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Let X C P"*! be a smooth hypersurface of degree n + 1.
Assume that n > 3. Then every birational map ¢ : X --+ X'
to any Fano variety X' is an isomorphism.

Noether-Fano method: aims to get similar results for other
Fano varieties.



History

Max Noether (1870)
Fano (1908, 1915),
Segre (1942),

Iskovskikh-Manin (1971),
Pukhlikov (1987, 1998, 2002),
Corti (1995, 2000)

Cheltsov (2000, 2005),

de Fernex-Ein-Mustata (2003),
de Fernex (2013, 2016),

Z. Zhuang also with C. Stibitz, Y. Liu



Main step 1 (for any Fano variety)

Step 1. Choose m’ such that | — m'Kx/| is very ample and

consider M := ¢ '| — m'Kx| as a sub-linear system of some
‘me‘

Note: ¢ is an isomorphism iff M is base point free.
Noether-Fano inequality: M must be “quite” singular at

some point of its base locus.

“Quite” singular= (X, %I\/I) is not canonical.



Main step 2 (for any hypersurface)

V. smooth hypersurface,
- D € |Oy(m)| a divisor, M C |Oy/(m)| a movable pencil

Lemma 1. D can be unexpectedly singular only at
finitely many points.

(Simplest case: a hyperplane can be tangent only at
finitely many points.)

Lemma 2. M can be unexpectedly singular only along
finitely many curves.



Main step 3

Step 3. Restricting to general W := X N H containing the
“worst” point p, we get

(1] (W, %/\/I|W) is not log canonical at p and
Q@ (W, L|2My|) is log canonical outside p.

Comments:
© Restricting to I/ makes the singularity at p worse.

@ Going to [2M| is a small but important trick. It controls
singularties along curves.



New ingredient: Main step 4

Theorem (Zhuang)

Y': smooth projective, dimension d;

L ample and A ~ L a Q-divisor. (L ~ 2M|y)
Assume:

— A is log canonical outside a finite set of points and
— (Y, 3A) is not log canonical.

Then



Restate: If (Y, %A) is not log canonical then

R (Y,wy ® L) > 137

1
2

Note: If i°(Y,L) > (*7) ~ 6.75¢,
then there is a D € |L| such that mult, D > 2d, hence
(Y,1D) is not log canonical at p.

Informally: no accidental isolated singularities!



Hypersurface case

Steps 1-3 give
Q@ W =W/ cCP"thus Ky ~ 0 and
@ A ~ 2H such that
(3] (W7 %A) is not log canonical at p but
Q@ (W,A) is log canonical outside p € W.
By Step 4

("2°) = B (W, ww(2)) =

1
2

Impossible for n > 5.

31,



Main step 1 (Noether-Fano inequality)

We have X £ 7 % X’ and

M C | —mKx|,Mz,M" C | — m' Kx/|. Write
KZ:q*KX'+Eq MZ:q*M/
KZ:p*Kx+EP MZZP*M—FP.

and
For any ¢ we have

KZ + CMZ = C]*(KX/ + CM/) + Eq

KZ + CMZ = p*(KX + CM) + Ep — CFP



KZ + CMZ = q*(KX/ + CM/) + E
Kz +cMz = p*(KX + CM)
Setting ¢ = L

+ E, — cF,
—, we see that
Kz + LMz =q"(Kx + LM+ E,=E, >0
So Kx + LM = p,(E;) > 0, hence m > m
Setting ¢ = = gives
Kz + 1My =p*(Kx+iM)+E,— LF, = E,— LF,
So KX’ + %MI = q*(Ep — %Fp)
If E, —

F, is effective, then m" > m. Thus
m=m,

p«(Eq) =0, q.(Ep — %Fp) = 0.
With little work: X = X’



What is “quite” singular?

Conclusion: If X --» X’ not an isomorphism then
B~ LF, = (Kz+ 5My) — p (K + 2M)
is not effective.

Question: Which p-exceptional divisor has negative
coefficient?

Example. (First blow-up). If E is obtained by blowing up a
codimension r center W then

coeff(E) = (r — 1) — £ multy M.
If this is negative then

multwy M > (r — 1)m.

Problem. Higher blow-ups are much harder to see.



What is “quite” singular? J

— variety X (smooth or normal or ...)
— D: divisor A or linear system M or ideal sheaf /,
Take a log resolution 7 : Y — X and write

Ky = mKx+ > ek
™D = Y .aFE or
= ) .a;E; + (free linear system) or
= Oy(—zia,-E,-)‘ Thus
Ky = 7T*(KX + cD) + > (e — cai)E;.

Definition:

(X, cD) is canonical if e, — ca; >0 (VY Vi)
(X,cD)is kit if all & — ca; > —1 (VY. Vi)

(X, cD) is log canonical if all e, — ca; > —1 (VY ,Vi)

=] &



Typical example

X=C"

D= (32 Mix™ =0) or M= |x™] or I = (x"

(X, D) is log canonical iff 1 < ). ml,
(X, cD) is log canonical iff ¢ < )", ml

]

).



Main step 2 (for any hypersurface) )

Lemma (Fano, Segre, Pukhlikov, Cheltsov, Suzuki)

— V: smooth hypersurface,
— D € |Oy(m)| a divisor, M C |Oy(m)| a movable pencil
-1 € V a (non-closed) point.

© /fdimn > 1 then mult, D < m.

@ /fdimn > 2 then mult,(M - M) < m?.

Proof. Simplest case: 7 generic point of a line L.
Intersect V' with a general 2-plane containing L. Get C + L
and C N Lis d— 1 general points on L. So

dm = (C+L-D)
> (d—1)mult, D+ (L- D)
> (d=1)mult,D+m. O



Main step 3 (Corti, de Fernex, ...)

Corollary from Step 2:
— (X, M) is not canonical at a finite set of points p,

- (X, %|2M\) is log canonical outside a finite set of curves.
Cut with a very general H > ptoget W = XN H.

— (W, LM]|w) is not log canonical at p,
— (W, L[2My]) is log canonical outside a finite set.



Main step 3 (Corti, de Fernex,

o)
Change to divisors: Set

A = L(general member of [2My|).
Key properties
@ A~ Ow(2),

(2 ) (W7 %A) is not log canonical at p,

@ (W.A) is log canonical outside a finite set of points.



Multiplier ideals (prelude to Main step 4) |

Take a log resolution 7 : Y — (X, A). Write

KY = W*KX—FZG;E/
AN Zia,-E;

Definition: j(A) = 7&03/(2(6,‘ — [8,‘])E,‘.
Note: supp(Ox/J(A)) = points where (X, A) is not klt.
Nadel vanishing. If L — A is ample (or nef and big) then

H' (X,wx ® L® J(A)) =0 Vi>0.



Step 4 in three easy lemmas

Lemma 1. If (X, A) is not Ic then (X, 7(A)) is not lc.

Lemma 2. If (X, A) is Ic away from finitely many points
then H%(X,wx @ L) > length(Ox/J ((1 — €)A)).

Lemma 3. If (X, /) is not Ic then length(Ox/I) > £3".

Proof of Lemma 2: Set A’ = (1 —¢)A. Then L — A’ =¢lL is
ample so

H%(wx @ L) — H°(Ox/J(A")) = H' (wx ® L@ T(4")).

Last group zero by Nadel vanishing. O]
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Proof of Lemma 1 )

Since J(A) = W*(’)y(Z(e; — [ai])E;,

W*j(A) C Oy(Z(e; — [a,])E,)

So if T* T (A) = Oy(—Zaf-E;) then a2 > [a/] — e
(X,3A)not lc = Ji: ¢ — 2a; < —1.

e—a < e—([a]—e)=26—[3]<26—2a+1
< 2(e—3%a)+1l<—2+1=-1
So (X, J(A)) is not lc. O

=] F = = £ DA



Log canonical threshold (prelude to proof of Lemma 3)

Definition.
Icth(D) := biggest ¢ such that (X, cD) is Ic.
Lemma. For any smooth X and effective divisor A

mult, A
- <
dimX ~ Icth,(A)

< mult, A.

Arnol’d multiplicity: Icth,(A)™*

Informally. Icth,(A)~! is like the multiplicity for large
values, but the two are quite different for small values.



Co-length and log canonical threshold

Theorem (Corti, de Fernex-Ein-Mustata, Howald)
IfI C R = k[[xi, ..., x| then

length(R/I) > (combinatorial number from Icth(/)).

Proof. Using flat defomation to toric ideal (~ Grobner basis)
and lower semicontinuity of Icth, we may assume that / is
monomial.



Newton polytope

For [[ x”" € | we mark the point (r,...,r,) with a big dot
for generators and invisible dot for others.

The Newton polytope is the boundary of the convex hull of
the marked points.

The Newton polygon of
(7, 2%, y°x%, yx*, x°)

main face in red
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e > (x;/m;) = 1: main face of its Newton polytope
o [ = {T[,x":> (r/mi) >1} D I.
o Icth(/*) = >7(1/m;)

e Check by weighted blow up that Icth(/) = > (1/m;)




Set ¢ = Icth(/).

Corollary. (combinatorial number) = the minimal number
of lattice points in a simplex whose face contains (£,...,1).

That is: -
min #{N"N (L2 < 121)}

mi,...,



Three computations

Corollary
Ifgi,....8n € I then length(R/1) > n"/(n! - lcth(/)").

Corollary

Ci, G € C? and L|Cy, G| is not Ic at a point p then
(Cl c Cz)p > 4m°.

Corollary (= Lemma 3)

If I is not Ic then length(R/I) > 33"

Proof. (>-4 < 37,-) contains
at least half of the points in {0,1,2}".



