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Theorem
Let X ⊂ Pn+1 be a smooth hypersurface of degree n + 1.
Assume that n ≥ 3. Then every birational map φ : X 99K X ′

to any Fano variety X ′ is an isomorphism.

Noether-Fano method: aims to get similar results for other
Fano varieties.



History

Max Noether (1870)
Fano (1908, 1915),
Segre (1942),

Iskovskikh-Manin (1971),
Pukhlikov (1987, 1998, 2002),
Corti (1995, 2000)
Cheltsov (2000, 2005),
de Fernex-Ein-Mustaţă (2003),
de Fernex (2013, 2016),

Z. Zhuang also with C. Stibitz, Y. Liu



Main step 1 (for any Fano variety)

Step 1. Choose m′ such that | −m′KX ′ | is very ample and
consider M := φ−1| −m′KX ′| as a sub-linear system of some
|mKX |.

Note: φ is an isomorphism iff M is base point free.
Noether-Fano inequality: M must be “quite” singular at

some point of its base locus.

“Quite” singular=
(
X , 1

m
M
)

is not canonical.



Main step 2 (for any hypersurface)

V : smooth hypersurface,
– D ∈ |OV (m)| a divisor, M ⊂ |OV (m)| a movable pencil

Lemma 1. D can be unexpectedly singular only at
finitely many points.

(Simplest case: a hyperplane can be tangent only at
finitely many points.)

Lemma 2. M can be unexpectedly singular only along
finitely many curves.



Main step 3

Step 3. Restricting to general W := X ∩ H containing the
“worst” point p, we get

1

(
W , 1

m
M |W

)
is not log canonical at p and

2

(
W , 1

m
|2MW |

)
is log canonical outside p.

Comments:

1 Restricting to W makes the singularity at p worse.

2 Going to |2M | is a small but important trick. It controls
singularties along curves.



New ingredient: Main step 4

Theorem (Zhuang)

Y : smooth projective, dimension d;
L ample and ∆ ∼ L a Q-divisor. (L ∼ 2

m
M |W )

Assume:
– ∆ is log canonical outside a finite set of points and
–
(
Y , 1

2
∆
)

is not log canonical.
Then

h0
(
Y , ωY ⊗ L

)
≥ 1

2
3d .



Restate: If
(
Y , 1

2
∆
)

is not log canonical then

h0
(
Y , ωY ⊗ L

)
≥ 1

2
3d .

Note: If h0
(
Y , L

)
>
(
3d
d

)
∼ 6.75d ,

then there is a D ∈ |L| such that multp D > 2d , hence(
Y , 1

2
D
)

is not log canonical at p.

Informally: no accidental isolated singularities!



Hypersurface case

Steps 1–3 give

1 W = W n−1
n+1 ⊂ Pn thus KW ∼ 0 and

2 ∆ ∼ 2H such that

3

(
W , 1

2
∆
)

is not log canonical at p but

4

(
W ,∆

)
is log canonical outside p ∈ W .

By Step 4 (
n+2
2

)
= h0

(
W , ωW (2)

)
≥ 1

2
3n−1.

Impossible for n ≥ 5.



Main step 1 (Noether-Fano inequality)

We have X
p← Z

q→ X ′ and
M ⊂ | −mKX |,MZ ,M

′ ⊂ | −m′KX ′ |. Write

KZ = q∗KX ′ + Eq MZ = q∗M ′ and
KZ = p∗KX + Ep MZ = p∗M − Fp.

For any c we have

KZ + cMZ ≡ q∗(KX ′ + cM ′) + Eq

KZ + cMZ ≡ p∗(KX + cM) + Ep − cFp.



KZ + cMZ ≡ q∗(KX ′ + cM ′) + Eq

KZ + cMZ ≡ p∗(KX + cM) + Ep − cFp.

Setting c = 1
m′ , we see that

KZ + 1
m′MZ ≡ q∗(KX ′ + 1

m′M
′) + Eq ≡ Eq ≥ 0.

So KX + 1
m′M ≡ p∗(Eq) ≥ 0, hence m ≥ m′.

Setting c = 1
m

gives

KZ + 1
m
MZ ≡ p∗(KX + 1

m
M) + Ep − 1

m
Fp ≡ Ep − 1

m
Fp.

So KX ′ + 1
m
M ′ ≡ q∗(Ep − 1

m
Fp).

If Ep − 1
m
Fp is effective, then m′ ≥ m. Thus

m = m′, p∗(Eq) = 0, q∗(Ep − 1
m
Fp) = 0.

With little work: X ∼= X ′.



What is “quite” singular?

Conclusion: If X 99K X ′ not an isomorphism then

Ep − 1
m
Fp =

(
KZ + 1

m
MZ

)
− p∗

(
KX + 1

m
M
)

is not effective.

Question: Which p-exceptional divisor has negative
coefficient?

Example. (First blow-up). If E is obtained by blowing up a
codimension r center W then

coeff(E ) = (r − 1)− 1
m

multW M .

If this is negative then

multW M > (r − 1)m.

Problem. Higher blow-ups are much harder to see.



What is “quite” singular?

– variety X (smooth or normal or ...)
– D: divisor ∆ or linear system M or ideal sheaf I ,
Take a log resolution π : Y → X and write

KY = π∗KX +
∑

eiEi

π∗D =
∑

iaiEi or

=
∑

iaiEi + (free linear system) or

= OY

(
−
∑

iaiEi

)
. Thus

KY = π∗
(
KX + cD

)
+
∑

i(ei − cai)Ei .

Definition:
(X , cD) is canonical if ei − cai ≥ 0 (∀Y ,∀i)
(X , cD) is klt if all ei − cai > −1 (∀Y ,∀i)
(X , cD) is log canonical if all ei − cai ≥ −1 (∀Y ,∀i)



Typical example

X = Cn

D =
(∑

i λix
mi
i = 0

)
or M = |xmi

i | or I = (xmi
i ).

(X ,D) is log canonical iff 1 ≤
∑

i
1
mi

.

(X , cD) is log canonical iff c ≤
∑

i
1
mi

.



Main step 2 (for any hypersurface)

Lemma (Fano, Segre, Pukhlikov, Cheltsov, Suzuki)

– V : smooth hypersurface,
– D ∈ |OV (m)| a divisor, M ⊂ |OV (m)| a movable pencil
– η ∈ V a (non-closed) point.

1 If dim η ≥ 1 then multη D ≤ m.

2 If dim η ≥ 2 then multη(M ·M) ≤ m2.

Proof. Simplest case: η generic point of a line L.
Intersect V with a general 2-plane containing L. Get C + L
and C ∩ L is d − 1 general points on L. So

dm =
(
C + L · D

)
≥ (d − 1) multη D + (L · D)
≥ (d − 1) multη D + m.



Main step 3 (Corti, de Fernex, . . . )

Corollary from Step 2:
–
(
X , 1

m
M
)

is not canonical at a finite set of points p,

–
(
X , 1

m
|2M |

)
is log canonical outside a finite set of curves.

Cut with a very general H 3 p to get W = X ∩ H .

–
(
W , 1

m
M |W

)
is not log canonical at p,

–
(
W , 1

m
|2MW |

)
is log canonical outside a finite set.



Main step 3 (Corti, de Fernex, . . . )

Change to divisors: Set

∆ = 1
m

(general member of
∣∣2MW

∣∣).
Key properties

1 ∆ ∼ OW (2),

2

(
W , 1

2
∆
)

is not log canonical at p,

3

(
W ,∆

)
is log canonical outside a finite set of points.



Multiplier ideals (prelude to Main step 4)

Take a log resolution π : Y → (X ,∆). Write

KY = π∗KX +
∑

eiEi

π∗∆ =
∑

iaiEi

Definition: J (∆) = π∗OY

(∑
(ei − [ai ])Ei .

Note: supp
(
OX/J (∆)

)
= points where (X ,∆) is not klt.

Nadel vanishing. If L−∆ is ample (or nef and big) then

H i
(
X , ωX ⊗ L⊗ J (∆)

)
= 0 ∀i > 0.



Step 4 in three easy lemmas

Lemma 1. If (X , 1
2
∆) is not lc then

(
X ,J (∆)

)
is not lc.

Lemma 2. If (X ,∆) is lc away from finitely many points
then H0

(
X , ωX ⊗ L) ≥ length

(
OX/J

(
(1− ε)∆

))
.

Lemma 3. If
(
X , I

)
is not lc then length

(
OX/I

)
≥ 1

2
3n.

Proof of Lemma 2: Set ∆′ = (1− ε)∆. Then L−∆′ ≡ εL is
ample so

H0
(
ωX ⊗ L)→ H0

(
OX/J (∆′)

)
→ H1

(
ωX ⊗ L⊗ J (∆′)

)
.

Last group zero by Nadel vanishing.



Proof of Lemma 1

Since J (∆) = π∗OY

(∑
(ei − [ai ])Ei ,

π∗J (∆) ⊂ OY

(∑
(ei − [ai ])Ei

)
.

So if π∗J (∆) = OY

(
−
∑

a′iEi

)
then a′i ≥ [ai ]− ei .

(X , 1
2
∆) not lc ⇒ ∃i : ei − 1

2
ai < −1.

ei − a′i ≤ ei −
(
[ai ]− ei

)
= 2ei − [ai ] < 2ei − ai + 1

≤ 2
(
ei − 1

2
ai
)

+ 1 < −2 + 1 = −1.

So
(
X ,J (∆)

)
is not lc.



Log canonical threshold (prelude to proof of Lemma 3)

Definition.
lcth(D) := biggest c such that (X , cD) is lc.

Lemma. For any smooth X and effective divisor ∆

multp ∆

dimX
≤ 1

lcthp(∆)
≤ multp ∆.

Arnol’d multiplicity: lcthp(∆)−1

Informally. lcthp(∆)−1 is like the multiplicity for large
values, but the two are quite different for small values.



Co-length and log canonical threshold

Theorem (Corti, de Fernex-Ein-Mustaţă, Howald)

If I ⊂ R = k[[x1, . . . , xn]] then

length(R/I ) ≥ (combinatorial number from lcth(I )).

Proof. Using flat defomation to toric ideal (∼ Gröbner basis)
and lower semicontinuity of lcth, we may assume that I is
monomial.



Newton polytope

For
∏

x rii ∈ I we mark the point (r1, . . . , rn) with a big dot
for generators and invisible dot for others.
The Newton polytope is the boundary of the convex hull of
the marked points.

qqq
qqq
qq

q q q q q q q q

s s s s s

A
A
A
A
@
@
HH

The Newton polygon of
(y 7, y 5x , y 3x2, yx4, x6)

main face in red



•
∑

(xi/mi) = 1: main face of its Newton polytope

• I sat := {
∏

i x
ri :
∑

(ri/mi) ≥ 1} ⊃ I .

• lcth
(
I sat
)

=
∑

(1/mi)

• Check by weighted blow up that lcth(I ) =
∑

(1/mi).
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Set c = lcth(I ).

Corollary. (combinatorial number) = the minimal number
of lattice points in a simplex whose face contains

(
1
c
, . . . , 1

c

)
.

That is:
min

m1,...,mn

#
{
Nn ∩

(∑ xi
mi
< 1

c

∑
1
mi

)}
.



Three computations

Corollary

If g1, . . . , gn ∈ I then length(R/I ) ≥ nn/
(
n! · lcth(I )n

)
.

Corollary

C1,C2 ⊂ C2 and 1
m
|C1,C2| is not lc at a point p then

(C1 · C2)p > 4m2.

Corollary (= Lemma 3)

If I is not lc then length(R/I ) ≥ 1
2
3n.

Proof.
(∑ xi

mi
≤
∑

1
mi

)
contains

at least half of the points in {0, 1, 2}n.


