p.
A somewhat subtle point is that, unlike in (1), the uiversal line bundle Luniv

is not unique (and need not exist if the base field is not algebraically closed). This
has to do with the fact that while a divisor D ⊂ X has no automorphisms fixing
X , any line bundle L → C has automorphisms that fix C: we can multiply every
fiber of L by the same nonzero constant.

3 (Chow varieties). Historically the next to emerge was the theory of Chow
varieties, though it is a rather difficult moduli problem. It was defined by [Cay62]
for curves in P3. See [HP47] for a classical introduction and [Kol96, Secs.I.3–4]
for a more recent treatment.

Let k be an algebraically closed field and X a normal, projective k-variety. Fix
a natural number m. An m-cycle on X is a finite, formal linear combination

∑

aiZi

where the Zi are irreducible, reduced subvarieties of dimension m and ai ∈ Z. We
usually assume tacitly that all the Zi are distinct and ai 6= 0. An m-cycle is called
effective if ai > 0 for every i.

Let Y ⊂ X be a closed subscheme of dimension m. Let Yi ⊂ Y be its m-
dimensional irreducible components, Zi := redYi and yi ∈ Yi the generic point.
Let ai be the length of Oyi,Yi

over Oyi,Zi
. We define the fundamental cycle of Y

as [Y ] :=
∑

aiZi. Thus the fundamental cycle ignores lower dimensional associ-
ated primes and from the m-dimensional components it keeps only the underlying
reduced variety and the length at the generic points.

It turns out that there is a k-variety Chowm(X), called the Chow variety of X
whose points are in “natural” one-to-one correspondence with the set of effective
m-cycles on X . (Since we did not fix the degree of the cycles, Chowm(X) is not
actually a variety but a countable disjoint union of connected, projective, reduced
k-schemes.) The point of Chowm(X) corresponding to a cycle Z =

∑

aiZi is also
usually denoted by [Z].

As for linear systems, it is best to describe the “natural correspondence” by a
universal family. The situation is, however, more complicated than before.

There is a family (or rather an effective cycle) Univm(X) on Chowm(X) × X
with projection π : Univm(X) → Chowm(X) such that for every effective m-cycle
Z =

∑

aiZi,
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(1) the support of π−1
(

[Z]
)

is
∑

Zi, and

(2) the fundamental cycle of u−1
(

[Z]
)

equals Z if ai = 1 for every i.

If the characteristic of k is 0, then the only problem in (2) is a clash between the
traditional cycle-theoretic definition of the Chow variety and the scheme-theoretic
definition of the fiber. It is easy to define a cycle-theoretic notion of fiber that
restores equality in (2) for every Z; see [Kol96, I.3]. In positive characteristic the
situation is more problematic; a possible solution is described in [Kol96, I.4].

4 (Hilbert schemes). The example of a “perfect” moduli problem is the theory of
Hilbert schemes, introduced in [Gro62]. See [Mum66], [Kol96, I.1–2] or [Ser06,
Sec.4.3] for detailed treatments.

Let k be an algebraically closed field and X a projective k-variety. Set

Hilb(X) = {closed subschemes of X}.
Then there is a k-scheme Hilb(X), called the Hilbert scheme of X whose points are
in a “natural” one-to-one correspondence with closed subschemes of X . Again, the
point of Hilb(X) corresponding to a subscheme Y ⊂ X is frequently denoted by
[Y ]. Moreover, there is a universal family Univ(X) ⊂ Hilb(X) × X such that

(1) the first projection π : Univ(X) → Hilb(X) is flat, and
(2) π−1

(

[Y ]
)

= Y for every closed subscheme Y ⊂ X .

The beauty of the Hilbert scheme is that it describes not just subschemes but
all flat families of subschemes as well.

If T is any scheme and g : T → Hilb(X) is any morphism, then, by pulling
back, we obtain a flat family of subschemes of X parametrized by T

T ×g,Hilb(X) Univ(X) ⊂ T × X.

It turns out that every family is obtained this way:

(3) For every T and for every closed subscheme ZT ⊂ T × X that is flat and
proper over T , there is a unique g : T → Hilb(X) such that

ZT = T ×g,Hilb(X) Univ(X).

This takes us to the next, functorial approach to moduli problems.

5 (Hilbert functor and Hilbert scheme). Let X → S be a morphism of schemes.
Define the Hilbert functor of X/S as a functor that associates to a scheme T → S
the set

HilbX/S(T ) =
{

subschemes Z ⊂ T ×S X which are flat and proper over T
}

.

The basic existence theorem of Hilbert schemes then says that, if X → S is quasi
projective, there is a scheme HilbX/S such that for any S scheme T ,

HilbX/S(T ) = MorS

(

T, HilbX/S

)

.

Moreover, there is a universal family π : UnivX/S → HilbX/S such that the above
isomorphism is given by pulling back the universal family.

We can summarize these results as follows

Principle 6. π : UnivX/S → HilbX/S contains all the information about
proper, flat families of subschemes of X/S and does it in the most succinct way.

This example leads us to a general definition:
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Definition 7 (Fine moduli spaces). Let V be a “reasonable” class of projective
varieties (or schemes, or sheaves, or ...). In practice “reasonable” may mean several
restrictions, but for the definition we only need the following weak assumption:

(1) Let K ⊃ k be a field extension. Then a k-variety Xk is in V iff XK :=
Xk ×Speck Spec K is in V.

Following (5), define the corresponding moduli functor as

V arietiesV(T ) :=







Flat families X → T such that
every fiber is in V,

modulo isomorphisms over T .







(7.2)

We say that a scheme ModuliV, or, more precisely, a flat morphism

u : UnivV → ModuliV

is a fine moduli space for the functor V arietiesV if the following holds:

(3) For every scheme T , pulling back gives an equality

V arietiesV(T ) = Mor
(

T, ModuliV
)

.

Applying the definition to T = Spec K, where K is a field, we see that ev-
ery fiber of u : UnivV → ModuliV is in V and the K-points of the fine moduli
space ModuliV are in one-to-one correspondence with the K-isomorphism classes
of objects in V.

We consider the existence of a fine moduli space as the ideal possibility. Un-
fortunately, it is rarely achieved; see Section 5.

8 (Remarks on flatness). The definition (7) is very natural within Grothendieck’s
framework of algebraic geometry, but in fact it hides a very strong supposition:

Assumption 8.1. If V is a “reasonable” class then any flat family whose
fibers are in V is a “reasonable” family.

In Grothendieck’s foundations of algebraic geometry flatness is one of the cor-
nerstones and there are many “reasonable” classes for which flat families are indeed
the “reasonable” families. Nonetheless, (8.1) should not be viewed as self evident.

Even when the base of the family is a smooth curve, (8.1) needs arguing, but
the assumption is especially surprising when applied to families over non-reduced
schemes T . Consider, for instance, the case when T is the spectrum of an Artinian
k-algebra. Then T has only one closed point t ∈ T . A flat family p : X → T has
only one fiber Xt, and our only restriction is that Xt be in our class V. Thus (8.1)
declares that we care only about Xt. Once Xt is in V, every flat deformation of Xt

over T is automatically “reasonable.”
In fact, a crucial conceptual point in the moduli theory of higher dimensional

varieties is the realization that in (7.2), the flatness of the map X → T is not
enough: allowing all flat families whose fibers are in a “reasonable” class leads to
the wrong moduli problem. This difficulty arises even for families of surfaces over
smooth curves.

Working out the correct concept has been one of the main stumbling blocks of
the general theory.

Next we see what happens with the simplest case, for smooth curves of fixed
genus.
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9 (Moduli functor and moduli space of smooth curves). Following (7) we define
the moduli functor of smooth curves of genus g as

Curvesg(T ) :=







Smooth, proper families S → T ,
every fiber is a curve of genus g,
modulo isomorphisms over T .







It turns out that there is no fine moduli space for curves of genus g. In fact,
every curve C with nontrivial automorphisms causes problems; there can not be
any point [C] corresponding to it in a fine moduli space. Actually, problems arise
already when V consist of a single curve! See Section 5 for such examples.

It has been, however, understood for a long time that there is some kind of an
object, denoted by Mg, and called the coarse moduli space (or simply moduli space)
of curves of genus g that comes close to being a fine moduli space:

(1) For any algebraically closed field k, the k-points of Mg are in a “natural”
one-to-one correspondence with isomorphism classes of smooth curves of
genus g defined over k. Let us denote the correspondence by C 7→ [C] ∈
Mg.

(2) For any family of smooth genus g curves h : S → T there is a “moduli
map” mh,T : T → Mg such that for every geometric point p ∈ T , the
image mh,T (p) is the point corresponding to the fiber [h−1(p)].

For elliptic curves we get M1 = A1 and the moduli map is given by the j-
invariant, as was known to Euler and Lagrange. They also knew that there is no
universal family over M1. The theory of Abelian integrals due to Abel, Jacobi
and Riemann does essentially the same for all curves, though in this case a clear
moduli theoretic interpretation seems to have been done only later. For smooth
plane curves, and more generally for smooth hypersurfaces in any dimension, the
invariant theory of Hilbert produces coarse moduli spaces. Still, a precise definition
and proof of existence of Mg appeared only in [Tei44] in the analytic case and in
[Mum65] in the algebraic case.

10 (Coarse moduli spaces). As in (7), let V be a “reasonable” class. When
there is no fine moduli space, we still can ask for a scheme that best approximates
its properties.

We look for schemes M for which there is a natural transformation of functors

TM : V arietiesg(∗) −→ Mor(∗, M).

Such schemes certainly exist, for instance, if we work over a field k then M = Spec k.
All schemes M for which TM exists form an inverse system which is closed under
fiber products. Thus, as long as we are not unlucky, there is a universal (or largest)
scheme with this property. Though it is not usually done, it should be called the
categorical moduli space.

This object can be rather useless in general. For instance, fix n, d and let Hn,d

be the class of all hypersurfaces of degree d in Pn+1
k up to isomorphisms. One can

see (cf. (56)) that a categorical moduli space exists and it is Spec k.
To get something more like a fine moduli space, we require that it give a one-to-

one parametrization at least set theoretically. Thus we say that a scheme ModuliV
is a coarse moduli space for V if the following hold.

(1) There is a natural transformation of functors

ModMap : V arietiesV(∗) −→ Mor(∗, ModuliV),
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(2) ModuliV is universal satisfying (1), and
(3) for any algebraically closed field K ⊃ k,

ModMap : V arietiesV(Spec K)
∼=−→ Mor(Spec K, ModuliV) = ModuliV(K)

is an isomorphism (of sets).

11 (Moduli functors versus moduli spaces). While much of the early work on
moduli, especially since [Mum65], put the emphasis on the construction of fine or
coarse moduli spaces, recently the emphasis shifted towards the study of the families
of varieties, that is towards moduli functors and moduli stacks. The main task is
to understand what kind of objects form “nice” families. Once a good concept
of “nice familes” is established, the existence of a coarse moduli space should be
nearly automatic. The coarse moduli space is not the fundamental object any
longer, rather it is only a convenient way to keep track of certain information that
is only latent in the moduli functor or moduli stack.

12 (Compactifying Mg). While the basic theory of algebraic geometry is local,
that is, it concerns affine varieties, most really interesting and important objects
in algebraic geometry and its applications are global, that is, projective or at least
proper.

The moduli functor of smooth curves discussed so far has a definitely local
flavor. Most naturally occurring smooth families of curves S → T live over an
affine scheme T . It is not easy to write down any family of smooth curves over
a projective base. The best solution is to allow not just smooth curves but also
singular curves in our families.

The moduli spaces Mg are not compact and for many reasons it is useful to find
geometrically meaningful compactifications of Mg. Concentrating on 1-parameter
families, the main question is the following:

(12.1) Let B be a smooth curve, B0 ⊂ B an open subset and π0 : S0 → B0 a
smooth family of genus g curves. Find a “natural” extension

S0 ⊂ S
π0 ↓ ↓ π

B0 ⊂ B,

where π : S → B is a flat family of (possibly singular) curves.
We would like the extension to be unique and behave well with respect to

pulling back families over curves and for families over higher dimensional bases.
The answer, proposed in [DM69] has been so successful that it is hard to

imagine a time when it was not the “obvious” solution. Let us first review the
definition of [DM69]. In Section 4 we see, by examples, why this concept has not
been so obvious.

Definition 13 (Stable curve). A stable curve over an algebraically closed field
k is a proper, connected k-curve C such that the following hold:

(Local property) The only singularities of C are ordinary nodes.

(Global property) The canonical (or dualizing) sheaf ωC is ample (33).

A stable curve over a scheme T is a flat, proper morphism π : S → T such that
every geometric fiber of π is a stable curve. (The arithmetic genus of the fibers
is a locally constant function on T , but we usually also tacitly assume that it is
constant.)
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The moduli functor of stable curves of genus g is

Curvesg(T ) :=

{

Stable curves of genus g over T ,
modulo isomorphisms over T .

}

Theorem 14. [DM69] For every g ≥ 2, the moduli functor of stable curves
of genus g has a coarse moduli space M̄g. Moreover, M̄g is projective, normal, has
only quotient singularities and contains Mg as an open dense subset.

M̄g has a rich and intriguing intrinsic geometry which is related to major ques-
tions in many branches of mathematics and theoretical physics.

15 (Moduli for varieties of general type).
The aim of this book is to use, as guideline, the moduli of stable curves, and

develop a moduli theory for varieties of general type. (For the non-general type
case, see (23).)

In some sense, this is a hopeless task since higher dimensional varieties are much
more complicated than curves. For instance, even for smooth surfaces with ample
canonical class, the moduli spaces can have arbitrarily complicated singularities
and scheme structures [Vak06]. Thus we approach the question in four stages:

(1) Develop the correct higher dimensional analog of smooth, projective curves
of genus ≥ 2.

(2) Following the example of stable curves, define the notion of “stable” va-
rieties in higher dimensions.

(3) Show that the functor of “stable” varieties with suitably fixed numerical
invariants gives a well behaved moduli functor/stack and has a projective
coarse moduli space.

(4) Show that, in many important cases, these moduli spaces are interesting
and useful objects.

Let us now see in some detail how these goals are accomplished.

16 (Higher dimensional analogs of smooth curves of genus ≥ 2). It has been un-
derstood since the beginnings of the theory of surfaces that, for surfaces of Kodaira
dimension ≥ 0, the correct moduli theory should be birational, not biregular. That
is, the points of the moduli space should correspond not to isomorphism classes of
surfaces but to birational equivalence classes of surfaces. There are two ways to
deal with this problem.

First, one can work with smooth families but consider two families equivalent
of there is a rational map between them that induces a birational equivalence on
every fiber. This seems rather complicated technically.

The second, much more useful method relies on the observation that every
birational equivalence class of surfaces of Kodaira dimension ≥ 0 contains a unique
minimal model, that is, a smooth projective surface Sm whose canonical class is nef.
Therefore, one can work with families of minimal models, modulo isomorphisms.
With the works of [Mum65, Art74, Gie77] it became clear that, for surfaces of
general type, it is even better to work with the canonical model, which is a mildly
singular projective surface Sc whose canonical class is ample. The resulting class of
singularities has been since established in all dimensions; they are called canonical
singularities (35). See Section ?? for details.

Principle 16.1. In moduli theory, the main objects of study are projective
varieties with ample canonical class and with canonical singularities.
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The correct definition of the higher dimensional analogs of stable curves was
much less clear. An approach through geometric invariant theory was investigated
[Mum77], but never fully developed. In essence, the GIT approach starts with a
particular method of construction of moduli spaces and then tries to see for which
class of varieties does it work.

A different framework was proposed in [KSB88]; see also [Ale96]. Instead of
building on geometric invariant theory, it focuses on 1-parameter families and uses
Mori’s program as its basic tool. Before we give the definition, it is very helpful to
go through a key point of the proof of (14), establishing that M̄g is separated and
proper. Keeping in mind the valuative criterion of separatedness and properness
(21.1–2.), we expect that the study of 1-dimensional families is the key step. This
is done in the next theorem.

Theorem 17 (Stable reduction for curves). Let B be a smooth curve, B0 ⊂ B
an open subset and π0 : S0 → B0 a flat family of genus g stable curves. Then there
is a finite surjection p : A → B such that there is a unique extension

S0 ×B A =: T 0 ⊂ T
↓ π0

A ↓ ↓ πA

B0 ×B A =: A0 ⊂ A,

where πA : T → A is a flat family of genus g stable curves.

18 (Outline of proof of (17)). Let us present the process in a way that gener-
alizes to higher dimensions.

Main case 18.1. The generic fiber of π0 : S0 → B0 is smooth.

Step 1.1. Take any (possibly singular) projective surface S1 ⊃ S0 such that π0

extends to a morphism π1 : S1 → B.
Step 1.2. Resolve the singularities of S1 to obtain a smooth surface π2 : S2 → B

such that the reduced fibers of π2 have only nodes as singularities.
Step 1.3. Run the relative minimal model program. That is, repeatedly con-

tract all smooth rational curves C ⊂ S2 that are contained in a fiber of π2 and have
negative intersection with the canonical class. The end result is π3 : S3 → B where
KS3 has nonnegative degree on all curves contained in any fiber of π3.

Step 1.4. Take the relative canonical model. That is, contract all smooth
rational curves C ⊂ S3 that are contained in a fiber of π3 and have zero intersection
with the canonical class. The end result is π4 : S4 → B where KS4 has positive
degree on all curves contained in any fiber of π3. Thus KS4 is relatively ample. Note
that S4 is, in general, not smooth, but has very mild (so called Du Val) singularities.

Step 1.5. Prove that π4 : S4 → B is the unique surface containing S0 that has
Du Val singularities and relatively ample canonical class.

Step 1.6. In general, the fibers of π4 are not reduced and the construction of
S4 does not commute with base change p : A → B. However, if the fibers of π2

are reduced, then the fibers of π4 are stable curves and the construction of S4 does
commute with base change. (Assuming only that the fibers of π4 be reduced would
not be enough.)

Step 1.7. Show that if p : A → B is sufficiently ramified and T 0 := S0×BA then
the analogously constructed T := T4 → A satisfies the conclusion of (17). (Just
to be concrete, in characteristic 0, the following ramification condition is sufficient:
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For every a ∈ A, the ramification index of p at a is divisible by the multiplicity of
every irreducible component of π−1

2

(

p(a)
)

.)

Singular case 18.2. The generic fiber of π0 : S0 → B0 is not smooth.

Step 2.0. The generic fiber of π0 : S0 → B0 has nodes, and, correspondingly,
S0 has simple normal crossing singularities along a curve C0 ⊂ S0. Let S̄0 → S0 be
the normalization, D0 ⊂ S̄0 the preimage of the double curve and τ0 the involution
of the degree 2 cover D0 → C0.

Steps 2.1–7. Run the analog of Steps 1.1–7 for S̄0 → B0, with the difference of
using

(canonical class) + (birational transform of D0)

everywhere instead of the canonical class. The end result is πT : T̄ → A with
DT ⊂ T̄ the curve corresponding to D0.

Step 2.8. Show that the involution τ0 extends to an involution τT on DT .
Construct a new, non-normal surface σ : T̄ → T such that σ is an isomorphism
outside DT and we identify every point p ∈ DT with its image τT (p).

19 (Higher dimensional analogs of stable curves of genus ≥ 2). Now we can
state the main theses of [KSB88] about higher dimensional moduli problems:

Principle 19.1. In higher dimensions, we should follow the proof of the Stable
reduction theorem (17) as outlined in (18). The resulting fibers give the right class
of stable varieties.

Principle 19.2. As in (13), a connected k-scheme X is stable iff it satisfies
the following two conditions:

(Local property) A restriction on the singularities of X (so-caled “semi log
canonical” singularities).

(Global property) The canonical (or dualizing) sheaf ωX is ample.

The definition of semi log canonical is not important for now (44), the key point
is that the only global restriction is the ampleness of ωX .

In general, Step 1.1 of (18) is still easy and Step 1.2 uses Hironaka’s resolution
of singularities. Steps 1.3–5 use Mori’s program, also called the minimal model
program. When [KSB88] was written, the relevant results were only known for
families of surfaces, but [BCHM06] takes care of the higher dimensional cases as
well, except that Step.1.4 is not yet fully known.

Steps 1.6–7 need very little change. As a starting point one could use the Semi
stable reduction theorem [KKMSD73], but, as we see in Section ??, one can get
by without it.

The singular case, Steps 2.0–8, have not been worked out earlier. Steps 2.0–
7 are conjectured to work as before, however the relevant results of the minimal
model program have been fully established only for families of surfaces and 3-folds.

Step 2.8 turned out to be unexpectedly subtle. It is closely related to some
basic questions concerning semi-log-canonical schemes. Much of Chapter ?? is
devoted to its solution.

An alternative way to approach the singular case would be to develop the
minimal model program for varieties with normal crossing singularities and apply
it directly, without normalizing in Step 2.0. However, as we see in Section ??, the
minimal model program fails already for surfaces with normal crossing singularities.
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20 (Moduli functor of stable varieties). In the moduli theory of curves, we go
directly from the definition of stable curves over fields to the notion of stable curves
over an arbitrary base (13). By contrast, for surfaces and in higher dimensions, a
major difficulty remains. As we already mentioned in (8), not every flat family of
stable surfaces can be allowed in a “reasonable” moduli theory. Examples illus-
trating this are given in Section 3. We must restrict to families S → T where the
Hilbert polynomial of the fibers

χ
(

St,OSt
(mKSt

)
)

is independent of t ∈ T . The problem is that, for stable varieties, the canonical
class K need not be Cartier, and the sheaves OSt

(mKSt
) do not form a flat family

over T . It is actually quite difficult to define the right concept. Our final solution
of this problem is in Chapter ???.

21 (Good properties of moduli problems). Let V be a “reasonable” class of
varieties and V arietiesV the corresponding moduli functor. It is hard to pin down
exactly what “reasonable” should mean, but it seems nearly impossible to do any-
thing without the following assumption:

Local closedness 21.0. The functor V arietiesV is locally closed if for any flat
morphism X → S there is a locally closed subscheme SV ⊂ S such that for any
g : T → S, the pull-back X ×S T → T is in V arietiesV(T ) iff im g ⊂ SV.

In most cases, SV ⊂ S is even open. For instance, being reduced, normal or
smooth are all open conditions. On the other hand, being a hyperelliptic curve is
not an open condition but it is a locally closed condition. (This is subtler than
it sounds. It is easy to see that in any flat family of projective curves, there is a
unique reduced subscheme that parametrizes hyperelliptic curves. In order to endow
it with a scheme structure, first we need to define what a “family of hyperelliptic
curves” is over a nonreduced scheme. The geometric fibers need to be hyperelliptic,
but this is not enough. The best is to define a family of hyperelliptic curves as a
double cover of a P1-bundle.)

Local closedness also implies that membership in V arietiesV(T ) can be tested
on 0-dimensional subschemes of T , that is, on spectra of Artin rings. This is
the reason why formal deformation theory is such a powerful tool [Art76, Ill71,

Ser06].

Assume for the moment that there is a coarse moduli space ModuliV. Our
next aim is to understand how to recognize properties of ModuliV in terms of the
functor V arietiesV.

Let X be a scheme of finite type over a field k. By the valuative criterion of
separatedness, X is separated iff the following holds.

Let B be a smooth curve over k and B0 ⊂ B an open subset. Then a morphism
τ0 : B0 → X has at most one extension to τ : B → X .

If X = ModuliV is a fine moduli space, then giving a morphism U → X is
equivalent to specifying a proper, flat family VU → U whose fibers are in V. Thus
the valuative criterion of separatedness translates to functors as follows:

Separatedness 21.1. The functor V arietiesV is separated iff for every smooth
curve B and every open subset B0 ⊂ B, a proper, flat family π0 : V 0 → B0 whose
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fibers are in V has at most one extension to

V 0 ⊂ V
π0 ↓ ↓ π

B0 ⊂ B,

where π : V → B is also a proper, flat family whose fibers are in V.

We obtain a similar translation of the valuative criterion of properness, but
here we have to pay attention to the difference between coarse and fine moduli
spaces.

Valuative criterion of properness 21.2. The functor V arietiesV satisfies the
valuative criterion of properness iff the following holds:

Let B be a smooth curve, B0 ⊂ B an open subset and π0 : V 0 → B0 a proper,
flat family whose fibers are in V. Then there is a finite surjection p : A → B such
that there is an extension

V 0 ×B A =: W 0 ⊂ W
↓ ↓ ↓ πA

B0 ×B A =: A0 ⊂ A,

where πA : W → A is also a proper, flat family whose fibers are in V. (For functors
with a fine moduli space, we could take A = B, but for functors with a coarse
moduli space, a finite base change may be needed.)

It is very convenient to roll these two concepts together. The resulting condition
is then exactly the general version of the Stable reduction theorem (17).

The valuative criterion of properness implies properness for schemes of finite
type, but not in general. The next condition is the functor version of finite type.
It ensures that we do not have too many objects to parametrize.

Boundedness 21.3. The class of schemes V is called bounded if there is a flat
morphism of schemes of finite type u : U → T such that for every algebraically
closed field K, every K-scheme in V occurs as a fiber of UK → TK . (Some authors
also assume that every fiber of u : U → T is in V.)

How important are these conditions? 21.4.
As we already noted, the assumption in this book is that local closedness (21.0)

is indispensable. When separatedness (21.1) fails, it usually either fails very badly
or it can be restored by a judicious change of the definition; see Section 4 for such
examples. (Note, however, that most moduli functors of sheaves behave differently.
They are not separated but the notions of semi-stabilty and GIT quotients provide
a good method to deal with this. See [Mum65, HL97, Dol03] for details.)

Properness (21.2) is considered a challenge: If a moduli functor does not satisfy
the valuative criterion of properness, find out how to enlarge it to make it satisfy.

Finally, boundedness (21.3) seems to come automatically, though it can be
very hard to prove that it holds. I do not know any natural moduli functor of
projective varieties satisfying (21.1–2) with a coarse moduli space whose connected
components are not of finite type. (In the proper but non-projective seeting this can,
however, happen. The Hilbert scheme of curves on the Hironaka 3-fold described in
[Har77, App.B.3.4.1] has a connected component with infinitely many irreducible
components, each proper. I do not know any natural moduli functor with a coarse
moduli space that has an irreducible component that is not of finite type.)
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22 (From the moduli functor to the moduli space). Starting with [Mum65] and
[Mat64], much effort was devoted to going from the moduli functor V arietiesV

to the moduli space ModuliV. In the quasi projective setting, this was solved in
[Vie95], but the proofs are quite hard.

The construction of the moduli space as an algebraic space turns out to be
much easier, and the general quotient theorems of [Kol97, KM97] take care of it
completely.

Once we have a moduli space which is a proper algebraic space, it is not that
hard to prove that it is projective [Kol90]. These results are treated in Chapter
???.

23 (Moduli for varieties of non-general type).
In contrast with varieties of general type, the moduli theory for varieties of

non-general type is very complicated.
A general problem, illustrated by Abelian, elliptic and K3 surfaces is that a

typical deformation of such an algebraic surface over C is a non-algebraic complex
analytic surface. Thus any algebraic theory captures only a small part of the full
analytic deformation theory.

The moduli question for analytic surfaces has been studied, especially for com-
plex tori and K3 surfaces. In both cases it seems that one needs to add some extra
structure (for instance, fixing a basis in some topological homology group) in order
to get a sensible moduli space. (As an example of what could happen, note that
the 3-dimensional space of Kummer surfaces is dense in the 20-dimensional space
of all K3 surfaces, cf. [PŠŠ71].)

Even if one restricts to the algebraic case, compactifying the moduli space
seems rather hopeless. Detailed studies of Abelian varieties and K3 surfaces show
that there are many different compactifications depending on additional artificial
choices, see [KKMSD73, AMRT75].

It is only with the works of [Ale02] that a geometrically meaningful compact-
ification of the moduli of principally polarized Abelian varieties became available.
This relies on the observation that a pair (A, Θ) consisting of a principally polarized
Abelian variety A and its theta divisor Θ behaves as if it were a variety of general
type.

24 (Open problems). While we provide a solution to the basic general questions
of the moduli theory of varieties of general types, there are many unsolved aspects.
Some of the main ones are the following.

Problem 24.1 (Positive characteristic). Most of our results work only in char-
acteristic 0. This is partly caused by the need for resolution of singularities and
minimal model theory. There are, however, many other difficulties that are un-
settled in positive characteristic. Even the correct definition of stable families is
problematic (46).

Problem 24.2 (Boundedness). We show that in our moduli spaces, every irre-
ducible component is projective. However, except for surfaces, we do not rule out
the possibility of a connected component with infinitely many irreducible compo-
nents. A solution of this question would follow from a series of interesting conjec-
tures on various numerical invariants satisfying the ascending chain condition, see
Section ???.
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Problem 24.3 (Effective results). Given a class of varieties of general type, we
do not have good general methods to decide which stable varieties occur on the
corresponding components of the moduli space. Even bounding basic numerical
invariants, for instance the number of irreducible components, seems very hard.
The methods in Section ??? provide an answer in principle, but it does not seem
feasible to work it out in practice, save in some very simple cases. A few results are
discussed in Section ???, but it would be very useful to get much more information.

Problem 24.4 (Moduli of pairs) It is very useful to study not just the moduli of
curves, but also the moduli of curves with marked points. The corresponding higher
dimensional question is to study the moduli of varieties with marked divisors. This
case is especially fruitful in applications. By choosing the marked divisor carefully,
one can get moduli spaces in many, seemingly unrelated, cases. The general case is,
however, more complicated than the unmarked version and even some of the basic
definitions are unsettled.

Problem 24.5 (Fine moduli spaces). As we see, stable varieties have finite
automorphism groups, and we get a fine moduli space iff the identity is the only
automorphism; see Section 5. Hence the question: Is there a sensible way to kill
automorphisms by additional structures. For curves over C this is achieved by
introducing a “level m structure” for some m ≥ 3, that is, by fixing an isomorphism
H1(C, Z/m) ∼= (Z/m)2g. For smooth surfaces, similar topological invariants do not
seem to be sufficient, but a completely different approach may work.

Problem 24.6 (Applications). Many basic questions about smooth curves can
be solved by investigating an analogous problem on stable curves, whose geometry
is frequently much simpler. There are, so far, few such results in higher dimensions.
Some of these are discussed in Section ???. One problem is that it is not easy to
write down stable degenerations, the other is that the stable varieties themselves
are still rather complicated.

2. From smooth curves to canonical models

In the theory of curves, the basic objects are smooth projective curves. We
study any other curve by relating it to smooth projective curves. This is why the
moduli functor/space of smooth curves is so important.

In higher dimensions, we define the moduli functor of smooth varieties as

Smooth(S) :=

{

Smooth, proper families X → S,
modulo isomorphisms over S.

}

This, however, gives a rather badly behaved and mostly useless moduli functor
already for surfaces. First of all, it is very non-separated.

25 (Non-separatedness in the moduli of smooth surfaces of general type). We
construct two smooth families of projective surfaces fi : X i → B over a pointed
smooth curve b ∈ B such that

(1) all the fibers are smooth, projective surfaces of general type,
(2) X1 → B and X2 → B are isomorphic over B \ {b},
(3) the fibers X1

b and X2
b are not isomorphic.

As the construction shows, this type of behavior happens every time we look
at deformations of a surface with at least 3 points blown-up.
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Let f : X → B be a smooth family of projective surfaces over a smooth (affine)
pointed curve b ∈ B. Let C1, C2, C3 ⊂ X be three sections of f , all passing through
a point xb ∈ Xb that intersect pairwise transversally at xb and are disjoint elsewhere.

Set X1 := BC1BC2BC3X , where we first blow-up C3 ⊂ X , then the birational
transform of C2 in BC3X and finally the birational transform of C1 in BC2BC3X .
Similarly, set X2 := BC1BC3BC2X . Since the Ci are sections, all these blow-ups
are smooth families of projective surfaces over B.

Over B \ {b} the curves Ci are disjoint, thus X1 and X2 are both isomorphic
to BC1+C2+C3X , the blow-up of C1 + C2 + C3 ⊂ X .

We claim that, by contrast, the fibers of X1
b and X2

b are not isomorphic to each
other for a general choice of C1.

To see this, choose local coordinates t at b ∈ B and (x, y, t) at xb ∈ X . The
curves Ci are defined by equations

Ci =
(

x − ait − (higher terms) = y − bit − (higher terms) = 0
)

.

The blow-up BCi
X is given by

BCi
X =

(

ui(x− ait− (higher terms)) = vi(y − bit− (higher terms))
)

⊂ X × P1
uivi

.

Thus we see that the birational transform of Cj intersects the central fiber
(

BCi
X

)

b
= Bxb

(

Xb

)

= (ux = vy) ⊂ Xb × P1
uv

at the point
u

v
=

aj − ai

bj − bi
∈ {xb} × P1

uv.

The fibers
(

BC2BC3X
)

b
and

(

BC3BC2X
)

b
are isomorphic to each other since they

are obtained from Bxb

(

Xb

)

by blowing up the same point

u

v
=

a2 − a3

b2 − b3
resp.

u

v
=

a3 − a2

b3 − b2
.

When we next blow up the birational transform of C1 on
(

BC2BC3X
)

b
(resp. on

(

BC3BC2X
)

b
) this gives the blow-up of the point

a1 − a3

b1 − b3
resp.

a1 − a2

b1 − b2
, (25.4)

and these are different, unless C1 + C2 + C3 is locally planar at xb.
So far we have seen that the identity Xb = Xb does not extend to an isomor-

phism between the fibers X1
b and X2

b .
If Xb is of general type, then AutXb is finite, hence, to ensure that X1

b and X2
b

are not isomorphic, we need to avoid finitely many other possible coincidences in
(25.4).

The main reason, however, why we do not study the moduli functor of smooth
varieties up to isomorphism is that, in dimension two, smooth projective surfaces
do not form the smallest basic class. Given any smooth projective surface S, one
can blow up any set of points Z ⊂ S to get another smooth projective surface BZS
which is very similar to S. Therefore, the basic object should be not a single smooth
projective surface but a whole birational equivalence class of smooth projective
surfaces. Thus it would be better to work with smooth, proper families X → S
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modulo birational equivalence over S. That is, with the moduli functor

GenTypebir(S) :=







Smooth, proper families X → S,
every fiber is of general type,

modulo birational equivalences over S.







(25.5)

In essence this is what we end up doing, but it is very cumbersome do deal with
birational equivalence over a base scheme. Nonetheless, working with birational
equivalence classes leads to a separated moduli functor.

Proposition 26. Let fi : X i → B be two smooth families of projective vari-
eties over a smooth curve B. Assume that the generic fibers X1

k(B) and X2
k(B) are

birational and the pluricanonical system
∣

∣mKX1
k(B)

∣

∣ is nonemepty for some m > 0.

Then, for every b ∈ B, the fibers X1
b and X2

b are birational.

Proof. Pick a birational map φ : X1
k(B) 99K X2

k(B) and let Γ ⊂ X1 ×B X2 be

the closure of the graph of φ. Let Y → Γ be the normalization with projections
pi : Y → X i. Note that both of the pi are open embeddings on Y \

(

Ex p1 ∪Ex p2

)

.

Thus if we prove that neither p1

(

Ex p1 ∪ Ex p2

)

nor p2

(

Ex p1 ∪ Ex p2

)

contains a

fiber of f1 or f2, then p2 ◦p−1
1 : X1 99K X2 restricts to a birational map X1

b 99K X2
b

for every b ∈ B.
We use the canonical class to compare Ex p1 and Ex p2. Since the X i are

smooth,

KY ∼ p∗i KXi + Ei, where Ei ≥ 0 and SuppEi = Ex pi. (26.1)

Assume for simplicity that B is affine and let Bs
∣

∣mKXi

∣

∣ denote the set-theoretic

base locus. By assumption,
∣

∣mKXi

∣

∣ is not empty and since B is affine, Bs
∣

∣mKXi

∣

∣

does not contain any of the fibers of fi.
Every section of O(mKY ) pulls back from X i, thus

Bs
∣

∣mKY

∣

∣ = p−1
i

(

Bs
∣

∣mKXi

∣

∣

)

+ SuppEi.

Comparing these for i = 1, 2, we conclude that

p−1
1

(

Bs
∣

∣mKX1

∣

∣

)

+ Supp E1 = p−1
2

(

Bs
∣

∣mKX2

∣

∣

)

+ Supp E2.

Therefore,
p1

(

SuppE2

)

⊂ p1

(

Supp E1

)

+ Bs
∣

∣mKX1

∣

∣.

Since E1 is p1-exceptional, p1

(

E1

)

has codimension ≥ 2 in X1, hence it does not

contain any of the fibers of f1. We saw that Bs
∣

∣mKX1

∣

∣ does not contain any of

the fibers either. Thus p1

(

Ex p1 ∪ Ex p2

)

does not contain any of the fibers and

similarly for p2

(

Ex p1 ∪ Ex p2

)

. �

Remark 27. A result of [MM64] says that, more generally, (26) holds as long
as the fibers X i

b are not birationally ruled, that is, not birational to a variety of the
form Z ×P1. The proof of [MM64], relies on the study of exceptional divisors over
a smooth variety; see [KSC04, Sec.4.5] for an overview. Exceptional divisors over
a singular variety are much less understood. By contrast, the above proof focusses
on the role of the canonical class. It is worthwhile to go back and check that the
proof works if the X i are normal, as long as (26.1) holds.

It is precisely the property (26.1) and its closely related variants that lead us
to the correct class of singular varieties for moduli purposes.
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Since it is much harder to work with a whole equivalence class, it would be
desirable to find a paticularly nice surface in every birational equivalence class.
This was achieved by the theory of minimal models of algebraic surfaces. By a
result of Enriques (cf. [BPVdV84, III.4.5]), every birational equivalence class of
surfaces S contains a unique smooth projective surface whose canonical class is nef
(that is, has nonnegative degree on every effective curve), except when S contains
a ruled surface C ×P1 for some curve C. This unique surface is called the minimal
model of S.

It would seem at first sight that (26) implies that the moduli functor of minimal
models is separated. There is, however, a quite subtle problem.

28 (Non-separatedness in the moduli of minimal models). We construct two
smooth families of projective surfaces fi : X i → B over a pointed smooth curve
b ∈ B such that

(1) all the fibers are smooth, projective minimal models,
(2) X1 → B and X2 → B are isomorphic over B \ {b},
(3) the fibers X1

b and X2
b are isomorphic, but

(4) X1 → B and X2 → B are not isomorphic.

While it is not clear from our construction, similar problems happen for any
smooth family of surfaces where the general fiber has ample canonical class and a
special fiber has nef (but not ample) canonical class, see [Art74, Bri68, Rei80].

Let X0 :=
(

f(x1, . . . , x4) = 0
)

⊂ P3 be a surface of degree n that has an
ordinary double point (38) at p = (0:0:0:1) as its sole singularity and contains the
pair of lines (x1x2 = x3 = 0). Let g be homogeneous of degree n−1 such that xn−1

4

appears in it with nonzero coefficient. Consider the family of surfaces

X :=
(

f(x1, . . . , x4) + tx3g(x1, . . . , x4) = 0
)

⊂ P3
x × A1

t .

Note that Xt is smooth for general t 6= 0 and X contains the pair of smooth surfaces
(x1x2 = x3 = 0).

For i = 1, 2, let X i := B(xi,x3)X denote the blow-up of (xi = x3 = 0) with

induced morphisms πi : X i → X and fi : X i → A1. There is a natural birational
map φ := π−1

2 ◦ π1 : X1 99K X2. Let BpX denote the blow-up of p =
(

(0:0:0:1), 0
)

with exceptional divisor E ⊂ BpX .
We claim that the following hold.

(5) The fi : X i → A1 are projective families of surfaces which are smooth
over a neighborhood of (t = 0).

(6) For n ≥ 5, the fibers X i
t have ample canonical class for t 6= 0 and nef

canonical class for t = 0.
(7) X1 ×X X2 is isomorphic to BpX , hence it is smooth and irreducible.
(8) The map φ is an isomorphism over A1 \ {0} but it is not an isomorphism

over 0.
(9) The fiber of X1 ×X X2 over (t = 0) has two irreducible components. One

of these components is the graph of an isomorphism X1
0
∼= X2

0 . The other
component is E ∼= P1 × P1.

(10) Thus φ : X1 99K X2 is an isomorphism over A1 \ {0}, the X i → A1 have
isomorphic fibers over 0 ∈ A1, but φ is not an isomorphism over A1.

(It is not hard to see that, for general choice of f and g, the Xt have no birational
self-maps, thus the only possible isomorphism between X1 and X2 would be the
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identity on X . Thus, by (6), in this case, X1 and X2 are not isomorphic to each
other.)

Note that (xi = x3 = 0) defines a Weil divisor in X which is Cartier outside
the point p. Thus all 3 blow-ups are isomorphisms over X \ {p}. This means that
all the above claims are local near p.

In (39) we show how to choose better local coordinates near p that make all
the claims (5–10) transparent.

All such problems go away when the canonical class is ample.

Proposition 29. Let fi : X i → B be two smooth families of projective varieties
over a smooth curve B. Assume that the canonical classes KXi are fi-ample. Let
φ : X1

k(B)
∼= X2

k(B) be an isomorphism of the generic fibers.

Then φ extends to an isomorphism Φ : X1 ∼= X2.

Proof. Let Γ ⊂ X1 ×B X2 be the closure of the graph of φ. Let Y → Γ be the
normalization, with projections pi : Y → X i and f : Y → B. As in (26), we use
the canonical class to compare the X i. Since the X i are smooth,

KY ∼ p∗i KXi + Ei where Ei is effective and pi-exceptional. (29.1)

Since (pi)∗OY (mEi) = OXi for every m ≥ 0, we get that

(fi)∗OXi

(

mKXi

)

= (fi)∗(pi)∗OXi

(

mp∗i KXi

)

=
= (fi)∗(pi)∗OXi

(

mp∗i KXi + mEi

)

=
= (fi)∗(pi)∗OY

(

mKY

)

= f∗OY

(

mKY

)

.

Since the KXi are fi-ample, X i = ProjB
∑

m≥0(fi)∗OXi

(

mKXi

)

. Putting these
together, we get the isomorphism

Φ : X1 ∼= ProjB
∑

m≥0(f1)∗OX1

(

mKX1

) ∼=
∼= ProjB

∑

m≥0 f∗OY

(

mKY

) ∼=
∼= ProjB

∑

m≥0(f2)∗OX2

(

mKX2

) ∼= X2. �

Remark 30. As in (27), it is again worthwhile to investigate the precise as-
sumptions behind the proof. The smoothness of the X i is used only through the
pull-back formula (29.1), which is weaker than (26.1).

If (29.1) holds, then, even if the KXi are not fi-ample, we obtain an isomor-
phism

ProjB
∑

m≥0

(f1)∗OX1

(

mKX1

) ∼= ProjB
∑

m≥0

(f2)∗OX2

(

mKX2

)

. (30.1)

Thus it is of interest to study objects as in (30.1) in general.
Let us start with the absolute case, when X is a smooth projective variety over

a field k. Its canonical ring is the graded ring

R(X, KX) :=
∑

m≥0

H0
(

X,OX(mKX)
)

.

In some cases the canonical ring tells us very little about X . For instance, if X
is rational or Fano then R(X, KX) is the base field k and if X is Calabi-Yau then
R(X, KX) is isomorphic to the polynomial ring k[t]. One should thus focus on the
cases when the canonical ring is large. The following theorem and the resulting
definition is due to [Iit71]. See [Laz04, Sec.2.1.C] for a detailed treatment.
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Theorem–Definition 31. For a smooth projective variety X of dimension n,
the following are equivalent.

(1) h0
(

X,OX(mKX)
)

≥ ǫ · mn for some ǫ > 0 and m ≫ 1.
(2) ProjR(X, KX) has dimension n.
(3) The natural map X 99K ProjR(X, KX) is birational.

If these hold, then we say that X is of general type.

This enables us to find a distinguished variety in any birational equivalence
class.

Definition 32 (Canonical models). Let X be a smooth projective variety
of general type over a field k such that its canonical ring R(X, KX) is finitely
generated. We define its canonical model as

Xcan := Projk R(X, KX).

If Y is a smooth projective variety birational to X then Y can is isomorphic to
Xcan. Thus Xcan is also the canonical model of the whole birational equivalence
class containing X . (Taking Proj of a non-finitely generated ring may result in a
quite complicated scheme. It does not seem profitable to contemplate what would
happen in our case.)

Now we know [BCHM06, Siu08] that the canonical ring R(X, KX) is always
finitely generated, thus Xcan is a projective variety. On the other hand, Xcan can
be singular. Originally this was viewed as a major obstacle but now it seems only
as a minor technical problem.

Definition 33 (Canonical class and canonical sheaf). Let X be a smooth
variety over a field k. As in [Sha94, III.6.3] or [Har77, p.180], the canonical
sheaf of X is ωX := ∧dim XΩX/k. Any divisor D such that OX(D) ∼= ωX is called
a canonical divisor. Their linear equivalence class is called the canonical class,
denoted by KX . (Note that both books assume that X is nonsingular. However,
they tacitly assume that k is algebraically closed, hence nonsingularity implies
smoothness. The definition, however, works over any field k as long as X is smooth
over k.)

Let X be a normal variety over a perfect field k. Let j : Xsm →֒ X be the
inclusion of the locus of smooth points. Then X \ Xsm has codimension ≥ 2,
therefore, restriction from X to Xsm is a bijection on Weil divisors and on linear
equivalence classes of Weil divisors. Thus there is a unique linear equivalence class
KX of Weil divisors on X such that KX |Xsm = KXsm . It is called the canonical
class of X . In general, KX does not contain any Cartier divisors.

The push-forward ωX := j∗ωXsm is a rank 1 coherent sheaf on X , called the
canonical sheaf of X . The canonical sheaf ωX agrees with the dualizing sheaf ω◦

X

as defined in [Har77, p.241]. (Note that [Har77] defines the dualizing sheaf only
if X is proper. In general, take a normal compactification X̄ ⊃ X and use ω◦

X̄
|X

instead. For more details, see [KM98, Sec.5.5], [Har66] or [Con00].)

With this definition in place, we can give the following abstract characterization
of canonical models.

Theorem 34. A normal projective variety Y is a canonical model iff

(1) m0KY is Cartier and ample for some m0 > 0, and
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(2) there is a resolution f : X → Y and an effective, f -exceptional divisor E
such that

m0KX ∼ f∗(m0KY ) + E.

Proof. For now we prove only the “if” part since this is what we need for the
examples. For the coverse, see [Rei80] or (???).

Note that for any r > 0, f∗OX(rE) = OY since E is effective and f -exceptional.
Thus, by the projection formula,

H0
(

X,OX(rm0KX)
)

= H0
(

Y, f∗OX(rm0KX)
)

= H0
(

Y,OY (rm0KY ) ⊗ f∗OX(rE)
)

= H0
(

Y,OY (rm0KY )
)

.

Therefore

Proj
∑

mH0
(

X,OX(mKX)
)

= Proj
∑

rH
0
(

X,OX(rm0KX)
)

= Proj
∑

rH
0
(

Y,OY (rm0KY )
)

= Y. �

This makes it possible to give a local definition of the singularities that occur
on canonical models.

Definition 35. We say that a normal variety Y has canonical singularities if

(1) m0KY is Cartier for some m0 > 0, and
(2) there is a resolution f : X → Y and an effective, f -exceptional divisor E

such that m0KX ∼ f∗(m0KY ) + E.

It is easy to see that this is independent of the resolution f : X → Y (??). (It
is possible to define canonical singularities without assuming the existence of a
resolution, but it is quite inconvenient, see, for instance [Luo87].)

Equivalently, Y has canonical singularities iff every point y ∈ Y has an étale
neighborhood which is an open subset on some canonical model.

As an example, consider the cone Cd(P
n) over the Veronese embedding Pn →֒

P
(

H0(Pn,O(d))
)

. It is easy to compute that Cd(P
n) has a canonical singularity iff

d ≤ n + 1 and its canonical class is Cartier iff d|n + 1. (See (??) for the case of
general cones.)

Definition 36 (Moduli of canonical models). The moduli functor of canonical
models is

CanMod(S) :=







Flat, proper families X → S,
every fiber is a canonical model,
modulo isomorphisms over S.







(36.1)

This is an improved version of the birational moduli functor GenTypebir(∗) (25.5).
By a theorem of [Siu98], in a smooth, proper family of varieties of general type

the canonical rings form a flat family and so do the canonical models. Thus there
is a natural transformation

TCanMod : GenTypebir(∗) → CanMod(∗).
By definition, if Xi → S are two smooth, proper families of varieties of general type
then

TCanMod(X1/S) = TCanMod(X2/S) iff X1 and X2 are birational,

thus TCanMod is injective. It is, however, not surjective, but we have the following
partial surjectivity statement.
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Let Y → S be a flat family of canonical models. Then there is a dense open
subset S0 ⊂ S and a smooth, proper family of varieties of general type Y 0 → S0

such that
TCanMod(Y

0/S0) = [X0/S0].

Some of the obstruction to surjectivity are obvious but some are quite subtle (???).

Remark 37. In retrospect, it seems only by luck that the definition (36.1)
gives the correct functor. See (46) and the examples after it.

Auxiliary results on double points.

38 (Ordinary double points of surfaces). Let S :=
(

h(x1, x2, x3) = 0
)

⊂ C3 be
a surface with an ordinary double point at the origin. That is,

h = h2(x1, x2, x3) + (higher order terms),

where h2 is a rank 3 quadric. It is easy to see, for instance using the Weierstrass
preparation theorem, that one can choose complex analytic coordinates yi such
that, in a neighborhood of the origin, S =

(

y2
1 + y2

2 + y2
3 = 0

)

.
Over an arbitrary (possibly not even algebraically closed) field, one can choose

formal coordinates yi such that S =
(

h2(y1, y2, y3) = 0
)

. In general, however, this
can not be achieved with an algebraic change of coordinates.

Assume that S contains the pair of lines (x1x2 = x3 = 0). Then h can be
written as

f(x1, x2, x3)x1x2 − g(x1, x2, x3)x3.

If the quadratic part has rank 3 then f(0, 0, 0) 6= 0 and we can write g = x1g1 +
x2g2 + x3g3 for some polynomials gi. We can rewrite h as

f
(

x1 − f−1g1x3

)(

x2 − f−1g2x3

)

−
(

g3 + f−1g1g2

)

x2
3.

If the quadratic part has rank 3 then g3 + f−1g1g2 is nonzero at (0, 0, 0) and we
can set

y1 := x1 − f−1g1x3, y2 :=
(

x2 − f−1g2x3

)(

g3 + f−1g1g2

)−1
and y3 := x3

to bring the equation to the normal form S = (y1y2 − y2
3 = 0). The pair of lines is

still (y1y2 = y3 = 0).
Now we consider 3 ways of resolving the singularity of X . First, one can blow

up the origin 0 ∈ A3. We get

B0A3 ⊂ A3
y × P2

s

defined by the equations {yisj = yjsi : 1 ≤ i, j ≤ 3}. Besides these equations, B0S
is defined by the vanishing of

y1y2 − y2
3 , s1s2 − s2

3, y1s2 − y3s3, s1y2 − y3s3.

One can also blow up (y1, y3). We get

B(y1,y3)A
3 ⊂ A3

y × P1
u1u3

defined by the equation y1u3 = y3u1. Besides this equation, B(y1,y3)S is defined by

y1y2 − y2
3 = u1y2 − u3y3 = 0.

These two blow-ups are actualy isomorphic, as shown by the embedding

A3
y × P1

u1u3
→֒ A3

y × P2
s :

(

(y1, y2, y3), (u1:u3)
)

7→
(

(y1, y2, y3), (u
2
1:u

2
3:u1u3)

)

restricted to B(y1,y3)S.
The same things happen if we blow up (y2, y3).
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39 (Ordinary double points of 3-folds). Let X :=
(

h(x1, . . . , x4) = 0
)

⊂ C4 be
a hypersurface with an ordinary double point at the origin. That is,

h = h2(x1, . . . , x4) + (higher order terms),

where h2 is a rank 4 quadric. As in (38), over an arbitrary (possibly not even
algebraically closed) field, one can choose formal coordinates yi such that X =
(

h2(y1, . . . , y4) = 0
)

. In general, however, this can not be achieved with an algebraic
change of coordinates.

Assume that X contains the pair of planes (x1x2 = x3 = 0). Then h can be
written as

f(x1, . . . , x4)x1x2 − g(x1, . . . , x4)x3.

The quadratic part has rank 4 iff f(0, . . . , 0) 6= 0 and x4 appears in g with nonzero
coefficient. In this case we can set

yi := xi for i = 1, 2, 3, and y4 := f−1g

to bring the equation to the normal form X = (y1y2 − y3y4 = 0). The original pair
of planes is still (y1y2 = y3 = 0).

Now we consider 3 ways of resolving the singularity of X . First, one can blow
up the origin 0 ∈ A4. We get

B0A4 ⊂ A4
y × P3

s

defined by the equations {yisj = yjsi : 1 ≤ i, j ≤ 4}. Besides these equations,
p : B0X → X is defined by the vanishing of

y1y2 − y3y4, s1s2 − s3s4, yis3−i − yjs7−j : i ∈ {1, 2}, j ∈ {3, 4}.
The exceptional set is the smooth quadric (s1s2 = s3s4) ⊂ P3 lying over the origin
0 ∈ A4.

One can also blow up (y1, y3). We get

B(y1,y3)A
4 ⊂ A4

y × P1
u1u3

defined by the equation y1u3 = y3u1. Besides this equation, B(y1,y3)X is defined
by y1y2− y3y4 = u1y2−u3y4 = 0. The exceptional set is the smooth rational curve
E ∼= P1

u1u3
lying over the origin 0 ∈ A4.

Note furthermore that the birational transform P ∗
24 of the plane P24 := (y2 =

y4 = 0) is the blown-up plane B0P24, but the birational transform P ∗
14 of the plane

P14 := (y1 = y4 = 0) is the plane (y1 = u1 = 0). The latter intersects E at the
point (u1 = 0) ∈ E, thus

(

P ∗
14 · E) = 1. Since P ∗

14 + P ∗
24 is the pull-back of the

Cartier divisor (y4 = 0), it has 0 intersection number with E. Thus
(

P ∗
24 ·E) = −1.

We claim that the rational map p : A4
y × P3

s 99K A4
y × P1

u given by

p1 : (y1, . . . , y4, s1: · · · :s4) 7→ (y1, . . . , y4, s1:s3)

gives a morphism p1 : B0X → B(y1,y3)X .

To see this note that the quadric Q := (s1s2−s3s4 = 0) is isomorhic to P1
u×P1

v,
with the isomorphism given as

j :
(

(u0:u1), (v0:v1)
)

7→
(

u0v0:u0v1:u1v0:u1v1

)

.

Thus the map (s1: · · · :s4) 7→ (s1:s3) is the inverse of j followed by the 1st coordinate
projection. Thus p1 restricts to a morphism on A4

y × Q and B0X ⊂ A4
y × Q.
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Similarly, we obtain p2 : B0X → B(y2,y3)X . Putting these together, we get an
isomorphism

p1 × p2 : B0X ∼= B(y1,y3)X ×X B(y2,y3)X.

(The above considerations show that this is an isomorphism of reduced schemes,
and this is all we need. However, by explicit computation, the right hand side is
reduced, so we have a scheme theoretic isomorphism.) In particular, this shows
that the two maps pi : B(yi,y3)X → X are not isomorphic to each other.

Finally, set S := (y3 = y4) ⊂ X . By the computations of (38), the pi restrict
to isomorphisms pi : B0S ∼= B(yi,y3)S. Thus p−1S = B0S∪E and B0S is the graph

of the isomorphism p2 ◦ p−1
1 : B(y1,y3)S

∼= B(y2,y3)S.

3. From stable curves to stable varieties

Let C be a stable curve with normalized irreducible components Ci. We fre-
quently view C as an object assembled from the pieces Ci. Note that the restriction
of ωC to Ci is not ωCi

, rather ωCi
(Pi), where Pi ⊂ Ci are the preimages of the

nodes of C.
Similarly, if X is a scheme with simple normal crossing singularities and irre-

ducible components Xi, then the restriction of ωX to Xi is not ωXi
, rather ωXi

(Di)
where Di ⊂ Xi is the preimage of Sing X on Xi.

This suggests that we should develop a theory of “canonical models” where the
role of the canonical class is played by a divisor of the form KX + D where D is a
simple normal crossing divisor.

Definition 40 (Canonical models of pairs). Let (X, D) be a pair consisting of
a smooth projective variety X and a simple normal crossing divisor D ⊂ X . (That
is, D =

∑

Di where the Di are distinct smooth divisors and all intersections are
transversal (???).) We define the canonical ring of the pair (X, D) as

R(X, KX + D) :=
∑

m≥0

H0
(

X,OX(mKX + mD)
)

.

It is conjectured (but known only for dim X ≤ 4) that the canonical ring of a pair
(X, D) is finitely generated. If this holds then Xcan := Projk R(X, KX + D) is
a normal projective variety. Let Dcan ⊂ Xcan denote the image of D under the
natural birational map X 99K Xcan.

The pair
(

Xcan, Dcan
)

is called the canonical model of (X, D).

The proof of the “if” part of the following characterization goes exactly as in
(34).

Theorem 41. A pair (Y, B), consiting of a proper normal variety Y and an
effective, reduced Weil divisor B, is a log canonical model iff

(1) m0(KY + B) is Cartier and ample for some m0 > 0, and
(2) there is a resolution f : X → Y , an effective, reduced simple normal cross-

ing divisor D ⊂ X such that f(D) = B and an effective, f -exceptional
divisor E such that

m0(KX + D) ∼ f∗
(

m0(KY + B)
)

+ E.

Remark 42. Even if B = 0, the notion of log canonical model differs from
the notion of canonical model (34). To see this, let Fi ⊂ X be the f -exceptional
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divisors. If B = 0, in (41.2) we can still take D =
∑

Fi. Thus (41.2) can be
rewritten as

m0KX ∼ f∗
(

m0KY

)

+ E − m0

∑

Fi.

This looks like (34.2), but E−m0

∑

Fi need not be effective; it can contain divisors
with coefficients ≥ −m0.

This is the source of some terminological problems. Originally R(X, KX + D)
was called the “log canonical ring” and Projk R(X, KX + D) the “log canonical
model.” Since the canonical ring is just the D = 0 special case of the “log canonical
ring,” it seems more convenient to drop the prefix “log.” However, log canonical
singularities are quite different from canonical singularities, so the “log” cannot be
omitted there.

As in (35), this can be reformulated as a definition (For now we assume that
every irreducible component of B appears in B with coefficient 1. Later (???) we
also consider cases when the coefficients are rational or real.)

Definition 43. Let (Y, B) be a pair consisting of a normal variety Y and a re-
duced Weil divisor B. Then (Y, B) is log canonical, or has log canonical singularities
iff the condition (41.2) is satisfied.

We are now ready to define the higher dimensional analogs of stable curves.

Definition 44 (Stable varieties or semi log canonical models). Let k be a field
and Y a reduced, proper scheme over k. Let Yi → Y be the irreducible components
of the normalization of Y and Di ⊂ Yi the reduced preimage of the non-normal
locus of Y . Then Y is a semi log canonical model or a stable variety iff

(1) at codimension 1 points, Y is either smooth or has a node,
(2) each (Yi, Di) is log canonical, and
(3) ωY , the canonical or dualizing sheaf of X (33), is ample.

(Implicit in the definition is that the Di are divisors and that ωY being ample
makes sense. The latter is a quite subtle condition that will be properly treated
only Chapter 3. For now we will only deal with examples where this is clear.

We can now state the two cornerstones of the moduli theory of varieties of
general type.

Principle 45. Stable varieties are the correct higher dimensional analogs of
stable curves (13).

Principle 46. Flat families of stable varieties X → T are the correct higher
dimensional analogs of flat families of stable curves (13) if the canonical sheaves
ωXt

are locally free, but not in general.

The correct analog will only be defined in Section ??? for 1-parameter families
and in Section ??? in general.

I hope that the explanations given so far make (45) quite believable. It is more
interesting to see examples that support the second assertion of (46). The simple
fact is that basic numerical invariants, like the self intersection of the canonical
class or even the Kodaira dimension fail to be locally constant in flat families of
stable varieties, even when the singularities are quite mild. The rest of the section
is devoted to such examples.

Jump of K2 and of the Kodaira dimension
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We give examples of flat families of projective surfaces {St : t ∈ C} such that St

has log canonical singularities for every t (that is, the pair (St, 0) has log canonical
singularities for every t) but the self intersection of the canonical class K2

St
varies

with t. We also give examples where KSt
is ample for t = 0 but not even big for

t 6= 0. In the examples the St are smooth for t 6= 0 and S0 has only quotient
singularities. Even among log canonical singularities, the quotient singularities are
the mildest.

Example 47 (Degree 4 surfaces in P5). It is easy to see that there are 2 families
of nondegenerate degree 4 smooth surfaces in P5.

One family consists of Veronese surfaces P2 ⊂ P5 embedded by O(2). The
general member of the other family is P1 × P1 ⊂ P5 embedded by O(2, 1), special
members are embeddings of the ruled surface F2. The two families are distinct since

K2
P2 = 9 and K2

P1×P1 = 8.

For both of these surface, a smooth hyperplane section gives a degree 4 rational
normal curve in P4.

There are also some nondegenerate degree 4 singular surfaces in P5. The most
interesting is the cone over the degree 4 rational normal curve in P4; denote it by
T0 ⊂ P5. The minimal resolution of T0 is the ruled surface p : F4 → T0. Let E, F ⊂
F4 be the exceptional curve and the fiber of the ruling. Then KF4 = −2E−6F and
p∗(2KT0) = −3E − 12F . Thus

2
(

KF4 + E
)

= p∗(2KT0) + E

shows that T0 has log canonical singularities. We also get that K2
T0

= 9.
For us the intersting feature is that one can write T0 as a limit of smooth

surfaces in two distinct way, corresponding to the two ways of writing the degree
4 rational normal curve in P4 as a hyperplane section of a surface. (See (??) for a
concrete description of these deformations.)

From the first family, we get T0 as the special fiber of a flat family whose general
fiber is P2. This family is denoted by {Tt : t ∈ C}. From the second family, we get
T0 as the special fiber of a flat family whose general fiber is P1 × P1. This family
is denoted by {T ′

t : t ∈ C}. (In general, one needs to worry about the possibility of
getting embedded points at the vertex. However, by (??), in both cases the special
fiber is indeed T0.)

Note that K2 is constant in the family {Tt : t ∈ C} but jumps at t = 0 in the
family {T ′

t : t ∈ C}.
These are, however, families of rational surfaces with negative canonical class,

and we are interested in stable varieties.
Next we take a suitable cyclic cover of the two families to get similar examples

with ample canonical class.

Example 48 (Jump of Kodaira dimension I).
We give examples of two flat families of projective surfaces St and S′

t such that

(1) S0
∼= S′

0 has log canonical singularities and ample canonical class,
(2) St is a smooth surface with ample canonical class for t 6= 0, and
(3) S′

t is smooth and elliptic with K2
S′

t
= 0 for t 6= 0.

With T0 as in (47), let π0 : S0 → T0 be a double cover, ramified along a smooth
quartic hypersurface section. Note that KT0 ∼Q − 3

2H where H is the hyperplane
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class. Thus, by the Hurwitz formula,

KS0 ∼Q π∗
0

(

KT0 + 2H
)

∼Q
1
2π∗

0H.

So S0 has ample canonical class and K2
S0

= 2. Since π0 is étale over the vertex of
T0, S0 has 2 singular points, locally (in the analytic or étale topology) isomorphic
to the singularity on T0. Thus S0 is a stable surface.

Both of the smoothings in (47) lift to smoothings of S0.
From Tt we get a smoothing St where πt : St → P2 is a double cover, ramified

along a smooth octic. Thus St is smooth, KSt
∼Q π∗

t OP2(1) is ample and K2
St

= 2.

From T ′
t we get a smoothing S′

t where π′
t : S′

t → P1 × P1 is a double cover,
ramified along a smooth curve of bidegree (8, 4). One of the families of lines on
P1×P1 pulls back to an elliptic pencil on S′

t and K2
S′

t
= 0. Thus S′

t is not of general

type for t 6= 0.

Example 49 (Jump of Kodaira dimension II). A similar pair of examples is
obtained by working with triple covers ramified along a cubic hypersurface section.
The family over Tt has ample canonical class and K2 = 3. As before, the family
over T ′

t is elliptic and so K2 = 0.

Example 50 (Jump of Kodaira dimension III).
Here are other examples of flat families of projective surfaces St such that

(1) S0 has quotient singularities and ample canonical class, and
(2) St is a smooth, rational surface for t 6= 0.

First we construct S0.

Claim 50.3. Let Ln ⊂ P2 be the union of n general lines. Let P ⊂ P2 be the
(

n
2

)

intersection points and p : BP P2 the blow up. Let En denote the sum of all

exceptional curves and L′
n ⊂ BP P2 the birational transform of Ln.

Then (the Stein factorization of) the map given by |p∗OP2(n − 1)(−En)| gives
a morphism q : BP P2 → Xn. For n ≥ 7, Xn has ample canonical class and log
canonical singularities.

Proof. Note that L′
n ⊂ BP P2 is a union of n disjoint smooth rational curves,

each with self intersection 2−n and p∗OP2(n−1)(−En) has zero intersection number
with L′

n.
The sum of any (n − 1) lines in Ln pulls back to a divisor in |p∗OP2(n − 1)|

which contains En, giving a divisor in |p∗OP2(n − 1)(−En)|. The intersection of
all these divisors is empty, thus the linear system |p∗OP2(n − 1)(−En)| is base
point free. Thus (the Stein factorization of) the map given by |p∗OP2(n−1)(−En)|
gives a morphism q : BP P2 → Xn such that p∗OP2(n − 1)(−En) ∼= q∗Mn for some
ample line bundle Mn on Xn. The lines in L′

n are mapped to points by q and they
have self-intersection 2 − n. Using the theorem of formal functions, we see that
Riq∗OBP P2 = 0 for i > 0.

For n ≥ 3 the sum of all these sections of p∗OP2(n − 1)(−En) is supported on
En + L′

n = p−1(Ln). Thus if C ⊂ BP P2 is any irreducible curve different from the
lines in L′

n then degC p∗OP2(n − 1)(−En) > 0. Thus q is birational and for n ≥ 4,
Xn has n singular points, corresponding to the lines in L′

n.
Since KP2 ∼Q − 3

nLn, we can write

KBP P2 ∼Q − 3
nL′

n +
(

1 − 6
n

)

En.
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Thus

KXn
= q∗KBP P2 ∼Q

(

1 − 6
n

)

q∗En

is effective for n ≥ 6. We can further write

q∗KXn
∼Q

(

1 − 6
n

)[

En + n−1
n−2L′

n

]

∼Q
n−6
n−2 ·

[

p∗OP2(n − 1)(−En)
]

.

This shows that KXn
is ample for n ≥ 7. Furthermore,

KBP P2 + L′
n ∼Q q∗KXn

+ 4
n−2L′

n,

hence Xn is log canonical. �

Next we construct a deformation of Xn by moving the set of intersection points
P ⊂ P2 into general position.

Claim 50.4. Let R ⊂ P2 be
(

n
2

)

points in general position and r : BRP2 → P2

the blow up with exceptional curve ER. Then r∗OP2(n − 1)(−ER) is ample for
n ≥ 6.

Proof. It is enough to find one point set R ⊂ P2 such that r∗OP2(n−1)(−ER) is
ample. Pick general degree n−2 curves C1, C2 such that every member of the pencil
|C1, C2| is irreducible and choose R ( C1 ∩ C2. This is possible if (n − 2)2 >

(

n
2

)

,
which holds for n ≥ 6.

We can then write

r∗OP2(n − 1)(−ER) ∼Q
n−1

2(n−2)

(

C′
1 + C′

2) + 1
n−2ER,

where C′
i denotes the birational transform of Ci. Note that the C′

i are members of
a pencil with base points all of whose members are irreducible. Since

(

r∗OP2(n − 1)(−ER) · Ek) = 1 and
(

r∗OP2(n − 1)(−ER) · C′
i) = (n − 1)(n − 2) −

(

n
2

)

,

this shows, by the Nakai-Mosihezon criterion of ampleness that r∗OP2(n−1)(−ER)
is ample. �

Fix n ≥ 7 and let Qt ⊂ P2 be a flat family of
(

n
2

)

points such that Q0 = Q as

above and p∗tOP2(n − 1)(−EQt
) is ample for t 6= 0 where pt : BQt

P2 → P2 denotes
the blow up.

We claim that, for m ≫ 1,
(

p∗tOP2(n − 1)(−EQt
)
)⊗m

is generated by global
sections for every t and has no higher cohomologies. (In fact this holds for all m ≥ 1,
but we do not need it.) For t 6= 0 this follows from Serre’s vanishing since then
p∗tOP2(n − 1)(−EQt

) is ample. For t = 0 we use that, by the construction of Xn,
p∗tOP2(n−1)(−EQt

) ∼= q∗Mn where Mn is ample on Xn. As we saw, Riq∗OBP P2 = 0
for i > 0. Thus, for m ≫ 1,

Hi
(

BP P2,
(

p∗0OP2(n − 1)(−EQ0)
)⊗m)

= Hi
(

Xn, M⊗m
n

)

= 0.

These imply that

h0
(

BQt
P2,

(

p∗tOP2(n − 1)(−EQt
)
)⊗m)

is independent of t for m ≫ 1. Therefore {St : t ∈ C} is a flat family, cf. [Har77,
III.9.9].
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Remark 51. For n = 6 we get a surface S0 = X6 whose canonical class is
numerically trivial. One can realize X6 as a limit of smooth Enriques surfaces as
follows.

Let T → P2 be the double cover ramified along L6. It is a K3 surface with 15
double points. If we resolve the double points, the preimages of the 6 lines in L6

become disjoint rational curves with self intersection −2. If we contract them, we
get a K3 surface Y6. The involution on T/P2 gives an involution τ : Y6 → Y6 which
fixes only the 6 double points and such that X6 = Y6/τ .

By the deformation theory of K3 surfaces (cf. [BPVdV84, Chap.VIII]) we
can smooth Y6 while keeping the involution. This realizes X6 as a limit of smooth
Enriques surfaces.

Remark 52. While (50) is just one set of examples, they are quite typical. In
fact, if S0 is any projective rational surface with quotient singularities, then there
is a flat family of surfaces {St} such that St is a smooth rational surface for t 6= 0.

To see this, take a minimal resolution S′
0 → S0. Let H ′

0 be the pullback of
an ample Cartier divisor from S0. Since S′

0 is a smooth rational surface, it is
obtained from a minimal smooth rational surface by blowing up points. A general
deformation of a minimal smooth rational surface is P1 × P1 or B0P2 (or it is P2).
Thus we see that if S0 is singular then a general deformation S′

t of S′
0 is obtained

by blowing up points in P2 in general position. One can see, (cf. [dF05, 2.4]) that
every smooth rational curve on S′

t with negative self-itersection is a (−1)-curve.
Thus no exceptional curve of S′

0 → S0 lifts to S′
t and so, as before, we get a flat

deformation {St} such that St
∼= S′

t for t 6= 0.

Example 53 (More rational surfaces with ample canonical class). [Kol08,
Sec.5] Given natural numbers a1, a2, a3, a4, consider the surface

S = S(a1, a2, a3, a4) := (xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0) ⊂ P(w1, w2, w3, w4),

where w′
i = ai+1ai+2ai+3 − ai+2ai+3 + ai+3 − 1 (with indices modulo 4), and wi =

w′
i/ gcd(w′

1, w
′
2, w

′
3, w

′
4).

It is easy to see that S has only quotient singularities (at the 4 coordinate
vertices). It is proved in [Kol08, Thm.39] that S is rational if gcd(w′

1, w
′
2, w

′
3, w

′
4) =

1. (By [Kol08, 38], this happens with probability ≥ 0.75.)
P(w1, w2, w3, w4) has isolated singularities iff the {wi} are pairwise relatively

prime. (It is easy to see that for 1 ≤ ai ≤ N , this happens for at least c · N4−ǫ of
the 4-tuples.) In this case the canonical class of S is

KS = OP

(
∏

ai − 1 − ∑

wi

)

|S .

From this it is easy to see that if a1, a2, a3, a4 ≥ 4 then KS is ample and K2
S

converges to 1 as a1, a2, a3, a4 → ∞.

4. Examples of bad moduli problems

The aim of this section is to present some examples where some quite reasonable
looking moduli problems turn out to have rather bad properties.

Moduli of hypersurfaces.

The Chow and Hilbert functors describe families of hypersurfaces in a fixed
projective space Pn. For many purposes it is more natural to consider the moduli
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functor of hypersurfaces modulo isomorphisms. We consider what kind of “moduli
spaces” one can obtain in various cases.

Definition 54 (Hypersurfaces modulo linear isomorphisms).
Over an algebraically closed field k, we consider hypersurfaces X ⊂ Pn

k where
X1, X2 ⊂ Pn

k are considered isomorphic if there is an automorphism φ ∈ Aut(Pn
k )

such that φ(X1) = X2. (One could also consider hypersurfaces modulo isomor-
phisms which do not necessarily extend to an isomorphism of the ambient projec-
tive space. It is easy to see that smooth hypersurfaces can have such nonlinear
isomorphisms only for (d, n) ∈ {(3, 2), (4, 3)}. A smooth cubic curve in P2 has an
infinite automorphism group, but only finitely many extend to an automorphism
of P2. Similarly, a smooth quartic surface in P3 can have an infinite automorphism
group, but only finitely many extend to an automorphism of P3.)

Over an arbitrary base scheme S, we consider pairs (X ⊂ P ) where P/S is a
Pn-bundle for some n and X ⊂ P is a closed subscheme, flat over S such that every
fiber is a hypersurface. There are two natural invariants, the dimension of P and
the degree of X . Thus for any given n, d we get a functor

HypSurn,d(S) :=







Flat families X ⊂ P
such that dimS P = n, deg X = d,

modulo isomorphisms over S.







One can also consider various subfunctors, for instance HypSurred
n,d , HypSurnorm

n,d ,

HypSurcan
n,d , HypSurlc

n,d, or HypSursm
n,d) where we allow only reduced (resp. normal,

canonical, log canonical or smooth) hypersurfaces.
Our aim is to investigate what the “coarse moduli spaces” of these functors

look like. Our conclusion will be that in many cases there can not be any scheme
or algebraic space which is a coarse moduli space; any “coarse moduli space” would
have to have very strange topology.

Let HSn,d be any subfunctor of HypSurn,d. We can try to construct its coarse
moduli space HSn,d step by step as follows. First, by definition, the set of k-points
of HSn,d is HSn,d(Spec k). We can also get a good idea about the Zariski topology
of HSn,d using various families of hypersurfaces.

For instance, we can study the Zariski closure Ū of a subset U ⊂ HSn,d(Spec k)
using the following observation:

• Assume that there is a flat family of hypersurfaces π : X → S and a
Zariski open subset S0 ⊂ S such that [Xs] ∈ U for every s ∈ S0(k). Then
[Xs] ∈ Ū for every s ∈ S(k).

Next we write down flat families of hypersurfaces π : X → A1 in HSn,d such
that for t 6= 0 the fibers Xt are isomorphic to each other but X0 is not isomorphic
to them. Our family corresponds to a morphism τ : A1 → HSn,d such that τ

(

A1 \
{0}

)

= [X1] but τ
(

{0}
)

= [X0]. This implies that the point [X1] is not closed and
its closure contains [X0].

This is not very surprising in a scheme, but note that X1 itself is defined over
our base field k, so [X1] is a k-point. On a k-scheme, k-points are closed. Thus we
can conclude that if there is any family as above, the moduli space HSn,d can not
be a k-scheme or algebraic space.

The simplest way to get such families is by the following construction.
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Example 55 (Deformation to cones). Let f(x0, . . . , xn) be a homogeneous
polynomial of degree d and X := (f = 0) the corresponding hypersurface. For
some 0 ≤ i < n consider the family of hypersurfaces

X := (f(x0, . . . , xi, txi+1, . . . txn) = 0) ⊂ Pn × A1
t (55.1)

with projection π : X → A1
t . If t 6= 0 then the substitution

xj 7→ xj for j ≤ i, and xj 7→ t−1xj for j > i

shows that the fiber Xt is isomorphic to X . If t = 0 then we get the cone over
X ∩ (xi+1 = · · · = xn = 0):

X0 = (f(x0, . . . , xi, 0, . . . , 0) = 0) ⊂ Pn.

Already these simple deformations show that various moduli spaces of hyper-
surfaces have very few closed points.

Corollary 56. The sole closed point of HypSurd,n is [(xd
0 = 0)].

Proof. Take any X = (f = 0) ⊂ Pn. After a general change of coordinates, we
can assume that xd

0 appears in f with nonzero coefficient. For i = 0 consider the
family (55.1).

Then X0 = (xd
0 = 0), hence [X ] can not be closed point unless X ∼= X0. It is

quite easy to see that if X → S is a flat family of hypersurfaces whose generic fiber
is a d-fold plane, then every fiber is a d-fold plane. This shows that [(xd

0 = 0)] is a
closed point. �

Corollary 57. The only closed points of HypSurred
d,n are [(f(x0, x1) = 0)]

where f has no multiple roots.

Proof. If X is a reduced hypersurface of degree d, there is a line that intersects
it in d distinct points. We can assume that this is the line (x2 = · · · = xn = 0).
For i = 1 consider the family (55.1).

Then X0 = (f(x0, x1, 0, . . . , 0) = 0) where f(x0, x1) has d distinct roots. Since
X0 is reduced, we see that none of the other hypersurfaces correspond to closed
points.

It is not obvious that the points corresponding to (f(x0, x1, 0, . . . , 0) = 0) are
closed, but this can be easily established by studying the moduli of d points in P1;
see [Mum65, Chap.3] or [Dol03, Sec.10.2]. �

A similar argument establishes the normal case:

Corollary 58. The only closed points of HypSurnorm
d,n are [(f(x0, x1, x2) = 0)]

where (f(x0, x1, x2) = 0) ⊂ P2 is a smooth curve. �

In the above examples the trouble comes from cones. Cones can be normal,
but they are very singular by other measures; they have a singular point whose
multiplicty equals the degree of the variety. So one could hope that high multiplicity
points cause the problems. This is true to some extent as the next theorems and
examples show. For proofs see [Mum65, Sec.4.2], [Dol03, Sec.10.1], (???) and
(???).

Theorem 59. Each of the following functors has a coarse moduli space which
is a quasi projective variety.

(1) The functor of smooth hypersurfaces HypSursm
d,n.
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(2) For d ≥ n + 1, the functor HypSurcan
d,n of hypersurfaces with canonical

singularities.
(3) For d > n + 1, the functor HypSurlc

d,n of hypersurfaces with log canonical
singularities.

(4) For d > n + 1, the functor HypSurlow−mult
d,n of those hypersurfaces that

have only points of multiplicity < d
n+1 .

Example 60. Consider the family of degree 2d hypersurfaces
(

(xd
0 + t2dxd

1)x
d
1 + x2d

2 + · · · + x2d
n = 0

)

⊂ Pn × A1
t .

For t 6= 0 the substitution

(x0:x1:x2: · · ·xn) 7→ (tx0:t
−1x1:x2: · · ·xn).

transforms the equation of Xt to

X :=
(

(xd
0 + xd

1)x
d
1 + x2d

2 + · · · + x2d
n = 0

)

⊂ Pn.

X has a single singular point which is at (1:0: · · · :0) and has multiplicity d.
For t = 0 we obtain the hypersurface

X0 :=
(

xd
0x

d
1 + x2d

2 + · · · + x2d
n = 0

)

.

X0 has 2 singular points of multiplicity d, hence it is not isomorphic to X .
Thus we conclude that [X ] is not a closed point of the “moduli space” of those

hypersurfaces of degree 2d that have only points of multiplicity ≤ d.

Example 61. Consider the family of degree d smooth hypersurfaces
(

(xd−1
0 + t(d−1)2xd−1

1 )x1 + xd
2 + · · · + xd

n = 0
)

⊂ Pn × A1
t .

For t 6= 0 the substitution

(x0:x1:x2: · · ·xn) 7→ (tx0:t
1−dx1:x2: · · ·xn).

transforms the equation of X to

X :=
(

(xd−1
0 + xd−1

1 )x1 + xd
2 + · · · + xd

n = 0
)

⊂ Pn,

which is a smooth hypersurface. For t = 0 we obtain

X0 :=
(

xd−1
0 x1 + xd

2 + · · · + xd
n = 0

)

,

which has a unique singular point at (0:1:0: · · · :0) of multiplicity d − 1.
This is especially interesting when d ≤ n since in this case X0 has canonical

singularities (35, ???).
Thus we see that for d ≤ n, the functor HypSurcan

d,n parametrizing hypersurfaces
with canonical singularities does not have a coarse moduli scheme. By contrast, by
(59), for d > n the coarse moduli scheme HypSurcan

d,n exists and is quasi projective.

Let us end our study of hypersurfaces with a different type of example. This
shows that the moduli problem for hypersurfaces usually includes smooth limits
that are not hypersurfaces. These pose no problem for the general theory, but they
show that it is not always easy to see what schemes one needs to include in a moduli
space.
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Example 62 (Smooth limits of hypersurfaces). [Mor75]
Fix integers a, b > 1 and n ≥ 2. We construct a family of smooth n-folds

Xt such that Xt is a smooth hypersurface of degree ab for t 6= 0 and X0 is not
isomorphic to a smooth hypersurface.

It is not known if similar examples exist for n ≥ 3 and deg X a prime number.
Fix P(1n+1, a) with coordinates x0, . . . , xn, z. Let fa, gab be general homoge-

neous forms of degree a (resp. ab) in x0, . . . , xn. Consider the family of complete
intersections

Xt :=
(

tz − fa(x0, . . . , xn) = zb − gab(x0, . . . , xn) = 0
)

⊂ P(1n+1, a).

For t 6= 0 we can eliminate z to obtain a degree ab smooth hypersurface

Xt
∼=

(

f b
a(x0, . . . , xn) = gab(x0, . . . , xn)

)

⊂ Pn+1.

For t = 0 we see that OX0 (1) is not very ample but realizes X0 as a b-fold cyclic
cover

X0 →
(

fa(x0, . . . , xn) = 0
)

⊂ Pn+1

of a degree a smooth hypersurface. In particular, X0 is not isomorphic to a smooth
hypersurface.

Moduli of genus 2 curves.

Here we consider what happens if we try to replace the moduli functor of genus
2 stable curves with some other variant that uses only irreducible curves.

Definition 63. Let Mirr
2 be the moduli functor of flat families of irreducible

curves of arithmetic genus 2 which are either

(1) smooth,
(2) nodal,
(3) rational with 2 cusps or
(4) rational with a triple point whose complete local ring is C[[x, y, z]]/(xy, yz, zx).

The aim of this subsection is to prove the following:

Proposition 64. (1) The coarse moduli space M irr
2 exists and equals the

GIT quotient S6P1// Aut(P1) (cf. [Mum65, Chap.3] or [Dol03, Sec.10.2]).
(2) Mirr

2 is a very bad moduli functor.

Proof. A smooth curve of genus 2 can be uniquely written as a double cover
τ : C → P1, ramified at 6 distinct points p1, . . . , p6 ∈ P1, up to automorphisms
of P1. Thus, M2 is isomorphic to the space of 6 distinct points in P1, modulo the
action of Aut(P1). If some of the 6 points coincide, we get singular curves as double
covers.

It is easy to see the following (cf. [Mum65, Chap.3], [Dol03, Sec.10.2]).

(3) A point set is semi-stable iff it does not contain any point with multiplicity
≥ 4. Equivalently, if the corresponding genus 2 cover has only nodes and
cusps.

(4) The properly semi stable point sets are of the form 3p1 + p2 + p3 + p4

where the p2, p3, p4 are different from p1 but may coincide with each other.
Equivalently, the corresponding genus 2 cover has cusp(s).
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(5) Point sets of the form 2p1 + 2p2 + 2p3 where the p1, p2, p3 are different
from each other give the only semistable case when the double cover is
reducible. It has two smooth rational components meeting each other at
3 points.

In the properly semi stable case, generically the double cover is an elliptic curve
with a cusp over p1. As a special case we can have 3p1+3p2, giving as double cover a
rational curve with 2 cusps. Note that the curves of this type have a 1-dimensional
moduli (the crosss ratio of the points p1, p2, p3, p4 or the j-ivarint of the elliptic
curve), but they all correspond to the same point in S6P1// Aut(P1). (See (68) for
an explicit construction.) Our definition (63) aims to remedy this non-uniqueness
by always taking the most degenerate case; a rational curve with 2 cusps (63.3).

In case (5), write the reducible double cover as C = C1 +C2. The only obvious
candidate to get an irreducible curve is to contract one of the two components Ci.
We get an irreducible rational curve; denote it by C′

j where j = 3− i. Note that C′
j

has one singular point which is analytically isomorphic to the 3 coordinate axes in
A3. The resulting singular rational curves C′

j are isomorphic to each other. These

are listed in (63.4).
Let p : X → S be any flat family of irreducible, reduced curves of arithmetic

genus 2. The trace map (cf. [BPVdV84, III.12.2]) shows that R1p∗ωX/S
∼= OS .

Thus, by cohomology and base change (cf. [Har77, III.12.11]), p∗ωX/S is locally

free of rank 2. Set P := PS

(

p∗ωX/S

)

. Then P is a P1-bundle over S and we have a
rational map π : X → P . If Xs has only nodes and cusps, then ωXs

is locally free
and generated by global sections, thus π is a morphism along Xs.

If Xs is as in (63.4), then ωXs
is not locally free and π is not defined at the

singular point. π|Xs
is birational and the 3 local brances of Xs at the singular point

correspond to 3 points on P
(

H0(Xs, ωXs
)
)

.
The branch divisor of π is a degree 6 multisection of P → S all of whose fibers

are stable point sets. Thus we have a natural transformation

Mirr
2 (∗) → Mor

(

∗, S6P1// Aut(P1)
)

.

We have already seen that we get a bijection

Mirr
2 (C) ∼=

(

S6P1// Aut(P1)
)

(C).

Since S6P1// Aut(P1) is normal, we conclude that it is the coarse moduli space.
This completes the proof of (64.1).

The assertion (64.2) is more a personal opinion. There are 3 main things
“wrong” with the functor Mirr

2 (∗). Let us consider them one at a time.

64.6 (Stable reduction questions).
At the set-theoretic level, we have our moduli space M irr

2 = S6P1// Aut(P1),
but what about at the level of familes?

The first indications are good. Let πB : SB → B be a stable family of genus
2 curves. Assume that no fiber has 2 smooth rational components. Let bi ∈ B be
the points corresponding to fibers with 2 components of arithmetic genus 1. Let
p : A → B be a double cover ramified at the points bi. Consider the pull-back
family πA : SA → A. Set ai = p−1(bi) and let si ∈ π−1

A (ai) be the separating node.
Since we took a ramified double cover, each si ∈ SA is a double point. Thus if we
blow up every si, the exceptional curve appears in the fiber with multiplicity 1.
We can now contract the birational transforms of the elliptic curves to get a family
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where all these reducibe fibers are replaced by a rational curve with 2 cusps. We
have proved the following analog of (17):

Lemma 64.6.1. Let π : S → B be a stable family of genus 2 curves such that
no fiber has 2 smooth rational components. Then, after a suitable double cover
A → B, the pull-back S ×B A is birational to another family where each reducible
fiber is replaced by a rational curve with 2 cusps. �

This solved our problem for 1-parameter families, but, as it turns out, we have
problems over higher dimensional bases. In particular, there is no universal family
over any base scheme Y that finitely dominates S6P1// Aut(P1), not even locally
in any neighborhood of the properly semi stable point.

Proposition 64.6.2. Let π : X → Y be a proper, flat family of curves of
arithmetic genus 2. Assume that X0 is a rational curve with 2 cusps for some
0 ∈ Y and that dim0 Y ≥ 3. Then there is a curve 0 ∈ C ⊂ Y such that Xy has a
cusp for every y ∈ C.

Proof. This follows from the deformation theory of the cusp. (See [Art76] or
[AGZV85] for good introductions.) We need that every flat deformation of a cusp
is induced by pull-back from the 2-parameter family

(y2 = x3 + ux + v) ⊂ A2
xy × A2

uv

p ↓ ↓
A2

uv = A2
uv.

Thus our family π gives an analytic morphism τ : Y → A2
uv (defined in some

neighborhood of 0 ∈ Y ) and C = τ−1(0, 0) is the required curve. �

64.7 (Failure of local closedness).
Following (64.6.2), consider the universal deformation of the rational curve with

2 cusps. This is given as
(

z2 = (x3 + uxy2 + vy3)(y3 + syx2 + tx3)
)

⊂ P2(1, 1, 3)× A4
uvst

p ↓ ↓
A4

uvst = A4
uvst.

Let us work in a neighbourhood of (0, 0, 0, 0) ∈ A4 where the 2 factors x3+uxy2+vy3

and y3 + syx2 + tx3 have no common roots. There are 3 types of fibers of p.

i) p−1(0, 0, 0, 0) is a rational curve with 2 cusps.
ii) p−1(a, b, 0, 0) and p−1(0, 0, a, b) are irreducible with exactly 1 cusp if (a, b) 6=

(0, 0).
iii) p−1(a, b, c, d) is irreducible with at worst nodes otherwise.

Thus the curves that we allow in our moduli functor Mirr
2 do not form a locally

closed family. Even worse, the subfamily
(

z2 = (x3 + uxy2 + vy3)y3
)

⊂ P2(1, 1, 3)× Spec k[[u, v]]
p ↓ ↓

Spec k[[u, v]] = Spec k[[u, v]].

is not allowed in our moduli functor Mirr
2 , but the family

(

z2 = (x3 + uxy2 + vy3)(y3 + unyx2 + vnx3)
)

⊂ P2(1, 1, 3)× Spec k[[u, v]]
p ↓ ↓

Spec k[[u, v]] = Spec k[[u, v]].
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is allowed. Over Spec k[u, v]/(un, vn) the two families are isomorphic. Since defor-
mation theory is essentially a study of families over Artin rings, this means that
the usual methods can not be applied to understand the functor Mirr

2 .

64.8 (Unusual non-separatedness).
A quite different type of problem arises at the curve corresponding to 2p1 +

2p2 + 2p3.
Write the double cover as C = C1 + C2. As before, if we contract one of the

two components Ci, we get an irreducible rational curve C′
j where j = 3 − i as in

(63.4).
Since the curves C′

1 and C′
2 are isomorphic, from the set-theoretic point of

view this is a good solution. However, as in (28), something strange happens
with families. Let p : S → A1 be a family of stable curves whose central fiber
S0 := p−1(0) is isomorphic to C = C1 + C2. We have two ways to construct
a family with an irreducible central fiber: contract either of the two irreducible
components Ci. Thus we get two families

S
πi−→ Si

pi−→ A1 with p−1
i (0) ∼= C′

3−i.

Over A1 \ {0} the two families are naturally isomorphic to S → A1, hence to
each other, yet this isomorphism does not extend to an isomorphism of S1 and
S2. Indeed, the closure of the graph of the resulting birational map is given by
the image (π1, π2) : S → S1 ×A1 S2. Thus the corresponding moduli functor is not
separated.

We claimed above that, by contrast, the coarse moduli space is M̄2, hence
separated. A closer study reveals the source of this discrepancy: we have been
thinking of schemes instead of algebraic spaces. The occurrence of such problems
in moduli theory was first observed by [Art74]. The aim of the next paragraph is
to show how such examples arise.

64.9 (Bug-eyed covers). [Art74, Kol92]
A non-separated scheme always has “extra” points. The typical example is

when we take two copies of a scheme X ×{i} for i = 0, 1, an open dense subscheme
U ( X and glue U ×{0} to U × {1} to get X ∐U X . The non-separatedness arises
from having 2 points in X ∐U X for each point in X \ U .

By contrast, an algebraic space can be non-separated by having no extra points,
only extra tangent directions. The simplest example is the following.

On A1
t consider two equivalence relations. The first is R1 ⇉ A1 given by

(t1 = t2) ∪ (t1 = −t2) ⊂ A1
t1 × A1

t2 .

Then A1
t /R1

∼= A1
u where u = t2.

The second is the étale equivalence relation R2 ⇉ A1 given by

A1 (1,1)−→ A1 × A1 and A1 \ {0} (1,−1)−→ A1 × A1.

(Note that we take the disconnected union of the two components, instead of their
union as 2 lines in A1 × A1 intersecting at the origin.)

One can also obtain A1
t /R2 by taking the quotient of the nonseparated scheme

A1∐A1\{0}A1 by the (fixed point free) involution that interchanges (t, 0) and (−t, 1).

The morphism A1
t → A1

t /R2 is étale, thus A1
t /R2 6= A1

t /R1. Nonetheless, there
is natural morphism

A1
t /R2 → A1

t /R1
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which is one-to-one and onto on closed points. The difference between the 2 spaces
is seen by the tangent vectors at the origin. The tangent space of A1

t /R2 at the
origin is spanned by ∂/∂t while the tangent space of A1

t /R1 at the origin is spanned
by

∂

∂u
=

1

2t
· ∂

∂t
.

Other compactifications of Mg.

While Mg has many compactifications besides M̄g, it is only recently that a
systematic search begun for other geometrically meaningful examples. The papers
[Sch91, HH08, Smy08] contain many examples.

Our attempt to replace the moduli functor of stable curves of genus 2 with
another one that parametrizes only irreducible curves was not successful, but the
problems seemed to have arisen from the symmetry that forced us to make artificial
choices.

We try to avoid such choices for other values of the genus using the following
observation.

Let π : S → B be a flat family of curves with smooth general fiber and re-
duced special fibers. If Cb := π−1(b) is a singular fiber and Cbi are the irreducible
components of its normalization then

∑

ih
1
(

Cbi,OCbi

)

≤ h1
(

Cb,OCb

)

= 1 − χ
(

Cb,OCb

)

= 1 − χ
(

Cgen,OCgen

)

= h1
(

Cgen,OCgen

)

,

where Cgen is the general smooth fiber. In particular, there can be at most 1
irreducible component with geometric genus > 1

2g(Cgen).
From this it is easy prove the following:
Let B be a smooth curve and S0 → B0 a smooth family of genus g curves over

an open subset of B. Then there is at most one normal surface S → B extending S0

such that every fiber of S → B is irreducible and of geometric genus > 1
2g(Cgen).

Moreover, if Sstab → B is a stable family extending S0 end every fiber of
Sstab → B contains an irreducible curve of geometric genus > 1

2g(Cgen), then we
obtain S from Sstab by contracting all connected components of curves of geometric
genus < 1

2g(Cgen) that are contained in the fibers.
In fact, this way we obtain a partial compactification Mg ⊂ M ′

g such that

(1) M ′
g parametrizes smoothable irreducible curves of arithmetic genus g and

geometric genus > 1
2g.

(2) Let Mg ⊂ M ′′
g ⊂ M̄g be the largest open subset parametrizing curves that

contain an irreducible component of geometric genus > 1
2g. Then there is

a nartural morphism M ′′
g → M ′

g.

So far so good, but, as we see next, we can not extend M ′
g to a compactification

in a geometrically meaningful way. This happens for every g ≥ 3; the following
example with g = 13 is given by simple equations.

This illustrates a general pattern: one can easily propose partial compactifica-
tions that work well for some families but lead to contradictions for some others.

Example 65. Consider the surface F :=
(

x8 + y8 + z8 = u2
)

⊂ P3(1, 1, 1, 4)
and on it the curve C := F ∩ (xyz = 0). C has 3 irreducible components Cx =
(x = 0), Cy = (y = 0), Cz = (z = 0) which are smooth curves of genus 3. C itself
has arithmetic genus 13.
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We work with a 3-parameter family of deformations

T :=
(

xyz − ux3 − vy3 − wz3 = 0
)

⊂ F × A3
uvw. (65.1)

For general uvw 6= 0 the fiber of the projection π : T → A3 is a smooth curve of
genus 13. If one of the u, v, w is zero, then generically we get a curve with 2 nodes
hence with geometric genus 11.

If two of the coordinates are zero, say v = w = 0, then we have a family

Tx :=
(

x(yz − ux2) = 0
)

⊂ F × A1
u.

For u 6= 0, the fiber Cu,0,0 has 2 irreducible components. One is Cx = (x = 0), the
other is (yz − tx2 = 0) which is a smooth genus 7 curve.

Thus the proposed rule says that we should contract Cx ⊂ Cu,0,0.
Similarly, by working over the v and the w-axes, the rule tells us to contract

Cy ⊂ C0,v,0 for v 6= 0 and Cz ⊂ C0,0,w for w 6= 0.
It is easy to see that over A3 \ {(0, 0, 0)} these contractions can be performed

(at least among algebraic spaces). Thus we obtain

T \ {π−1(0, 0, 0)} p0→ T ∗
0

π ↓ π∗
0 ↓

A3 \ {(0, 0, 0)} = A3 \ {(0, 0, 0)}
(65.2)

where π∗
0 is flat with irreducible fibers.

Claim 65.3. There is no proper family of curves π∗ : T ∗ → A3 that extends π∗
0 .

(We do not require π∗ to be flat.)

Proof. Assume to the contrary that π∗ : T ∗ → A3 exists and let

Γ ⊂ T ×A3 T ∗

be the closure of the graph of p0. Since p0 is a morphism on T \{π−1(0, 0, 0)}, we see
that the first projection π1 : Γ → T is an isomorphism away from π−1(0, 0, 0). Since
T ×A3 T ∗ → A3 has 2-dimensional fibers, we conclude that dimπ−1

1

(

π−1(0, 0, 0)
)

≤
2. T is, however, a smooth 4-fold, hence the exceptional set of any birational map to
T has pure dimension 3. Thus Γ ∼= T and so p0 extend to a morphism p : T → T ∗.

Now we see that the rule lands us in a contradiction over the origin (0, 0, 0).
Here all 3 components Cx, Cy, Cz ⊂ C0,0,0 = C should be contracted. This is
impossible to do since this would give that the central fiber of T ∗ → A3 is a point.

Mild failures of local closedness.

Here are 2 examples of moduli functors that are not locally closed (21.0) yet
this does not cause any problems.

Example 66. Let S ⊂ P3 be a smooth surface of degree 4 with infinite auto-
morphism group (??). We claim that IsotrivS(∗), defined in (73), is not locally
closed.

Let S → W be the universal family of smooth degree 4 surfaces in P3. The
isomorphisms classes of the pairs

(

S,OS(1)
)

correspond to the Aut(P3)-orbits in W .

We see below that the fibers isomorphic to S form countably many Aut(P3)-orbits.
Thus IsotrivS(∗) is not locally closed.

For any g ∈ Aut S, g∗OS(1) gives another embedding of S into P3. Two
such embedding are projectively equivalent iff g∗OS(1) ∼= OS(1), that is, when
g ∈ Aut

(

S,OS(1)
)

. The latter can be viewed as the group of automorphisms of P3
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that map S to itself. Thus Aut
(

S,OS(1)
)

is a closed subscheme of the algebraic

variety Aut(P3) ∼= PGL4. Since Aut S is discrete, this implies that Aut
(

S,OS(1)
)

is finite. Hence the fibers of S → W that are isomorphic to S lie over countably
many Aut(P3)-orbits, corresponding to AutS/ Aut

(

S,OS(1)
)

.

Example 67. We construct a smooth, proper family of surfaces X → C over
a smooth curve such that

(1) every fiber has nef canonical class,
(2) the generic fiber has ample canonical class,
(3) X → C is locally projective but
(4) X → C is not projective.

Start with a general hypersurface Y ⊂ P4 of degree d ≥ 5 that contains a
2-plane L. It is easy to see that Y has (d − 1)2 ordinary double points as its
singularities and a general hyperplane containing L intersects Y in L + S where S
is also smooth. It is harder to prove that the class group of Y is generated by L
and the hyperplane class H [?].

Each ordinary double point can be resolved either by blowing up L or by blowing
up S (39). Either of these results in a projective variety, but now we mix these up.

Partition the set of ordinary double points into two nonempty subsets D1, D2.
Let Y1 := BL(Y \D2) and Y2 := BS(Y \D1). Both of these contain Y \ (D1 + D2)
as an open subset. By gluing them together, we get a proper variety Y ∗. We claim
that Y ∗ is not projective.

Indeed, let Ei ⊂ Y ∗ be an exceptional curve mapping to a node in Di. Let
L∗ ⊂ Y ∗ (resp. H∗ ⊂ Y ∗) denote the birational transforms of L (resp. H). Then,
by (39), L∗ · E1 = −1, L∗ · E2 = 1 and H∗ · Ei = 0. Thus no linear combination
aL∗ + bH∗ has positive degree on both E1 and E2. Since PicY ∗ is generated by
L∗ and H∗, this implies that there is no ample divisor on Y ∗. Moreover, this also
shows that if X∗ → Y ∗ is a proper birational morphism that is an isomorphism
near E1 + E2 and X ⊂ X∗ is an open set that contains E1 + E2, then X is not
quasi projective.

It is now easy to construct a family of surfaces as required. Let H1, H2 ⊂ P4

be general hyperplanes and Y ′ := BH1∩H2∩Y Y the blow up. The pencil |H1, H2|
defines a morphism f ′ : Y ′ → P1. Since the Hi are general, we may assume that
there are finite sets B0, B1, B2 ⊂ P1 such that the following holds

(4) for b 6∈ ∪Bi, the fiber Y ′
b is smooth,

(5) for b ∈ B1 (resp. b ∈ B2), the fiber Y ′
b has a single node which is at one

of the points of D1 (resp. D2).

Set X∗ : BH1∩H2∩Y Y ∗ and f∗ : X∗ → Y ∗ → P1. Finally let C := P1 \ B0 and
X := (f∗)−1(C) ⊂ X∗ with f := f∗|X .

By the computations of (39), f : X → C is smooth. By construction, f is
projective over C \ Bi for i = 1, 2 but X itself is not quasi projective.

Other non-separated examples.

As we noted in (27), by a result of [MM64], nonseparated examples in smooth
families tend to involve birationally ruled fibers. Next we consider some examples
of nonseparatedness where the varieties are not even uniruled. The bad behavior
is due to the singularities and not to the global structure.
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Example 68 (Double covers of P1). Let f(x, y) and g(x, y) be two cubic forms
without multiple roots, neither divisible by x or y. Consider 2 families of curves

S1 :=
(

f(x1, y1)g(t2x1, y1) = z2
1

)

⊂ P(1, 1, 3)× A1 and
S2 :=

(

f(x2, t
2y2)g(x2, y2) = z2

2

)

⊂ P(1, 1, 3)× A1.

Note that ωSi/A1 is relatively ample and the general fiber of π1 : Si → A1 is a
smooth curve of genus 2.

The central fibers are
(

f(x1, y1)g(0, y1) = z2
1

)

resp.
(

f(x2, 0)g(x2, y2) = z2
2

)

.

By assumption g(0, y1) = a1y
3
1 and f(x2, 0) = a2x

3
2 where the ai 6= 0. Setting z1 =

a
1/2
1 w1y1 and z2 = a

1/2
2 w2x2 gives the normalizations. Hence the central fibers are

elliptic curves with a cusp. Their normalization is isomorphic to
(

f(x1, y1)y1 = w2
1

)

resp.
(

x2g(x2, y2) = w2
2

)

, and these are, in general, not isomorphic to each other.
This also shows that along the central fibers, the only singularities are at

(1:0:0; 0) and at (0:1:0; 0). Up to canceling units, the local equations are g(t2, y1) =
z2
1 resp. f(x2, t

2) = z2
2 . (These are simple elliptic with minimal resolution a single

smooth elliptic curve of self intersection −1.) Hence the Si are normal surfaces,
each having 1 simple elliptic singular point.

Finally, the substitution

(x1 : y1 : z1; t) = (x2 : t2y2 : t3z2; t)

transforms f(x1, y1)g(t2x1, y1) − z2
1 into

f(x2, t
2y2)g(t2x2, t

2y2) − t6z2
2 = t6

(

f(x2, t
2y2)g(x2, y2) − z2

2

)

,

thus the two families are isomorphic over A1 \ {0}
Example 69 (Limits of double covers of P3). Let ai(x, y) and bi(u, v) be ho-

mogeneous forms of degree n. Consider 2 families of threefolds

X1 :=
(

a1(x, y) + t2nb1(u, v)
)(

a2(x, y) + b2(u, v)
)

= w2 ⊂ P(14, n) × A1, and
X2 :=

(

a1(x, y) + b1(u, v)
)(

t2na2(x, y) + b2(u, v)
)

= w2 ⊂ P(14, n) × A1.

Claim.

(1) For general ai, bi, the central fibers of the Xi → A1 are normal. Their
singularities are canonical iff n ≤ 3, and log-canonical iff n ≤ 4.

(2) The central fibers are of general type if n ≥ 7, have Kodaira dimension 1
if n = 5, 6 and are rationally connected if n ≤ 4.

(3) The general fibers of Xi → A1 have only cA1-singularities and their canon-
ical class is trivial if n = 4 and ample if n ≥ 5.

(4) The two families are isomorphic over A1 \{0} but not isomorphic over A1.

Proof. For general ai, bi, the surface S := (a2(x, y) + b2(u, v) = 0) ⊂ P3 is
smooth and T := (a1(x, y) = 0) has only transverse intersection with it away from
the line L := (x = y = 0). The central fiber X10 of X1 → A1 is the double cover
π : X10 → P3 ramified along S ∪ T . At a general point of L the function b2(u, v) is
nonzero and the local equation of the double cover can be made into p2 = a1(x, y).
At special points b2 can have simple zeros. Here the equation is p2 = s · a1(x, y).

Let g : P ′ := BLP3 → P3 denote the blow up with exceptional divisor E.
Let S′ ⊂ P ′ denote the birational transform of S and T ′ ⊂ P ′ the birational
transform of T . Note that T ′ is the union of n disjoint planes from the linear system
M = |g∗OP3(1)(−E)| and S′ + T ′ + E is a snc divisor if the ai, bi are general. The
fiber product P ′×P3 X10 can be realized as a double cover X∗

10 → P ′ ramified along
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S′ + T ′ + nE. This is not normal along E. Its normalization π′ : X ′ → X∗
10 → P ′

is again a double cover that ramifies along S′ +T ′ +E if n is odd and along S′ +T ′

if n is even. Since S′ + T ′ + E is a snc divisor, X ′
10 has only canonical singularities

(35). Let gX : X ′
10 → X10 denote the induced morphism.

The canonical classes of X10 and of X ′
10 are computed by the Hurwitz formulas

KX10 ∼ π∗OP3(n − 4) and KX′

10
∼ π′∗

(

g∗OP3(n − 4)(−⌊n−2
2 ⌋E)

)

.

Thus we obtain that
KX′

10
∼ g∗XKX10 − ⌊n−2

2 ⌋π′∗E.

This shows that X10 has canonical singularities if n ≤ 3 and log canonical sin-
gularities if n = 4, proving (2). (Note that for n = 5 the formula gives KX′

10
∼

g∗XKX10 − π′∗E, but π′ ramifies along E so π′∗E is a divisor with multiplicity 2.)
Furthermore, if n ≥ 7 then n − 5 ≥ ⌊n−2

2 ⌋, thus

g∗OP3(n − 4)(−⌊n−2
2 ⌋E) ⊃ g∗OP3(n − 4)(−(n − 5)E) = g∗OP3(1)

(

(n − 5)M
)

,

which shows that X ′
10 is of general type.

If n = 5, 6 then X ′
10 has Kodaira dimension 1 and π′∗M is a pencil of K3

surfaces. For a general plane M in this pencil, we get a double cover ramified along
the quintic curve M ∩ S plus the line L when n = 5. The ramification is along the
sextic curve M ∩ S when n = 6.

The computations for the central fiber of X2 → A1 are the same.
The general fibers of Xi → A1 are double covers of P3 ramified along two smooth

surfaces which intersect transversally. This gives the singularities (p2 = qr). The
Hurwitz formula computes the canonical class.

Finally, the substitution

(x : y : u : v : w; t) 7→ (t2x : t2y : u : v : tnw; t)

transforms
(

a1(x, y) + t2nb1(u, v)
)(

a2(x, y) + b2(u, v)
)

− w2 into
(

a1(t
2x, t2y) + t2nb1(u, v)

)(

a2(t
2x, t2y) + b2(u, v)

)

− t2nw2

= t2n
(

(

a1(x, y) + b1(u, v)
)(

t2na2(x, y) + b2(u, v)
)

− w2
)

.

5. Coarse and fine moduli spaces

As in (7), let V be a “reasonable” class of projective varieties (or schemes,
or ...) and V arietiesV the corresponding functor. The aim of this section is to
study the difference between coarse and fine moduli spaces, mosty through a few
examples. We are guided by the following:

Principle 70. Let V be a “reasonable” class as above and assume that it has
a coarse moduli space ModuliV. Then ModuliV is a fine moduli space iff Aut(V )
is trivial for every V ∈ V.

From the point of view of algebraic stacks, a precise version is given in [LMB00,
8.1.1]. Our construction of the moduli spaces in Section ?? also shows that this
principle is true for various moduli spaces of polarized varieties.

The rest of the section is devoted to some simple examples illustrating (70).
The direction ⇒ is rather easy to see if Aut(V ) is finite for every V ∈ V, see (73.2).
However, (70) fails in some cases, as shown by (73.3). The direction ⇐ is subtler.
It again holds for polarized varieties but a precise version needs careful attention
to descent theory and the difference between schemes and algebraic spaces.
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71 (Moduli of varieties without automorphisms). As above, let V be a “rea-
sonable” class of varieties with a coarse moduli space ModuliV. Let us make the
following

Assumption 71.1. Aut(V ) = {1} is an open condition in flat families with fibers
in V.

If this holds then there is an open subscheme Moduli0V ⊂ ModuliV which is a

coarse moduli space for varieties in V without automorphisms. By (70), Moduli0V
is a fine moduli space. In many important cases Moduli0V is dense in ModuliV, thus
one can understand much about the coarse moduli space ModuliV by studying the
fine moduli space Moduli0V.

We see in (???) that (71.1) holds if V satisfies the valuative criterion of sepa-
ratedness (21.1). The following example, however, shows that (71.1) does not hold
for all smooth projective surfaces.

Example 71.2. Let S be a smooth projective surface such that G := Aut(S) =
〈τ〉 ∼= Z/p has prime order ≥ 3 and there is a τ -fixed point s ∈ S such that the G
action on P

(

TsS
)

is faithful.
For instance, if f(x, y, z) is a general homogeneous form of degree pd then we

can take S to be the degree p cyclic cover
(

up = f(x, y, z)
)

⊂ P3(1, 1, 1, d) and s to
be any branch point.

Take now a smooth (affine) curve s ∈ C ⊂ S such that the stabilizer of TsC ⊂
TsS is trivial. For 0 ≤ i < m let Ci ⊂ S×C be the image of (τ i, 1) : C → S×C. By
shrinking C we may assume that the Ci intersect only at (s, s), and there pairwise
transversally.

Let X0 → S × C denote the blow up of C0. The birational transforms C′
i are

disjoint for 0 < i < m. We can now blow up the C′
i for 0 < i < m simultaneously

to obtain

π : X → S × C → C.

If c 6= s then the fiber Xc is obtained from S by blowing up the G-orbit of the
point c ∈ C ⊂ S. Thus the G-action on S lifts to a G-action on Xc.

For c = s we get a fiber Xs which is obtained from S in two steps.
First we blow up s to get BsS with exceptional curve E ⊂ BsS. The G-action

on S lifts to a G-action on BsS. Second, we blow up the (m − 1) intersection
points E ∩ C′

i for 0 < i < m but we do not blow up the point E ∩ C′
0. There is

no G-orbit with m− 1 elements, thus the G-action on BsS does not lift to Xs and
Aut(Xs) = {1}.

Example 71.3. A similar jump of the automorphism group also happens for
Enriques surfaces. By the works of [BP83, Dol84, Kon86], the automorphism
group of a general Enriques surface is infinite, but there are special Enriques surfaces
with finite automorphism group.

Next we see what goes wrong in the presence of automorphisms. We start with
a concrete example.

Example 72 (Moduli theory of the curve (z2 = x2n − 1), I.).
A seemingly trivial, but actualy quite subtle and revealing, example is the

moduli theory of the hyperelliptic curve C, given by a projective equation as

C =
(

z2 = x2n − y2n
)

⊂ P2(1, 1, n).
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Let k be an algebraically closed field. Following the pattern of (9), as a first
approximation, our moduli functor should be

CurvesC(T ) :=







Smooth families S → T such that
every fiber is isomorphic to C,
modulo isomorphisms over T .







This is the right definition if T is reduced, but not otherwise, so for now we restrict
ourselves to reduced base schemes. See (???) for the general case.

Since the k-points of the coarse moduli space are in one-to-one correspondance
with the k-isomorphism classes of objects, a coarse moduli space for CurvesC has
a unique k-point.

The only choice for the universal family is now

u : C → Spec k.

Any k-scheme T has a unique morphism g : T → Spec k and by pull-back we obtain
the trivial family

g∗u : C × T → T.

It is easy to see, however, that for many schemes T , there are other families in
CurvesC(T ). Take, for instance, T = A∗ := A1 \ {0} and consider the surface

S∗
1 :=

(

z2 = x2n − ty2n
)

⊂ P2(1, 1, n)xyz × A∗
t .

S∗
1 is smooth and the fibers of the projection π1 : S∗

1 → A∗ are smooth hyperelliptic
curves of genus n − 1. The substitution y′ := 2n

√
t · y shows that each fiber is

isomorphic to the curve C :=
(

z2 = x2n − y2n
)

⊂ P2(1, 1, n). We claim, however,
that, for n ≥ 3, the family π1 : S∗

1 → A∗ is different from the trivial family
π2 : S∗

2 :=
(

C × A∗
)

→ A∗. We can write the latter as

S∗
2 :=

(

z2 = x2n − y2n
)

⊂ P2(1, 1, n)xyz × A∗
t .

To see the difference note that a hyperelliptic curve (of genus ≥ 2) has a unique
degree 2 map to P1. In our two families the corresponding maps are the coordinate
projection

P2(1, 1, n)xyz × A∗
t → P1

xy × A∗
t

restricted to S∗
1 (resp. S∗

2 ).
The branch curve of S∗

1 → P1
xy × A∗

t is the irreducible curve

B∗
1 :=

(

x2n − ty2n = 0
)

⊂ P2
xy × A∗

t ,

whereas the branch curve of S∗
2 → P1

xy × A∗
t is the reducible curve

B∗
2 :=

(

x2n − y2n = 0
)

⊂ P2
xy × A∗

t .

Thus the two families are not isomorphic.
We also see that the two families become isomorphic after a finite and surjective

base change. Consider the substitution t = u2n. By pulling back S∗
1 , we get the

family
T ∗

1 :=
(

z2 = x2n − u2ny2n
)

⊂ P2(1, 1, n)xyz × A∗
u.

By setting y1 := uy, T ∗
1 becomes isomorphic to the trivial family

T ∗
2 :=

(

z2 = x2n − y2n
1

)

⊂ P2(1, 1, n)xy1z × A∗
u,

which is also obtained by pulling back the trivial family S∗
2 to A∗

u.

We can put these considerations in a somewhat more general setting as follows.
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73 (Isotrivial families). Let X be a smooth projective variety over C and assume
for simplicity that Aut(X) is a discrete group. We are interested in the functor,
which to a reduced scheme T associates the set

IsotrivX(T ) :=







Smooth families X → T such that
every fiber is isomorphic to X ,
modulo isomorphisms over T .







More precisely, we should distinguish between the algebraic and the complex ana-

lytic versions Isotrivalg
X (∗) and Isotrivan

X (∗). It turns out that allowing T to be a
complex analytic space is a minor difference, but allowing X to be complex analytic
creates a substantial change. Let us start complex analytically.

Lemma 73.1. Assume that Aut(X) is a discrete group. Then families in
Isotrivan

X (T ) are in one-to-one correspondance with the Aut(X)-conjugacy classes
of group homomorphisms Hom

(

π1(T, t), Aut(X)
)

.

Proof. Since Aut(X) is a discrete group, over any contractible subset of T the
family has a unique trivialization. Thus, if we fix a point t ∈ T and an isomorphism
Xt

∼= X then the various families are classified by the monodromy representation

ρ : π1(T, t) → Aut(X).

If we do not fix an isomorphism Xt
∼= X , then we have to work with conjugacy

classes of such homomorphisms. �

It is not hard to go from an analytic classification to an algebraic one.

Lemma 73.2. Notation and assumptions as above.

(1) Two such algebraic families Xi → T are algebraically isomorphic iff they
are analytically isomorphic.

(2) X → T is projective iff the image of ρ is finite.
(3) X → T is an algebraic space iff X → T is projective.

Proof. Assume that Xi → T are algebraic and consider the scheme parametriz-
ing relative isomorphisms IsomT (X1,X2) (cf. [Kol96, Sec.I.1]). By our assump-
tions IsomT (X1,X2) → T is étale, thus it has an algebraic section iff it has an
analytic section. This proves (1).

Assume that X → T , corresponding to ρ : π1(T, t) → Aut(X), is projective and
let L be a relatively ample divisor on X. Then c1

(

L|X
)

∈ H2(X, Z) is invariant
under im ρ. For some d > 0, the Néron-Severi group NS(X) is generated by effective
divisors of degree ≤ d (with respect to c1

(

L|X
)

). There are only finitely many such
divisor classes, hence a finite index subgroup of the image of ρ acts trivially on
NS(X). For any projective variety X , the subgroup Autτ (X) of Aut(X) that acts
trivially on NS(X) is an algebraic group (cf. [Kol96, I.1.10.2]). Since Aut(X) is
assumed discrete, Autτ (X) is finite. Thus im ρ is finite, proving one direction of
(2).

Conversely, assume that G := im ρ is finite and let T ′ → T be the étale cover
corresponding to G. On the trivial family X×T ′ consider the action of G where we
act on T ′ by deck transformations and on X by ρ. The quotient X :=

(

X × T ′
)

/G
exists and is projective (cf. ??).

The proof of (3) is left to the reader; we will not use it. �
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Corollary 73.3. Let X be a smooth projective variety over C such that Aut(X)
is a discrete group. Then X → Spec C is a fine moduli space for Isotrivan

X (∗) iff
Aut(X) = {1}.

Proof. If Aut(X) 6= {1} then there is a nontrivial homomorphism Z → Aut(X).
This gives a locally trivial but globally nontrivial complex analytic family over C∗

(or over any elliptic curve) that can not be the pull-back of X → Spec C. Conversely,
if Aut(X) = {1} then Isotrivan

X (T ) consists of the trivial family for any T .

Corollary 73.4. Let X be a smooth projective variety over C such that Aut(X)
is discrete and torsion free. Then for any T , the trivial family X ×T gives the only

algebraic family in Isotrivalg
X (T ). In particular, X → Spec C is a fine moduli space

for Isotrivalg
X (∗).

Proof. By our assumption, the only homomorphism ρ : π1(T, t) → Aut(X) with
finite image is the trivial one. It corresponds to the trivial family X × T → T . �

There are K3 surfaces with discrete and torsion free automorphism group. The
next construction gives another example which is birational to an Abelian surface.

Example 73.5. Let 0 ∈ E be an elliptic curve such that End(0 ∈ E) ∼= Z, (that
is without complex multiplication). Then the automorphism group of its square is

Aut
(

(0, 0) ∈ E × E
) ∼= GL(2, Z)

and the isomorphism is given by
(

a b
c d

)

7→
[

(x, y) 7→ (ax + by, cx + dy)
]

.

Take 3 points P1 = (0, 0), P2 = (x2, 0) and P3 = (0, x3) where x3 ∈ E is 3-torsion
and x2 ∈ E is non-torsion. It is easy to see that {0}×E (resp. E ×{0}) is the only
elliptic curve in E × E that contains 2 of the points and their difference is torsion
(resp. non-torision). Thus we conclude that

Aut
(

E × E, P1 + P2 + P3

)

=

{(

1 3m
0 1

)

: m ∈ Z

}

.

Let now X be the surface obtained from E × E by blowing up the 3 points Pi.
Since the only rational curves on X are the 3 exceptional curves, we conclude that

Aut(X) = Aut
(

E × E, P1 + P2 + P3

) ∼= Z.

Example 74 (Moduli theory of the curve (z2 = x2n − 1), II.).
Another reincarnation of the phenomenon observed in (72) occurs if we notice

that C is already defined over Q and we try to construct the moduli space as Spec Q.
Over an algebraically closed field, C is isomorphic to any of the curves

Cab =
(

z2 = ax2n − by2n
)

⊂ P2(1, 1, n) for a, b 6= 0.

Over other fields, however, the curves Cab need not be isomorphic. For instance,
over R, we can obtain

(

z2 = x2n +y2n
)

whose set of real points consists of 2 circles,
(

z2 = x2n − y2n
)

whose set of real points consists of 1 circle and
(

z2 = −x2n − y2n
)

whose set of real points is empty.
The situation is even worse over Q. For instance, as p runs through all prime

numbers, the curves C1p =
(

z2 = x2n − py2n
)

are pairwise non-isomorphic for
n ≥ 4.
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A simple way to see this is to note that the ramification locus of the projection
C1p → P1

xy is an isomorphism invariant of C1p. In our case, the ramification locus is

the scheme SpecQ Q
(

2n
√

p
)

, and these fields are different from each other for different

values of p. For instance, the only ramified primes in Q
(

2n
√

p
)

/Q are p and possibly
some divisors of 2n. Thus as p runs through the set of primes not dividing 2n, we
get pairwise non-isomorphic fields and hence non-isomorphic curves C1p.

75 (Field of moduli). Let X ⊂ Pn be a projective variety over C. Any set of
defining equations involves only finitely many elements of C, thus X can be defined
over a finitely generated subextension of C. It is a natural question to ask: Is there
a smallest subfield K ⊂ C such that X can be defined by equations over K.

There are three variants for this question.

(1) Fix coordinates on Pn and view X as a specific subvariety. In this case a
smallest subfield exists; see [Wei46, Sec.I.7] or [KSC04, Sec.3.4]. This is
a special case of the existence of Hilbert schemes (5).

(2) No embedding of X is fixed. We see in (78) that this may lead to rather
complicated behaviour.

(3) As an intermediate choice, fix an embedding X →֒ Pn but do not fix the
coordinates on Pn. Equivalently, we work with a pair (X, L) where L is a
very ample line bundle on X . This is the question that we consider next.
Note that, if the canonical line bundle on X is ample or anti-ample, we
can harmlessly identify X with the pair

(

X,OX(mKX)
)

if mKX is very
ample. (There are two further natural variants of this approach. We may
decide not to distinguish between the pairs (X, L) and (X, Lm) for m > 0
or we may identify (X, L) and (X, L′) if L is numerically equivalent to L′.
Both of these lead to minor technical differences only.)

How is this connected with moduli theory?
Let V be a class of varieties with a coarse moduli space ModuliV. Assume

that X ∈ V can be defined by equations over a field K; that is, there is a K-
scheme XK → Spec K whose geometric fiber is isomorphic to X . By the definition
of a coarse moduli space, this corresponds to a morphism Spec K → ModuliV.
In particular, we get an injection of the residue field of ModuliV at [X ] into K.
Conversely, if ModuliV is a fine moduli space, then X can be defined over the
residue field. Thus we have proved the following:

Lemma 75.4. If ModuliV is a fine moduli space then the residue field of ModuliV
at [X ] is the smallest field K such that X can be defined by equations over K. �

An consequence is that, for fine moduli spaces, the residue field of ModuliV at
[X ] depends only on X and not on the choice of V.

In general, let us define the field of moduli of X as the (function field of) the
coarse moduli space of the functor IsotrivX(∗), where, generalizing the concept in
(73) from C to arbitrary fields, for any reduced scheme T we set

IsotrivX(T ) :=







Smooth families X → T such that
every geometric fiber is isomorphic to X ,

modulo isomorphisms over T .







As we see in (78), IsotrivX(∗) need not have a coarse moduli space. We thus
introduce the following variant. For a pair (X, L), where L is a very ample line
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bundle on X , set

Isotriv(X,L)(T ) :=















Smooth families X → T plus a
relatively ample line bundle L such that

every geometric fiber is isomorphic to (X, L),
modulo isomorphisms over T .















By (???), Isotriv(X,L)(∗) always has a coarse moduli space.
In order to avoid some problems with infinite Galois groups (78), the following

lemma is stated for number fields only.

Lemma 75.5. Let X be a smooth projective variety defined over a number field
L. For a field K the following are equivalent.

(1) The field of moduli of X is contained in K.
(2) There is a K-scheme T such that IsotrivX(T ) 6= ∅.
(3) For any σ ∈ Gal(K̄/K), the variety Xσ is isomorphic to X over K̄. (Here

Xσ is obtained by applying σ to a set of defining equations of X .)

Proof. The interesting part is (3) ⇒ (1). Choose a finite extension K(α)/K
such that L ⊂ K(α), where α is a root of a polynomial p(t) ∈ K[t] of degree d. Let

fi(x0, . . . , xm) ∈ K(α)[x0, . . . , xm] : i = 1, . . . , r

be defining equations of X (in some projective embedding) over K(α). Since
K(α) = K + αK + · · · + αd−1K, we can also think of the fi as

fi(α, x0, . . . , xm) ∈ K[α, x0, . . . , xm],

where degα fi < d. Consider now the K-scheme

YK :=
(

f1(t, x0, . . . , xm) = · · · = fr(t, x0, . . . , xm) = p(t) = 0
)

⊂ Pm
K × A1

t .

The second projection gives π : YK → SpecK K[t]/
(

p(t)
)

. One of the geometric
fibers of π is XL̄, the others are its conjugates Xσ

L̄
. If (3) holds then π : YK →

SpecK K(α) is an isotrivial family over the K-scheme SpecK K(α), which shows
(2). �

In (77) we construct a hyperelliptic curve whose field of moduli is Q yet it can
not be defined over R.

76 (Field of moduli for hyperelliptic curves). Let A be a smooth hyperelliptic
curve of genus ≥ 2. Over an algebraically closed field, A has a unique degree 2 map
to P1. Let B ⊂ P1 be the branch locus, that is, a collection of 2g + 2 points in P1.
If the base field k is not closed, then A has a unique degree 2 map to a smooth
genus 0 curve Q. (One can always think of Q as a conic in P2.) Thus A is defined
over a field k iff the pair (B ⊂ P1) can be defined over k.

The latter problem is especially transparent if A is defined over C and we want
to know if it is defined over R or if its field of moduli is contained in R.

Up to isomorphism, there are 2 real forms of P1. One is P1, corresponding to
the anti-holomorphic involution (x:y) 7→ (x̄:ȳ), which, in suitable coordinates, can
also be writen as σ1 : (x:y) 7→ (ȳ:x̄). The other is the “empty” conic, corresponding
to the anti-holomorphic involution σ2 : (x:y) 7→ (−ȳ:x̄). Thus (75.5) gives the
following.

Lemma 76.1. Let A → P1 be a smooth hyperelliptic curve of genus ≥ 2 over C

and B ⊂ CP1 the branch locus. Then
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(1) A can be defined over R iff there is a g ∈ Aut(CP1) such that gB is
invariant under σ1 or σ2.

(2) The field of moduli of A is contained in R iff there is h ∈ Aut(CP1) such
that hB equals Bσ1 or Bσ2 .

Note that if (gB)σ = gB then Bσ =
(

gσ
)−1

gB shows that (1) ⇒ (2). Con-

versely, if Bσ = hB and we can write h =
(

gσ
)−1

g then (gB)σ = gB.

Example 77. Here is an example of a hyperelliptic curve C whose field of
moduli is Q but C can not be defined over R.

Pick α = a + ib where a, b are rational. Consider the hyperelliptic curve

C(α) :=
(

z2 −
(

x8 − y8
)(

x2 − αy2
)(

ᾱx2 + y2
)

= 0
)

⊂ P3(1, 1, 6).

Its complex conjugate is

C(ᾱ) :=
(

z2 −
(

x8 − y8
)(

x2 − ᾱy2
)(

αx2 + y2
)

= 0
)

⊂ P3(1, 1, 6).

Note that C(α) and C(ᾱ) are isomorphic, as shown by the substitution

(x, y, z) 7→ (iy, x, z).

In particular, over the Q-scheme SpecQ Q[t]/(t2 + 1) we have a curve

C(a, b) :=
(

z2 −
(

x8 − y8
)(

x2 − (a + tb)y2
)(

(a − tb)x2 + y2
)

= 0
)

⊂ P3(1, 1, 6).

whose geometric fibers are isomorphic to C(α). Thus the field of moduli of C(α) is
Q.

We claim that, for sufficiently general a, b, the curve C(α) can not be defined
over Q, not even over R. By (76) we need to show that there is no anti-holomorphic
involution that maps the branch locus to itself. In the affine chart y 6= 0, the
ramification points of C(α) → P1 are:

(1) the 8th roots of unity corresponding to x8 − y8, and
(2) the 4 points ±β,±i/β̄ where β2 = α.

The anti-holomorphic automorphisms of the Riemann sphere map circles to
circles. Out of our 12 points, the 8 roots of unity lie on the circle |z| = 1, but no
other 8 can lie on a circle. Thus any anti-holomorphic automorphism that maps
our configuration to itself, must fix the unit circle |z| = 1 and map the 8th roots of
unity to each other.

The only such anti-holomorphic involutions are

(3) Reflection on the line R · ǫ where ǫ is a 16th root of unity, and
(4) z 7→ 1/z̄ or z 7→ −1/z̄.

Thus, as long as β 6∈ R · η for a 16th root of unity, we conclude that C(α) is not
isomorphic (over C) to a real curve.

The configuration depicted below shows 12 points p1, . . . , p12 on C that are
invariant under z 7→ i/z̄ but not invariant under any anti-holomorphic involution.
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Example 78. We give an example of a smooth projective surface S such that
if S is defined over a field extension K/C then trdeg K ≥ 2 but the intersection of
all such fields of definition is C.

Let X be a smooth projective variety such that

(1) Aut(X) is an infinite discrete group whose general orbit is Zariski dense
in X and

(2) Aut(X) is generated by 2 finite subgroups G1, G2.

By (73.5), one such example is B0(E × E), the blow up of the square of an elliptic
curve at a point. There are also K3 surfaces with infinite automorphism group that
is generated by 2 involutions (??).

Let ∆ ⊂ X ×X be the diagonal and, using one of the projections, consider the
family of smooth varieties

f : Y := B∆X × X → X.

Note that Y → X is the universal family of the varieties of the form BxX for x ∈ X .
This shows that f : Y → X can not be obtained by pull-back from any family over
a lower dimensional base.

In particular, if x ∈ X is general, then Aut(BxX) = Z/2 if X = B0(E × E)
and Aut(BxX) = 1 if X is a K3 surface. The action of Aut(X) lifts to the diagonal
action on Y .

Let G ⊂ Aut(X) be a finite subgroup. There is an open subset UG ⊂ X such
that G operates on UG without fixed points. Thus f/G : Y/G → X/G is a family
of smooth varieties over UG/G and Y |UG

∼= Y/G ×X/G UG.
Let K = C(X) denote the function field of X . The variety we are interested in

is YK , the generic fiber of Y → X . The above considerations show that YK can be
defined over C(X/G) = KG for every finite subgroup G ⊂ Aut(X).

Note that K = C(X) is a function field of transcendence degree dimX over C

and so are the subfields KG. On the other hand, the intersection KG1 ∩KG2 is C.
Indeed, any function in KG1 ∩KG2 is constant on every G1-orbit and also on every
G2-orbit. By assumption (2), it is also constant along every Aut(X)-orbit, hence
constant by assumption (1).

This phenomenon is also connected with the behaviour of ample line bundles
on πi : Y → Y/Gi. Although both of the Y/Gi are projective, there are no ample
line bundles Li on Y/Gi such that π∗

1L1
∼= π∗

2L2.
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géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Paris,
1962, pp. 249–276, Exp. No. 221. MR MR1611822

[Har66] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A.
Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture

51



52 BIBLIOGRAPHY

Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR MR0222093 (36
#5145)

[Har77] , Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in
Mathematics, No. 52. MR MR0463157 (57 #3116)

[HH08] Brendan Hassett and Donghoon Hyeon, Log minimal model pro-

gram for the moduli space of stable curves: The first flip,
http://www.citebase.org/abstract?id=oai:arXiv.org:0806.3444, 2008.

[HL97] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves,
Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997.
MR MR1450870 (98g:14012)

[HP47] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry. Vols. I–III., Cam-
bridge, at the University Press, 1947. MR MR0028055 (10,396b)

[Iit71] Shigeru Iitaka, On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23

(1971), 356–373. MR MR0285531 (44 #2749)
[Ill71] Luc Illusie, Complexe cotangent et déformations. I–II, Lecture Notes in Mathemat-

ics, Vols. 239, 283, Springer-Verlag, Berlin, 1971. MR MR0491680 (58 #10886a)
[KKMSD73] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embed-

dings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973.
MR MR0335518 (49 #299)

[KM97] Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145

(1997), no. 1, 193–213. MR MR1432041 (97m:14014)
[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cam-

bridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge,
1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the
1998 Japanese original. MR MR1658959 (2000b:14018)

[Kol90] János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1,
235–268. MR MR1064874 (92e:14008)

[Kol92] , Cone theorems and bug-eyed covers, J. Algebraic Geom. 1 (1992), no. 2,
293–323. MR MR1144441 (93e:14022)

[Kol96] , Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-
ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],
vol. 32, Springer-Verlag, Berlin, 1996. MR MR1440180 (98c:14001)

[Kol97] , Quotient spaces modulo algebraic groups, Ann. of Math. (2) 145 (1997),
no. 1, 33–79. MR MR1432036 (97m:14013)

[Kol08] , Is there a topological Bogomolov-Miyaoka-Yau inequality?, Pure Appl.
Math. Q. 4 (2008), no. 2, part 1, 203–236. MR MR2400877 (2009b:14086)
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