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Abstract

We show that curve enumeration invariants of complex threefolds with nef anti-
canonical bundle are determined by their values on local curves. This statement and
its proof are inspired by the proof of the Gopakumar—Vafa integrality conjecture by
Tonel and Parker. The conjecture of Maulik, Nekrasov, Okounkov, and Pandharipande
relating Gromov—Witten and Donaldson—Pandharipande—Thomas invariants is known
for local curves by work of Bryan, Okounkov, and Pandharipande, hence holds for
all complex threefolds with nef anti-canonical bundle (in particular, all Calabi-Yau
threefolds).

1 Introduction

There are many ways of enumerating curves in complex threefolds [23]. These invariants turn
out to satisfy some surprising relations which appear to have no straightforward explanation.
In fact, the multitude of existing computations suggest that all reasonable curve enumeration
theories for complex threefolds are equivalent [22].

A folk conjecture offers an explanation of this phenomenon: a complex threefold should
be ‘enumeratively equivalent’ to a linear combination of local curves (rank two vector bundles
over smooth proper curves). We provide a precise formulation and proof of this conjecture for
complex threefolds with nef anti-canonical bundle. That is, we define a certain Grothendieck
group of 1-cycles in complex threefolds (with nef anti-canonical bundle), and we show that
this group is freely generated by local curves.

This result and its proof are inspired by the proof of the Gopakumar—Vafa integrality
conjecture by Ionel-Parker [11]. They show that Gromov—Witten invariants of almost com-
plex threefolds are integer linear combinations of Gromov-Witten invariants of local curves,
which were known to satisfy Gopakumar—Vafa integrality by work of Bryan—Pandharipande
[6]. Their argument may be interpreted as a proof that a certain Grothendieck group of 1-
cycles in almost complex threefolds with nef anti-canonical bundle is freely generated by local
curves (after completing by genus, later removed by Doan—Tonel-Walpuski [8]). The setting
of complex threefolds is more rigid, requiring a different Grothendieck group. The proof is
based on generic transversality, which explains the nef anticanonical bundle hypothesis.

*This research was conducted during the period the author was partially supported by a Packard Fellow-
ship and by the National Science Foundation under the Alan T. Waterman Award, Grant No. 1747553.



The main result opens a path to a number of conjectures relating different enumera-
tive invariants of complex threefolds (under the assumption of nef anti-canonical bundle).
We will explain here how to deduce from it the conjecture of Maulik—Nekrasov—Okounkov—
Pandharipande [16, 17] relating Gromov-Witten and Donaldson-Thomas/Pandharipande—
Thomas invariants (with cohomology insertions, no descendents, assuming nef anti-canonical
bundle) given the calculations for local curves due to Bryan—Pandharipande [6] and Okounkov—
Pandharipande [20]. The MNOP conjecture is interesting because there is no known or even
proposed geometric relation between the moduli spaces giving rise to Gromov—Witten invari-
ants and Donaldson-Thomas/Pandharipande-Thomas invariants. Of course, this is far from
likely the only application (for example, see the work of Jockers—Mayr [12] and Chou-Lee
[7] on quantum K-theory invariants).

The methods of this paper rely seriously on the assumption of nef anti-canonical bundle.
It would be of exceptional interest to remove this assumption.

1.1 Universal enumerative invariant

There is a (very tautological) universal curve enumeration invariant of complex threefolds.
This invariant takes values in the group H}(Z(Cpxs)), which is the homology of the double
complex

C.(Cpxs, C2(2)) = P Ci(Z(X/AM) (1.1)

X—An

in which the direct sum is over all (not necessarily proper) families X — A™ of complex
threefolds over a simplex, and Z(X/A") denotes the space of compact (complex) 1-cycles in
the fibers of X — A" (a 1-cycle z € Z(X) is a formal non-negative integer linear combination
> . m;C; of compact irreducible 1-dimensional subvarieties). If X is a projective threefold and
[ € Hy(X) is a homology class, then the ‘universal count’ of curves in X in homology class
B in H*(Z(Cpxy)) is the class of the characteristic function (15 : Z(X) — Z) € HY(Z(X))
of the locus of 1-cycles with total homology class § (which is compact since X is projective).
We call this group H*(Z(Cpxs)) the Grothendieck group of 1-cycles in complex threefolds.

The chain-level dual C*(Cpx;, C**°(Z)) of the Grothendieck group of 1-cycles classifies
coherent ‘virtual fundamental’ cycles on each relative cycle space Z(X/A™). A class in its
homology H!®*(Z(Cpxs)) is thus a ‘curve enumeration theory of complex threefolds which is
deformation invariant up to coherent homotopy’. Such a class determines a homomorphism
out of the Grothendieck group.

The group H}(Z(Cpx,)) has a rich algebraic structure: it is a bi-algebra (product cor-
responds to disjoint union of cycles, while coproduct corresponds to sum of cycles). It also
has bi-algebra endomorphisms corresponding to the ‘multiply by d’ operation on cycles.

The utility of this ‘universal” discussion depends entirely on being able to make nontrivial
computations. Our main result is to compute (in virtual dimension < 0) the Grothendieck
group H(Zsemi-Fano((Cpx.)) whose definition is identical to H}(Z(Cpx;)) except that it con-
siders just those 1-cycles z = >, m;C; all of whose components C; C X pair non-negatively
with ¢; (TX).

Theorem 1.1. In non-positive virtual dimension, the Grothendieck group H}(Zs™i-Fano(Cpx,))
is freely generated as a ring by the equivariant local curve elements x4 with k > 0 and
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We explain the statement. There is a natural bi-grading H; (Z(Cpx;)) = @, , H:(Z(Cpx;, k))
by cohomological degree i and chern number k (pairing with ¢;(7X)), and the ‘total homo-
logical degree’ (or ‘virtual dimension’) is 2k — ¢. The equivariant local curve elements x ,, 1
(defined in §4.3) have virtual dimension zero and correspond to the C*-equivariant enumer-
ative theory of degree m cycles on the total space of a rank two vector bundle £ — C with
c1(E) = k over a curve C of genus g. For example, Theorem 1.1 says that for any projective
threefold X with nef anticanonical bundle and any homology class f € Hy(X) with zero
chern number, the element (X, 8) € H(Z(Cpx,,0)) is equal to a unique polynomial in the
variables g, 0.

Theorem 1.1 is fundamentally a transversality statement, so the semi-Fano hypothesis
appears necessary. The structure of the group H}(Z(Cpx,)) is likely to be much more
complicated (likely uncomputable). An analogue of Theorem 1.1 in almost complex geometry
was proven by lonel-Parker [11]. They showed, in particular, that Hy(ACpx,, HO(Z¢Y)) (one
part of the E5 term of the spectral sequence associated to the double complex whose total
homology is H¥(Z(ACpx;))) is generated by local curve elements z,,, o (after completing by
genus, later removed by Doan-Ionel-Walpuski [8]). Due to the rigidy of complex structures,
we must work with the entire complex (1.1). The reason for this is that, while generic almost
complex structures achieve transversality for all simple maps from curves, generic complex
structures only achieve transversality for simple maps ‘locally’ on the space of cycles. Generic
transversality for almost complex structures goes back to Gromov [10], while we are not aware
of previous use of generic transversality in the complex setting. While we could probably
prove Theorem 1.1 using a direct geometric argument, we actually only prove surjectivity
geometrically and we deduce injectivity using the bi-algebra structure.

Theorem 1.1 is not the final word on the structure of enumerative invariants of complex
threefolds with nef anticanonical bundle. Specifically, one could ask for the product ex-
pansion of lonel-Parker [11] in the complex setting (perhaps deducible from their result by
comparing H}(Zsmi-Fano(Cpx,)) and H} (Zsm-Famo(ACpx,)) via Theorem 1.1 and an almost
complex analogue thereof), namely the following.

Conjecture 1.2. For any complex projective Calabi—Yau threefold X, the element (X, t[']) €
HO(Zsemi-Fano(Cpxe ) [tH2(0]] ds an infinite product [ 11,50 f, ()89 for unique integer
invariants eg o(X) € Z, where fo(t) =, 50 Tgmot™

In the absence of the semi-Fano hypothesis, calculating the Grothendieck group H(Z(Cpx;))
appears intractable. Nevertheless, we may venture the following conjecture, which might at
least allow almost complex methods to be used to study invariants of complex threefolds.

Conjecture 1.3. The map H(Z(Cpxy)) — H(Z(ACpx,)) is an isomorphism.

We expect the same to be true for Zsmi-Fane in place of Z, but it is less interesting given

Theorem 1.1, which presumably remains valid for H}(Z%™-Fano(ACpx;)) with a similar proof.

The most interesting question is probably whether there exists a modification of the
group H}(Z(Cpx,)) for which an analogue of Theorem 1.1 holds and which can be used to
study enumerative invariants of complex threefolds.



1.2 MNOP correspondence

Theorem 1.1 implies that a curve enumeration invariant of complex threefolds with nef anti-
canonical bundle is determined uniquely by its values on local curves. We now explain
how this may be used to verify a conjecture of Maulik-Okounkov—Nekrasov—Pandharipande
[16, 17] for such threefolds.

Maulik—Nekrasov—Okounkov-Pandharipande [16, 17] originally conjectured an equiva-
lence between Gromov-Witten and Donaldson—Thomas invariants of projective threefolds. A
similar conjecture relating Gromov-Witten and Pandharipande-Thomas invariants was pro-
posed by Pandharipande-Thomas [22]. Work of Bridgeland [5] relates Donaldson-Thomas
and Pandharipande-Thomas invariants, implying the two conjectures are equivalent. We will
address the latter conjecture here (Pandharipande-Thomas invariants are easier to work with
than Donaldson-Thomas invariants in many respects, and our work here is no exception).

We briefly recall the definition of Gromov-Witten and Pandharipande-Thomas invari-
ants, leaving a more detailed discussion to §3.5. Given a complex projective threefold X,
a homology class 5 € Hy(X), and cohomology classes 71, ...,7. € H*(X), these invariants
have the form

GW(X. B = [ [Imev' s u ¥ e Q) (12
[M(X,B)]vir i=1
PICX S = [ [In(a®umio) " €2(@). (13
[P(X, B i=1

For Gromov—-Witten invariants, M/(X , ) is the moduli space of stable maps from (not neces-
sarily connected) nodal curves to X, in homology class 3, all of whose connected components
are non-constant, and y denotes the arithmetic Euler characteristic of the domain (locally
constant, proper sublevel sets). For Pandharipande-Thomas invariants, P(X, ) denotes
the moduli space of stable pairs in homology class 3, and n denotes the holomorphic Euler
characteristic (locally constant, proper sublevel sets). The integrands are given by push/pull
via the universal families over these moduli spaces.

Let us say that a pair of formal Laurent series GW € Q((u)) and PT € Z((q)) satisfies
the MNOP correspondence when PT is a rational function of ¢ whose evaluation at ¢ = —e®™
equals GW.

Conjecture 1.4 ([16, 17, 22]). For any projective threefold X, any homology class €
Hy(X), and any tuple of cohomology classes v, ...,v. € H*(X), the invariants

(—iw) T CW(X, By, ..., w) and (—q) @ TXDBA2PT(X By, ... ) (1.4)
satisfy the MNOP correspondence.

Conjecture 1.4 is known in many cases, essentially by computing both sides of the equality.
The case of (equivariant invariants of) local curves holds by deep calcuations of Bryan—
Pandharipande [6] (of Gromov-Witten invariants) and Okounkov-Pandharipande [20] (of
Donaldson-Thomas invariants). Work of Maulik—-Oblomkov—Okounkov—Pandharipande [18]
established the conjecture for toric varieties by direct computation of both sides. Work of



Pandharipande—Pixton [21] showed the result for many threefolds (e.g. complete intersections
in products of projective spaces) by degeneration to the toric case.

Combining Theorem 1.1 with the known case of equivariant local curves [6, 20|, we show
the following.

Theorem 1.5. Conjecture 1.4 holds when the anticanonical bundle of X is nef (that is,
when ¢ (TX) pairs non-negatively with every curve C C X ).

Indeed, Gromov—Witten invariants and Pandharipande-Thomas invariants define ring
homomorphisms

GW : HZ(Z(Cpxy)) = Q((u)), :
PT - HZ(Z(Cpxy)) — Z((q)), (1.6)

and Conjecture 1.4 amounts to the assertion that (—iu)*GW and (—q) */?PT satisfy the
MNOP correspondence when evaluated on the element

(X, 857, .-, y) € HIMIZ2 422 (Z(Cpxy, (e1(TX), BY)). (1.7)

represented by the product of 15 € H(Z(X)) and the classes mi*y; € HMI=2(Z(X)). The
results of [6, 20] imply that (—iu)*GW and (—¢)~*/?PT satisfy the MNOP correspondence
when evaluated on equivariant local curve elements. Thus by Theorem 1.1, they satisfy the
MNOP correspondence on H*(Zsemi-Fano((Cpx.,)).

This approach is similar in spirit to [21] in that in essence we are deforming to a simpler
situation where the result is already known. We obtain a stronger result from a weaker input
given the strength of Theorem 1.1.

The case of descendent invariants is conspicuously missing from the discussion above. It
would suffice to write down natural classes on Z(X) whose pullback to M and P are the
respective descendent classes, but we do not know how to do this. Alternatively, it might
help to consider a Grothendieck group based instead on fiber powers of the universal family
U(X) — Z(X) (thus a Grothendieck group of multi-pointed 1-cycles).
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2 Spaces of 1-cycles

2.1 Background

A (compact holomorphic) 1-cycle z on a complex analytic manifold X is a formal non-
negative integer linear combination of irreducible compact 1-dimensional subvarieties C' C X.
The set of such 1-cycles is denoted Z(X) (more systematically, this would be denoted Z;(X),
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but we will not consider r-cycles Z,.(X) for any r other than 1 in this text, so we drop the
subscript from the notation). Such a cycle will usually be written as a finite sum z = ) |, m,;C;
where it is implicitly assumed that the C; C X are distinct irreducible curves and every
m; # 0.

The total chern number of a cycle z = > . m;C; is the pairing (¢, (TX), z) = >, m;(c: (T X), C;).
A cycle z = Y, m;C; is called semi-Fano when the pairing of every C; with ¢ (TX) is
non-negative (it bears emphasis that this is stronger than having non-negative total chern
number). We denote by Z(X,k) C Z(X) the set of cycles with total chern number k,
and we denote by ZsemiFano(X) C Z(X) the set of semi-Fano cycles. We also denote by
Z(X,p) € Z(X) the set of cycles in homology class § € Hy(X) (which, we should warn,
somewhat conflicts with the previous sentence).

The set Z(X) has the structure of a separated reduced complex analytic space due to
work of Barlet [2]. By definition, an analytic map A — Z(X) from a reduced complex
analytic space A is a family of 1-cycles {z, € Z(X)},ca which satisfies a certain analyticity
condition [2, Chapitre 1, §1, Définition fondamentale]. If the family {z, € Z(X)}uea is
analytic, then the union |J, 4 2« € X x A is a closed analytic subset, proper over A, with
fibers of pure dimension 1 and multiplicities which are constant on its irreducible components
[2, Chapitre 1, §2, Théoreme 1] (and the converse holds if A is normal). In particular, there
is a ‘universal family’ U(X) C X x Z(X).

The homology class function Z(X) — Hy(X) is locally constant; that is, each subset
Z(X,B) € Z(X) of cycles in homology class 8 € Hy(X) is open. In partcular, the subset
Z(X,k) C Z(X) of cycles with chern number & is open. The subset Zsem-Fane(X) C Z(X)
is also open.

This discussion generalizes readily to the relative setting. Given a holomorphic submer-
sion X — B, we define Z(X/B) = |J, Z(X,) to be the set of cycles in fibers of X — B. It
is an open subset of Z(X), so the basic properties of Z(X) pass easily to Z(X/B).

2.2 Semi-charts

Around each point z = ) . m;C; € Z(X) is a semi-chart defined as follows. Let C, — C;
denote the normalization of C;, so C; is a compact smooth curve. We consider all local
deformations of C' = | |, C; — X (including deformations of the complex structure on the
domain), and we associate to such a nearby map ¢’ = | |, C! — X the cycle .. m;C!. We
denote by (S, z) = (Z(X), z) (a germ) the semi-chart around z. The semi-chart S, — Z(X)
need not be a (germ near z of) open embedding, since it does not take into account the
possibility of the topology changing (as in y? = x(z —t)(x + t) near t = 0) or of curves with
multiplicities breaking apart (as in y* = tx near t = 0). The locus of points z for which the
semi-chart around z is an open embedding is evidently open.

Lemma 2.1. The set of points z € Z(X) whose semi-chart is an open embedding is dense.

Proof. Begin with an arbitrary cycle z = > .m;C; € Z(X), and let us produce cycles
arbitrarily close to z whose associated semi-charts are open embeddings.

A nearby cycle 2’ determines a partition p; of each m;. Partially order the set II(m)
of partitions of m by refinement: declare p > y/ when ' is obtained from u by replacing
each of its constituents by a partition thereof. The map from a neighborhood of z € Z(X)
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to [ [, II(m;) has local minima arbitrarily close to z since [ [, II(m;) satisfies the descending
chain condition (since it is finite). We may thus assume wlog that z is itself a local minimum
of this map. This means that if we write z = > ., mC,, (C,, not necessarily irreducible)
then every nearby cycle 2’ has the form Y ., mC! for C!/ nearby C,. In other words,
there is a factorization (Z(X),2) =[], -,(Z(X),C,,) of germs. This factorization reduces
us to the case z = C for some not necessarily irreducible curve C.

The Euler characteristic function y : Z(X) — Z near z = C' is bounded below since the
universal family U(X) C X x Z(X) is finite type. We may thus assume wlog that z is a
local minimum of y. Let us argue that this implies that the semi-chart at z surjects onto
a neighborhood of z (hence is an open embedding). A nearby cycle 2’ is simply a curve C’
nearby C. Near smooth points of C, the curve C’ is a nearby smooth curve, hence may be
(non-canonically) identified with C' (as smooth manifolds) with nearby complex structure.
Near a singular point of C' (necessarily isolated), choose a ball B around it so that CNB
is a disjoint union of disks. Now a disjoint union of disks is the unique filling of a disjoint
union of circles of maximal Euler characteristic, so since X(C” ) = x(C), we conclude that
C' N B is also a disjoint union of disks. This shows that ¢’ — X is a small perturbation of
C — X, as desired. O

3 Grothendieck groups of 1-cycles

3.1 Definition

We now define the Grothendieck groups of 1-cycles which we will study.

We will consider families of complex threefolds over (real) simplices A™. Such a family
is, by definition, a family in the usual sense over a(n unspecified) open neighborhood of
A" C R™ C C" (i.e. in the complexification), and an isomorphism of families is a germ of
isomorphism defined in a neighborhood of A™ inside C". In particular, if X — B is a family
of complex threefolds over a smooth analytic base B and A™ — B is any real analytic map,
then the pullback X xg A™ — A" is a family in the above sense, since A™ — B, being real
analytic, extends over a neighborhood of A™ inside its complexification.

Definition 3.1. The group H}(Z(Cpx;)) is the homology of (the total complex associated
to) the double complex C,(Cpx,, C*(Z2)), illustrated below.

] T T
- XEBAQCE(Z(X/N)) — XEBNC?(Z(X/AI)) — @OE(Z(X))
1 1 1 (3.1)
- D C(Z(X/A%) — D C(2(X/AY) — DC(Z2(X))
X—A T X—A T X T

c— D CU2(X/A%) — D CUZ(X/AY) — @CB(Z(X))

X A2 XAl



The ‘total complex’ in this case involves direct sum over the anti-diagonals. There is a
bigrading
Z(Cpxs)) @Hl (Cpxs, k)) (3.2)

by cohomological degree i (indexing the antl—dlagonals of the double complex) and chern
number k of the cycles. The ‘total homological degree’ is 2k — i (that is, k& is ‘half a
homological grading’). We may also use Z™m-¥ano C 2z in place of Z.

Remark 3.2. The group H}(Z(Cpx,)) is the homology of the spectrum

conm( 2 [ pEx/a?/o) 3 ] DEX/AY /) :;]_[D /oo)) (3.3)

where by D we mean Spanier—Whitehead dual.

Since there is no ‘set’ of all families of complex threefolds over A", a somewhat pedantic
discussion is needed to make Definition 3.1 precise. We begin by recalling the notion of
a semi-simplicial object. The semi-simplex category A" consists of totally ordered sets

[n] = {0 < ... < n} and strictly order preserving (thus injective) maps [n] < [m]. There is
a functor from A" to topological spaces sending [n] to the simplex A™ (with vertices labelled
0,...,n)and a morphism [n] < [m] to the corresponding face inclusion A" < A™ preserving

vertex order. A semi-simplicial object X, in a category C is a functor X : (AMW)°? — C,
and we write X,, = X([n]). A semi-simplicial set X : (A™)°% — Set may be regarded as
a combinatorial specification of how to glue together standard simplices A™ along injective
maps preserving vertex order. Associating to each [n] € A™ the groupoid of all families of
complex threefolds X — A" (and to a morphism the corresponding pullback) defines a semi-
simplicial groupoid which we denote by Cpx;, (a semi-simplicial object in the 2-category of
groupoids).

A coefficient system (valued in a category C) over a semi-simplicial set X, is a functor
(AN | X,) — C where (AMW | X,) denotes the category of simplices in X, (objects are
maps [n] — X, and morphisms are compositions [n] < [m] — X,, namely maps of simplices
over X,). The complex of chains on X, with respect to a coefficient system A valued in the

category Ab°? is given by
C( X A) =P P A, ®o0, (3.4)

n>0 ceX,

where 0,, denotes the orientation group of A" and the boundary operator acts on A, ®
0, via the usual sum over faces d,; : [n — 1] < [n] for 0 < ¢ < n. Dually, we may
define cochains C*(X,, A) with respect to any coefficient system A valued in Ab. More
generally, these constructions apply to coefficient systems valued in the category of complexes
of abelian groups (and its opposite). A map of coefficient systems A — B over X, induces
a map C,(X,; A) — Cu(X,;B), and a map f : X, — Y, of simplicial sets induces a map
Cu(X,, f*A) — C.(Y,, A) for any coefficient system A over Y.

Lemma 3.3. A quasi-isomorphism of coefficient systems A — B over X induces a quasi-

isomorphism C.(X; A) — C.(X; B).



Proof. Let X<, denote the k-skeleton of X. The short exact sequence of complexes
0= Cu(Xepi A) = Cu(Xeii A) = P Ar =0 (3.5)

ocCX
dim o=k

induces a long exact sequence of cohomology groups. Applying the five lemma, we see
that Ci.(X<g; A) — Ciu(X<p; B) a quasi-isomorphism implies Cy(X<g; A) — Ciu(X<p; B) is a
quasi-isomorphism. Finally, note that C.(X; A) is the directed colimit of C,(X<x; A) over k
and that homology commutes with directed colimits. O]

Associating to each family of complex threefolds X — A™ the complex of compactly sup-
ported cochains C*(Z(X/A™)) defines a coefficient system over the semi-simplicial groupoid
Cpxs,. The resulting chain group C.(Cpx;,,C;(Z)) is the basis of Definition 3.1, but it
lacks a definition since Cpx;, is not a semi-simplicial set, rather a semi-simplicial groupoid,
rendering (3.4) meaningless. We now close this gap by defining (co)chains for semi-simplicial
groupoids.

Recall that a map of semi-simplicial sets A, — B, is called a trivial Kan fibration when
for every diagram of solid arrows

OA" —— A,

l “ l (3.6)

A" —— B,

there exists a dotted lift. If A, — B, is a trivial Kan fibration, then for any level-wise
injection of semi-simplicial sets P, — )4 and every diagram of solid arrows

P, —— A,

l * l (3.7)

Qs — B,

there exists a dotted lift (construct the lift one simplex at a time).

A resolution of a semi-simplicial groupoid X, is a trivial Kan fibration X, = X, from
a semi-simplicial set X, (the notion of a trivial Kan fibration extends to semi-simplicial
groupoids without issue). We define the (co)chain group of a semi-simplicial groupoid X,
with coefficients in A to be the (co)chain group of any resolution X, of X, with coefficients
in the pullback of A.

Lemma 3.4. The (co)homology of a semi-simplicial groupoid (with respect to any coefficient
system) is well defined.

Proof. Given two resolutions of X,, we may consider their fiber product. It thus suffices to
show that for any trivial Kan fibration of semi-simplicial sets f : X, — Y, and any coefficient
system A on Y,, the induced map f, : Ci(X,, f*A) — C.(Ys, A) is a homotopy equivalence.
Solving the lifting problem

g —— X,

s /7‘ .
. . s (3.8)

Y, —— Y,



produces a section s : Yy — X, of f. Solving the lifting problem

X x OA! Sf;lﬂw X.
Y (3.9)
X x Al I sy,

produces a homotopy H between 1x and sf : X, — X,. It then follows from functoriality
of C, that f, is a homotopy equivalence. O

Given a semi-simplicial set B and a family of threefolds X — B (equivalently, a map
B — Cpxy,), there is a tautological map (at least on homology)

C.(B, C:(2(X/=))) = CuCpxy, C2(2)), (3.10)

and every element of H}(Z(Cpx,)) is in the image of this map for some family X — B over
a finite semi-simplicial set B.

The complex C, (B, C¥(Z(X/—))) may be described more geometrically as follows. Form
Z(X/B) as the evident gluing of Z(X,/o) over 0 C B. To each simplex o0 C B, we may
associate the sheaf Zz(x, /o), namely the constant sheaf Z on the closed subset Z(X, /o) C
Z(X/B). This defines a coefficient system on B valued in sheaves on Z(X/B), and its chain
group will be denoted

7T*u}B = O*(B;ZZ(X/_)) = @ZZ(XU/O')[dimO-] (3.11)
ocCB
since it is the pullback to Z(X/B) of the dualizing sheaf of B. Now there is a canonical

identification
Ci(B,C:(Z2(X/-))) = CA(Z(X/B), m"wp), (3.12)

where the cohomology group on the right side with coefficients in a complex which is not
bounded below (cohomologically) should be interpreted as the directed colimit of cohomology
of truncations C*(Z(X/B), 7> Nn*wp) as N — oco. This geometric description makes it
clear that the cell decomposition of B is irrelevant; that is, there is a canonical map

H!(Z(X/B),w"ws) — H:(Z(Cpssy)) (3.13)

independent of the choice of triangulation of B. It would thus be more accurate to write
H}(Z(Cpxy), T wepy, ) in place of HY (Z(Cpxy)).

In particular, we could consider a single real analytic manifold B as the base. A family
of complex threefolds X — B then determines a map

H; ™ 5(2(X/B)) — H(Z(Cpxy)) (3.14)

obtained by triangulating B and summing over all top-dimensional simplices. If we consider
the restriction X’ — B’ of this family to a submanifold i : B’ C B, then we have a commuting
diagram

i

e (2(X'/B)) » H 5w B(2(X/B)

\ / (3.15)

HZ(Z(Cpxy))
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where horizontal map 4, is the ‘wrong way’ map defined by triangulating B so that B’ is a
subcomplex.

3.2 Restriction to open loci

The definition of the Grothendieck group H(Z(Cpx,)) applies without change with the
open set Zsemi-Fano C Z iy place of Z, producing a group H}(Z%mamo(Cpx,)). To define
the expected tautological map H}(Zsmitano(Cpx,)) — H(Z(Cpx;y)), we need to say more
about our model of compactly supported cochains C¥ (to assure that it has pushforward
under open embeddings).

Let us fix a model of compactly supported cochains which is indeed functorial under open
embeddings and proper maps. The singular cochains functor C¥, _ is a functor on topological

sing
spaces, and we consider its sheafification Cfg; Concretely, a section of Cfﬁg over a topological
space X is a k-cochain on X modulo equivalence: two k-cochains are equivalent when there
exists an open covering X = |J, U; such that their restrictions to every U; coincide. We
define C*(X) to be the subcomplex of Ci;;(X ) of compactly supported sections. Now C
is a contravariant functor on the category of Hausdorff topological spaces with morphisms
X --» Y given by correspondences X <= U — Y where U <— X is an open embedding and

U — Y is proper (composition of correspondences is via fiber product).

3.3 Algebraic structure

We now define a product and coproduct on the Grothendieck group H*(Z(Cpxs)), forming
the structure of a commutative and co-commutative bi-algebra. The product corresponds to
‘disjoint union of cycles’, while the coproduct corresponds to ‘addition of cycles’.

We begin with some generalities on products of semi-simplicial sets and coefficient sys-
tems. Given semi-simplicial sets X, and Y,, their product is the product functor X x Y :
(A™ x AM)P — Set (such a functor is called a bi-semi-simplicial set). Just like semi-
simplicial sets, a bi-semi-simplicial set may be regarded as a combinatorial specification of
how to glue together products of standard simplices A™ x A™ along products of injective maps
preserving vertex order. A product of simplices A™ x A™ has a standard subdivision into
(”J;m) copies of A" and this subdivision is moreover compatible with products of maps.
Thus a bi-semi-simplicial set Z, , has a subdivision Se(Z, ), which is a semi-simplicial set.
We denote the subdivision of a product of semi-simplicial sets X x Y by X XY = s(X xY).

A coefficient system on a bi-semi-simplicial set is defined analogously with semi-simplicial
sets, and we may form singular chains with coefficients in the natural way. A coefficient
system A on a bi-semi-simplicial set induces a coefficient system sA on its subdivision by
restriction. Given a coefficient system A on a bi-semi-simplicial set Z,, and a coefficient
system B on its subdivision s¢(Zs), a map of coefficient systems s,A — B induces a map
Ci(Zeo; A) = Ci(Se(Zao), B). The map C\(Z;A) = Ci(sZ;sA) is a homotopy equivalence.
Given coefficient systems A and B on semi-simplicial sets X and Y, both pull back to
coefficient systems on the product X x Y, and there is a canonical isomorphism C,(X X
Y;A® B) =C.(X;A) @ C.(Y; B).

11



Definition 3.5 (Product on H}(Z(Cpx;))). Given a pair of families X — A" and Y — A™,
we may consider the disjoint union family (X x A™) U (A" x Y) — A" x A™. That
is, the product Cpxz, x Cpxz, has two families of threefolds (pulled back from the two
factors), and we consider their disjoint union. The relative cycle space of the disjoint union
(X x A™) U (A" x V) — A™ x A™ is the product of relative cycle spaces Z(X/A™) x
Z(Y/A™) — A™ x A™. Thus cup product defines a quasi-isomorphism of coefficient systems
CH(Z2)a) ® Ci(Z)@) — C:(Z) on Cpxz, x Cpxg,, inducing a quasi-isomorphism

C.(Cpxs,, C2(2))%* =
C.(Cpxg, X Cpxg,, Cr(Z2) 1) ® CI(Z)2)) = Ci(Cpxg, x Cpxy,, Ci(Z)). (3.16)
Subdividing the bi-semi-simplicial set Cpx; , X Cpx;, defines a map
C*<CpX3,o X CpX3,o7 C: (Z)) 1> C*(Cpx3,o X CpXS,o? C:(Z)) (317)

which is a quasi-isomorphism as remarked above. Finally, compose with the classifying map
Cpx; . W Cpxz, — Cpx;, to obtain a map

C*<CpX3,o X CpXS,o? C: (Z)> - C*(CPXS,M Cz (Z)> (318)
Composing these three maps defines the product operation on H(Z(Cpxs)).

A diagram chase shows that the product is associative and unital (the unit n : Z —
H?(Z(Cpx,)) is the constant function 1 on Z(@), which is indeed a cycle in Cy(Cpx,, CY(Z))).
The product is also (graded) commutative: while cup product (3.16) is not commutative on
the cochain level, it is commutative up to Steenrod’s U; operation which is a chain null-
homotopy of a ® f+ a U B — (—1)llIPl3 U o [31, Theorem 5.1].

Definition 3.6 (Coproduct on H}(Z(Cpxs))). The addition map ¥ : Z(X/A")xan Z(X/A") —
Z(X/A™) is a map of (space valued) coefficient systems A*(Z) — Z where A : Cpxz, —
Cpx;3 , W Cpx;, denotes the diagonal embedding. Applying C; thus determines a map of
coefficient systems C¥(Z) — A*C*(Z) since ¥ is proper, hence a map of complexes

C.(Cpxye, C2(2)) = Cu(Cpxye & Cpxyy, CF(Z)). (3.19)
Now recall from Definition 3.5 the quasi-isomorphism
O*<CPX3,.)®2 — C'*(Cpxg,. Cpx3.,; Ce(2)). (3.20)

Inverting this defines a coproduct operation on H}(Z(Cpxy))/tors (note that homology does
not commute with tensor product, but does modulo torsion).

A diagram chase shows that the coproduct is coassociative and counital (the counit
e : H}(Z(Cpxy)) — Z acts on C,(Cpxz,, Ci(Z)) by summing the ‘evaluate at the empty
cycle’ map over all vertices). The coproduct is trivially cocommutative.

Definition 3.7. A bi-algebra (R,n, i, e, A) means that:
e (R,n,n) is an algebra (satisfies unitality and associativity).

12



e (R,c,A) is a co-algebra (satisfies co-unitality and co-associativity).
e The maps n and A are algebra maps (equivalently, the maps ¢ and p are co-algebra
maps).

A diagram chase shows that H*(Z(Cpx,))/tors is a bi-algebra.

Definition 3.8 (Division). For any d > 1, the ‘multiply by d map’ Z(X/B) — Z(X/B)
determines, via pullback, a map of coefficient systems C}(Z) — C3(Z) over Cpx,. We

denote by pq the induced map on the chain group C.(Cpxz,, C7(Z)) and on its homology
HZ(Z(Cpxg)).

The maps py are bi-algebra morphisms by inspection.

The same construction applies without change to H}(Zs™-Fam°(Cpx,)) in place of H*(Z(Cpxs)).
The tautological map H*(Zs™-Fano(Cpx,)) — H*(Z(Cpx,)) is a map of bi-algebras and com-
mutes with pg;. To check compatibility with the coproduct, we should note a sum of cycles
z + Z' is semi-Fano iff both z and 2’ are semi-Fano.

3.4 Virtual fundamental cycles

The chain-level dual of the Grothendieck group of 1-cycles is C*(Cpxs, C™*(Z)), namely
the total complex (product along anti-diagonals) of the following double complex.

| | i

= I CG(Z(X/A?) «— 1 CF=(Z2(X/AY) 1;1056’1”(2()())

X—A2 l XAl l l (321)
I CF(Z(X/A?) «— T CF=(Z(X/AY) 1)—([0{61“(3()())

X—A2 l XAl l l

= I G (2(X/A%) «— T G (2(X/AY) I)ZICSGIW(Z(X))

X—A2 XAl

A cycle in this complex may reasonably be called a ‘coherent collection of cycles on all
cycle spaces of all complex threefolds’. A class in its homology HI®*°(Z(Cpx,)) will be
called a curve enumeration theory (for complex threefolds). Such a curve enumeration theory
determines, via the tautological pairing, a homomorphism out of the Grothendieck group
H(Z(Cpxy)).

The group H™*(Z(Cpx,)) has a unital product and counital coproduct by dualizing the
constructions above for H*(Z(Cpxy)). A curve enumeration theory F' € HI®*®(Z(Cpx;))
gives rise to a ring homomorphism out of H*(Z(Cpx,)) when it solves the equation A(F) =
F ® F. We will call such a curve enumeration theory multiplicative.

Now let us review the practical origin of curve enumeration theories. All known curve
enumeration theories arise via pushforward H™*(£(Cpx;)) — H**(Z(Cpx;)) for some &
associating to each family of threefolds X — B over a complex analytic base B an analytic
space (or Deligne-Mumford stack) £(X/B) — B, compatible with pullback, with a natural
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transformation & — Z which is proper (hence has pushforward on homology rel infinity).
If £(X/B) — B is smooth (i.e. submersive) for every X — B, then the vertical/relative
fundamental class is a canonical class in H*(£(Cpx;)). Its pushforward to H®*°(Z(Cpx;))
would thus be a curve enumeration theory for complex threefolds, associated canonically to &£.
In practice, the map £(X/B) — B will not always be smooth, rather it will carry some extra
structure (either a quasi-smooth derived structure or its classical shadow, a relative perfect
obstruction theory) which induces a canonical ‘virtual fundamental’ class in H**(€(Cpx;)).

We now recall the theory of virtual fundamental classes and explain how it is specializes
to our setting of interest. What we shall need is in fact the relative virtual fundamental
class. Increasingly general notions of relative virtual fundamental classes were introduced by
Behrend—Fantechi [3], Manolache [15], and Khan [13, 14]. We will reference the construction
of Khan [13], although the framework of Manolache [15] (generalized to ‘local coefficients’)
may also suffice. Here is what we will use:

Definition 3.9 (Virtual fundamental class). Let B be a complex analytic space, and let
W — B be a separated map from a complex analytic space (or Deligne-Mumford stack).
Moreover, fix a derived structure on W for which the map W — B is quasi-smooth of
relative virtual dimension d (the classical shadow of this structure [25], namely a rela-
tive perfect obstruction theory on W — B is probably sufficient). Such a structure in-
duces a canonical relative virtual fundamental class [W/B]'" in the degree d homology of
C*(S.B,Cr>(W/—)), where S¢B denotes the semi-simplicial set of real analytic maps to
B and we use rational coefficients in the case W is a Deligne-Mumford stack. Namely,
this is the image of the relative virtual fundamental class of Khan [13, Construction 3.6
“Fundamental class”] [W/B]"" € HM(W/B, F(d)) under the natural specialization map
to the homology of C*(S.B,C™>°(W/-)). A key property of the relative virtual fun-
damental class is compatibility with pullback: if W’ — B’ is the pullback of W — B
under a map B’ — B, then [W//B/|'" is the image of [W/B]'" under the induced map
C* (8B, Cr>®(W/—)) — C*(S,B',C™*>(W’'/-)) [13, Theorem 3.13 “Base change’]. It is
also compatible with product in the sense that [W x W’/B x B'|Y'* = [W/B]"" @ [W'/B/|"
[13, Theorem 3.12 “Functoriality”].

Now we will also need the relative virtual fundamental class when the base B is a semi-
simplicial set. A derived complex analytic space (or Deligne-Mumford stack) W separated
and quasi-smooth over B now consists of the same over open neighborhoods of A* C C* for
all k-simplices ¢ C B, with coherent restriction isomorphisms. Gluing these families together
defines a complex analytic family W¢ — Bc (the complexification of W — B),! which thus
has a virtual fundamental class [W¢/Bc|''™ € C*(SBc, C**°(W¢/—)) from Definition 3.9.
We define [W/B]'® € C*(B,C™>(1W/-)) to be the pullback of [W¢/Bc]"". The class
[W/B]'" is evidently compatible with pullback of families under maps of semi-simplicial sets
B’ — B. It is also compatible with subdivision (recalling from §3.1 that subdivision induces
a quasi-isomorphism of complexes C*(B,Cr>®(WW/-))) since subdividing B just enlarges
Bc. Finally, let us also note that the virtual fundamental class is compatible with product,

!Note that in practice, the family W — B has the form £(X/B) — B for some family of threefolds X — B,
in which case we may alternatively define the complexification £(X/B)¢ — Bc as the result £(X¢/Bc) — Bc
of applying the functor £ to the complexified family of threefolds X¢ — B¢. The complexification X¢ — B¢
only involves gluing families of analytic spaces, rather than derived analytic Deligne-Mumford stacks.
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in the sense that for families W — B and W’ — B’, we have [W x W//B x B']'" =
[(W/B]"* @ [W’/B']"™ under the identification C*(B, C™>(W/-)) @ C*(B', C™>*(W'/-)) =
C*(B x B',C™>(W x W'/-)).

Now fix a functor £(X/B) — B of families of threefolds X — B over complex analytic
bases B, where £(X/B) — B is separated and quasi-smooth. For any family of threefolds
X — B over a semi-simplicial set B, we have the virtual fundamental class [£(X/B)/B]"" in
the homology of C*(B,C™>(£(X/-))), compatible with pullback and subdivision. If £ is
multiplicative, in the sense that applying £ to a disjoint union (X x B')U(Bx X') - Bx B’
is the product £(X/B) x E(X'/B’) — B x B’, then the virtual fundamental class is multi-
plicative [E((X x B YU (B x X")/(Bx B'))/(B x B)]"" = [£(X/B)/B]'""*®[£(X'/B')/B']"™".
Taking the universal base B = Cpxy,, we obtain a class [E]"" € H“*°(E(Cpxy)), which is
multiplicative if £ is.

3.5 Enumerative invariants

The Gromov—Witten and Pandharipande-Thomas ring homomorphisms

GW : H(Z(Cpx3)) = Q((u)) (3.22)
PT : HZ(Z(Cpx3)) — Z((q)) (3.23)

are defined by pairing with corresponding multiplicative virtual fundamental classes in
H>®(Z(Cpx;); Q)((u)) and H™>°(Z(Cpx,))((q)), whose definition we review here.

Underlying Gromov-Witten and Pandharipande-Thomas invariants are moduli spaces
M (X /B) and P(X/B) (respectively) over B associated to any family of threefolds X — B,
compatible with pullback. The moduli space MI(X /B) is a Deligne-Mumford analytic stack
representing stable maps from compact (not necessarily connected) nodal curves to fibers of
X — B, all of whose connected components are non-constant. The analytic space P(X/B)
parameterizes stable pairs on fibers of X — B (a stable pair is a coherent sheaf F' of proper
support of pure relative dimension one along with a section s whose cokernel has relative
dimension zero [22]). There are locally constant maps

X: M (X/B) = Z (3.24)
n: P(X/B)—>1Z (3.25)

given by domain arithmetic Euler characteristic and holomorphic Euler characteristic, re-
spectively.

Both M (X/B) and P(X/B) carry a natural quasi-smooth derived structure. As re-
viewed in §3.4, there are hence induced virtual fundamental classes

(M (Cpxy)[™ = [ M (X/AR]™ € H (M (Cpxs); Q), (3.26)
XAk

[P(Cpx)]™ =[] [P(X/AM™ € H(P(Cpxy). (3.27)
X—Ak

Now the maps M = Zand P — Z are proper when restricted to the sets on which y
i )
and n are bounded above by a given N < oo. Pushing forward uX - [M (Cpx;)|"" and
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q" - [P(Cpx3)]"" thus defines classes

GW € H}"™(Z(Cpxy); Q)((u)), (3.28)
PT € H**(2(Cpxs))((a)), (3.29)

which have virtual dimension zero since the virtual fundamental classes of M and P lie in
relative virtual dimension (ci(T’x;p), 3) (this depends on X — B having relative dimension
three). This defines the group homomorphisms (3.22)—(3.23).

The classes GW and PT are multiplicative since M and P are multplicative (see §3.4
above). That is, they satisfy A(F) = FQF, where A : H'®>°(Z(Cpx,))/tors — (H*>(Z(Cpx,))/tors)®?
is dual to product on the Grothendieck group (Definition 3.5), implying (3.22)—(3.23) are
ring homomorphisms.

Classical Gromov—Witten and Pandharipande-Thomas theory is interested in evaluating
GW and PT on elements of H*(Z(Cpx,)) coming from projective threefolds. When X is
projective, the space of cycles Z(X, ) in homology class ( is compact, hence its characteristic
function defines a class (X, ) € H?(Z(Cpxs, (c1(TX),))), which has virtual dimension
2(c1(TX), B). Thus when (¢1(TX), ) = 0, we may evaluate the homomorphisms GW and
PT on this element to obtain invariants

WA = [ weq(w), (330)
(M (X,B)]vir
P = [ e (@), (3.31)
[P(X.B)vr
More generally, given cohomology classes 71,...,7. € H*(X) (called ‘insertions’), we may
consider the class
(X, B0, ) € HIME2EH 72 (2 (Cpxey, (0 (TX), 5))) (3.32)

given by the cohomology class 15 [[;_, mi*y; on Z(X), namely the result of push/pull via
the universal family

UX) —— X
lﬂ (3.33)
Z(X)
Evaluating GW and PT on this class produces Gromov—Witten invariants and Pandharipande—
Thomas invariants of X in homology class § with insertions vy, ..., 7,
WX, B ) = / [T ev - € Q) (3.34)
M (X,8)]ir i=
PT(X, Biyr. ) = / [Tm(cho(F) Urins) - " € Z((q))  (3.35)
[P(X,p)]vr i=1
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where the integrand involves push/pull for the universal families

UX) =X PX)x X 25 X
| . (3.36)
M (X) P(X)

and F denotes the universal stable pair on P(X) x X (note that the second chern charac-
ter chy(IF) is simply the fundamental cycle of the support of F, a codimension four coho-
mology class on P(X, ) x X). These invariants are nonzero when the virtual dimension

2(c1(TX), ) = >_,(|vi| — 2) is zero.

4 Local curves

In the study of enumerative invariants of complex threefolds, the term local curve refers to
(the total space of) a rank two vector bundle E over a smooth proper (usually connected)
curve C'. Given a local curve £ — C, one is then interested in enumerating curves supported
on the zero section C' C E (though this a priori has no meaning since Zs - [C] C Z(FE) is
usually not open). The goal of this section is to recall the various ways to make sense of the
enumerative theory of local curves by working equivariantly, and to show how this enumera-
tive theory may be realized within the framework of the Grothendieck group H}(Z(Cpxs)).

Remark 4.1. Tt is not hard to show that local curves are classified up to deformation by the
pair of integers g = g(C) > 0 and ¢ = ¢;(F) € Z. The chern number of the zero section is
given by k = ¢,(TE) = ¢1(E) + ¢1(TC) = 2 — 2g + ¢ and is a more convenient index than
c. We write B, for the (unique up to deformation) local curve of genus g > 0 and chern
number k.

4.1 Equivariant homology

The flavor of equivariant homology relevant for our present discussion is called co-Borel
equivariant homology, which measures ‘homotopically S'-invariant cycles’ on an S'-space.
We will employ the following concrete definition of this homology theory.

Definition 4.2 (co-Borel equivariant homology). Let X be an S'-space with reasonable
topology (say paracompact Hausdorff and locally homeomorphic to a finite CW-complex of
uniformly bounded dimension). The co-Borel S!'-equivariant homology of X is the inverse

limit
X x S2n+1>

where S?"™!1 C C"*! is the unit sphere acted on by the unit circle S* C C by multiplication.
The quotient (X x S?*1)/S1 is a locally trivial fibration over S?"*!/S!1 = CP" with fiber
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X. The diagram
X % SQn—‘rl X % 52n+3

\
7

St St

! |

CP" —— CP"!

thus determines maps H, o, 12((X x §%"3)/SY) — H, 15, ((X x S**1)/S1) (‘intersect with
a hyperplane’), which are the structure maps of the inverse system in (4.1). These structure
maps fit into a long exact sequence with third term H.,2,41(X), so the inverse system is
constant in degree d once 2n + 1 > dim X — d. This eventual constancy is why the inverse
limit of homology (4.1) yields the ‘correct’ homology groups. It is evident that H¢S'(X) is
supported in degrees < dim X, and it is typically nontrivial in arbitrarily negative degrees.

(4.2)

For example, H'(pt) = Wm M, 5,(CP") = lim H™*(CP") = Z[t] (free polynomial
algebra) where t is the class of a hyperplane and lies in homological degree —2 (cohomological
degree 2). Intersection of cycles gives Hfsl(pt) the structure of a ring and gives each H¢% 1(X )
the structure of a module over it.

Definition 4.3 (Tate equivariant homology). The Tate S!-equivariant homology is the lo-
calization of co-Borel equivariant homology at t € H Egl(pt), namely it is the direct limit

HES'(X) = lim 5, (X) (1.3

where the transition maps are multiplication by ¢ (compare Greenlees-May [9, Corollary
16.3)).

The key property of Tate equivariant homology is that it vanishes for (almost) free S*-
spaces (with rational coefficients), hence by the long exact sequence and excision, depends
rationally only on the fixed set. This is known as the equivariant localization theorem, which
originates in the work of Smith [28, 29, 30|, reformulated cohomologically by Borel [4], and
then formalized in its present form by Atiyah—Segal [1, 26] and Quillen [24].

Proposition 4.4. The map HS'(X5") — H'S'(X) is an isomorphism over Q.

Proof. We assume that our spaces have a reasonable S'-equivariant cell decomposition
(which holds in the cases we care about by real analyticity). Precisely speaking, this means
that X is glued out of cells of the form S*/T' x (D* dDF) for subgroups I' C S!, where S*
acts by multiplication on the first factor (and trivially on the second factor). Given such
a cell decomposition of X, to show that H!'(X,X5") = 0 it suffices (by the long exact
sequence and excision) to show that H'S'(S'/T" x (D*,dD*)) = 0 for I G S' a proper sub-
group. We have H'S'(S*/T" x (D*,dD*)) = H', (S*/T), so we are reduced to showing that
H'S'(SY)T) = 0for T G S'. Since I' is finite, there is a ‘transfer’ map H'S'(SY)T) — H!S'(SY)
whose composition Wlth the pushforward map H'S' (S 1 — H!S'(S'/T) is multiplication by
#T on H''(S'/T). It thus suffices to show that ijS (S1) = 0, which follows from calulating
H(SY) = 7. O
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The significance of equivariant localization is the following. Given a class in H¢% 1’relo"(X ),
we may push forward to Hfsl(pt) provided X is compact. However, if we are satisfied with
pushing forward to the Tate group Hﬁsl(pt), then equivariant localization provides such a
pushforward map when just the fixed set X " is compact.

4.2 Equivariant enumerative invariants

Curve enumeration theories, namely classes in H'*(Z(Cpx;)), specialize to virtual funda-
mental classes in H*'*°(Z(X)) for complex threefolds X. It turns out that a curve enumer-
ation theory also determines S!'-equivariant virtual fundamental classes, namely classes in
Hreloes'(Z(X)) for X with an C*-action. Indeed, we have

H:Sl’reloo(Z(X)) _ L H:$%(2<X) E(E: 0+ - O)) (44)

and (Z(X) x (CN*T1—0))/C* is the relative cycle space of the family (X x (C**!1—0))/C* —
CPY, so we have

C 1 reloo : reloo X >< Cn+1
a2 00) sy (2(F 0 ferY)). as)

A curve enumeration theory gives rise to a coherent system of classes in this inverse system,
hence to a class in He ™ (Z(X)). Such a class determines numerical invariants by capping
with something in H*(Z(X)) and pushing forward to H¢'(pt) = Z[t]. In particular, this
defines equivariant Gromov-Witten and Pandharipande-Thomas invariants.

Let us now consider the case of a local curve £ = E ) equipped with the fiberwise
scaling action of C*. An equivariant virtual fundamental class thus lies in HeS ™ (Z(E)).
Restricting to cycles Z(E,m) C Z(E) of degree m (homology class m[C] for C' C E the zero
section), this class lies in degree 2km. The fixed locus Z(E)%" is just Zso x [C] (multiples
of the zero section), so we may appeal to equivariant localization (Proposition 4.4) to push
forward this class to Tate equivariant homology H*® 1(pt) = Z[t,t]. This defines equivariant
enumerative invariants in Héf;k (pt) = Z-t~™ which roughly speaking ‘S*-equivariantly count
curves representing the cycle m[C] in E,; . In particular, we obtain invariants

GWgi (E,m) € Q((u)) -t™* (4.6)
PTsi(E,m) € Z((q)) -t
for any local curve I, — C and integer multiplicity m > 0.
Theorem 4.5 ([6, 20]). The pair of power series (—iu)*GW g1 (E, ., m) and (—q)™*/?PT g1 (E, 1, m)
satisfy the MNOP correspondence.

4.3 Elements of the Grothendieck group

Now we would like to realize the equivariant enumerative invariants of local curves Eg ,, 1 —
C, as the ordinary non-equivariant enumerative invariants of certain elements zg,,, €
H2™(Z(Cpxy, km)) (virtual dimension zero) called equivariant local curve elements.
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Consider a map
Z(E,m) 0B, Sym™ E, Sym® A Sym™ C ENIs (4.8)

associated to a point p € C, a linear map A : E, — C, and a homogeneous symmetric
polynomial 3, : Sym™ C — C of degree r. This map is C*-equivariant for the weight r action
on the target C. Tt thus determines a section f of L& over (Z(E, m)x (CN*1-0))/C*, where
L denotes the tautological line bundle on CPY. We may choose such functions fi,..., f, so
that their joint zero set f;*(0) N ---N £71(0) will be just the point m[C] € Z(E,m).

We now define the equivariant local curve element x,,, . € H**™(Z(Cpxy, km)) to be the
image of

mH rrgon € B (2(EXET 20 J opry)

— H>2N(Z(Cpxy, km)) (4.9)

for any collection of sections f; of L™ as above for which f;1(0) N ---N £71(0) is compact
(so the cocycle above is indeed compactly supported) and n = N + km (where 1,, denotes
the characteristic function of the cycles of degree m).

Lemma 4.6. The expression (4.9) defining xym 1 € H2(Z(Cpxs, km)) is independent of
the choice of n-tuple of sections f1,..., fn.

Proof. 1t is enough to show that the class is unchanged by removing f,, and decrementing
N, provided the joint zero set of f;1(0) N ---N f.,(0) is compact. The cocycle f'7rer, is
cohomologous to r, times the hyperplane CPN~! C CPY which means that the ‘wrong way

map’

H+N-2 (Z(E X(C(CNO_ 0) / CPNl))
N (Z(E x CNH / (CPN>) (4.10)

sends 7y i pen U Ur L fE  Trena sy to ryt fiTren Us - Ury L f5 7 er,, SO we are done by
commutativity of (3.15). O

For k > 0, the elements z,,,, € Hi(Z%™-Fm°(Cpx,)) evidently lift canonically to
Hy(Zsemi-Fano(Cpx,)) and are well defined there as well. We have 0 = 1 (taken = N = 0).

Proposition 4.7. Given any curve enumeration theory (class in HX™*°(Z(Cpx;))), the
resulting equivariant count of a local curve E in degree m is given by the pairing with
Tymi € HZF(Z(Cpxg, km)) times t=Fm.

Proof. Every class in H fgtl(pt) is of the form a - t? for some integer a. The coefficient a may
be recovered by realizing the class inside some Hoy 54(S**1/S) and pairing with HV~4
(power of the hyperplane class), provided N > d so that this makes sense. We can apply the
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same recipe to find the image in H'(pt) of a class in HfSI(X) for any S'-space X. Namely
the image of a class in H,(X) = lm o Hon-2q((X % SN /S1) in H,(pt) = Z[t] is given
by t? times its pairing with HV~? for any N > d.

Now the equivariant enumerative invariants of (E,;,m) are defined by pushing for-
ward (after localizing at t) the virtual fundamental class in (the inverse limit wrt N of)
Hompran((Z(Ey g, m) x S*NHt1)/SY). This pushforward is only defined in Tate homology,
that is we must multiply by " and lift to Hopm on—on((Z(Egr, m)S" x S2N+1)/SY) (which is
guaranteed to be possible for n sufficiently large by Proposition 4.4) before pushing forward.
This multiplication by ¢" is precisely realized by (ry -« - ) fiTpen Us U fiTrem. After
multiplying by t", the pushforward to a point lies in degree 2km — 2n, so following the
above procedure we should cap with HYN~=("=*m) for N > n — km to determine its image in
Hg,fjnﬁn(pt). We can simply take N = n — km, so there is no cap with a power of H, and
we conclude that the coefficient in front of t*~*™ is the evaluation of our curve enumeration
theory on x4, as desired. O

Corollary 4.8. The invariants (—iu)*GW (xy 1) and (—q) *?PT (v mx) satisfy the MNOP
correspondence.

Proof. Combine Theorem 4.5 with Proposition 4.7. [
Lemma 4.9. We have pg(Zgm0) = Tgm/a0 if dim.

Proof. Inspection: the pullback of f; of degree r; under multiplication by d map is another
such map of degree r;. O

We now calculate the value of the coproduct A applied to z,,, ;. First note that in the
definition of x4, 1, we could in fact take n = N+km+/ for any integer /. Denote the resulting
elements by ¢z, € HZ™*2(Z(Cpx,, mk)), which have virtual dimension —2¢. Since the
relative cycle space Z((E x (CN*! —0))/C*,m) has finite type, its compactly supported
cohomology vanishes in sufficiently large degree, so we have 4z, = 0 for sufficiently large
¢ (depending on (g, m, k)). In fact, we do not need to know the dimension of the cycle space
to estimate the vanishing of ,x4,,x: if the simultaneous zero set of some n functions f; is
compact, then we can take N = max(0,n — km), which means multiplication by H* is zero
once ¢ > N, so we see that yzg,,, = 0 for £ > max(0,n — km).

Lemma 4.10. We have A(Zgmi) = Dy ipmm 20 tTgak @ —eTgpk where Toop = 1 by con-
vention.

Proof. Realize x4, by the expression (4.9) for a local curve E = E, ;, and some sections f;
of L& as in (4.8) whose joint zero set f;*(0)N---N f-1(0) is compact, and n = N + km.
To define the coproduct A(zg,, ) (Definition 3.6), consider the disjoint union family

E x (CN+1 —0) y CN+1 -0 | (CN+1 —0) LB (CN+1 —0)
C-0 C-0 C-0 C-0
— CPY x CPY, (4.11)
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whose relative cycle space is the product of relative cycle spaces

z( /@P) ( - /CP >—>CP x CPV.  (4.12)

Over the diagonal A(CPY) C CPYN x CP¥, there is an addition map ¥ from this relative
cycle space to the relative cycle space of (E x (CN*! —0))/C* — CPYN. The coprod-
uct A(xg k) is represented by the disjoint union family (4.11) equipped with the cocycle
A.Z 1, Hz—l r; f Trer; .

Now we may consider the product of this cocycle with some number of cocycles 71 g*TE?r
or r‘lh*T%@r for sections g or h as in (4.8) coming from either copy of £ (thus pulled back from
the corresponding factor). If we increase N by the number of such cocycles, the argument
of Lemma 4.6 shows that the result still calculates A(x,,, ). Now if the sections ¢ and h
we choose have compact joint zero set (which is certainly attainable), then we can apply the
argument of Lemma 4.6 to remove each r; ' ff 7 er, factor. We thus conclude that A(xy 1)
is represented by

: . 2N +2p+2q Ex( CN+1 N
Aler Gi7gon [ i ons € H (2( /CP ) ) (413)

j=1

where p + ¢ = N + km. Now expand 1,, = > ., l,pand Ay =3 ., v H°® H? to see
that this cocycle represents

E E ctp—ak—NTgak @ dtq—ok—NTgbk- (4.14)
a+b=m c+d=N

Note that the quantities ¢ +p —ak — N and d + ¢ — bk — N sum to zero. Their maximum
values are p — ak and ¢ — bk, respectively. Since p and ¢ are arbitrary, we can simply sum
over all integers ¢ = ¢+ p — ak — N (note that one factor of the tensor product will be zero
for all but finitely many ¢), thus obtaining the desired result. O

5 Transversality

We prove a ‘generic transversality’ result, which says that simple (not multiply covered) maps
from smooth curves to complex manifolds with generic (in a certain precise sense) complex
structures are unobstructed (transverse). We derive from this that H:(Zsm-Fano(Cpx,)) is
generated by certain equivariant local curve elements.

5.1 Regularity

The deformation theory of a map u : C' — X from a smooth proper curve C' to a smooth
complex analytic manifold X is controlled by H*(C,u*T'X). The deformation theory of C
itself is controlled by H*(C,T'C[1]). The deformation theory of the pair (C,u) is controlled
by H*(C,[TC[1] — u*TX]). A deformation problem (in any of the above flavors) is said to
be unobstructed when H=! = 0.
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Given a complex analytic submersion X — B, we may also consider the deformation
theory of pairs (b,u : C'— X;). Note that this differs from the deformation theory of maps
from C to the total space X (which we will not ever consider). If X — B is a pullback of a
submersion X’ — B’ then a pair (b,u : C'— X}) in X — B which is unobstructed remains
unobstructed when pushed forward to X’ — B’.

Definition 5.1 (Regular). Let u : C' — X be a holomorphic map from a compact smooth
curve C. A point z € C will be called special (for u) when du(z) = 0 or #u~*(u(z)) > 1.
The set S C C of special points is finite provided dim¢ X > 2, which we now assume. We
now consider the deformation theory of the triple (C, S, u) subject to the constraint that the
points S remain special with the same discrete data, meaning that all conditions u(z) = u(z’)
and (D"u)(x) = 0 which hold for u are preserved. We say that the map u is regular when
this deformation problem is unobstructed.

To clarify the meaning of the point constraints, we note that they add to the (complex)
index the quantity

5] — dime X - (|S| ~u(S)] + Zordp(du)>. (5.1)
peS

When dim¢ X > 3, this quantity is < 0 unless S = &.

Regularity is also defined for curves in fibers of a family X — B, meaning the deformation
problem includes variation in the base parameter. If X’ — B’ is a pullback of X — B, then
regularity in X’ — B’ implies regularity of the pushforward to X — B.

In contrast to curves and maps from curves, it is not so clear whether 1-cycles have a
reasonable deformation theory. We will call a (possibly relative) 1-cycle z = >, m;C; semi-
reqular when the map | |, C; — X is regular in the sense of Definition 5.1. Semi-regularity
evidently measures properties of the semi-chart from §2.2. In particular, if z € Z(X/B) is
semi-regular, then the semi-chart through z is a smooth subvariety of Z(X/B) of dimension
dim B + ) (a1(TX), C;).

We denote by Zeemiree © Z the locus of semi-regular cycles, and we call points in its
interior Zsoemi_reg C Zsemireg interior semi-reqular.

If = € Z(X/B) is semi-regular, then it evidently remains semi-regular upon pushing
forward to a family X’ — B’ of which X — B is a pullback. In contrast, interior semi-

regularity need not be so preserved, which is a significant technical trip hazard!

Lemma 5.2, Zsemi-fano(x/p)o has dimension < dim B + 2(c;(TX), z).

semi-reg

Proof. The set of points of Z(X/B)g, e Whose associated semi-chart is an open embed-

ding is dense by Lemma 2.1. At such a point, the dimension of Z(X/B)? equals

semi-reg
the dimension of the semi-chart. At semi-regular points z = ). m;C;, this dimension is

dimB + 2} (c1(TX),C;) <dimB+2) ., mi(ci(TX),C;) = dim B + 2(c;(TX), z) (where
we have crucially used the semi-Fano condition (¢;(7°X), C;) > 0 for all 7). O
5.2 Semi-regular Grothendieck group

Define a 1-cycle z € Z(X/A") to be semi-regular when it is semi-regular inside the minimal
stratum of A™ containing it (i.e. consider variations in the base which are tangent to the
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stratum containing z). Thus for any injection [i] < [n] and any family X — A" we have
Z(X Xan A"/A ) semireg = Z(X/A™)semireg Xan A’ There is thus a correspondence

Z(X XAn Al/Al):emi—reg At Z(X/An)gemi—reg X An A — Z(X/An)gemi—reg (52)
in which the left arrow is an open embedding and the right arrow is a pullback of A? — A"
(hence a closed embedding, but in particular proper). Now given that C¥ is functorial for
open embeddings and proper maps (see §3.2), we obtain a coefficient system C7(Zg, i req)
on Cpxy, and hence chain groups C.(Cpx;,, C;(2)gmireg), Whose homology we denote by
H}(Z(CpXy)gemireg) and call the Grothendieck group of interior semi-reqular 1-cycles. There
is an evident map of coefficient systems C7(Zg, i ..) — Ci(Z) on Cpxy, (functoriality
under open embeddings), inducing a map on Grothendieck groups H}(Z(Cpx3)eemires) —
H2(2(Cpxy)).

5.3 Generation by local curves

o

Define a geometric local curve element in H}(Z*™ 7 (Cpxy)Zemireg) t0 be the Poincaré
dual of a point of Z%™1*(X /B, k)2 i, Whose semi-chart is an open embedding of di-
mension 2k + dim B. Since the set of points whose semi-chart is an open embedding

is dense (Lemma 2.1), the Poincaré dual of any dimension 2k + dim B smooth point of

Z5emiFane (X /B k)2 miveg 15 & geometric local curve element. The topological type of a point
z=,mC; € Z°"F(X /B k), ireg 15 the collection of tuples (g;, m;, k;) consisting of

the genus g; of C;, the multiplicity m;, and the chern number k; = (¢i(Tx/g), C;) > 0 (since
we are working with Zsemi-Fano). this s constant over any semi-chart. The dimension of the
semi-chart at z = >, m;C; isdim B+2) , k; < dim B+2) . m;k; = dim B+ 2k, so equality
only occurs when (m; — 1)k; = 0 for all i. Every geometric local curve element has virtual
dimension zero (it has chern number ) . m;k; and cohomological degree 2. m;k;).

Proposition 5.3. The group @, ;o H{(Z*™ 7 (Cpxg, k)omireg) 45 generated by geomet-
ric local curve elements.

Proof. Represent a class in H:(Z%™ " (Cpxy, k)2mireg) by a finite semi-simplicial set B,

a map B, — Cpxz, (i.e. a family of complex threefolds X — B), and a cycle A €
Co(Ba, Ci (25 (X [ — k)2umieg))- The components A, € Citdime(Zsemitano( X /g [)e . )
associated to top-dimensional simplices o € B, are cocycles. Since i +dimo > 2k +dimo =
dim Zsemi-Fano (/5 k) (Lemma 5.2), the cohomology class [\,]| € HiFdimo(Zsemi-Fano(x /5 L))
is a linear combination of Poincaré duals of smooth points of dimension 2k + dim o, namely
geometric local curve elements (such smooth points lie over the interior of o, hence their

Poincaré duals are cycles in C,(B,, C(Zsemi-Fano(x /o ))). By subtracting these,

semi-reg
we may reduce to the case that [A\,] = 0 in cohomology for top-dimensional simplices o.
Thus by adding a boundary to our cycle, we may reduce the dimension of B,. Iterating, we
have reduced our class to zero by adding geometric local curve elements. O]

Conjecture 5.4. Fvery geometric local curve element coincides with the equivariant local
curve element of the same topological type.
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Note that Conjecture 5.4 is false in the almost complex setting by the analysis of Tonel-
Parker [11, §7]. In the analytic setting, we would expect any ‘walls’ to be complex codimen-
sion one, hence real codimension two, so there is no wall crossing. This is nontrivial to make
precise over real analytic bases B given the delicate nature of interior semi-regularity.

5.4 Generic transversality

It is a standard result that for generic almost complex structures, all simple maps are un-
obstructed (see [10, 19, 32] for precise statements). We now derive analogous results for
complex structures. Since complex structures are much more rigid (for example, they have
no local perturbations supported inside a small ball), these results are weaker than those in
the almost complex setting.

For complex manifolds U and V', denote by An(U, V') the space of analytic maps U — V/
with relatively compact image. If V' admits an open embedding into some C", then An(U, V')
is a complex analytic Banach manifold, locally modelled on the space of n-tuples of bounded
holomorphic functions on U.

Given a complex manifold U, let R(U) = An(U~, U) (the space of ‘regluings’) for U~ C U
a(n unspecified) large relatively compact open subset. More formally, let us regard R(U) as
the inverse system of all neighborhoods of the identity 1y € An(U~,U) over all relatively
compact open sets U~ C U. Composition makes R(U) into a group object. In all cases of
interest to us, U will admit an open embedding into some C", implying that R(U) is a (pro)
Banach analytic manifold.

Definition 5.5. Given a complex manifold X with an open cover X = A U B, we may
deform X by modifying the identification between open sets A O ANB C B. More formally,
we consider the family X — R(AN B) by taking the trivial families A and B over R(AN B)
and gluing via the base parameter A x R(AN B) 3 (a,7) ~ (v(a),y) € Bx R(AN B). To
make this construction precise, and to ensure the result is Hausdorff, we may fix compact
sets A~ C A and B— C B and glue (A~ U B~) x R(AN B) to obtain a proper map
X~ = R(AN B) so that X is well defined as a germ containing X .

We will in fact only need a special case of the above construction, namely when the
regluing takes place in a small neighborhood of a divisor (a closed complex submanifold of
codimension one).

Definition 5.6 (Deforming complex structure near a divisor). Let X be a complex manifold,
and let D C X be a smooth divisor. Regarding X as the gluing of X'\ D and Nbd D over their
common intersection, Definition 5.5 provides a family X — R(Nbd D \ D). This family is
smoothly trivial (analytic perturbations of the identity map on Nbd D \ D extend smoothly
to Nbd D), so a choice of trivialization determines a family of complex structures on X
parameterized by R(Nbd D \ D). We will also denote this base space by Jp(X) (complex
structures on X obtained by regluing near D). Of course, this isn’t really a space but rather
a family of spaces depending on choices of neighborhoods, etc. Sometimes we will need to
fix a specific one, but we will do this at the relevant time.

The same construction applies to families X — B of complex manifolds. Given a relative
dimsor D C X — B, meaning a divisor which is submersive over B, we may consider the
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set Jp(X/B) = Rp(Nbd D \ D) = J,cs R(Nbd Dy, \ D) — B, a holomorphic section o of
which determines a ‘vertical’ (i.e. over B) regluing X, — B of X.

The tangent space to R(Nbd D\ D) at the identity is the space of germs of holomorphic
vector fields on Nbd D possibly singular along D. We denote this space by H(D, T X (—ocoD))
(implicitly restricting the sheaf of holomorphic sections of TX over X to the divisor D).
Such a vector field thus gives a first order deformation of the complex structure on X mod-
ulo gauge, that is an element of H'(X,TX). Concretely, this map H°(D,TX(—coD)) —
H'(X,TX) sends a holomorphic vector field v to (the Dolbeaut cohomology class repre-
sented by) 9((1 — ) - v) for a smooth function ¢ : X — [0, 1] supported inside an open set
U C X containing D such that v is defined on U \ D and ¢ = 1 in a neighborhood of D.
The choice of ¢ does not matter since ((1 — ) -v) — (1 —¢')-v) = I((¢’ — ) - v) is exact
in the Dolbeat complex since (¢’ — ¢) - v is a smooth vector field on X (in contrast to ¢ - v,
which has singularities along D, or (1 — ¢) - v, which is defined only on U).

Given a divisor D C X, a map u : C — X from a smooth curve C' will be called D-
controlled when u~1(D) C C is discrete and intersects every component of C. It is elementary
to observe that being D-controlled is an open and condition on u. A cycle z = ). m;C; in
X will be called D-controlled when C; — X is D-controlled for every i.

Lemma 5.7. The set of D-controlled cycles in Z(X/B) is open for any relative divisor
DCX— B.

Proof. Suppose z = Y. m;C; € Z(X/B) is D-controlled. Since C; intersects D geometrically,
the algebraic intersection number C; - D is positive by positivity of intersection. If 2/ =
>, miC! is close to z, then every C] is homologous to a positive linear combination of
some C;’s, hence also has positive algebraic intersection with D, thus a fortiori intersects it
geometrically. O]

We now come to the key technical result underlying generic transversality, which says
that the restrictions of D-deformations to D-controlled curves are sufficiently rich. For any
family X — B, the deformation complex of a map u : C — X, maps to the deformation
complex of the pair (b,u : C' — Xj), with cokernel T, B. This induces a map from T, B to the
obstruction space of the map u, whose cokernel is the obstruction space of the pair (b, u).
Explicitly, this map is simply restriction (e.g. of Dolbeaut representatives) from H!(X,TX)
to H'(C,TX). More generally, we could consider constrainted deformation problems.

Lemma 5.8 (Enough first order deformations). Let u : C' — X be a simple map from
a smooth proper curve C' to a compler manifold X, and let D C X be a divisor. If u is
D-controlled, then the map

H(D N u(C), TX(~00D)) — H'(C, TX) (5.3)

is surjective. In fact, it is surjective onto the obstruction space for deforming the map
u: C — X subject to any finite number of point constraints (such as those appearing in the
notion of ‘reqularity’ Definition 5.1).
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Proof. Recall from above that the map in question sends a vector field v to d((1 — ¢) - v)
(which we note is not exact since the ‘primitive’ (1 — ) - v is not defined globally on X). Let
us fix a rather singular cutoff function ¢ so that dy, hence also 9((1 — ) - v), is supported
along the boundary of a fixed small tubular neighborhood Nbd(D) of D. In fact, fix a local
projection m : X — C with D = 771(0), and take Nbd(D) = 7~!(D?) (near a given point
of intersection u(C) N D). Now mowu : C — C is a ramified cover near the origin. In
particular, the inverse image u™! (9 Nbd(D)) is a finite number of circles near «~!(D) which
together meet every component of C'. We will show that by appropriate choice of v, we
can make J((1 — ) - v) approximate the delta function at any point of this union of circles
K. Every nonzero element of H*(C, Ko @ T*X) = H'(C,TX)* has nonzero restriction to
u ' (ONbd(D)) by holomorphicity and unique continuation (recall they meet all components
of C'), so we obtain the desired surjectivity. Finitely many point constraints added to T'X
do not affect this argument: it is enough to approximate delta functions away from these
special points.

It thus remains to prove that we can make 9((1 — ) - v) approximate a delta function
at any point of «~'(ONbd(D)). Fix local coordinates X = C, x C2 , near an (isolated, by
hypothesis) intersection point w(C) N D in which 7 is the z-coordinate so D = {z = 0} =
0 x CZ,. Choose ¢ to be a smoothing of the characteristic function of the unit disk in C.,
so that (1 — ) is a smoothing of the §-mass along the unit circle §(zZ — 1)2dz. Writing
v =", fu(z,y)z0,, we calculate 9((1 — ¢) - v) = I(1 — ¢) - v is a smoothing of §(2z —
1) >, fu(z,y)2¥1dz0,. Now the factor >, fi(x,y)z*"1dz0, can approximate any continuous
function on D% x C?E’y which is holomorphic on fibers % x Ciy (use approximation by Fourier
polynomials in the dD? direction). It is thus enough to show that the restrictions of such
functions on dD? x C3, = ONbd(D) are dense in continuous functions on u~'(9d Nbd(D)),
which is evident from the fact that 7 owu : C' — C is a ramified covering. m

Let us now explain how the existence of enough infinitesimal deformations (Lemma 5.8)
implies various flavors of generic transversality. We say that (the complex structure on) X
is D-regular when every D-controlled simple map is regular (Definition 5.1) and hence every
D-controlled cycle is semi-regular.

Lemma 5.9 (Generic transversality). For any complex manifold X, any divisor D C X,
and any finite set A C D, after possibly removing a closed subset of X disjoint from A,
generic elements of Jp(X) are D-regular.

Proof. This is a typical argument based on Smale’s infinite-dimensional Sard theorem [27].

We begin by fixing a precise space Jp(X) to consider. Let Cjj<; € C denote the unit
disk. Fix coordinates C.<; X Cﬁ;ll near each point a € A with a = (0,0) and D = 0 x (Cﬁ;ll.
We let Jp(X) consist of holomorphic maps f : Cj.j<; X Cﬁ;ll — C" with || f — 1|2 < € for
some £ > (0. By smearing the Cauchy Integral Formula and appealing to Cauchy—Schwarz,
we see that || f — 1]« over any compact subset of the interior of Cf|_, is bounded linearly in
e. Thus for sufficiently small € > 0, the reglued family (Definition 5.6) is defined (we remove
from X a small neighborhood of 9Cj<; x (Cﬁ;ll)‘ Using the L2-norm here guarantees that
the space Jp(X) is separable.

Now consider a compact smooth (not necessarily connected!) surface C' and a smooth
family of almost complex structures on C' parameterized by a finite-dimensional smooth
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manifold 7 (C). Now W*?2(C, X) is a smooth Banach manifold for any integer k¥ > 2 (which
guarantees W*2 C ), whose product with J(C) x Jp(X) carries the smooth Banach
bundle

Jo X WEAHC, X)) Xyprr2(cx) WO, TC @c TX) x Tp(X)

| (5.4)

Jo x WE2(C, X) x Jp(X)

with a section 0 measuring failure of the map C' — X to be holomorphic. Now the lineariza-
tion (derivative) of 0 at a triple (u: C' — X, j,J) is a map

WE2(C,uw'TX) @ T;J(0) @ Ty Ip(X) = WO, TC @c u*TX) (5.5)

whose restriction to the first direct summand is the deformation complex of the map wu.
Lemma 5.8 guarantees that the restriction to 7, Jp(X) surjects onto the obstruction space
H'(C,TX) if u is D-controlled.

Now restrict to the clopen subdset of W*2(C, X) consisting of those maps whose restric-
tion to every component of C' has positive algebraic intersection with D (thus a holomorphic
map is D-controlled iff it lies in this set). Over this clopen set, the zero set 971(0) is thus a
smooth Banach manifold, and the projection map

07(0) = Ip(X) (5.6)

is Fredholm by ellipticity of the linearized operator. Now Sard—Smale [27] implies that
generic elements of Jp(X) will have regular fibers. We can cover all curves using countably
many pairs (C, J¢) with smoothly varying point constraints, so we conclude that for generic
elements of Jp(X), all D-controlled simple maps are unobstructed.

Regularity is stronger than unobstructedness, since it involves a deformation problem
with point constraints. To prove regularity of D-controlled simple maps with respect to
generic elements of Jp(X), we consider triples (C,J(C),~) where ~ is a finite set of point
constraints (again, countably many such triples suffice to cover all possible situations). []

Lemma 5.10 (Generic transversality in a family). Fiz a family of complez threefolds X — B
over a semi-simplicial set B, a relative divisor D C X — B, and a set A C D whose map
to B is proper with finite fibers. After subdividing B and removing from X a closed subset
contained in D\ A, there exist (simplez-wise) analytic sections of Jp(X/B) — B which are
D-regular. Moreover, given in addition a semi-simplicial subset B' C B, there exist sections
vanishing on B’ which are D-reqular over B\ B'.

Proof. By subdividing B, we can ensure that over each simplex o C B, there exist finitely
many disjoint charts

(Cpj<1 x CP 2, x 0,0 x CP ) x 0) = (X5, Do) (5.7)

<1

which together cover A. By induction, it suffices to consider the case (B, B') = (o,00) for
a single simplex ¢ = A*. We now consider the Banach space of analytic sections B —
Jp(X/B) given by those analytic maps f : Cjj<; X (Cﬁ;ll x 0 — C" with small L?-norm over
Ci<1 x Cﬁ;ll times a fixed neighborhood of ¢ C C4™¢ and vanishing on A x A" x Jo.
We may now proceed as in Lemma 5.9. O
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To get any mileage out of the above generic transversality results, we need a sufficiently
rich collection of divisors. Producing a divisor which controls a single map or cycle is
elementary. We now generalize this assertion to families, where a more subtle argument is
required.

Proposition 5.11 (Enough divisors). Let X — B be a family of complex threefolds over a
finite semi-simplicial set, and let K C Z(X/B) be a compact analytic set whose projection
map K — |B| is injective. After possibly removing a closed subset from X disjoint from K,
there exists a finite collection of disjoint relative divisors D; C X xp U; — U; (U; C |B]|
open) such that every z € K is D;-controlled for some i.

Proof. First, let us discuss how to construct (germs of) relative divisors D C X — B locally
near a given point of . Suppose x lies over the interior of a simplex o € B,. Begin with
a holomorphic map 7 : X, — C defined near z with transverse zero set 7=(0) = D,. To
explain the term ‘holomorphic’ for 7, recall that X, — o is the restriction of a given family
XE — o€ = C4mo gver the complexification, so it makes sense to require that 7 be the
restriction to X, of a (necessarily unique) holomorphic function on Xt. For D, to be a
relative divisor, we need it to be submersive over o, which in terms of 7 is the condition that
dr|Tx,p is surjective. To extend D, to a neighborhood of x in the total space X, it suffices
to extend the holomorphic map 7 (note that surjectivity of dn|Tx/p is an open condition).
Proceeding by induction on simplices, we are reduced to the question of extending (near the
origin) an analytic function from ORZ,x C" to R%,x C". This extension problem is solved by
the standard formula f(y1,...,yn, 2) = Z@#Sg{l,...,n}(_1)‘5‘_1f({yi}i¢57 {0}ics, 2). There is
extra freedom to add any analytic function times y; - - - y,,, which will be important below.
We note that the resulting germ of relative divisor D C X — B can be promoted to a true
(not germ) relative divisor by removing a suitable closed subset of X.

Given the local existence of relative divisors, compactness of K immediately produces a
finite collection of relative divisors D; C X xg U; — U; (U; C |B| open) such that every
z € K is D;-controlled for some ¢. These divisors, however, need not be disjoint. Note that
it suffices to ensure that D; N D; Nz = & for all z € K, as then UK]. D;,ND; C X is closed
and disjoint from K so we can simply remove it. To produce divisors with this property, we
use an inductive argument, the key being that intersections D N D’ N z generically happen
over a codimension two (dim(U/Z) — codim D — codim D’ = —2) subset of K.

Consider the following more general problem. In addition to the data of X — B and
K C Z(X/B), fix a relative singular divisor D?*V C X — B. We then ask for a finite
collection of divisors D; which together control all z € K and which are disjoint from each
other and from DP'V. Our original problem is the special case DP™¥ = &.

We now show how to reduce the problem for a given (D™, K') to that of another pair
(Drrev' K'). Consider any choice of relative divisors D; controlling all z € K. We claim that
if the problem associated to

(Dprev/’ K/) _ (Dprev U UDi7

WB((U(X/B) X z(X/B) K> N U(Dz n (D u UDJ)>)> (5.8)

% j#i
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has a solution, then our original problem (DP*¥, K) has a solution. Consider divisors Dj
solving the modified problem; they are disjoint from DP™V and from every D;, and they
control all z € K’ hence all z in a neighborhood of this set (Lemma 5.7). For z € K'\Nbd K’,
we use some D; to control z. The intersections of these divisors with each other and with
DPev will be disjoint from U(X/B) xz(x/p) K by definition of K’ hence can simply be
removed from X.
We now claim that the more general problem has a solution provided DP**YNU(X/B) X z(x/B)

K — K has relative dimension zero. We argue by induction on dim K, the case K = & being
trivial. For the inductive step, we simply note that in the construction above, the set K’
will have at most complex codimension one inside K provided the D; are chosen generically
(this uses the fact that DP*"NU(X/B) x z(x/p) X — K has relative dimension zero), which
also ensures that DP**V' NU(X/B) X z(x/p) K — K also has relative dimension zero. O

We now use generic transversality to argue that the Grothendieck group of interior semi-
regular 1-cycles coincides with that of all 1-cycles.

Proposition 5.12. The map H}(Z(CpXs)smireg) — Hi(Z2(Cpxy)) is surjective (and the
same for Zsemitano C Z in place of Z).

Proof. Fix a class in H(Z(Cpx;)), and let us show it is in the image of H(Z(Cpx3)Semires)-
Represent our class by a finite semi-simplicial set B,, a family of threefolds X — B (i.e. a
map B, — Cpx;, in the sense of §3.1), and a cycle A € C,(B,,C}(Z(X/—)) consisting of
cochains A\, € C*(Z(X, /o)) indexed by the simplices o € B,.

The pair (B, \) is equivalent in H}(Z(Cpxg)) to its stabilization (B x RN, X\ U w5 [0])
(we will leave the choice of triangulation of B x RY implicit). It is also equivalent to the
modified stabilization (B x RY, AU (mgn — i)*[0]) for any map i : Z(X/B) — RY. Now the
product AU (mgy — 4)*[0] is supported along the graph of i denoted I'; C Z(X/B) x RN =
Z((XxRY)/(BxRY)). Taking i to be an analytic embedding, we may ensure that I'; is
analytic and the projection I'; — RY (hence a fortiori the projection I'; — B x RY) is
injective.

We have thus shown that (B, ) is equivalent in H*(Z(Cpx;)) to another pair, which we
now rename as (B, \), which comes with a compact analytic set K C Z(X/B) for which
K — B is injective and with a lift of A to a cycle

7 € Cu(B., Ci(Z(X/—)) (5.9)

where C5(A) = C*(A, A\ Z2).

Now the fact that K — B is a injective allows us to appeal to Proposition 5.11 to fix
disjoint relative divisors D; C X xp U; — U; for constructible closed sets U; C B (i.e.
unions of closed simplices) which together control K (this requires deleting a closed subset
of X disjoint from K and subdividing B, neither of which change the class of (B, \) in
HE(Z(Cpxy)).

Now finally we are in a situation which can be deformed to a semi-regular situation using
generic transversality. Consider the family X = X x R — B x R = B, and consider a
collection ® of analytic functions ¢; : B — Ip, (X/B) = Jp,(X/B) x R supported inside
U; x R and vanishing on B x 0. By generic transversality Lemma 5.10, the resulting reglued
family Xg — B (Definition 5.6) is (| |, D;)-regular over B x (R \ 0) for some ®.
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Choose a local retraction p : Z(X/B) — Z(X/B) near K. Let B;t denote the fiber of B
over t € R. For sufficiently small ¢t > 0, the restriction p; : Z(Xy, B;) — Z(X/B) may be
used to define a pullback cycle

pir € Cu(Bi, s o (2(Xa /) (5.10)

which, by regularity of ®, determines a class in H(Z(Cpx3)gomireg): NOW pi7 is homologous
to 7 by consideration of the pullback p*r paired with the chain [0,¢], which is a chain in
Ci(B,C) o1y (Z2(Xe/—))) with boundary pj7 — 7. This shows surjectitivity of the map

H*(Z(Cpx3)S ) — H?(Z(Cpxy)). The same argument applies to Zsemi-fane C z O

semi-reg

It would appear that a relative version of the same argument would show that the map
in Proposition 5.12 is also injective. We do not need this fact, so we will not pursue it here.

Lemma 5.13. pg(zymi) = 0 in HI(Z™Fo(Cpx,)) for k>0, m >0, and d > 1.

Proof. Combining Proposition 5.12 with Proposition 5.3, we see that H}(Zsemi-Fano(Cpx,))
vanishes in negative virtual dimension. The virtual dimension of

pa(Tgmp) € HZF(Z5omiFane(Cpx, mk/d)) (5.11)
is 2mk/d — 2mk, which is negative for k£ > 0, m > 0, and d > 1. O
5.5 Filtration
We now compute generators for the virtual dimension < 0 part of H; (25 (Cpx3)2umi-res)

using a filtration argument.

The first step is to argue that to understand the virtual dimension < 0 part of the
group Hj(Z%™ 10 (Cpxy)2 pnineg), We can replace Zsem-reno(—)e . with the interior of
the subset consisting of cycles with smooth support (say z = ). m;C; has smooth support
when |J, C; € X is smooth, equivalently when | |, C; — X is a smooth embedding). The
point will be that having non-smooth support is a codimension two phenomenon.

We indicate cycles with smooth support using the subscript Zgno0th-
Lemma 5.14. Z,,.0tn € Z is an analytic constructible subset.

Proof. The set of points p € U in the universal family at which the fiber of f — Z is smooth
is an analytic constructible subset. Since 4 — Z is proper, the image of a constructible
subset is constructible. O

Lemma 5.15. The map

H;k (Zsemi—Fano (CpX3>o ) — H: (Zsemi—Fano (CpX3)° ) (5 12)

semi-reg,smooth semi-reg

1s an isomorphism in virtual dimension < 0 and surjective in virtual dimension 1.
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Proof. While Zsemi-Fano( X' /B [)° has dimension < 2k +dim B by Lemma 5.2, the same

semi-reg :
argument shows that the complement of its subset Zsemi-Fano( X' /B [)° has dimen-

semi-reg,smooth
sion at most this quantity minus two, since singularities impose codimension two constraints.
Now the map in question fits into a long exact sequence whose third term is
H: ( ( (Zsemi—Fano)o \ (Zsemi—Fano)o )(CpX3)> (5 13)

semi-reg semi-reg,smooth
which for the aforementioned dimension reasons is supported in virtual dimension > 2. [
Having restricted to smooth cycles, we may consider the following filtration.

Definition 5.16 (Multiplicity filtration). Let M = | | ., Z%,/S,, so that there is a map Z —
M associating to each cycle z = 3. m;C; the multi-set m of multiplicities m;. Partially order
M by declaring that m’ < m whenever m may be obtained from m’ by grouping together
the multiplicities and replacing each group with some positive integer linear combination
thereof. The map Z — M is not in general upper semi-continuous, however it is so at every
point ). m;C; with all C; disjoint. In particular, it is upper semi-continuous on Zgmeoth-
Thus the loci

(Z(_)SmOOth)Sm C Z(_)Smooth (514)
are open.
We thus have groups H; ((Z%™ " (CpxX;)gmireg.smooth)<m) (and similarly with < m in

place of < m). The tautological map

H:((zsemi—Fano(CpXB)o )<m)

semi-reg,smooth

— H (25" (Cpxy); )<m)  (5.15)

semi-reg,smooth

fits into a long exact sequence with third term H*((Zsemi-Fano(Cpx,)° )=m)-

semi-reg,smooth

Proposition 5.17. The virtual dimension < 0 part of H} ((Z%™ 7 (CpX3)gmi-reg smooth ) =m)
has a canonical generating set indexed by combinatorial types of smooth semi-Fano cycles
(multi-sets of triples (g, m,k) of genus, multiplicity, and non-negative chern number) of
multiplicity m which are non-deficient (meaning each triple (g, m, k) satisfies (m—1)k =0).
Proof. The space (Z°™ (X[ B)2, i ren smooth)=m consists of cycles =, m;C; for (my, ..., my,)
m and | |, C; = X a smooth embedded curve unobstructed relative B. It is thus a man-
ifold of dimension dim B + 2}, k;, hence has cohomology up to this degree. The map to
the Grothendieck group reduces cohomological degree by dim B, and the chern number is
>, kim;. Hence it contributes cohomology in virtual dimension > 2% (m; —1)k; > 0. Thus
classes of virtual dimension < 0 only exist when (m; — 1)k; = 0 for all ¢ (i.e. non-deficient),
and they are generated by Poincaré duals of points. We declare such Poincaré duals to be our
canonical generators. It thus suffices to show that the Poincaré dual of a non-deficient point of
(Zsemi_Fano(X/B>§emi—reg,smooth)=m? regarded asa class in H::k ((Zsemi_Fano(CpX3)gemi—reg,smooth)=m)7
depends only on its combinatorial type.

Let us show how to associate a class in H}((Z°™ 7 (Cpx3)2mi-reg.smooth)—m) tO any non-
deficient smooth semi-Fano cycle z of multiplicity m in a threefold X, (regarded as a germ

around z). Consider any family X — B with fiber X, over a specified point 0 € B, with
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the property that z is semi-regular in Z(X/B). Now choose a relative divisor D C X — B
controlling z, and consider analytic sections ® : B x R — Jp(X/B) vanishing on B x 0.
By generic transversality Lemma 5.10, there exists such a section which is D-regular over
B x (R\ 0). Since z € Z(X/B) is semi-regular, its semi-chart in Z((X x R)e/B x R) is
smooth and submersive over R. Now this semi-chart has dimension dim(B x R) +2) " k; =
dim(B x R) + 2. m;k;, and (inside the interior semi-regular locus) the closure of the non-
smooth locus has dimension at most two less (as in Lemma 5.15). Thus the Poincaré dual of
an interior smooth point of this semi-chart lying over R, nearby z is a well defined element
of

HEmERT2mE(Z((X % R)a/B % R)Zapireg smooth)=m ) (5.16)
hence its image in Ho > miki((Zsemi‘Fano(Cpxg)gemi_regvsmooth):m) is also well defined.
Now let us argue that this class in H; ((Z°™(CPX3)Smireg,smooth)=m) depends only on

z and X (i.e. is independent of the choice of family X — B with specified fiber X, relative
divisor D C X — B controlling z, and perturbation ®). To show independence of ®, consider
the product X x R xR with ® on X xR x 0 and ® on X x 0 xR, and choose ® on X xR xR
extending ® and ¢’ using Lemma 5.10 making it D-regular on X x (R\0) x (R\0). To show
dependence on just Dy = D N X, consider a finite-dimensional vector space V' mapping
to H(D, Tx/p(—o0D)). Associated to such a map is a family Xy — B x V obtained by
regluing near D via the exponential of V' (Definition 5.6). Choose V' so that z is semi-regular
in (Xo)y — V, and choose ® over B x V x R vanishing on B x V' x 0 so that its restrictions
to 0x0x (R\0), Bx0x (R\0), 0xV x(R\0), and (B\0)x (V\0) x (R\0) are all D-regular
(apply Lemma 5.10 inductively four times). It follows that the element associated to X — B
and D coincides with that associated to (Xo)y — V and Dy x V. Independence of V' follows
from the same argument comparing V', V', and V@ V’. Finally, to show independence of Dy,
note that given Dy and Dy, there exists D{ disjoint from both, and the invariants associated
to Dy and Do U Dy are evidently the same (a V for Dy induces one for Dy U Dj by extension
by zero).

Now we claim that the element of H(( CPX3) Semi-reg smooth )=m) associated to
a non-deficient smooth semi-Fano cycle z of multiplicity m in some threefold is invariant
under deformation. This is immediate, since given a family Xy — [0, 1] and non-deficient
smooth semi-Fano cycles z; € Z(X;) of multiplicity m, we can (at least after dividing into
subintervals) find X — B with our family pulled back under a map [0, 1] — B, and every z
semi-regular inside Z(X/B). We are now done since smooth cycles in threefolds are classified
up to deformation by their combinatorial type (deform to the normal cone and appeal to
Remark 4.1). O

Zsemi—Fano (

We now ift the clements @,,,,.. € HZ(2"5°(Cpx,) for & > 0 and (m — 1)k = 0 to
elements T, , € H((Zsemi-Fano(
show that the maps

o

CPX3)emi-reg smooth) <(m) ). Lemma 5.15 and Proposition 5.12

H;« (Zsemi—Fano (CpX3 ) o )

semi-reg,smooth

SN H: (Zsemi—Fano (CpX3)O )

semi-reg

— H(Z%™0(Cpxy))  (5.17)
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are bijective in virtual dimension < 0 and surjective, respectively. We will inspect their
proofs to obtain a cycle in C((Z5™°(Cpxy)dmireg.smooth)<(m)) HftiNg Zgmy. Represent
Tgm Via its definition (4.9), and use (the trace of) a fiber of E — C as relative divisor
D (which controls all cycles in E). Use generic transversality Lemma 5.10 to produce a
family of D-deformations ® : CPY xR — Jp(((E x (CN*1 —0))/C*)/CPY) (piecewise real
analytic) which is trivial over CPY x 0 and D-regular over CPY x (R \ 0). Pulling back the
cocycle (4.9) under a local retraction from the relative cycle space over CPY x R to that
over CPY x 0 and restricting to that over CP™ x t for some generic small ¢ > 0 defines a
class in

g (v (PET20) epry

N H2km<zsem1 Fano(CpX3’ km)

(5.18)

semi- reg)

lifting g The resulting element of HZ*™(Z5™ " (Cpxy, k1m)mireg) is Well defined by
considering families of deformations over CPY x R%. Now by the dimension count in Lemma
5.15, the class in the domain of (5.18) lifts uniquely to

i (2 () ) O ) 519

Finally, note that this lift lies in the < (m) part since cycles on E of total degree m all have
multiplicity tuple < (m). This defines the lift Zg 5 € HF((Z°™ 7 °(CPX3)ami-reg.smooth) <(m))-

Lemma 5.18. Fork > 0 and (m—1)k = 0, the lift Ty m s € HF((Z°™ 7 °(CPX3)mi-reg.smooth) <(m))
maps to the generator of H:((Zsemi'Fano(Cpxg) from Proposition 5.17 asso-
ciated to the topological type (g, m, k).

Proof. Recall that z,,, € Hi(Z%™F°(Cpx,)) (4.9) is given by

n E (CN+1
Lo [T oo € 12 (2( x / cPY))
=1

semi-reg,smooth ) —m)

— H(Z(Cpxy)) (5.20)

where n = N + km. The lift Z,,,, € H}(Z%°™-F°(Cpx;)S
bation as detailed just above.

Now the cycles on E of degree m all have multiplicity < (m), and the multiplicity
= (m) locus inside Z(F,m) is canonically identified with Z(E,1) = H°(C, E). Let us take
E = L & L' for generic line bundles L and L’ of degrees ¢ — 1 and g — 1 + k, respectively,
which ensures that h°(C, L) =0, h°(C,L') = k, and h'(C, L) = h*(C,L’) = 0. In particular,
the multiplicity m inside Z(FE,m) is semi-regular and smooth.

Now let us consider the restriction of the cocycle (5.20) to the multiplicity = (m) locus,
which is thus a class in

) is defined by pertur-

semi-reg,smooth

H3n<H0(C, E) x (CN+! — O)>.

C-0
Note that (m —1)k = 0 implies mk = k, so we have n = N +k. The restriction of a degree ;
function f; : Z(E, m) — C of the form (4.8) to the multiplicity m locus identified as Z(F, 1)

(5.21)
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has the same form (4.8) of the same degree ;. The restriction of (5.20) to the multiplicity
= (m) locus is thus a cocycle of precisely the same form, just with m replaced with 1. By
Lemma 4.6, the resulting class is independent of the choice of functions f;. Taking k& linear
functions f; which together define an isomorphism Z(E,1) = H°(C, E) = CF, we see that
this restricted class in (5.21) is the Poincaré dual of a point.

Now we are interested in the image of the lift Ty,  in H} (25 (CpX3) domi-reg smooth)=m ) -
The lift Z,,  is defined by perturbing the cocycle representing x, ., ;. Since the multiplicity
m locus is semi-regular and smooth, it remains so after the perturbation, and the point class
remains the point class. It may not be interior smooth or interior semi-regular, but the loci
where these fail are codimension two, and the point class lifts uniquely to the point class. [

o

A product of lifts Z, ,, &, is an element of H} (( CPX3) Semi-reg smooth) < (m;); ). Lemma
5.18 implies that its image in H; ((Z%™"*°(Cpx;)gmireg.smooth)=(m;);) 15 the generator asso-
ciated to the topological type of the set of triples (g;, m;, k;); (it is evident from the defini-
tion that products of canonical generators in the sense of Proposition 5.17 are themselves
canonical generators, with topological type the disjoint union of the topological types of the

factors).

Zscmi—Fano (

Corollary 5.19. The group H:(Zs™Fano(Cpx,)° ) is generated in virtual dimen-

semi-reg,smooth
ston < 0 by monomials in the lifted equivariant local curve elements g, with k > 0 and

(m—1)k=0.

Proof. By adirect limit argument, it suffices to show that H*((Zsemi-Fane(Cpx,)° )<m)

semi-reg,smooth

is generated in virtual dimension < 0 by monomials in the %, , with & > 0 and (m—1)k =0
with multiplicity tuple < m. Now we prove this statement by induction.

Every element of H: ((Zsemi_FanO(CpX3)gemi—reg,smooth)<m) is in the .ima’ge of H: ((Zsemi_Fano(Cpx3)semi—reg,smoc
for some m" < m, so the induction hypothesis implies that H((Z°™™°(Cpxy)Sumi-reg smooth)<m
is generated in virtual dimension < 0 by monomials in the %, for £ > 0 and (m — 1)k =
0 with multiplicity tuple < m. The monomials with multiplicity tuple = m generate
H (2750 (CPXy) Somicrog,smooth ) =m) Dy Lemma 5.18. Now appealing to the long exact se-

quence (5.15), we conclude the desired generation statement for H (2™ (Cpxy)S.mi-reg smooth)<m)-

Theorem 5.20. The group H}(Zs™Tn°(Cpx,)) is generated as a ring in virtual dimension
< 0 by the equivariant local curve elements xg .,k with k > 0 and (m — 1)k = 0.

Proof. The map H(Z%™ 4 (Cpxy)Smireg) — Hei (25740 (Cpxy)) is surjective by Propo-
sition 5.12.  The map H: (Zsemi_Fano(Cpx?:);emi—reg,smooth) — H:(Zsemi_Fano(CpX3)§emi-reg) is
an isomorphism in virtual dimension < 0 by Lemma 5.15. By Corollary 5.19, the group

H (25720 (CPXy ) 2 mireg smootn) 15 generated by monomials in equivariant local curve ele-
ments g, with £ > 0 and (m — 1)k = 0. O

The above argument is very close to giving a full proof of Theorem 1.1 (free generation
by local curve elements) rather than just generation (Theorem 5.20). The missing ingredient
is a proof that the connecting map

H ((Z5mFamo(Cpx,)° )m) 5 HE (25000 (Cpx, )2 )em)  (5.22)

semi-reg,smooth semi-reg,smooth
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vanishes in virtual dimension 1 mapping to virtual dimension 0. This assertion appears
reasonable over complex analytic bases (a generic path in (270 (X ) B2 mioreg.smooth)=m
would avoid the closure of (25 (X /B)S . .. o) <m since this subset has codimension
two), but becomes less clear once we consider real simplices. Instead, we will prove the

injectivity part of Theorem 1.1 using an algebraic argument in the next section.

Proof of Theorem 1.5. By Corollary 4.8, the ring homomorphisms (—iu)*GW and (—¢q)~*/2PT
satisfy the MNOP correspondence when evaluated on all local curve elements x, ,, . These
local curve elements generate H(Zs™-Fano(Cpx,)) in virtual dimension zero by Theorem
5.20, so they satisfy the MNOP correspondence on all of H}(Zsm-Fano(Cpx,)). We may thus
evaluate on the element (X, 5;v,...,7:) (see §3.5) to obtained the desired result. ]

6 Algebraic constraints

We use the bi-algebra structure on H*(ZsemiFano(Cpx.)) and the nontriviality of certain
Gromov—Witten invariants to show that the sub-algebra generated by equivariant local curve
elements zg,,; for K > 0 and (m — 1)k = 0 is free.

Consider the free polynomial ring R = Z[xg,, ] on formal variables x,,, ) indexed by
integers ¢ > 0, m > 0, and k& > 0, satisfying (m — 1)k = 0, modulo the relation that
Zg0k = 1. Equip R with the co-unit and co-multiplication maps given by

n:R—7Z A:R—-R®R (6.1)
Tgmpr — 0 form >0 Tgmk — Z Tgak @ Tgpk (6.2)
a+b=m

on generators and extended to be algebra maps. This makes R into a commutative and co-
commutative bi-algebra. Sending x4, € R to the equivariant local curve element z,, , €
H2mk( Zsemi-Fano(Cpy. mk)) defines a ring homomorphism R — H*(Zsem-Fano(Cpx,)) and
a bi-algebra homomorphism R — H}(Zs™m-Fano(Cpx,))/tors by Lemma 4.10 (and the fact
that H*(Zsemi-Fano(Cpx,)) vanishes in negative virtual dimension).

Let pg: R — R (d > 1) be given on generators by

) (6.3)
0 otherwise.

Tgm/dr M divisible by d and k =0 or d = 1,
Pa(Tgm.k) =
and extended multiplicatively. This pg is a map of bi-algebras (commutes with A and 7)
by inspection. The map R — H}(Z%™-Fa°(Cpx,)) is compatible with the operations py by
Lemma 4.9 and Lemma 5.13.

We now wish to analyze the kernel A C R of the map R — H*(Zs™Fano(Cpx,))/tors.
Compatibility of this map with pg implies that pg(A) C A. Compatibility with A implies
that A(A) C(A® R)+ (R® A) (at least modulo torsion issues which we will address later).
Our goal is to prove that these constraints, along with a simple Gromov—Witten invariant
calculation, forces A = 0.

The weight of a monomial in the variables g, is a function w : Zx¢ X Z>o — Z>
defined by w(ab) = w(a) +w(b) and w(xym k) = m-1,,. Given an arbitrary element a € R,
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we denote by a,, its weight w part. A tensor product of monomials a ® b has a bi-weight
(w(a),w(b)) and a total weight w(a) + w(b). The coproduct A preserves (total) weight.

Lemma 6.1 (Weight splitting). Let A C R be a subgroup with the property that A(A) C
(A® R)+ (R® A). Let w be any nonzero weight. If A has an element with nonzero weight
w part, then A has an element with nonzero weight m1,,, part for some (g, k) € supp w.

Proof. The idea is to use A to ‘split’ the weight w until its support becomes a singleton.
We have A(a),, = A(ay). If the support of w is not a singleton, then write w = w; + wy
for nonzero wy and wy of disjoint support. Since the supports of w; and wy are disjoint, the
result of applying A to a monomial of weight w will have a unique monomial of bi-weight
(w1, wq). In particular, a,, # 0 implies that A(a)y, w, # 0. Since A(a) € (A® R)+ (R® A),
we conclude that A must have an element with nonzero weight w; part or weight wy part.
Now we replace w with whichever of w; or wy it is and repeat until the support of w is a
singleton. O

Lemma 6.2 (Weight purifying). Let A C R be a subgroup with the property that A(A) C
(A® R)+ (R® A). If A has an element with nonzero weight m1,y part, then A has an
element containing the single variable monomial Ty, 1 for some m' < m.

Proof. The argument is similar to ‘weight splitting” Lemma 6.1. Let w = m1,;. Let a € A
have nonzero weight w part. Among the weight w monomials appearing in a, consider the
factor @y, with m’ the largest possible. Now consider the monomials in A(a), of the
form x ., @ —. How can a given monomial in a,, contribute such a monomial to A(a),,?
The factors x ,,» ; with m” < m' must go completely on the right. Of the factors of x ./ k,
exactly one must go completely on the left, and the rest must go completely on the right.
Thus the monomials in A(a),, of the form x,,, ; ® — are in bijection with the monomials in
a,, with at least one x, ., 1 factor, and the effect of A is to multiply their coefficient by the
number of such factors. In particular, A(a),, contains monomials of the form z,, , ® —.
Appealing to A(a) € (A® R) + (R® A), we have ‘split” w unless m’ = m, in which case we
have proven the desired result. O]

Lemma 6.3 (Weight dividing). Let A C R be a subgroup with the property that py(A) C A.
If A has an element containing the single variable monomial xg,, 0, then A has an element
containing the single variable monomial x410 and no single variable monomials x4, o for
m' > 1.

Proof. Take an element of A containing single variable monomials z,, ¢ for various m, and
apply pg to it where d is the maximum m among them. O

Order the pairs (g, k) € Z>o X Z>o lexicographically, namely (g, k) < (¢', k") when either
g<g org=g¢g and k < k'. This is evidently a well-ordering.

Proposition 6.4. Let A C R be a subgroup with the property that A(A) C (AQR)+(R®A)
and pg(A) C A. If A # 0, then there exists an element of A containing the single variable
monomial x4 ) and no single variable monomials x4 ) withm > 1 or Ty .y with (¢, k') <

(g9, k).
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Proof. Consider the set of all weights of all monomials appearing in elements of A. Each
such weight has a maximum pair (g, k) in its support. Fix (g, k) to be the minimum such
pair. Let a € A have a monomial whose weight has (g, k) as the maximum element in its
support. By Lemma 6.1, there exists a € A with a monomial of weight m1,;. By Lemma
6.2, there exists a € A with a single variable monomial x,,, (possibly different m). By
Lemma 6.3, there exists a € A with a single variable monomial z,; ; and no single variable
monomials g, with m > 1. Finally, a has no single variable monomials xy v with

(¢', k") < (g,k) by choice of (g, k). ]

Lemma 6.5. Let k > 0. There exists a group homomorphism GW, : HX(Z(Cpxs)) = Q
such that GWy,(xg1%) = 1, GWy(2g i) = 0 for (¢'. k') > (g,k), and GW,, evaluates
to zero on any monomial of degree > 1.

Proof. Let GW,;, integrate over the virtual fundamental cycle of the moduli space (M), =
of non-constant stable maps from connected nodal curves of arithmetic genus g representing
a homology class with chern number k. Since the image of a connected space is connected,
GW, ;, annihilates monomials of degree > 1.

We have GW (2 i) = 0 if ¢ > g, since there are no non-constant maps from a nodal
curve of arithmetic genus ¢ to a curve of genus ¢’ > ¢g. In the case ¢ = ¢/, the map would
have to have degree d = k/k’ < 1, hence cannot exist.

Finally, let us calculate GW, x(x,1%) = 1. We can represent x,;; by a curve C' of
genus g and £ = L@ L' for ¢;(L) = g — 1 and ¢;(L') = g — 1 + k. Generically we have
h*(L) = hR*(L') = 0 and h°(L) = 0 and h°(L’') = k. That is, C is part of a transversely
cut out k-dimensional moduli space of sections (which locally coincides with M), and the
equivariant local curve element is by definition the Poincaré dual of a point in this space. [

Lemma 6.6. The kernel A of any morphism F : X —Y of co-algebras over a field satisfies
AA)CARX)+ (X ®A).

Proof. Compatibility of F' with A implies that A(A) C ker(F ® F). Now ker(F ® F) =
(ker F')® X + X ® (ker F') since indeed for any pair of morphisms of vector spaces f : V — W
and f: V' — W’ we have ker(f @ f') = (ker f{) @ V' + V & (ker f'). O

Proposition 6.7. The map R — H}(Z%™iFano(Cpx,)) is injective.

Proof. Since R is torsion free, it suffices to show that the map is injective after rationalizing.
The kernel A of this map on rationalizations satisfies A(A) C (A® R) + (R® A) by Lemma
6.6 and pg(A) C A. If this kernel is nonzero, then Proposition 6.4 produces an element of it
on which GW, is nonzero by Lemma 6.5, a contradiction (the preceding lemmas work just

the same over Q as over Z). ]
Proof of Theorem 1.1. Combine Theorem 5.20 and Proposition 6.7. O
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