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Abstract

We show that every continuous action of a finite group on a smooth three-manifold
is a uniform limit of smooth actions.

1 Introduction

Every continuous finite group action on a manifold of dimension ≤ 2 is conjugate to a smooth
action [Edm85, pp340–341][CK94, Eil34, Bro19, vK19]. In contrast, there are many examples
of finite group actions on three-manifolds which are not conjugate to smooth actions, see
Bing [Bin52, Bin64], Montgomery–Zippin [MZ54], and Alford [Alf66]; all of these examples
are defined as uniform limits of smooth actions.

In this paper, we show that every continuous action of a finite group on a smooth three-
manifold is a uniform limit of smooth actions, answering an old question (see Edmonds
[Edm85, p343]). Recall that a neighborhood of an action ϕ : G y M in the uniform
topology (aka the strong C0 topology) consists of those actions ϕ̃ : G y M such that
(ϕ(g)x, ϕ̃(g)x) ∈ U for every (g, x) ∈ G ×M , where U ⊆ M ×M is a neighborhood of the
diagonal. Note that we do not assume that M is compact.

Theorem 1.1. Every continuous action ϕ : G y M of a finite group on a smooth three-
manifold is a uniform limit of smooth actions ϕ̃ : G y M . If ϕ is smooth over NbdK for
K ⊆M closed and ϕ(G)-invariant, then we may take ϕ̃ = ϕ over NbdK.

Remark 1.2. In higher dimensions, there exist (even free) finite group actions which are
not uniformly approximable by smooth actions. Indeed, let M be a topological manifold of
dimension ≥ 5 which admits no smooth structure but which admits a finite cover M̃ → M
with M̃ admiting a smooth structure (e.g. M could be a non-smoothable fake real projective

space [LdM71]). By passing to a further cover, we may assume that M̃ → M is Galois,

say with Galois group G. Choosing arbitrarily a smooth structure on M̃ , we claim that the
continuous free action ϕ : Gy M̃ is not uniformly approximable by smooth actions. Indeed,
for any action ϕ′ : G y M̃ sufficiently uniformly close to ϕ, the quotients M = M̃/ϕ(G)

and M̃/ϕ′(G) are homeomorphic by the Chapman–Ferry α-approximation theorem [CF79]
(we thank Mladen Bestvina for pointing this out to us). Hence ϕ′ cannot be smooth, as
otherwise we would obtain a smooth structure on M , which we have assumed does not exist.
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We now sketch the proof of Theorem 1.1, starting with the case of free actions. If
ϕ : G y M is free, then the quotient space M/G is a topological manifold. By Bing and
Moise, there exists a smooth structure on M/G, which we can pull back to a smooth structure
on M (call it M s) with respect to which ϕ is smooth. Now the identity map id : M → M s

is a homeomorphism between smooth three-manifolds, and Bing and Moise tell us that
any homeomorphism between smooth three-manifolds can be uniformly approximated by
diffeomorphisms. Denoting by α : M → M s such a diffeomorphism, we conclude that
the conjugated action α−1ϕα : G y M is smooth and uniformly close to ϕ. In fact, this
reasoning shows moreover that any action ϕ : GyM can be smoothed over the (necessarily
open) locus where it is free.

To treat more general actions ϕ : GyM , we need some understanding of which subsets
of M can occur as the fixed points of the action of G or of one of its subgroups. Smith theory
concerns precisely this question, and provides that for any homeomorphism g of prime order
p of a topological three-manifold M , the fixed set M g is a topological manifold (of possibly
varying dimension and possibly wildly embedded inside M). Writing

M g = M g
(0) tM

g
(1) tM

g
(2) tM

g
(3) (1.1)

for the decomposition of M g by dimension, we furthermore have that M g
(2) can be non-empty

only when p = 2 and g reverses orientation near M g
(2).

The proof of Theorem 1.1 now proceeds in three steps which smooth a given action
ϕ : G y M over successively larger open subsets of M . We may assume without loss of
generality that ϕ : G y M is generically free, namely no nontrivial element g ∈ G acts as
the identity on a nonempty open subset of M or, equivalently, M g

(3) = ∅ for every prime
order g ∈ G.

The first step is to smooth the action over the open set M free ⊆ M where it is free. As
discussed above, this is a straightforward application of the smoothing theory for homeo-
morphisms of three-manifolds due to Bing and Moise.

The second step is to smooth the action over the open set M refl ⊆ M defined as the set
of points x whose stabilizer Gx is either trivial or of order two, generated by an involution
g for which x ∈ M g

(2). Smoothing an involution fixing a surface is essentially due to Craggs

[Cra70a]. The main point is that any (possibly wildly) embedded surface (in particular,
F refl := {x ∈ M refl |Gx = Z/2}) in a three-manifold can be approximated uniformly by
tamely embedded surfaces (due to Bing) and that such approximations are unique up to
small isotopy (due to Craggs).

The third and final step (which constitutes the main content of this paper) is to smooth
the action over the remainder

M \M refl =
⋃

g∈G\{1}
gp=1

M g
(0) ∪M

g
(1). (1.2)

Since this locus is a union of 0- and 1-dimensional manifolds (possibly wildly) embedded in
M , it has covering dimension ≤ 1, and this will be crucial to our argument. We consider
a small closed G-invariant neighborhood M0 of (1.2) with smooth boundary, and we fix a
G-equivariant finite open cover M0 =

⋃
i Ui by small open sets Ui (possibly permuted by the
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action of G) such that all triple intersections are empty (Ui∩Uj ∩Uk = ∅ for distinct i, j, k).
We now find properly embedded incompressible surfaces Fij ⊆ Ui ∩ Uj (separating the Ui
end and the Uj end) which are G-invariant up to isotopy. The construction of such surfaces
uses the “lattice of incompressible surfaces” from [Par13, §2] and the elementary fact that
a finite group acting on a nonempty lattice always has a fixed point (take the least upper
bound of any orbit). These surfaces Fij divide M0 into pieces Ni (each a compact three-
manifold-with-boundary), and G acts on

⊔
iNi up to homotopy. Finally, we note that these

homotopy actions can be upgraded to strict actions (by diffeomorphisms) by appealing to
the JSJ decomposition, the existence of hyperbolic structures due to Thurston, the rigidity
results of Mostow, Prasad, and Marden, and the solution to the Nielsen realization problem
for surfaces by Kerckhoff. The resulting smooth action of G on M can be made arbitrarily
close to the original action in the uniform topology by taking the neighborhood M0 and the
open sets Ui to be sufficiently small.

Remark 1.3. We work throughout this paper in the smooth category unless the contrary is
explicitly stated (as in ‘topological manifold’ or ‘continuous action’), however one could just
as well work instead in the piecewise-linear category. In particular, Theorem 1.1 is equivalent
to the corresponding statement in the piecewise-linear category.

Convention 1.4. Manifold means Hausdorff, locally Euclidean, and paracompact.
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helpful communication with Ian Agol, Mladen Bestvina, Martin Bridson, Dave Gabai, and
Shmuel Weinberger.

This research was conducted during the period the author served as a Clay Research
Fellow. The author was also partially supported by a Packard Fellowship and by the National
Science Foundation under the Alan T. Waterman Award, Grant No. 1747553.

2 Nielsen realization for some three-manifolds

This section collects various known results in three-manifold topology. Specifically, we study
the problem of upgrading a homotopy action on a three-manifold to a genuine action. Con-
ditions under which this is possible are well-known due to work of Jaco–Shalen [JS79],
Johannson [Joh79], Thurston [Mor84], Mostow [Mos68], Prasad [Pra73], Marden [Mar74],
Kerckhoff [Ker83], Zimmermann [Zim82], and Heil–Tollefson [HT83, HT87]. We include this
section mainly to make this paper self-contained, as we were unable to find the exact state-
ment we need in the literature; in particular, we do not want to restrict to three-manifolds
with incompressible boundary.

2.1 Groups of diffeomorphisms and homotopy equivalences

For a compact manifold-with-boundary M , we denote by Diff(M) the group of diffeomor-
phisms of M , and we denote by Diff(M,∂M) the subgroup of those diffeomorphisms which

3



are the identity over ∂M . There is an exact sequence

1→ Diff(M,∂M)→ Diff(M)→ Diff(∂M) (2.1)

with the image of the final map being a union of connected components. Similarly, we denote
by Homeq(M) the monoid of self homotopy equivalences of the pair (M,∂M), and we define
Homeq(M,∂M) by the exact sequence

1→ Homeq(M,∂M)→ Homeq(M)→ Homeq(∂M) (2.2)

Both (2.1) and (2.2) induce long exact sequences of homotopy groups (with the caveat that
the very final map on π0 need not be surjective). There is an obvious forgetful map from
(2.1) to (2.2), which induces a map between the associated long exact sequences. Note that
Homeq(M) does not denote the monoid of self homotopy equivalences of M , which is instead
homotopy equivalent to Homeq(M◦).

Most of the spaces we will consider here are (disjoint unions of) K(π, 1) spaces, so for
future use we record here the straightforward fact that the space of maps between two such
spaces admits a natural group theoretic description.

Lemma 2.1. The components of Maps(K(π, 1), K(π′, 1)) are indexed by the orbits of the con-
jugation action π′ y Hom(π, π′), and the component of a given f : π → π′ is K(Zπ′(f(π)), 1)
where ZG(H) denotes the centralizer of the subgroup H ≤ G.

More succinctly, Maps(K(π, 1), K(π′, 1)) is the homotopy quotient of Hom(π, π′) by the
conjugation action of π′.

2.2 Homotopy group actions

Let G be a finite group. A (strict) action ϕ : G y M is simply a homomorphism ϕ : G →
Diff(M). A(n often much) weaker notion is that of a homomorphism ϕ : G→ π0 Diff(M) or
to π0 Homeq(M). In this paper, the intermediate notion of a ‘homotopy action’ G

hy M or
a ‘homotopy homomorphism’ G

h−→ Diff(M) (or to Homeq(M)) will play an important role.
For any topological monoid A (such as Diff(M) or Homeq(M)), a homotopy homomor-

phism ϕ : G
h−→ A is, by definition, a collection of maps ϕk : Gk+1 × [0, 1]k → A for all k ≥ 0

satisfying

ϕk(g0, . . . , gk)[0,1]i×{1}×[0,1]k−i−1 = ϕk−1(g0, . . . , gigi+1, . . . , gk) (2.3)

ϕk(g0, . . . , gk)[0,1]i×{0}×[0,1]k−i−1 = ϕi(g0, . . . , gi) ◦ ϕk−i−1(gi+1, . . . , gk) (2.4)

for 0 ≤ i < k (compare Sugawara [Sug61, §2] and Boardman–Vogt [BV73, Definition 1.14]).
Note the lack of any condition on the value of ϕk when one of the inputs is the identity.

A homotopy action by diffeomorphisms (resp. homotopy equivalences) G
hyM shall mean

a homotopy homomorphism G
h−→ Diff(M) (resp. Homeq(M)). We will often shorten this

to ‘homotopy action’ when it is either clear from context or irrelevant whether we mean by
diffeomorphisms or by homotopy equivalences.

We endow the spaces of strict actions Hom(G,A) ⊆ Maps(G,A) and homotopy actions
Homh(G,A) ⊆

∏
k≥0 Maps(Gk+1× [0, 1]k, A) both with the subspace topology. Note that if a
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map of topological monoids A→ B is a homotopy equivalence (of spaces), then the induced
map Homh(G,A)→ Homh(G,B) is a homotopy equivalence.

There is an evident inclusion

Hom(G,A) ↪→ Homh(G,A) (2.5)

of strict homomorphisms into homotopy homomorphisms, by taking ϕk to be independent
of the [0, 1]k factor for all k. Our main aim in this section is to show that in many cases,
this map is a homotopy equivalence, or at least surjective on connected components. (We
will allow ourselves to not worry too much about the distinction between weak homotopy
equivalence and homotopy equivalence in our discussion.)

There is another perspective on strict and homotopy actions which we will frequently
take advantage of. Let BG = K(G, 1) denote the classifying space of the finite group
G, namely BG is a connected space with a basepoint ∗ ∈ BG with π1(BG, ∗) = G (a
specified isomorphism) and πi(BG, ∗) = 0 for i > 1. Now the data of a homotopy action
by diffeomorphisms G

hy M is equivalent (as we are about to see) to the data of a bundle
over BG together with an identification of the fiber over the basepoint with M (by this
we mean that Homh(G,Diff(M)) is homotopy equivalent to the classifying space of such
bundles), and a strict action GyM is such a bundle equipped with a flat connection. The
problem of upgrading a homotopy action to a strict action may thus be viewed as the problem
of constructing a flat connection on a given bundle over BG with fiber M .

To make this discussion precise, let us fix the following model of BG (the specific choice
of model is, of course, ultimately irrelevant). Let EG be the complete semi-simplicial
complex on the vertex set G, i.e. the space EG is built by gluing together k-simplices
indexed by ordered (k + 1)-tuples of elements of G (which are the vertices of the sim-
plex) via the obvious maps forgetting vertices (note that we do not collapse any ‘degener-
ate simplices’). This space EG is contractible, and it carries a free action of G by mul-
tiplication on the left. The k-simplices of the quotient BG = EG/G are thus indexed
by k-tuples of elements of G, and the faces of the k-simplex (g1, . . . , gk) are given by
(g2, . . . , gk), (g1g2, g3, . . . , gk), (g1, g2g3, g4, . . . , gk), . . . , (g1, . . . , gk−2, gk−1gk), (g1, . . . , gk−1).

In order to discuss bundles over BG, fix for every face inclusion i : ∆k ↪→ ∆n a germ
of a retraction r(i) : ∆n → ∆k, such that r(i ◦ j) = r(j) ◦ r(i). Such retractions may
be constructed by induction (the key fact used in this induction is that any smooth real
valued function on the boundary of a manifold-with-corners admits smooth extensions to
the interior). Bundles over BG are now defined via transition functions which are pulled
back under these retractions on a neighborhood of the boundary of every simplex; the same
pullback condition is also imposed on connections.

Let us denote by Bun((BG, ∗),Diff(M)) the space of bundles over BG with marked
fiber M over the basepoint, equipped with a connection (up to isomorphism respecting
the marking and the connection). This space Bun((BG, ∗),Diff(M)) classifies families of
bundles over BG with marked fiber M over the basepoint (with or without a connection, as
a connection is a contractible choice). The subspace of Bun((BG, ∗),Diff(M)) consisting of
those bundles whose connection is flat is equal to Hom(G,Diff(M)).

To compare Bun((BG, ∗),Diff(M)) with Homh(G,Diff(M)), let us recall the Adams fam-
ily of paths [Ada56]. This is, for every k ≥ 0, a map γk from the cube [0, 1]k to the space of
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paths in ∆k+1 from vertex 0 to vertex k + 1. These families of paths γk have the following
concatenation/restriction properties for 0 ≤ i < k: (1) γk|[0,1]i×{1}×[0,1]k−i−1 is the pushfor-
ward of γk−1 under the inclusion ∆k → ∆k+1 missing vertex i+1, and (2) γk|[0,1]i×{0}×[0,1]k−i−1

is the concatenation of γi and γk−i−1, viewed as paths from vertex 0 to vertex i + 1 con-
tained in the initial ∆i+1 ⊆ ∆k+1 and paths from vertex i + 1 to vertex k + 1 contained in
the final ∆k−i ⊆ ∆k+1, respectively. These compatibility properties immediately imply that
integrating connections along the Adams family of paths defines a map

Bun((BG, ∗),Diff(M))→ Homh(G,Diff(M)). (2.6)

To see that this map is a homotopy equivalence, we can show by induction on k ≥ 0 that the
analogous map from bundles over the (k + 1)-skeleton of BG to homotopy actions defined
up to level k is a homotopy equivalence. When we increment k, the domain and codomain
of this map are replaced by the total spaces of fibrations over them with fiber either empty
or Ωk Diff(M) (the k-fold based loop space). Analyzing the map on fibers explicitly, one sees
that it is indeed a homotopy equivalence.

2.3 Local stability of strict actions

When studying families of strict actions, the following local stability result is fundamental.

Proposition 2.2. Fix a strict action ϕ : G y M . For every strict action ϕ′ : G y M
sufficiently close to ϕ in the smooth topology, there exists a diffeomorphism ρ of M such that
ϕ′ = ρ−1ϕρ. Moreover, ρ may be taken to depend smoothly on ϕ′.

Proof. The strategy is to consider the identity map Mϕ′ → Mϕ and try to correct it to
make it G-equivariant, thus giving the desired ρ. (Here Mϕ indicates M equipped with the
G-action ϕ, and the same for Mϕ′ .) The obvious way to correct a map to be equivariant
is by averaging, though of course this does not make sense a priori since M does not have
any sort of linear structure. We can, however, choose an atlas of local charts on M , each
of which has linear structure, and then do our averaging locally in each chart. Here are the
details.

To begin with, recall that every strict action ϕ : G y M is locally linear, in the sense
that M can be covered by G-equivariant open inclusions G×H Rn → Mϕ with H ≤ G and
H acting linearly on Rn. Indeed, to construct such a chart near a point p ∈ M , start with
any locally defined map (M, p)→ (TpM, 0) whose derivative at p is the identity, and average
it under the action of the stabilizer group Gp to make it Gp-equivariant.

Now fix a cover of Mϕ by charts ui : G ×Hi
Rni → Mϕ. For each such chart, choose a

ϕ(G)-invariant function ηi : Mϕ → R≥0 supported inside the image of ui, such that every
x ∈M has a neighborhood over which some ηi is ≡ 1 and only finitely many ηi are not ≡ 0.

Now for ϕ′ sufficiently uniformly close to ϕ and any function f : Mϕ′ → Mϕ sufficiently
uniformly close to the identity, we may define the ith averaging Aif : Mϕ′ → Mϕ by the
formula

(Aif)(x) = (1− ηi(x)) · f(x) + ηi(x) · 1

|G|
∑
g∈G

ϕ(g−1)f(ϕ′(g)x) (2.7)
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for x ∈ ui(G×H Rn) and (Aif)(x) = f(x) otherwise. Note that Aif is G-equivariant at any
x ∈Mϕ′ at which either f is G-equivariant or ηi(ϕ

′(G)x) = 1.
Now for ϕ′ sufficiently uniformly close to ϕ, the infinite composition ρ := (· · ·◦A2◦A1) id :

Mϕ′ →Mϕ is defined and G-equivariant. If ϕ′ is sufficiently smoothly close to ϕ, this ρ is a
diffeomorphism.

Corollary 2.3. For any strict action ϕ : G y M on a manifold-with-boundary with ∂M
compact, there exists a ϕ(G)-equivariant boundary collar ∂M × [0, ε) ↪→M .

Proof. Choose any function r : M → R≥0 vanishing transversely along ∂M . By averaging r,
we may make it ϕ(G)-invariant. Choose any collar ∂M× [0, ε) ↪→M with second coordinate
r. By restricting ϕ to the slices ∂M × {t}, we obtain a family of actions ψt : G y ∂M for
t ∈ [0, ε). Apply Proposition 2.2 to ψt as a perturbation of ψ0 to obtain diffeomorphisms ρt
(defined for t sufficiently small) such that ψt = ρ−1

t ψ0ρt. Now precompose the collar with
(x, t) 7→ (ρ−1

t (x), t).

Corollary 2.4. The restriction map Hom(G,Diff(M))→ Hom(G,Diff(∂M)) is a fibration.

Proof. Given a strict action ϕ : G y M and a one-parameter family of strict actions
ψt : G y ∂M for t ∈ [0, 1] with ψ0 = ϕ|∂M , Proposition 2.2 guarantees that ψt = ρ−1

t ψ0ρt
for some one-parameter family of diffeomorphisms ρt : ∂M → ∂M starting at ρ0 = id.
(A priori Proposition 2.2 provides this only for small t, however a compactness argument
pushes this to all t.) Extending ρt to a family of diffeomorphisms of M (which we can do
since Diff(M) → Diff(∂M) is a fibration), we obtain a one-parameter family ϕt := ρ−1

t ϕρt.
This construction works well in families of pairs (ϕ, {ψt}t∈[0,1]), which is enough.

2.4 Actions on circles and surfaces

Before discussing homotopy actions on three-manifolds, we must discuss actions on circles
and surfaces, where we have a good understanding, due most significantly to the solution
of the Nielsen realization problem by Kerckhoff [Ker83] and again later by Wolpert [Wol87]
(other than the appeal to their seminal work, the reasoning in this section is essentially
elementary).

Convention 2.5. For sake of linguistic convenience, we tacitly assume all manifolds being
acted on to be connected. The results and arguments all extend trivially to the general case,
which we will in fact need.

In the case of the circle, we have homotopy equivalences

S1 o (Z/2) = Isom(S1)
∼−→ Diff(S1)

∼−→ Homeq(S1). (2.8)

It follows that a homomorphism G → π0 Diff(S1) = π0 Homeq(S1) is simply a homomor-
phism G → Z/2 recording which elements of G reverse orientation. It also follows that
the inclusion Homh(G,Diff(S1))

∼−→ Homh(G,Homeq(S1)) from the space of homotopy ac-
tions by diffeomorphisms into the space of homotopy actions by homotopy equivalences is a
homotopy equivalence. The following result compares strict actions and homotopy actions:
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Proposition 2.6. For a finite group G, the inclusion of the space of strict actions Gy S1

into the space of homotopy actions G
hy S1 is a homotopy equivalence.

Proof. We consider specifically the inclusion of strict actions Gy S1 into homotopy actions
G

hy S1 by diffeomorphisms. It is equivalent to show that on any given circle bundle over
BG, the space of flat connections is contractible.

To show that this space of flat connections is contractible, we introduce geometric struc-
tures into the picture. Given a circle bundle over BG, we may choose a fiberwise metric of
unit length, and moreover this is a contractible choice. Similarly, given a circle bundle over
BG with flat connection, we may choose a fiberwise metric of unit length which is parallel
with respect to the connection; this is also a contractible choice (it is equivalent to choosing
a metric of length |G|−1 on the quotient orbifold). Note that this works well in families
of strict actions due to Proposition 2.2. Hence it suffices to show that on any given circle
bundle over BG with fiberwise metric of unit length, the space of flat connections preserving
the metric is contractible.

Since the Lie algebra isom(S1) of the structure group Isom(S1) is abelian, the space of
metric preserving flat connections is convex, and hence is either empty or contractible. To
show that the space of flat connections is nonempty, argue as follows. The pullback of the
bundle to EG is trivial (since EG is contractible) and thus has a flat connection. Averaging
this flat connection (which is possible since isom(S1) is abelian) over the action of translation
by G on EG produces a flat connection which descends to BG as desired.

An equivalent algebraic version of this averaging/descent argument is to note that the
obstruction to the existence of a flat connection lies in the group H2(G, isom(S1)), which
both is a vector space over R (since isom(S1) is) and is annihilated by |G| (since G is finite).
To see that the obstruction to the existence of a flat connection lies in H2(G, isom(S1)), we
can argue as follows. A flat connection always exists over the 1-skeleton of BG, and given
a flat connection over the 1-skeleton, the obstruction to extending it to the 2-skeleton is a
2-cochain valued in the universal cover of Isom(S1), which is naturally identified with its Lie
algebra isom(S1). Consideration of the 3-cells of BG shows that this obstruction 2-cochain is
a 2-cocycle, and modifying the given flat connection over the 1-skeleton allows us to change
this obstruction 2-cocycle by an arbitrary 2-coboundary.

We now turn to the case of surfaces. For surfaces F which areK(π, 1) spaces (i.e. anything
other than S2 or P 2), the natural map Diff(F ) → Homeq(F ) is a homotopy equivalence
[Sma59, EE69, ES70, Gra73], and hence the spaces of homotopy actions on F by homotopy
equivalences and by diffeomorphisms are homotopy equivalent.

We begin by comparing strict actions and homotopy actions on hyperbolic surfaces (a
surface will be called hyperbolic iff it has negative Euler characteristic, which implies it is a
K(π, 1)).

Proposition 2.7. Let F be a compact hyperbolic surface-with-boundary. The inclusion of
strict actions Gy F into homotopy actions G

hy F is a homotopy equivalence.

Proof. Denote by Teich(F ) the space of isotopy classes of cusped hyperbolic metrics on F ◦

(equivalently, this is the space of isotopy classes of punctured conformal structures on F ◦).
Note that every isotopy class is contractible (as its stabilizer inside the identity component
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Diff0(F ◦) is trivial: this holds because a biholomorphism of the unit disk is determined by
its action on the boundary).

Note that a homotopy action G
hy F gives rise to a strict action G y Teich(F ) (a

bundle with fiber F thus gives rise to a bundle with fiber Teich(F ) with flat connection). By
Kerckhoff [Ker83] and Wolpert [Wol87], for any homotopy action G

hy F by a finite group
G, the fixed locus Teich(F )G is non-empty and “convex” in an appropriate sense. We do not
recall the precise sense of convexity (Kerckhoff and Wolpert use different notions), rather we
only note that it implies contractibility (which is all we need).

We now begin the actual argument. Starting with a homotopy action G
hy F by diffeo-

morphisms (equivalently, a bundle over BG with fiber F ), we choose a point in Teich(F )G

(equivalently, a flat section of the induced bundle with fiber Teich(F )); by Kerckhoff and
Wolpert, this is a contractible choice. We now upgrade this to a choice of fiberwise hyper-
bolic metric (this is a contractible choice as noted above: every isotopy class of hyperbolic
metrics is contractible). Now there is a unique flat connection on our bundle over BG with
fiber F preserving this fiberwise metric. Finally, we wish to forget this metric, leaving only
the flat bundle over BG with fiber F (i.e. the strict action Gy F ). Choosing a hyperbolic
metric on the quotient orbifold F/G is a contractible choice (this can be seen in two steps:
the Teichmüller space is contractible, and so is every isotopy class of hyperbolic metric).
Note that this works well in families due to Proposition 2.2.

We now extend the above result to all K(π, 1) surfaces, using the reasoning from Propo-
sition 2.6.

Proposition 2.8. Let F be a compact surface-with-boundary which is a K(π, 1). The inclu-
sion of strict actions Gy F into homotopy actions G

hy F is a homotopy equivalence.

Proof. There are five cases not covered by Proposition 2.7, namely D2, T 2, K2, S1 × I,
and S1 ×̃ I. We extend the proof to treat these cases as follows. Instead of Teichmüller
space, we consider the space of isotopy classes of spherical metrics (for D2) and flat metrics
with geodesic boundary (in the remaining cases). These spaces are again contractible, as
are the spaces of metrics in any given isotopy class. The only difference in the proof comes
when we want to find a flat connection preserving the metric. There is now not a unique
such flat connection, however as the structure groups of isometries in all cases have abelian
Lie algebras, the spaces of flat connections are contractible by the argument used to prove
Proposition 2.6.

Let us now deduce, as formal consequences, various ‘rel boundary’ versions of the above
results.

Corollary 2.9. Let F be a compact surface-with-boundary which is a K(π, 1), and fix a
germ of strict action of G on Nbd ∂F . The inclusion of strict actions Gy F restricting to
the given action on Nbd ∂F into homotopy actions G

hy F restricting to the given action on
Nbd ∂F is a homotopy equivalence.

Proof. Since Homh(G,Diff(F ))→ Homh(G,Diff(∂F ))) is a fibration (since Diff(F )→ Diff(∂F )
is) and Hom(G,Diff(∂F )) → Homh(G,Diff(∂F )) is a homotopy equivalence, it follows
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that the inclusion of homotopy actions G
hy M which are strict on ∂F into all homo-

topy actions is a homotopy equivalence. Combining this with the homotopy equivalence
Hom(G,Diff(F )) → Homh(G,Diff(F )) from Proposition 2.8, we conclude that the inclu-
sion of strict actions G y M into homotopy actions G

hy F which are strict over ∂F
is a homotopy equivalence. Both sides of this homotopy equivalence are fibrations over
Hom(G,Diff(∂F )) (for the domain, this is Corollary 2.4), and hence their fibers are homo-
topy equivalent. In other words, given a fixed action Gy ∂F , the spaces of strict/homotopy
actions on F whose restriction to ∂F are this given action are homotopy equivalent. This
differs from the desired result only in that it concerns agreement over ∂F rather than Nbd ∂F .

To conclude, it thus suffices to show that the inclusion of strict (resp. homotopy actions)
on F which agree with a given action over Nbd ∂F into strict (resp. homotopy) actions on
F which agree with the given action over ∂F is a homotopy equivalence. For the case of
homotopy actions, this is trivial. For strict actions, it suffices to describe a canonical (up
to contractible choice) procedure for modifying a given strict action ϕ agreeing with a fixed
action ϕ0 over ∂F to make it agree with ϕ0 over Nbd ∂F (and which furthermore does nothing
if ϕ already agrees with ϕ0 over Nbd ∂F ). Here is such a procedure. Fix a ϕ0(G)-equivariant
collar i0 : ∂F × [0, ε) → F , and choose a ϕ(G)-equivariant collar i : ∂F × [0, ε) → F
(Corollary 2.3 provides a well defined up to contractible choice construction of such a collar
i, which we may further assume coincides with i0 if ϕ = ϕ0 over Nbd ∂F ). Now the space of
collars is contractible, so we may deform i to i0. We may extend this deformation of collars
to a family of diffeomorphisms of F fixed on ∂F , and thus (by conjugating) to a deformation
of strict actions ϕ. After this deformation, the equivariant collars coincide, and hence so do
the actions over Nbd ∂F .

Corollary 2.10. Let ϕ : G
hy M be a homotopy action by homotopy equivalences on a

three-manifold-with-boundary M all of whose boundary components are closed surfaces other
than S2 or P 2. If ϕ is strict over Nbd ∂M and ϕ is homotopic to a strict action, then this
homotopy may be taken to be constant over Nbd ∂M .

Proof. Let a homotopy ϕt (t ∈ [0, 1]) from ϕ = ϕ0 to a strict action ϕ1 be given. By
Proposition 2.8, the restriction of ϕt to ∂M may be deformed relative t = 0, 1 to stay
within strict actions. Extend this deformation to M (possible since Homh(G,Homeq(M))→
Homh(G,Homeq(∂M)) is a fibration since Homeq(M)→ Homeq(∂M) is), so we may assume
without loss of generality that the restriction of ϕt to ∂M is strict for all t.

Using the local triviality of deformations of strict actions (Proposition 2.2), we see that
there exists a family of diffeomorphisms ρt of ∂M starting at ρ0 = id such that the conjugated
family ρtϕtρ

−1
t is constant (independent of t). Extending this family ρt to diffeomorphisms

of all of M and replacing ϕt with ρ−1
t ϕtρt, we may assume that ϕt is itself constant over ∂M .

Since ϕ0 and ϕ1 are both strict over near ∂M , there are equivariant boundary collars
i0, i1 : ∂M × [0, ε) ↪→M (Corollary 2.3). By again conjugating ϕt by an appropriate family
of diffeomorphisms of M acting as the identity on ∂M , we may assume that these boundary
collars coincide, and hence that ϕ0 = ϕ1 over Nbd ∂M . Finally, let M̂ denote the result of
using this boundary collar to attach ∂M × [0, 1] to M , and let ϕ̂t denote the extension of
ϕt to M̂ defined by acting on ∂M × [0, 1] via the restriction of ϕt to ∂M and the trivial
action on [0, 1]. Now this is the desired homotopy (note that (M,ϕ0) and (M̂, ϕ̂0) are
diffeomorphic).
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2.5 Nielsen realization for Seifert fibered three-manifolds

The Nielsen realization problem for Seifert fibered three-manifolds is well studied, see Heil–
Tollefson [HT78], Zimmermann [Zim79], and Meeks–Scott [MS86]. We give here a brief
derivation of the version of these results which we will need.

Let us recall the definition of a Seifert fibration and some of its basic properties; more
details may be found in Scott [Sco83, §3]. A Seifert fibration on an orientable three-manifold
M is a one-dimensional foliation F such that (M,F) has an open cover by local models of the
form (D2×S1, TS1)/(Z/n) where 1 ∈ Z/n acts by rotation by 2π/n on S1 and by rotation by
2πk/n on D2 where k is relatively prime to n. When M may have boundary, an additional
local model (S1 × R× R≥0, TS

1) is also allowed. (There are yet more local models relevant
if M is non-orientable or is an orbifold, however we will not encounter these cases in this
paper.) The leaves of F are called the fibers of the fibration. The central fiber of the local
model (D2 × S1, TS1)/(Z/n) will be called a multiple fiber of multiplicity n; all other fibers
are called regular fibers.

For a Seifert fibration (M,F), the holonomy groupoid of (M,F) presents a(n effective)
surface orbifold B, and the resulting projection M → B is also referred to as a Seifert
fibration (it determines F as the kernel of its derivative); we could in fact simply define
a Seifert fibration as a circle bundle over a surface orbifold. The orbifold points with Z/n
isotropy on B correspond to the multiple fibers of multiplicity n. Given any orbifold covering
B′ → B, the Seifert fibration M → B pulls back to a Seifert fibration M ′ → B′, with
M ′ → M being a covering space. If B is a K(π, 1) orbifold (in the sense that its orbifold
universal cover B̃ is a contractible manifold), then the pullback of M → B to B̃ is a
necessarily trivial circle bundle, so we see that the universal cover of M is B̃ × R. Thus M
is a K(π, 1), and there is a short exact sequence

1→ π1(S1)→ π1(M)→ π1(B)→ 1 (2.9)

where π1(B) denotes the orbifold fundamental group (compare [Sco83, Lemmas 3.1 and 3.2]).
The subgroup Z = π1(S1) ⊆ π1(M) will be called the fiber subgroup.

Proposition 2.11. Let M be a compact orientable three-manifold-with-boundary which ad-
mits a Seifert fibration M → B over a hyperbolic base orbifold-with-boundary B. Every
homotopy action by homotopy equivalences of a finite group on M is homotopic to a strict
action.

Proof. We begin with some preliminary observations about the fundamental group of M .
First, let us argue that the fiber subgroup of π1(M) is characterized intrinsically as those
elements x ∈ π1(M) for which gxg−1 ∈ {x, x−1} for all g ∈ π1(M). It is easy to see that
elements of the fiber subgroup satisfy this property, so the point is to prove the converse. If
x ∈ π1(M) satisfies gxg−1 ∈ {x, x−1} for all g ∈ π1(M), then we conclude the same is true for
the image of x in π1(B). On the other hand, using the dynamical classification of elements
of Isom(H2) and the fact that the limit set of π1(B) ⊆ Isom(H2) is the entire unit circle, it
is easy to conjugate any nontrivial element of π1(B) to become distinct from itself and its
inverse. From this intrinsic characterization of the fiber subgroup, it follows immediately
that any self homotopy equivalence of M preserves the fiber subgroup (and hence acts on
it as either plus or minus the identity). Next, let us give an intrinsic characterization of
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the multiple fibers. Obviously if x is the class of a multiple fiber of multiplicity n, then xn

is the fiber class. Conversely, suppose that x ∈ π1(M) is such that xn is the fiber class.
The image of x in π1(B) is thus a nontrivial torsion element. Nontrivial torsion elements in
π1(B) ⊆ Isom(H2) fix a unique point of H2; hence the image of x in π1(B) is the conjugacy
class of a ‘loop’ concentrated at a unique orbifold point of B. It follows that the conjugacy
class of x itself is a (necessarily unique) multiple of a unique multiple fiber.

We now begin the process of deforming our given homotopy action G
hy M to make

it strict. Our first step is to deform it to make it land in the submonoid Homeq(M,F) ⊆
Homeq(M) consisting of those self homotopy equivalences of M which send F into itself
(meaning tangent vectors in F push forward to tangent vectors in F). To do this, it suffices
to show that the inclusion Homeq(M,F) ⊆ Homeq(M) is a homotopy equivalence. Fix a
triangulation of the base orbifold B whose vertices include all the orbifold points. We may
now build Homeq(M,F) from Homeq(M) in steps, imposing the constraint (of sending F into
itself) first over a neighborhood of the inverse image of the 0-skeleton, then of the 1-skeleton,
and then everywhere. It thus suffices to show that for any (homotopy class of) self homotopy
equivalence f of M and any fiber or multiple fiber class α, the inclusion

Maps((S1, TS1), (M,F))f(α) ↪→ Maps(S1,M)f(α) (2.10)

of maps S1 →M tangent to F into all maps S1 →M (both in the homotopy class f(α)) is a
homotopy equivalence. Note that f(α) is itself either the fiber class or the class of a unique
multiple fiber, by our discussion in the previous paragraph. If f(α) is the fiber class, then
both sides of (2.10) fiber over M (by evaluation at a basepoint of S1) with fibers (specific
components of) ΩS1 and ΩM , respectively, which are both contractible. If f(α) is the class
of a multiple fiber, then by our discussion in the previous paragraph, the domain of (2.10)
consists solely of maps into that particular multiple fiber (hence is homotopy equivalent to
S1), and the target has homotopy type calculated by Lemma 2.1, also giving S1, since the
centralizer of the multiple fiber is only the infinite cyclic group it generates.

We have thus reduced ourselves to a homotopy homomorphism G
h−→ Homeq(M,F).

Such a homotopy homomorphism induces a homotopy action G
hy B on the base orbifold

B via the forgetful map Homeq(M,F) → Homeq(B). (Concretely, a homotopy equivalence
B → B is an isomorphism α : π1(B) → π1(B) and an α-equivariant map B̃ → B̃, modulo
simultaneous conjugation by π1(B).) Now applying the orbifold version of Proposition 2.7,
we may deform this homotopy action to a strict action G y B. We may now lift this
deformation to a deformation of homotopy homomorphisms G

h−→ Homeq(M,F) using the
fact that M → B is a submersion.

We now have a homotopy homomorphism ϕ : G
h−→ Homeq(M,F) inducing a strict action

ϕB : G y B. Our final step is now to deform ϕ relative ϕB to become strict. To do this,
we follow the argument of Proposition 2.6 (which we cannot simply quote directly, since our
current circumstances essentially require an equivariant version of Proposition 2.6). Begin
with an arbitrary Riemannian metric on F, and note that the lengths of fibers (multiple fibers
counted with multiplicity) define a smooth function on M , so dividing by its square gives a
metric g on F for which all fibers have unit length. Now Homeq(M,F) deformation retracts
(relative the forgetful map to Homeq(B)) onto the subspace Homeq(M,F, g) of maps which
preserve the metric on F; hence we may deform ϕ relative ϕB to land in Homeq(M,F, g). We
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thus have a homotopy homomorphism ϕ : G
h−→ Diff(M,F, g) lifting our fixed strict action

ϕB : Gy B. We define a (strict) homomorphism ϕ̄ : G→ Diff(M,F, g) by the formula

ϕ̄(g) :=
1

|G|
∑
a∈G

ϕ(ga)ϕ(a)−1 (2.11)

which we now explain (we use the shorthand ϕ = ϕ0). Note that the kernelA := ker(Diff(M,F, g)→
Diff(B)) is abelian. Each term ϕ(ga)ϕ(a)−1 ∈ Diff(M,F, g) lies in the fiber of Diff(M,F, g)→
Diff(B) over ϕB(g), which is anA-torsor (principal homogeneous space forA). Now ϕ1(g, a)ϕ(a)−1

provides a path within this A-torsor between ϕ(ga)ϕ(a)−1 and ϕ(g). The data of these paths
is sufficient to define the average in this A-torsor of ϕ(ga)ϕ(a)−1 over a ∈ G, and this is the
meaning of the right side of (2.11). Note thus that (2.11) combines additive and multiplica-
tive notation for the same group operation. To check that ϕ̄(g) is a group homomorphism,
we calculate

ϕ̄(g)ϕ̄(h) :=
1

|G|
∑
b∈G

ϕ(ghb)ϕ(hb)−1ϕ(hb)ϕ(b)−1 (2.12)

where the average now takes place in the A-torsor over ϕB(g)ϕB(h) = ϕB(gh) using the paths
from each term ϕ(ghb)ϕ(b)−1 to ϕ(g)ϕ(h) given by concatenation of ϕ1(g, hb)ϕ(b)−1 and
ϕ(g)ϕ1(h, b)ϕ(b)−1. Now ϕ2(g, h, b) provides a homotopy between these paths and the paths
ϕ1(gh, b)ϕ(b)−1 to ϕ(gh) and then ϕ1(g, h) to ϕ(g)ϕ(h). We may dispense with the second
path since it is independent of b, so we see that the right side above coincides with ϕ̄(gh).
We now deform our homotopy action ϕ : G

h−→ Homeq(M,F) relative ϕB by homotoping ϕ0

to ϕ̄.
At this point, we have a homotopy homomorphism ϕ : G

h−→ Homeq(M,F) which lifts a
strict action ϕB : G y B and whose first component ϕ0 is a group homomorphism (note
that this is weaker than ϕ being strict, which also entails all higher ϕk being constant). Now
ϕ1(x, y) is a path from ϕ0(x)ϕ0(y) to ϕ0(xy); since these are equal, ϕ1(x, y) determines an
element of π1A where A = ker(Diff(M,F, g) → Diff(B)) is as before. The existence of ϕ2

means that this function G×G→ π1A is a 2-cocycle for the action of G on π1A via ϕ0. Now
H2(G, π1A ⊗Z R) = 0 since G is finite, so this 2-cocycle is the coboundary of a 1-cochain
valued in π1A⊗Z R. Compose this 1-cochain with the exponential map π1A⊗Z R→ A, and
deform ϕ by multiplying ϕ0 by this 1-cochain; note that ϕ0 remains a group homomorphism
since the coboundary of this 1-cochain lies in π1A which is annihilated by the exponential
map. After this deformation, we may now null homotope ϕ1(x, y) rel its endpoints and rel
ϕB. Finally, we may null homotope ϕ2 rel boundary and rel ϕB since π2A = 0, and similarly
for all higher components of ϕ inductively.

Lemma 2.12. Every homotopy action by homotopy equivalences of a finite group on T 2× I
is homotopic to a strict action.

Proof. The map Homeq(T 2) → Homeq(T 2 × I) is a homotopy equivalence, hence every
homotopy action on T 2×I is homotopic to one acting only on the T 2 coordinate. Now apply
Proposition 2.8.

Lemma 2.13. Every homotopy action by homotopy equivalences of a finite group on D2×S1

is homotopic to a strict action.
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Proof. We first claim that the map Homeq(D2 × S1) → Homeq(∂D2 × S1) is a homotopy
equivalence onto the components in its image (which are precisely those mapping classes
of ∂D2 × S1 which preserve the free homotopy class of loops ∂D2 × {∗}). Indeed, given a
self homotopy equivalence of ∂D2 × S1, the choice of an extension to D2 × {∗} (mapping
to D2 × S1) is contractible (since the second based loop space Ω2(D2 × S1) is contractible),
as is the subsequent choice of an extension to the remaining 3-cell (since Ω3(D2 × S1) is
contractible).

It follows that a homotopy action G
hy D2×S1 is the same (up to homotopy equivalence)

as a homotopy action G
hy ∂D2 × S1 which preserves the free homotopy class of loops

∂D2 × {∗}. The desired result may thus be stated alternatively as: every homotopy action
by homotopy equivalences of a finite group on ∂D2 × S1 preserving the free homotopy class
of loops ∂D2 × {∗} is homotopic to the restriction of a strict action on D2 × S1.

This equivalent statement now follows easily from Proposition 2.8. Indeed, Proposition
2.8 implies that any given homotopy action G

hy ∂D2 × S1 may be deformed to a strict
action by Proposition 2.8. Such a strict action Gy ∂D2×S1, either by its construction from
the proof of Proposition 2.8 or by [Sco83, Theorem 2.4], preserves some flat metric, hence in
particular preserves the affine structure on ∂D2×S1, namely it lands inside (R2/Z2)oGL2(Z).
Since it preserves the free homotopy class of loops ∂D2 × {∗}, it in fact lands inside the
subgroup (R2/Z2)o ( ∗ ∗0 ∗ ) ≤ (R2/Z2)oGL2(Z), whose action on ∂D2×S1 naturally extends
to D2 × S1.

Lemma 2.14. Let M → B be a Seifert fibration of a compact three-manifold-with-boundary.
If M admits an embedding into R3, then either B is hyperbolic or M = D2 × S1 or T 2 × I.

(See also the classification in Budney [Bud06, Proposition 4].)

Proof. Clearly ∂M 6= ∅, so the base orbifold B must have nonempty boundary. There is
thus only a small list of non-hyperbolic base orbifolds for us to consider. If the base is D2

with ≤ 1 orbifold points, then the total space is S1×D2. If the base is D2 with two orbifold
points with Z/2 isotropy, then the total space has an embedded Klein bottle (the inverse
image of an arc between the two orbifold points) and thus cannot embed into R3. If the
base is an annulus S1 × I, then the total space is either T 2 × I or non-orientable and thus
cannot embed into R3. If the base is a Möbius strip S1 ×̃ I, then the total space is either
non-orientable or contains an embedded Klein bottle and thus cannot embed into R3.

2.6 Nielsen realization for hyperbolic three-manifolds

A Nielsen realization type result for hyperbolic three-manifolds follows from the deep results
of Ahlfors, Bers, Kra, Marden, Maskit, and Mostow, as we now recall (for detailed discussion,
see also [MT98, Kap01, Mar16]).

Given a group Γ, denote by X(Γ) the set of representations ρ : Γ→ PGL2 C = Isom+(H3)
up to conjugation. We can regard X(Γ) as a groupoid, in which an object is a representation
ρ : Γ → PGL2 C and an isomorphism ρ → ρ′ is an element γ ∈ PGL2 C satisfying γργ−1 =
ρ′. This latter perspective leads naturally to the observation that X(Γ) makes sense more
generally for any groupoid Γ, namely it is the groupoid of functors from Γ to the groupoid
B PGL2 C with a single object whose automorphism group is PGL2 C. Later, we will be
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interested specifically in the case Γ = π1(M) is the fundamental groupoid of a manifold
M . By speaking of groupoids instead of groups, we can avoid choosing a basepoint on M
or assuming that M is connected. Even though our ‘official’ perspective is to work with
groupoids, we will sometimes slip into the more familiar language of groups in the discussion
which follows.

Embedding X(Γ) into (PGL2 C)r/PGL2 C via ρ 7→ (ρ(γ1), . . . , ρ(γr)) for generators
γ1, . . . , γr ∈ Γ gives X(Γ) the structure of a (possibly singular and possibly non-separated)
complex analytic stack.

Given ρ ∈ X(Γ), we can form Mρ := colimΓ ρ
∗H3. If Γ is a group, then Mρ = H3/Γρ

is simply the quotient of H3 by Γ acting via ρ : Γ → PGL2 C y H3. Given ρ1 ∈ X(Γ1),
ρ2 ∈ X(Γ2), a homomorphism α : Γ1 → Γ2, and an isomorphism ρ1

∼−→ ρ2 ◦ α, we obtain a
map Mρ1 →Mρ2 which is a local isometry.

The quotient Mρ is separated iff the action of Γ on H3 via ρ is proper, meaning Γ ×
H3 → H3 × H3 is proper. Since the action PGL2 C y H3 is proper, this is equivalent
to ρ : Γ → PGL2 C being proper (i.e. finite kernel and discrete image). A representation
ρ : Γ → PGL2 C which is proper is called a Kleinian group, and the set of such ρ ∈ X(Γ)
is denoted H(Γ) ⊆ X(Γ). Thus for ρ ∈ H(Γ), we have an orbifold Mρ which comes with a
canonical equivalence of groupoids π1(Mρ) = Γ.

The action of PGL2 C on H3 extends to an action on the ideal boundary ∂H3 = S2
∞ the

Riemann sphere by biholomorphisms, and in fact PGL2 C = Con+(S2
∞) is precisely the set of

all orientation preserving conformal automorphisms of S2
∞. The action of Γ on S2

∞ induces
a decomposition S2

∞ = Ωρ∪Λρ into the open set of discontinuity Ωρ and its complement the
closed limit set Λρ. For ρ ∈ H(Γ), the orbifold Mρ admits a natural partial compactification
Mρ defined as the quotient of H3 ∪ Ωρ by Γ.

A Kleinian group ρ ∈ H(Γ) is called geometrically finite iff the associated action on
H3 has a finite sided polytope as fundamental domain. When |Λρ| > 1, this condition is
equivalent to the ε-neighborhood of the convex core of Mρ having finite volume for some
(equivalently every) ε > 0. Denote by GF (Γ) ⊆ H(Γ) the collection of ρ ∈ H(Γ) which are
geometrically finite.

For ρ ∈ GF (Γ), the manifold Mρ has a natural compactification Mρ which is a compact

three-manifold-with-boundary. We have Mρ = Mρ\P where P ⊆ ∂Mρ is a codimension zero
submanifold-with-boundary called a pared structure (consisting of tori and annuli satisfying
some axioms, see Morgan [Mor84, Definition 4.8] or Canary–McCullough [CM04, §5] or
Kapovich [Kap01, §1.5]), marking the elements of Γ which ρ sends to parabolics.

Theorem 2.15. Let M 6= B3 be a compact three-manifold-with-boundary whose interior
admits a geometrically finite hyperbolic metric with pared structure P = (∂M)χ=0. Every
homotopy action by homotopy equivalences of a finite group on M lifts to a strict action.

Proof. By assumption, M = Mρ for some geometrically finite ρ : Γ → PGL2 C with
pared structure (∂M)χ=0. Note that all boundary components of M have non-positive
Euler characteristic (any S2 inside M lifts to H3, where it bounds a B3, and hence also
bounds a B3 in M). A choice of ρ gives rise to an isotopy class of conformal structure
ξρ ∈ Teich(∂M) and thus also to ξ−ρ ∈ Teich((∂M)χ<0). By Bers [Ber70] (see also Kra
[Kra72] and Maskit [Mas71]), we may deform ρ (by quasi-conformal conjugacy) so as to
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induce any arbitrary ξ− ∈ Teich((∂M)χ<0). By Kerckhoff [Ker83] (or Wolpert [Wol87]),
there exists such a ξ− ∈ Teich((∂M)χ<0) which is fixed by the action of G. Fix any ρ
whose induced ξ−ρ is such a fixed point, and consider M equipped with the hyperbolic
metric associated to ρ. By Mostow/Prasad/Marden rigidity [Mos68, Pra73, Mar74], ev-
ery element of π0 Homeq(M \ (∂M)χ=0) preserving ξ−ρ is represented by a unique isome-
try of M . In particular, this implies that there is a strict action of G on M which co-
incides on π0 Homeq(M \ (∂M)χ=0) with our given action. Finally, note that the maps
Homeq(M)→ Homeq(M \ (∂M)χ=0)→ π0 Homeq(M \ (∂M)χ=0) are all homotopy equiva-
lences.

2.7 Some three-manifold topology

We recall some well known fundamental results in three-manifold topology.

Definition 2.16. A three-manifold-with-boundaryM is called irreducible iff every embedded
S2 inside M is the boundary of an embedded B3. It is called P 2-irreducible iff it is irreducible
and there exists no two-sided embedding P 2 ↪→ M . By the sphere theorem [Pap57, Sta60,
Hem76], if M is P 2-irreducible then π2(M) = 0.

Lemma 2.17. A P 2-irreducible three-manifold which is either non-compact or has infinite
fundamental group is a K(π, 1).

Proof. Since π2 = 0, to check that the universal cover is contractible, it is enough (by
Hurewicz) to show that its H3 vanishes, which follows since it is non-compact.

Definition 2.18. A compact properly embedded surface-with-boundary (F, ∂F ) ↪→ (M,∂M)
inside a P 2-irreducible three-manifold-with-boundary is called incompressible iff every prop-
erly embedded disk (D2, ∂D2) ↪→ (M,F ) (disjoint from F except along its boundary) is
parallel to an embedded disk inside F and no component of F is S2. By the loop theorem
[Pap57, Sta60, Hem76], a two-sided surface is incompressible iff π1(F )→ π1(M) is injective.

An innermost disk argument shows that a surface is incompressible iff each of its com-
ponents is incompressible.

Theorem 2.19 (Waldhausen [Wal68, Hei69, Hat76, Wal78]). Let M and N be compact
connected P 2-irreducible three-manifolds-with-boundary, each of which contains a two-sided
incompressible surface. Every homotopy equivalence of pairs (M,∂M)→ (N, ∂N) is homo-
topic through maps of pairs to a diffeomorphism.

Note that every compact connected P 2-irreducible three-manifold-with-boundary with
nonzero H1 (which is implied if the boundary is non-empty) contains a two-sided incompress-
ible surface (take a maximal compression of a co-oriented surface representing the Poincaré
dual of a nonzero element of H1).

2.8 Nielsen realization for irreducible three-manifolds embedding
into R3

We now combine the results of the previous two subsections using the JSJ decomposition
which we now recall.
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Definition 2.20. An orientable three-manifold-with-boundary M is called atoroidal iff every
incompressible T 2 ↪→M is boundary parallel.

Theorem 2.21 (JSJ Decomposition [JS79, Joh79, NS97] [CM04, §2]). Let M be a compact,
orientable, irreducible, three-manifold-with-boundary. There exists a unique up to isotopy
minimal disjoint union of incompressible tori T ⊆M such that every component of M \N◦T
is either Seifert fibered or atoroidal.

Theorem 2.22. Let M 6= B3 be a compact irreducible three-manifold-with-boundary which
embeds into R3. Every homotopy action by homotopy equivalences of a finite group on M is
homotopic to a strict action.

Proof. Denote by ϕ the given homotopy action. By Theorem 2.19 of Waldhausen, we may
deform ϕ0 so that it lands in diffeomorphisms. This deformation of ϕ0 may be lifted to
a deformation of ϕ; indeed any deformation of ϕk−1 lifts to a deformation of ϕk since the
boundary of Gk+1 × [0, 1]k is collared.

Let T ⊆ M be a JSJ decomposition as in Theorem 2.21. As the isotopy class of T is
unique, we conclude that ϕ0(g)(T ) is isotopic to T . We may thus further deform ϕ so that
ϕ0 lands in diffeomorphisms preserving T .

Next, let us deform ϕ so that it (i.e. all ϕk) maps T to itself. This holds already for
ϕ0, and we proceed by induction on k ≥ 1. For the inductive step, it suffices to know that
Homeq(T )→ Maps(T ,M) is a homotopy equivalence onto the components in its image. By
Lemma 2.1, this is equivalent to knowing that Nπ1(M)(π1(T )) = π1(T ) for every component
T of T , which holds by [Hei81, Hei70] (a two-sided incompressible surface in a P 2-irreducible
three-manifold-with-boundary has nontrivial normalizer iff it is the fiber of a fibration over
S1 or the boundary of a regular neighborhood of a one-sided surface). Now that we have
deformed ϕ so that it stabilizes T , we may apply Proposition 2.8 to further deform ϕ so that
its restriction to T is a strict action (note that we may perform this deformation preserving
the property that ϕ0 lands in diffeomorphisms stabilizing T ). In fact, we may now even
deform ϕ so its restriction to a neighborhood of T is strict.

Finally, let us deform ϕ so that it preserves the partition into components of M \T . This
holds already for ϕ0, and we proceed by induction on k ≥ 1. We can simply deal with each
component N ⊆ M (compact manifold-with-boundary) separately, and it suffices to show
that

Maps((N, ∂N), (N, ∂N)) ↪→ Maps((N, ∂N), (M,∂N)) (2.13)

is a homotopy equivalence onto the components in its image. To analyze this inclusion, begin
with the equality Maps((∂N, ∂N), (N, ∂N)) = Maps((∂N, ∂N), (M,∂N)) and add k-cells to
∂N one by one to build N and thus produce the above inclusion of interest. The effect of
adding a k-cell is that both sides get replaced by the total spaces of fibrations over them
with fiber either empty or ΩkN and ΩkM , respectively. We may assume k ≥ 1 since N is
connected and ∂N 6= ∅ (the case ∂N = ∅ only happens when N = M in which case there
is nothing to prove). Now both N and M are K(π, 1) spaces (Lemma 2.17), so for k ≥ 2
both ΩkN and ΩkM are contractible, and for k = 1 they are homotopy equivalent to π1(N)
and π1(M), respectively. It is thus enough to know that π1(N)→ π1(M) is injective, which
holds since ∂N is incompressible.
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Now we have deformed ϕ so that it restricts to a strict action on a neighborhood of T and
respects the partition of M into components of M \ T . The resulting action on the pieces
of this partition is again by homotopy equivalences. Each of the pieces is either atoroidal or
Seifert fibered. The atoroidal pieces are hyperbolic by Thurston [Mor84]. The Seifert fibered
pieces all have hyperbolic base orbifold by Lemma 2.14 (there can be no T 2 × I or D2 × S1

pieces unless they are the entire M , cases which are covered by Lemmas 2.12 and 2.13).
Hence we may conclude by applying Theorem 2.15 and Proposition 2.11, as augmented by
Corollary 2.10 to be ‘rel boundary’.

3 A lattice of codimension zero submanifolds

This section defines for certain three-manifolds a lattice of codimension zero submanifolds
with incompressible boundary, generalizing the setup of [Par13, §2].

3.1 Inside a surface

We begin with a discussion of the analogous lattice in one lower dimension, namely for
surfaces, where everything is essentially elementary.

Let F be a surface (without boundary, possibly non-compact). We denote by L(F )
the set of isotopy classes of codimension zero submanifolds-with-boundary A ⊆ F for which
∂A ⊆ F is a compact multi-curve, such that neither A nor A{ := F \A◦ have any components
diffeomorphic to D2, S1×I, or S1 ×̃I. This implies that ∂A consists of pairwise non-isotopic
essential curves on F . The isotopy class of any such A ⊆ F is contractible.

There is a partial order on L(F ) by inclusion. Namely, A ≤ A′ iff there are representatives
A,A′ ⊆ F of A and A′ with A ⊆ A′. Obviously A 7→ A{ is an order reversing involution of
L(F ).

Equipped with this partial order, L(F ) is a lattice, namely every finite subset S ⊆ L(F )
has a least upper bound. To see this, fix a hyperbolic metric on F with no parabolics, so
every isotopy class of simple closed curve has a unique geodesic representative, which is length
minimizing. Now every isotopy class A ∈ L(F ) has a unique representative A ⊆ F whose
boundary consists of a disjoint union of length minimizing geodesics. These representatives
simultaneously realize all order relations, in the sense that for such A,A′ ⊆ F , if [A] ≤ [A′]
then A ⊆ A′. This implies the lattice property as follows. For finite S ⊆ L(F ), consider the
unique representativesAs ⊆ F whose boundaries ∂As are disjoint unions of length minimizing
geodesics. The union

⋃
s∈S As ⊆ F will not have any D2, S1 × I, or S1 ×̃ I components,

however its complement may have such. Adding in these disallowed components produces
the desired least upper bound, due to the fact that any A′ ∈ L(F ) with A′ ≥ [As] for all
s ∈ S has a representative A′ with A′ ⊇ As for all s ∈ S.

3.2 Inside a three-manifold

Let M be a P 2-irreducible three-manifold-with-boundary, and let A ⊆ ∂M be a codimension
zero submanifold-with-boundary representing an element of L(∂M). We will define a lattice
L(M ;A).
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Throughout this subsection, the notation B ⊆ M (or its decorations such as B′, B1, B̄,
etc.) will always indicate a codimension zero submanifold-with-boundary such thatB∩∂M =
A and ∂B ⊆ M is a compact properly embedded surface-with-boundary. (Here and below
we will, contrary to the usual meaning of ∂, use ∂B to denote the boundary of B as a subset
of M in the sense of point set topology.)

Given any B ⊆M , we may perform any of the following operations:

• Removal of a neighborhood of a disk (D2, ∂D2) ↪→ (B, ∂B) with essential boundary.

• Removal of a component of (B, ∂B) which is diffeomorphic to (B3, S2).

• Removal of a component of (B, ∂B) which is diffeomorphic to (F × I, F × ∂I) or
(F ×̃ I, F ×̃ ∂I) for a closed surface F .

Such an operation, applied to either B or B{, will be called a compression, and B is called
incompressible if it admits no such operations. If B is incompressible, then it is P 2-irreducible
(since M is P 2-irreducible and B3 contains no closed incompressible surfaces).

To continue exploring the properties of incompressible B ⊆ M , let us begin by recalling
the following well known result.

Lemma 3.1. Every incompressible surface inside F × I with boundary ∂F ×{∗} is isotopic
to F×{∗}. The same holds for twisted I-bundles F ×̃I, though with the additional possibility
F ×̃ ∂I when F is closed.

Proof. Fix a triangulation of F , denoting its 1-skeleton by F (1). Put our unknown incom-
pressible surface G ⊆ F × I with ∂G = ∂F × {∗} into general position with respect to
F (1) × I. For any 1-simplex σ1 ⊆ F (1), the curves comprising G ∩ (σ1 × I) come in three
types: arcs connecting points over the same endpoint of σ1, arcs connecting points over
different endpoints of σ1, and circles. Arcs of the first type which are innermost may be
eliminated by isotoping G. Since G is incompressible, innermost circles may also be elimi-
nated by isotoping G. These simplification operations eventually terminate leaving only arcs
of the second type. This reduces us to the case F = D2.

To treat the case F = D2, put our unknown incompressible surface G ⊆ F × I with
∂G = ∂F × {∗} in general position with respect to the family of planes Lt × I ⊆ D2 × I
where Lt = {t} × I ⊆ I × I = D2. If for any t for which Lt and G are transverse, one of the
circular components of G∩Lt is essential in G, we can produce a nontrivial compressing disk
for G by iteratively isotoping away innermost inessential interesctions using incompressibility
of G. It follows that such t do not exist, and from this we may deduce that G is a disk. It
then follows from Alexander’s theorem [Ale24] that G is isotopic to F × {∗}.
Corollary 3.2. B ⊆M is incompressible iff ∂B is incompressible, its components are pair-
wise non-isotopic rel boundary, and none of its components is the boundary of an embedded
F ×̃ I ⊆M for closed F .

We denote by L(M ;A) the collection of isotopy classes of incompressible B ⊆M . There
is an obvious inclusion relation on L(M ;A), namely B ≤ B′ iff there are representatives
B,B′ ⊆ M of B and B′ with B ⊆ B′. The next result shows how to produce elements of
L(M ;A) with given order properties.

Lemma 3.3. Starting with a given B ⊆M , any sequence of compressions eventually termi-
nates at an incompressible B̄ ⊆M . Furthermore, if B ⊆ B′ ⊆M and B′ is incompressible,
then any incompressible B̄ obtained from B by iterated compressions satisfies [B̄] ⊆ [B′].
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Proof. We just look at what the operations do to the compact properly embedded surface-
with-boundary ∂B. There are thus two types of operations: removing a component (or two)
of ∂B and performing a 2-surgery along a simple closed curve inside ∂B. Note that since M
is irreducible, a non-trivial compression disk has essential boundary, so the 2-surgeries are
all along essential curves. It suffices to show that no compact surface-with-boundary admits
an infinite sequence of such operations (component removals and 2-surgeries). In such a
sequence of operations, if there are finitely many 2-surgeries, there must also be finitely
many component removals, since after all the 2-surgeries are done, there are at most finitely
many components as our surface always remains compact. It thus suffices to show that there
cannot be infinitely many 2-surgeries. This is clear, since each 2-surgery increases the Euler
characteristic by 2, and non-trivial 2-surgeries cannot create components of positive Euler
characteristic, so the Euler characteristic cannot become arbitrarily large.

When studying incompressible B ⊆M , the fact that disjoint isotopic incompressible sur-
faces are parallel (see Waldhausen [Wal68, Corollary 5.5] or Johannson [Joh79, Proposition
19.1]) will be of essential use. For example, this implies that:

Proposition 3.4. Suppose B,B′ ⊆M represent the same class in L(M ;A) and that B ⊆ B′,
meeting only along ∂A = ∂∂B = ∂∂B′, transversely. Then the region B′ \ B◦ is a product
∂B × I pinched along ∂∂B × I (which becomes ∂A).

Corollary 3.5. L(M ;A) is a poset.

Proof. If B ≤ B′ ≤ B, then we can find B ⊆ B′ ⊆ B′′ ⊆ M with [B] = [B′′] = B and
[B′] = B′. Now apply Proposition 3.4 and Lemma 3.1.

We now wish to show that L(M ;A) is a lattice. The lattice property arises from the
following fundamental result due to Freedman–Hass–Scott [FHS83, §7].

Theorem 3.6. Let M be a compact P 2-irreducible three-manifold-with-boundary, and let
S ⊆ ∂M be a multicurve all of whose components are essential. There exist representa-
tives (F, ∂F ) ↪→ (M,S) of every isotopy class of properly embedded two-sided incompressible
surface with boundary contained in S which simultaneously realize all disjointness relations
(with the caveat that a closed one-sided surface is allowed to be the representative of the
isotopy class of the boundary of its tubular neighborhood).

The proof of Theorem 3.6 proceeds by choosing a Riemannian metric on M which is
‘convex’ near ∂M in a suitable sense (the version of this assumption which is easiest to use
from a technical standpoint is for the metric to be a product ∂M × [0, ε) near the boundary,
however ∂M being weakly mean convex would also be sufficient). The methods of Douglas
[Dou31], Sacks–Uhlenbeck [SU81, SU82], and Schoen–Yau [SY79] show that area minimizing
maps exist in π1-injective homotopy classes, and the methods of Osserman [Oss70] and
Gulliver [Gul73] show that these maps are immersions. Finally, the results of Freedman–
Hass–Scott [FHS83] show that these area minimizing immersions are in fact embeddings (or
double covers of embedded one-sided surfaces), and Waldhausen [Wal68, Corollary 5.5] or
Johannson [Joh79, Proposition 19.1] guarantee that homotopy classes and isotopy classes of
two-sided incompressible surfaces in P 2-irreducible three-manifolds-with-boundary coincide;
see also Hass–Scott [HS88]. Analogous piecewise-linear methods are contained in Jaco–
Rubinstein [JR88].
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Corollary 3.7. Suppose M = M \ Y for a compact P 2-irreducible three-manifold-with-
boundary M and a codimension zero submanifold-with-boundary Y ⊆ ∂M . There exist
representatives B ⊆ M of every element of L(M ;A) which simultaneously realize all order
relations (i.e. [B] ≤ [B′] iff B ⊆ B′).

Proof. Choose representatives B ⊆ M whose boundary components are the representatives
of Theorem 3.6 inside M . These realize all order relations by Lemma 3.8.

Lemma 3.8. Let B,B′ ⊆ M be incompressible, and suppose that for every pair of compo-
nents F ⊆ ∂B and F ′ ⊆ ∂B′, either F and F ′ are disjoint and not isotopic or F = F ′. If
[B] ≤ [B′] then B ⊆ B′.

Proof. Since [B] ≤ [B′], there exists B′1 isotopic to B′ with B ⊆ B′1. It suffices to show that
we can isotope B′1 to B′ while maintaining the property that B ⊆ B′1. To do this, we isotope
the boundary components of B′1 one by one onto the corresponding boundary components
of B′.

Let us begin with the common components of ∂B and ∂B′. Let ∂B ⊇ F = F ′ ⊆ ∂B′

be such a component, and let F ′1 ⊆ ∂B′1 be the corresponding component. Now F ′ and F ′1
are parallel, and the region in between contains no other boundary components by Lemma
3.1, so there is an evident isotopy of B′1 moving F ′1 to F ′, which preserves the containment
B ⊆ B′1.

Let us now consider corresponding components F ′ ⊆ ∂B′ and F ′1 ⊆ ∂B′1 which are not
isotopic to a component of ∂B. By assumption F ′1∩B = ∅ and F ′∩∂B = ∅. There are now
two possibilities: either F ′ ⊆ B or F ′ ∩B = ∅. The first possibility is in fact impossible: it
would imply that F ′1 and F ′ are disjoint, hence parallel, and thus isotopic to the component
of ∂B in between them by Lemma 3.1. We are thus in the second situation of F ′ ∩ B = ∅.
Now F ′1, F

′ ⊆ B{ are isotopic inside M , and we want to show that they are isotopic in B{.
This holds because ∂B{ is incompressible.

Proposition 3.9. L(M ;A) is a lattice.

Proof. We first consider the case that M is as in Corollary 3.7. Let Bi ∈ L(M ;A) be a finite
collection of elements, and choose their canonical representatives Bi ⊆ M as in Corollary
3.7. Fix small inward perturbations B−i ⊆ Bi so that their boundaries ∂B−i are mutually
transverse, and define B :=

⋃
iB
−
i ⊆ M (or rather as a smoothing of the boundary of this

union). Now suppose B′ ∈ L(M ;A) is larger than every B′i. The canonical representative
B′ ⊆ M therefore satisfies B′ ⊇ Bi for every Bi, hence B′ ⊇ B. Let B denote the class of
any maximal compression of B as in Lemma 3.3. We thus have Bi ≤ B and B ≤ B′ for
any upper bound B′ of all Bi. In other words, B is a least upper bound for the Bi.

We now reduce the case of general M to that treated above, namely when M is as in
Corollary 3.7. Given any incompressible B− ⊆ B+ ⊆M and small inward/outward pushoffs
B−ε ⊆ B− and B+

ε ⊇ B+, there is an inclusion

L((B+
ε )◦ \B−ε ;A ∩ ∂((B+

ε )◦ \B−ε ))→ L(M ;A) (3.1)

given by “union with B−ε ”, which exhibits the former as the subset {B : [B−] ≤ B ≤ [B+]}
of the latter. The former satisfies the hypothesis of Corollary 3.7, and thus is a lattice. Using
the fact that any finite subset of L(M ;A) has upper and lower bounds (by Lemma 3.3), the
lattice property now follows in general.
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4 Proof of the main result

4.1 Smith theory

Smith theory relates the topology of a spaceX with the topology of the fixed setXZ/p of a Z/p
action on X (for p a prime). Smith theory was introduced by Smith [Smi38, Smi39, Smi41],
and a detailed study was undertaken in Borel [Bor60]. We recall here the main results of
Smith theory as formulated in Bredon [Bre97].

Definition 4.1 (Homology manifolds [Bre97, p329 V.9.1]). Let L be a field. An L-homology
n-manifold is a locally compact Hausdorff space X satisfying the following two properties:

• There exists k < ∞ such that H i
c(X,F) = 0 for i > k and any sheaf F of L vector

spaces on X (compare [Bre97, II.16]).

• The sheafification of U 7→ Hom(H i
c(U,L), L) vanishes for i 6= n and is locally constant

with one-dimensional stalks for i = n (compare [Bre97, V.3]).

(Here H∗c denotes compactly supported sheaf cohomology.)

Theorem 4.2 ([Bre97, p388 V.16.32]). If n ≤ 2, then any L-homology n-manifold is a
topological n-manifold (not necessarily paracompact).

Theorem 4.3 (Local Smith Theory [Bre97, pp409–10 V.20.1, V.20.2]). For any action of
Z/p on a Z/p-homology n-manifold X, the fixed set F = XZ/p is a disjoint union of open
pieces {F(r) ⊆ F}0≤r≤n, where F(r) is a Z/p-homology r-manifold. Furthermore, if F(r) 6= ∅
then p(n− r) is even.

Lemma 4.4 (Alexander duality [Par13, Lemma 3.3]). For any closed subset X ⊆ Rn, there
is an isomorphism Ȟ∗c (X) = H̃n−1−∗(Rn \X).

The following summarizes everything we will need from the results recalled above:

Theorem 4.5. Let σ : M → M be a homeomorphism of a topological three-manifold M of
prime order. The fixed set Mσ is a disjoint union of open pieces {Mσ

(r)}0≤r≤3 where Mσ
(r) is a

topological r-manifold. Moreover, Mσ
(2) can be non-empty only when p = 2, and in this case

σ reverses orientation near Mσ
(2).

Proof. By Theorem 4.3, the fixed set Mσ is a disjoint union of open pieces Mσ
(r) each of

which is a Z/p-homology r-manifold for r ≤ 3. For r ≤ 2, Theorem 4.2 implies that Mσ
(r) is a

topological r-manifold. For r = 3, we in fact have that Mσ
(3) ⊆M is an open subset (and thus

a fortiori a topological 3-manifold); this follows from applying Lemma 4.4 to Mσ
(3) ∩B ⊆ B

for small open balls R3 ∼= B ⊆M (H̃−1(B \Mσ
(3)) = Ȟ3

c (B ∩Mσ
(3)) is nonzero for small balls

B since Mσ
(3) is a homology 3-manifold, whence B ⊆ Mσ

(3)). Theorem 4.3 also ensures that
r = 2 can only happen when p = 2.

It remains to show that the action reverses orientation near Mσ
(2). This is not stated

explicitly in [Bre97], so we show how to derive it. The fundamental isomorphism underlying
Smith theory is that for any x ∈ F , the restriction map

H∗Z/p(X,X \ x)→ H∗Z/p(F, F \ x) (4.1)
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is an isomorphism in sufficiently large degrees (this ultimately follows from the fact that Z/p
acts freely on the finite-dimensional space X\F ). In our present situation, we have p = 2 and
x ∈ F(r), so (X,X\x) ' Sn and (F, F \x) ' Sr. Hence we have H∗Z/2(F, F \x) = H∗−r(RP∞)

and H∗Z/2(X,X \ x) = H∗−n(RP∞) or H∗−n(RP∞, ν) (where ν denotes the nontrivial local

system on RP∞ with fiber Z) according to the action of Z/2 on orientations of X at x
(these isomorphisms come from the spectral sequence Ep,q

2 = Hp(BG,Hq(Z)) ⇒ Hp+q
G (Z),

which in our cases Z = (X,X \ x) or (F, F \ x) has no further differentials since H∗(Z)
is concentrated in a single degree). Now H∗(RP∞) vanishes in (large) even degrees and
H∗(RP∞, ν) vanishes in odd degrees, which in the present situation of n − r odd implies
that the action must reverse orientation at x.

4.2 Smoothing theory for three-manifolds

The fundamental smoothing result for homeomorphisms of three-manifolds is the following:

Theorem 4.6. Every homeomorphism ψ : M → N between smooth three-manifolds is a
uniform limit of diffeomorphisms ψ̃ : M → N . If ψ is a diffeomorphism (onto its image)
over NbdK for K ⊆M closed, then we may take ψ̃ = ψ over NbdK.

Theorem 4.6 is due to Moise [Moi52, Theorem 2] and Bing [Bin59, Theorem 8], both
using bare-hands methods of point-set topology. Alternative proofs can be found in Shalen
[Sha84, Approximation Theorem] (using methods of smooth three-manifold topology, such as
the loop theorem of Papakyriakopoulos [Pap57]) and Hamilton [Ham76, Theorem 1] (using
the torus trick of Kirby [Kir69, KS77], also see Hatcher [Hat13]). An immediate corollary of
Theorem 4.6 is:

Corollary 4.7. Every topological three-manifold-with-boundary M has a smooth structure.
We may take this smooth structure to coincide with any given smooth structure over NbdK
for closed K ⊆M .

Here is another corollary which we will need:

Corollary 4.8. The lattice L(M ;A) from §3.2 carries a natural action of the group of
homeomorphisms of M which are diffeomorphisms over Nbd ∂M and preserve A.

Proof. To define the action of a given homeomorphism γ : M →M smooth near the bound-
ary and preserving A, argue as follows. Let B ∈ L(M ;A), and fix two parallel repre-
sentatives B′ ⊆ B ⊆ M . Now for any two smoothings γ̃ and ˜̃γ sufficiently close to γ,
we have γ̃(B′) ⊆ ˜̃γ(B) and ˜̃γ(B′) ⊆ γ̃(B), which implies (using antisymmetry of ≤) that
γ̃(B) = ˜̃γ(B). Hence we may define γ(B) := γ̃(B) for any diffeomorphism γ̃ sufficiently
close to γ. It is immediate from this definition that this is a group action preserving the
partial order.

We will also need the following taming result for embeddings of surfaces into three-
manifolds:

Theorem 4.9. Every continuous proper embedding ι : F ↪→ M of a surface into a three-
manifold is a uniform limit of tame proper embeddings ι̃. If ι is tame over NbdK for closed
K ⊆ F , then we may take ι̃ = ι over NbdK.
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Theorem 4.9 is due to Bing [Bin57, Theorems 7 and 8] (later generalized to arbitrary
2-complexes in [Bin59, Theorem 5]) on the way to the proof of Theorem 4.6. Building on
this work, Craggs showed that the tame approximation ι̃ is up to isotopy for 2-complexes
with no local cut points in [Cra70b, Theorem 8.2]. We will only need this result for surfaces:

Theorem 4.10. Fix a continuous proper embedding ι : F ↪→ M of a surface into a three-
manifold. For every uniform neighborhood Uε of ι, there exists a uniform neighborhood Uδ of
ι such that for all pairs of tame proper embeddings ι1, ι2 : F ↪→M in Uδ, there is an isotopy
between ι1 and ι2 inside Uε.

4.3 Setting up the proof

Given an action GyM , we consider the following open subsets of M :

• M free ⊆M denotes the set of points x ∈M with trivial stabilizer Gx = 1.

• M refl ⊆ M denotes the set of points x ∈ M for which either Gx = 1 or Gx = Z/2 and
x ∈ MGx

(2) (i.e. MGx is locally a surface near x). The closed locus F refl ⊆ M refl with

isotropy group Z/2 is a topological surface, possibly wildly embedded.

We have obvious inclusions M free ⊆M refl ⊆M . An action GyM is called generically free
iff M free ⊆M is dense. By Theorem 4.5, an action is generically free as long as no nontrivial
element of G acts trivially on an entire connected component of M .

Lemma 4.11. The general case of Theorem 1.1 follows from the special case of M connected
and ϕ : GyM generically free.

Proof. We reduce to the case of M connected as follows. First, by decomposing π0(M)
into ϕ(G)-orbits, we reduce to the case that G acts transitively on π0(M). Next, fix a
connected component M0 ⊆ M , so we have M =

⊔
g∈G/Stab([M0]) gM0. Now the action of

G on M is determined uniquely by the data of (1) the action of Stab([M0]) on M0 and (2)
the homeomorphisms M0 → gM0 provided by any fixed choice of representatives in G of
the nontrivial elements of G/ Stab([M0]). The homeomorphisms (2) can be approximated
uniformly by diffeomorphisms by Theorem 4.6, and smoothing the action (1) of Stab([M0])
on M0 requires precisely the connected case of Theorem 1.1.

Now consider ϕ : GyM with M connected. By invariance of domain, if M
ϕ(g)
(3) 6= ∅ then

M
ϕ(g)
(3) = M , that is g acts trivially on M . Thus the action of G/ kerϕ on M is generically

free, and it suffices to smooth this action.

The complement of M refl is essentially one-dimensional:

Lemma 4.12. If GyM is generically free, then

M \M refl =
⋃

g∈G\{1}
gp=1

M g
(0) ∪M

g
(1). (4.2)

Proof. The non-trivial direction is to show that if x ∈M \M refl then it is in the right hand
side above. If x /∈ M refl, then either Gx = Z/2 and x ∈ MGx

(r) for r ≤ 1 (in which case

x is by definition contained in the right hand side above), or |Gx| > 2. In the latter case
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|Gx| > 2, the subgroup of Gx which preserves orientation at x (which has index at most 2)
is non-trivial and hence contains some element of prime order, so x is in the right hand side
by Theorem 4.5.

4.4 Smoothing over the free locus

Proposition 4.13. Every continuous action ϕ : GyM of a finite group on a smooth three-
manifold is a uniform limit of actions ϕ̃ : G y M which are smooth over M ϕ̃-free = Mϕ-free

and coincide with ϕ over the complement. If ϕ is smooth over NbdK for K ⊆ M closed
and ϕ(G)-invariant, then we may take ϕ̃ = ϕ over NbdK.

Proof. The quotient Mϕ-free/ϕ(G) is a topological three-manifold, which by Corollary 4.7
has a smooth structure. Denote by (Mϕ-free)s the pullback smooth structure on Mϕ-free,
so now ϕ : G y (Mϕ-free)s is smooth. Now the identity map id : Mϕ-free → (Mϕ-free)s

is a homeomorphism, which by Theorem 4.6 can be approximated by a diffeomorphism
α : Mϕ-free → (Mϕ-free)s. Thus the action α−1ϕα : G y Mϕ-free is smooth. Theorem 4.6
allows us to take α to extend continuously to a homeomorphism ᾱ : M → M acting as
the identity on the complement of Mϕ-free. Hence ϕ̃ := ᾱ−1ϕᾱ : G y M is the desired
approximation of ϕ.

4.5 Smoothing over the tame reflection locus

Let F refl
tame ⊆ F refl denote the open subset where F refl is tamely embedded inside M refl, and

let M trefl := M free ∪ F refl
tame.

Proposition 4.14. Every continuous action ϕ : GyM of a finite group on a smooth three-
manifold is a uniform limit of actions ϕ̃ : GyM which are smooth over Mϕ-trefl ⊆M ϕ̃-trefl

and coincide with ϕ over the complement of Mϕ-trefl. If ϕ is smooth over NbdK for K ⊆M
closed and ϕ(G)-invariant, then we may take ϕ̃ = ϕ over NbdK.

Proof. The proof of Proposition 4.13 applies without significant change. The quotient
Mϕ-trefl/ϕ(G) is now a topological three-manifold-with-boundary, again smoothable by Corol-
lary 4.7. Choosing arbitrarily a (germ of) smooth boundary collar for Mϕ-trefl/ϕ(G) provides
a lift of this smooth structure to Mϕ-trefl, and the rest of the proof is the same.

4.6 Taming the reflection locus

Let F refl
wild := F refl \F refl

tame denote the closed subset where F refl is wildly embedded inside M refl.

Proposition 4.15. Every continuous action ϕ : G y M of a finite group on a smooth
three-manifold is a uniform limit of actions ϕ̃ : GyM for which F ϕ̃-refl

wild is contained in the
1-skeleton of a G-invariant triangulation of F ϕ̃-refl and Mϕ-refl = M ϕ̃-refl. Moreover, we may
take ϕ̃ = ϕ except over a neighborhood of Fϕ-refl

wild inside Mϕ-refl.

Proof. Fix a very fine G-equivariant triangulation of Fϕ-refl (note that G acts with constant
stabilizer on Fϕ-refl and that F refl

wild is G-invariant). It suffices to describe how to modify ϕ in
an arbitrarily small neighborhood of each G-orbit of open 2-simplices intersecting the wild
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locus (then just do all of these modifications simultaneously). Note that Fϕ-refl ⊆ M is not
generally a closed subset, and hence there may be infinitely many such 2-simplices in any
neighborhood of some points of M , but that this is not an issue.

Let a G-orbit of 2-simplices inside Fϕ-refl be given. Fix an open 2-simplex U ⊆ Fϕ-refl

in this orbit, with stabilizer an involution σ ∈ G. It suffices to modify the action of σ in a
neighborhood of U (choosing coset representatives for G/σ as in the proof of Lemma 4.11
extends this to a modification of the action of G near the union of translates of U).

To find the desired new action of σ locally near U , we follow the argument of Craggs
[Cra70a, Theorem 3.1]. Note that, as a consequence of Alexander duality (see Lemma
4.4), U divides M locally into two ‘sides’ and σ exchanges these two sides since it reverses
orientation near U . Let ι : U ↪→ M be the identity map embedding, and let ι̃ : U ↪→ M be
a tame reembedding as produced by Bing’s Theorem 4.9. Now σ ◦ ι̃ : U → M is another
tame reembedding, so by Craggs’ Theorem 4.10, there is a uniformly small ambient isotopy
{ht : M → M}t∈[0,1] supported near U from h0 = id to a homeomorphism h1 such that
h1 ◦ ι̃ = σ ◦ ι̃. Now on one side of ι̃(U), we define σ̃ := h−1

1 ◦σ, and on the other side we take
its inverse σ ◦ h1. This is a new involution σ̃, coinciding with σ outside a neighborhood of
U , and with fixed set ι̃(U) which is by definition tame.

Remark 4.16. Given a relative version of Craggs’ Theorem 4.10, in the sense that the isotopies
could be made to be constant over a locus where ι = ι1 = ι2 (this may even be proved in
[Cra70b]), we could iterate the process in the above proof over a neighborhood of the 1-
simplices and then the 0-simplices, thus taming the entire F refl. This is a moot point,
however, since the weaker statement of Proposition 4.15 is all that is needed to prove Theorem
1.1.

4.7 Smoothing over the remainder

It is here that the results of §2 and §3 are put to use.

Theorem 4.17. Every generically free continuous action ϕ : G y M of a finite group on
a smooth three-manifold which is smooth over Mϕ-refl minus the 1-skeleton of a G-invariant
triangulation of Fϕ-refl is a uniform limit of smooth actions ϕ̃ : GyM . If ϕ is smooth over
NbdK for K ⊆M closed and ϕ(G)-invariant, then we may take ϕ̃ = ϕ over NbdK.

Proof. Let X ⊆ M be the (necessarily closed and G-invariant) locus where ϕ fails to be
smooth. By hypothesis, X is contained within M \ Mϕ-refl union the 1-skeleton of a G-
invariant triangulation of Fϕ-refl. Appealing to Lemma 4.12 on the structure of M \M refl,
we conclude that X/G has Lebesgue covering dimension at most 1.

Let M0 ⊆ M be a small G-invariant closed neighborhood of X with smooth boundary,
and let M0 =

⋃
i Ui be a locally finite G-equivariant (i.e. the action of G permutes the Ui)

open cover by small open subsets of M0, whose nerve has dimension at most 1 (i.e. all triple
intersections Ui ∩ Uj ∩ Uk for distinct i, j, k are empty) and such that G does not exchange
any pair (i, j) with Ui∩Uj 6= ∅ (i.e. the action of G on the nerve of the cover does not invert
any edge).

To construct M0 and this open cover, argue as follows (see Figure 1). Choose a very fine
locally finite closed cover of X/G whose nerve has dimension at most 1, and pull it back to
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X

U ′i

M0

Figure 1: Left: The locus X and the open covering X ⊆
⋃
i U
′
i . Right: the neighborhood

X ⊆M0 ⊆
⋃
i U
′
i and the covering M0 =

⋃
i Ui defined by Ui := U ′i ∩M0.

X. This produces a G-invariant cover of X (i.e. each set in the cover is stabilized by G). By
further breaking up each of these inverse images into finitely many disjoint pieces permuted
by G, we obtain an arbitrarily fine locally finite G-equivariant closed cover X =

⋃
i Vi with

nerve of dimension at most 1. There may be some bad pairs (i, j) with Vi ∩ Vj 6= ∅ and G
exchanging i and j. In this case, we may add a small neighborhood of Vi ∩ Vj to the cover
and shrink Vi and Vj accordingly (the effect of this operation on the nerve of the covering
is to add a vertex at the middle of the flipped edge (i, j)). This operation takes place in a
small neighborhood of Vi ∩ Vj, so we may simply do it to all bad pairs simultaneously. Now
choose open neighborhoods U ′i of Vi inside M such that U ′i ∩ U ′j 6= ∅ only if Vi ∩ Vj 6= ∅.
Finally, pick any G-invariant M0 ⊆ M , closed with smooth boundary, containing X, and
contained inside

⋃
i U
′
i , and set Ui := M0 ∩ U ′i .

So that we may apply the results of §3, we further specify the construction of M0 and
the open cover M0 =

⋃
i Ui as follows. Let us call a bounded open subset U ⊆ R3 saturated

iff its complement is connected (equivalently H2(U) = 0). Every bounded open set U ⊆ R3

is contained in a unique minimal bounded saturated U+ ⊆ R3, obtained by adding to U the
bounded component of R3 \ F for every embedded surface F ⊆ U . If U is saturated, then
it is irreducible by Alexander’s theorem [Ale24]. Note that if U and V are both saturated,
then so is their intersection U ∩V . The notion of being saturated also makes sense (and the
above discussion continues to apply) for open subsets of M of small diameter.

Let us now argue that we can choose the Ui (and hence also their pairwise intersections
Ui ∩ Uj) to be saturated (hence, in particular, irreducible). First, fix an open covering of X
by small open balls Bα ⊆ M . Let us require that the covering Vi of X is chosen such that
each Vi is contained within some Bα. Since X has covering dimension at most 1, so does each
Vi, implying that Ȟ2(Vi) = 0, and hence removing Vi does not disconnect Bα. It follows that
Vi has arbitrarily small neighborhoods U ′i (contained in a compact subset of the same Bα)
whose removal does not disconnect Bα, i.e. U ′i is saturated. We now turn to the choice of
M0. Beginning with an arbitrary choice of M0 as above (i.e. G-invariant, closed with smooth
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boundary, containing X, and contained inside
⋃
i U
′
i), consider those boundary components

F of M0 which lie entirely inside a given U ′i . Since every U ′i is saturated, we may add to M0

the compact region inside U ′i bounded by each such F , and the condition that M0 ⊆
⋃
i U
′
i is

preserved (as are the other conditions). It now follows that Ui = U ′i ∩M0 is also saturated:
the contrary would be the existence of a closed surface F ⊆ U ′i ∩M0 bounding a compact
region in Bα not both entirely inside U ′i and inside M0, however by construction these do
not exist.

We now consider the lattices L(∂(Ui ∩ Uj)) (recall §3.1). We claim that there exists a
G-invariant collection of elements Aij ∈ L(∂(Ui ∩Uj)) with Aij = A{

ji such that Aij contains

the Ui end of ∂(Ui ∩ Uj) (note that the boundary (Ui ∩ Uj) \ (Ui ∩ Uj) is the open disjoint
union of its intersection with Ui and its intersection with Uj). To see this, start with any
not necessarily G-invariant collection of Aij = A{

ji. Considering all G-translates, we get a
collection of finite multisets Sij ⊆ L(∂(Ui ∩ Uj)). Now choose a G-invariant preferred order
(i, j) for every unordered pair of indices with Ui ∩ Uj non-empty (this is possible since G
doesn’t swap any such pair of indices). For (i, j) in this preferred order, define Aij to be the
least upper bound of Sij (and Aji to be its complement, i.e. the greatest lower bound of Sji).
This is the desired collection Aij. We now fix representatives Aij ⊆ ∂(Ui ∩ Uj) of Aij which
satisfy Aij = A{

ji and G-invariance on the nose rather than only up to isotopy (for instance,
we could choose ∂Aij to be geodesics in a G-invariant hyperbolic metric on ∂(Ui ∩ Uj)).

We now consider the lattices L(Ui∩Uj;Aij) (recall §3.2), and we claim that there exists a
G-invariant collection of elements Bij ∈ L(Ui∩Uj;Aij) with Bij = B{

ji such that Bij contains
the Ui end of Ui ∩ Uj (recall from Corollary 4.8 that G does indeed act on these lattices).
Indeed, such Bij may be obtained using the same procedure used above to construct the Aij.
Fix representatives Bij ⊆ Ui ∩ Uj with Bij = B{

ji which are G-invariant in a neighborhood
of ∂(Ui ∩ Uj) (but not necessarily globally G-invariant).

M0

Bij Ni

M0

Figure 2: Left: the submanifolds Bij ⊆ Ui ∩ Uj. Right: the resulting partition of M0 into
submanifolds Ni.

We now consider the partition M0 =
⋃
iNi where Ni := Ui \

⋃
j B
◦
ji (informally, we

cut M0 along ∂Bij; see Figure 2), and we argue that the given strict action ϕ : G y M0
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can be deformed (over compact subsets of
⊔
i,j Ui ∩ Uj and away from ∂M0) to a homotopy

action by homotopy equivalences ϕ̄ : G
hy M0 which preserves the partition M0 =

⋃
iNi

and agrees with ϕ near ∂M0. In the proof of Theorem 2.22, we cut a homotopy action
along the tori of the JSJ decomposition, and we will use a similar strategy here. First, use
Bing–Moise to approximate ϕ0 by diffeomorphisms on the pairwise intersections Ui ∩ Uj.
These approximating diffeomorphisms are homotopic (via a small homotopy) to the original
ϕ0, so we may deform ϕ to obtain ϕ̄ (coinciding with ϕ away from the Ui ∩ Uj) for which
ϕ̄0 are diffeomorphisms on Ui ∩ Uj (note, however, that this comes at the cost that the
higher components of ϕ̄ now may only be homotopy equivalences on Ui ∩ Uj rather than
homeomorphisms). Now we may further deform ϕ̄ inside Ui ∩ Uj first so that it stabilizes
∂Nij (using incompressibility of ∂Nij) and then so that it restricts to a strict action on ∂Nij

using Corollary 2.9. Finally, using the same argument from the proof of Theorem 2.22, we
deform ϕ̄ (relative ∂Nij) by induction on k ≥ 1 so that it preserves the Nij as well. We thus
have a homotopy action ϕ̄ which coincides with ϕ away from Ui∩Uj and which preserves Nij

and acts strictly on ∂Nij. Hence ϕ̄ determines via cutting a homotopy action by homotopy
equivalences on

⊔
iNi strict near the boundary. On those components of

⊔
iNi which are

not B3, we may use Theorem 2.22 and Corollary 2.10 to homotope ϕ̄ rel boundary to be
strict. On those components of

⊔
iNi which are B3, we recall that every strict action of a

finite group on
⊔
∂B3 =

⊔
S2 preserves some spherical metric [Sco83, Theorem 2.4], and

thus extends to a strict action on
⊔
B3.

Proof of Theorem 1.1. By Lemma 4.11 it is enough to treat the generically free case. Using
Proposition 4.15 we tame F refl away from a 1-skeleton. Then using Proposition 4.14, we
smooth the action over M trefl. Finally, Theorem 4.17 smooths the rest.
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