
Math 416 HW

Unless stated otherwise, HW is from Shafarevich: Basic algebraic geometry.

Due Sept. 29. Sec I.1: 2,3,4 (+ give examples), 5,6,9
Sec I.2: 2,3,4,5,6,15,17

Due Oct. 6. Sec I.3: 1,4,5,6
Sec.I.4: 2,3,5,9,10
Sec.I.5: 1,5,6

Due Oct 13. Sec 1.6: 1, 2, 10
More problems:
a) Find a counter example to the Corollary on p.77 (in Sec I.6.3) and correct its

statement.
b) Apply the method of Sec I.6.4 in the following situations:
i) Which quartic surfaces in P

3 contain a line (or a plane conic or a plane cubic
curve)?

ii) For which pairs (n, d) is it true that every hypersurface of degree d in Pn

contains a line?

Solution to (b.ii). We follow the method of the cubic surfaces in Shafarevich.
It is enough to find ONE hypersurface and on it ONE line near which the dimen-

sion of all lines on that hypersurface is the expected one. I do the case d = 2n− 3.
The line will be (x0 = · · · = xn−2 = 0). Nearby lines are of the form xi =

sixn−1 + tixn for i = 0, . . . , n− 2. Hypersurafces containing this line have equation

n−2
∑

i=0

fixi = 0 where deg fi = 2n − 4.

Now look at the special hypersurface

n−2
∑

i=0

x2i
n−1x

2(n−2−i)
n xi = 0.

When we compute
n−2
∑

i=0

x2i
n−1x

2(n−2−i)
n (sixn−1 + tixn),

each monomial will have a ti or si as a coefficient. Thus the line is on the hyper-
surface iff the last expression is identically 0 iff all the ti, si are 0.

Note. This hypersurface actually contains a lot of lines since it contains the
(n − 2)-plane (xn−1 = xn = 0).
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Due Oct 20. Sec II.1: 2, 4, 5, 6, 9, 10, 12, 13, 14, 15, 16
Extra problem:
i) Use Bézout’s theorem (IV.2.1, example 1 on p.236) to show that a cubic

hypersurface in Pn has at most 2n+1 singular points (or singular along a whole
curve).

ii) Consider the cubic hypersurface, given by equations
m

∑

1

x3
i =

m
∑

1

y3
i and

m
∑

1

xi =

m
∑

1

yi.

Find and count its singular points.
iii) Generalize the above to higher degree hypersurfaces.
iv) If possible, try to find examples that have more singular points than the one

in ii). (I do not know what the best result should be, most likely it is not known
at all, so this is an open ended question.)

Due Oct 27. Sec II.3: 6, 9–13,
Extra problems:
i) For which n ≥ 3 is C[x1, . . . , xn]/(x2

1 + · · · + x2
n) a UFD?

ii) Resolve the following singularities and draw the corresponding dual graphs.
(At least start these, you may finish them for next time if it is going slow.)

x2 + y2 + zn+1 = 0
x2 + y2z + zn−1 = 0
x2 + y3 + z4 = 0
x2 + y3 + yz3 = 0
x2 + y3 + z5 = 0

Due Nov 10. Sec II.5: 2, 4, 6
Sec II.6: 1–6
Extra problems:
1. Prove that the normalization of a graded ring is also graded.
2. For any m, a ∈ N find the normalization of the curve S(m, a) := (zm = xa) ⊂

C2.
3. For any m, a, b ∈ N find the normalization of the surface S(m, a, b) := (zm =

xayb) ⊂ C3. (Hint. Use the previous results. Depending on how you do this, the
answer may look complicated. Consider starting with low values of m. Partial
answers should also be submitted.)
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Due Nov 17. Sec III.1: 1,5,8–10, 16–18
Sec III.2: 1,3,6
Extra problems:
Consider the proposed intersection formula

X · Y
?
=

∑

p∈X∩Y

Op/
(

I(X), I(Y )
)

(∗)

in the following cases.
1. In P4 let X be the union of two 2-planes meeting at a point p and let Y be

another 2-plane. Compute the rhs of (*) when Y does not pass through p and also
when Y does pass through p.

2. Let C ⊂ P3 be the image of P1(s : t) by the map (s : t) 7→ (s4 : s3t : st3 : t4).
Let X ⊂ P4 be the cone over C with vertex p. Let Y be a 2-plane. Compute the
rhs of (*) when Y does not pass through p and also when Y does pass through p.

(In both cases, start with cases where the equations for both X and Y look
simple. Then you may try the general cases later.)

3. In both of these cases, what can you say about the local rings Op,X?

Due Nov 24. 1. Let C be a smooth, projective curve. Let Γ(ΩC) be the vector
space of differential 1-forms without poles.

a) Show that Γ(ΩC) is finite dimensional.
b) Explain how Γ(ΩC) defines a map of C to a projective space of dimension

dimΓ(ΩC) − 1. Let C̄ ⊂ Pg−1 denote the image.
c) Show that if C1

∼= C2 then there is a linear change of coordinates Φ : Pg−1 →

Pg−1 such that Φ(C̄1) = C̄2.
2. Assume that C is hyperelliptic of genus ≥ 2.
a) Use the computation we did in class to show that C̄ ∼= P1 and C → P1 is the

unique 2:1 map of C to P1.
b) Let B(C) ⊂ P1 denote the set of 2g + 2 branch points. Show that C1

∼=
C2 if and only if there is a linear change of coordinates Φ : P

1 → P
1 such that

Φ(B(C1)) = B(C2).
3. Let Cm,f denote the affine curve ym = f(x) where f has no multiple roots.
a) Show that Cm,f is smooth.
b) Assume that m is rel.prime to deg f . Let C̄m,f ⊂ P2 denote the corresponding

projective curve. Show that it has one point at infinty and compute the normaliza-
tion of its local ring.

c) As we did in class, use these to compute the genus of the normalization of
C̄m,f .

d) Show that the genus agrees with the topological genus.
e) Compute the vector space of differential 1-forms without poles.


