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Abstract

We give a construction of contact homology in the sense of Eliashberg–Givental–
Hofer. Specifically, we construct coherent virtual fundamental cycles on the relevant
compactified moduli spaces of pseudo-holomorphic curves.

The aim of this work is to provide a rigorous construction of contact homology, an in-
variant of contact manifolds and symplectic cobordisms due to Eliashberg–Givental–Hofer
[Eli98, EGH00]. The contact homology of a contact manifold (Y, ξ) is defined by counting
pseudo-holomorphic curves in the sense of Gromov [Gro85] in its symplectization R × Y .
The main problem we solve in this paper is simply to give a rigorous definition of these curve
counts, the essential difficulty being that the moduli spaces of such curves are usually not
cut out transversally. It is therefore necessary to construct the virtual fundamental cycles of
these moduli spaces (which play the same enumerative role that the ordinary fundamental
cycles do for transversally cut out moduli spaces). For this construction, we use the frame-
work developed in [Par16]. Our methods are quite general, and apply equally well to many
other moduli spaces of interest.

We use a compactification of the relevant moduli spaces which is smaller than the com-
pactification considered in [EGH00, BEHWZ03]. Roughly speaking, for curves in symplecti-
zations R×Y , we do not keep track of the relative vertical positions of different components
(in particular, no trivial cylinders appear). Our compactification is more convenient for prov-
ing the master equations of contact homology: the codimension one boundary strata in our
compactification correspond bijectively with the desired terms in the “master equations”,
whereas the compactification from [EGH00, BEHWZ03] contains additional codimension
one boundary strata. If we were to use the compactification from [EGH00, BEHWZ03], we
would need to additionally argue that the contribution of each such extra codimension one
boundary stratum vanishes.

Remark 0.1 (Historical discussion). The theory of pseudo-holomorphic curves in closed sym-
plectic manifolds was founded by Gromov [Gro85]. Hofer’s breakthrough work on the three-
dimensional Weinstein conjecture [Hof93] introduced pseudo-holomorphic curves in sym-
plectizations and their relationship with Reeb dynamics. The analytic theory of such curves
was then further developed by Hofer–Wysocki–Zehnder [HWZ96, HWZ98, HWZ95, HWZ99,

∗This research was partially conducted during the period the author served as a Clay Research Fellow.
The author was also partially supported by a National Science Foundation Graduate Research Fellowship
under grant number DGE–1147470.
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HWZ02]. On the algebraic side, Eliashberg–Givental–Hofer [EGH00] introduced the theo-
ries of contact homology and symplectic field theory, based on counts of pseudo-holomorphic
curves in symplectizations and symplectic cobordisms (assuming such counts can be defined).
The key compactness results for such curves were established by Bourgeois–Eliashberg–
Hofer–Wyzocki–Zehnder [BEHWZ03]. Gluing techniques applicable to such pseudo-holomorphic
curves have been developed by many authors, notably Taubes, Donaldson, Floer, Fukaya–
Oh–Ohta–Ono, and Hofer–Wysocki–Zehnder.

A number of important special cases of contact homology and closely related invariants
have been constructed rigorously using generic and/or automatic transversality techniques.
Legendrian contact homology in R2n+1 was constructed by Ekholm–Etnyre–Sullivan [EES05].
Eliashberg–Kim–Polterovich [EKP06] defined cylindrical contact homology for fiberwise star-
shaped open subsets of certain pre-quantization spaces. Embedded contact homology was in-
troduced and constructed by Hutchings and Hutchings–Taubes [Hut02, Hut09, HT07, HT09].
Cylindrical contact homology was constructed by Hutchings–Nelson [HN16] for dynamically
convex contact three-manifolds and by Bao–Honda [BH18] for hypertight contact three-
manifolds. Soon after the present paper was released, work of Bao–Honda [BH16] appeared,
as well as work of Ishikawa [Ish18].

Remark 0.2 (Virtual moduli cycle techniques). The technique of patching together local
finite-dimensional reductions to construct virtual fundamental cycles has been applied to
moduli spaces of pseudo-holomorphic curves by many authors, including Fukaya–Ono [FO99]
(Kuranishi structures), Li–Tian [LT98a], Liu–Tian [LT98b], Ruan [Rua99], Fukaya–Oh–
Ohta–Ono [FOOO09a, FOOO09b, FOOO12, FOOO16b, FOOO15, FOOO16a, Fuk17, FOOO17,
FOOO18a, FOOO18b], McDuff–Wehrheim [MW17b, MW18, MW17a, McD19] (Kuranishi
atlases), Joyce [Joy15, Joy14, Joy12] (Kuranishi spaces and d-orbifolds), and [Par16] (im-
plicit atlases). Features of the framework from [Par16] include that (1) it requires only
topological (as opposed to smooth) gluing theorems as input and (2) it applies to moduli
spaces with rather general corner structures which we term “cell-like” (more general than
manifold-with-corners).

More recently, the theory of polyfolds developed by Hofer–Wysocki–Zehnder [HWZ07,
HWZ09b, HWZ09a, HWZ10a, HWZ10b, HWZ14a, HWZ14b, HWZ17, FH18b, FH18c, FH18a]
promises to provide a robust new infinite-dimensional context in which all reasonable moduli
spaces of pseudo-holomorphic curves may be perturbed “abstractly” to obtain transversality.

Any one of the above theories, once sufficiently developed, could be used to prove the
main results of this paper. Although these theories vary in their approach to the myriad
of technical issues involved, they are expected to give rise to completely equivalent virtual
fundamental cycles.

Acknowledgements: The author thanks Yasha Eliashberg for introducing the author
to this problem and for many useful conversations. The author thanks the referee for their
careful reading and extensive comments which have improved this paper significantly. The
author is also grateful for useful discussions with Mohammed Abouzaid, Frédéric Bourgeois,
Roger Casals, Vincent Colin, Tobias Ekholm, Kenji Fukaya, Eleny Ionel, Patrick Massot,
Rafe Mazzeo, Peter Ozsváth, Mohan Swaminathan, and Chris Wendl. A preliminary version
of this paper appeared as part of the author’s 2015 Ph.D. thesis at Stanford University
supervised by Ya. Eliashberg.
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1 Statement of results

We now state our main results while simultaneously reviewing the definition of contact
homology as given in [Eli98, EGH00, Eli07]. The definition of contact homology involves
counting pseudo-holomorphic curves in various different (but closely related) settings, which
we distinguish with roman numerals (I), (II), (III), (IV). We strongly recommend that the
reader restrict their attention to (I) on a first reading. The generalization from (I) to (II),
(III), (IV) is mostly straightforward, and may be saved for a second reading.

1.1 Conventions

Everything is in the smooth category unless stated otherwise.
To keep track of signs, everything is Z/2-graded, and ⊗ always denotes the super tensor

product, meaning that the isomorphism A⊗ B
∼
−→ B ⊗ A is given by a⊗ b 7→ (−1)|a||b|b ⊗ a

and that (f ⊗ g)(a ⊗ b) := (−1)|g||a|f(a) ⊗ g(b). Complexes are (Z,Z/2)-bigraded, and
differentials are always odd. For specificity, let us declare that Hom(A,B)⊗A→ B be given
by f ⊗ a 7→ f(a), though it won’t really matter for our arguments.

An orientation line is a Z/2-graded free Z-module of rank one. Note that for an odd
orientation line o, there is no nonzero symmetric pairing o ⊗ o → Z, so we must be careful
to distinguish between o and its dual o∨.

1.2 (I) The differential

Let Y 2n−1 be a closed manifold, and let λ be a contact form on Y , namely a 1-form such
that λ ∧ (dλ)n−1 is non-vanishing, denoting by ξ := ker λ the induced co-oriented contact
structure. Contact homology can be regarded as an attempt to define the S1-equivariant
Morse–Floer homology of the loop space C∞(S1, Y ) with respect to the action functional
a(γ) :=

∫

S1 γ
∗λ.

Denote by Rλ the Reeb vector field associated to λ, defined by the properties λ(Rλ) = 1
and dλ(Rλ, ·) = 0. Denote by P = P(Y, λ) the collection of (unparameterized) Reeb orbits,
namely closed trajectories of Rλ, not necessarily embedded. A Reeb orbit is called non-
degenerate iff the associated linearized Poincaré return map ξp → ξp has no fixed vector. A
contact form is called non-degenerate iff all its Reeb orbits are non-degenerate, which implies
that there are at most finitely many Reeb orbits below any given action threshold. Suppose
now that λ is non-degenerate.

There is a natural partition P = Pgood ⊔ Pbad, and for each good Reeb orbit γ ∈ Pgood,
there is an associated orientation line oγ with parity |γ| = sign(det(I −Aγ)) ∈ {±1} = Z/2,
where Aγ denotes the linearized Poincaré return map of γ acting on ξ (see §2.13). We set
oΓ :=

⊗

γ∈Γ oγ and |Γ| :=
∑

γ∈Γ |γ| for any finite set of good Reeb orbits Γ → Pgood. For a
given Reeb orbit γ ∈ P, let dγ ∈ Z≥1 denote its covering multiplicity.

Let
CC•(Y, ξ)λ :=

⊕

n≥0

Symn
Q

(

⊕

γ∈Pgood

oγ

)

(1.1)

denote the free supercommutative (meaning ab = (−1)|a||b|ba) unital Z/2-graded Q-algebra
generated by oγ for γ ∈ Pgood. This is the contact homology chain complex, which we now
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equip with a differential. To define this differential, fix an almost complex structure J : ξ → ξ
which is compatible with dλ, meaning that dλ(·, J ·) is a positive definite symmetric pairing
on ξ.

Let Ŷ := R × Y (with coordinate s ∈ R) denote the symplectization1 of Y , which is
equipped with the Liouville form λ̂ := esλ. Now J induces an R-invariant almost complex
structure Ĵ on Ŷ defined by the property that Ĵ(∂s) = Rλ and Ĵ |ξ = J . Given a Reeb orbit
γ+ ∈ P and a finite set of Reeb orbits Γ− → P, let

π2(Y, γ
+ ⊔ Γ−) := [(S, ∂S), (Y, γ+ ⊔ Γ−)]/Diff(S, ∂S), (1.2)

where S is any compact connected oriented surface of genus zero with boundary, equipped
with a homeomorphism between ∂S and γ+⊔Γ− (preserving orientation on γ+ and reversing
orientation on Γ−), and Diff(S, ∂S) denotes diffeomorphisms of S fixing ∂S pointwise.

Let MI(γ
+,Γ−; β)J denote the compactified moduli space of connected Ĵ-holomorphic

curves of genus zero in Ŷ modulo R-translation, with one positive puncture asymptotic to
γ+ and negative punctures asymptotic to Γ−, in the homotopy class β, along with asymptotic
markers on the domain mapping to fixed basepoints on γ+ and Γ− (see §§2.1–2.9). We denote
by µ(γ+,Γ−; β) ∈ Z the index of this moduli problem; we have µ(γ+,Γ−; β) ≡ |γ+| − |Γ−| ∈
Z/2 (see §2.12).

It is shown in [BEHWZ03] that
⊔

(Γ−,β)MI(γ
+,Γ−; β)J is compact for any fixed γ+ (see

§2.10).
We say that MI(γ

+,Γ−; β)J is regular (or cut out transversally, or just transverse) iff
the relevant linearized operator (which takes into account both variations in the map and
variations in the almost complex structure of the domain) is everywhere surjective (see §2.11).
In this case, MI(γ

+,Γ−; β)J is a manifold with corners of dimension µ(γ+,Γ−; β)− 1, whose
orientation local system is naturally isomorphic to oγ+ ⊗ o∨Γ− ⊗ o∨R (see §2.14); there are no
orbifold points due to our use of asymptotic markers and to the fact that the symplectization
is exact so there can be no nodes. In particular, if µ(γ+,Γ−; β) = 1 and MI(γ

+,Γ−; β)J is
cut out transversally, the moduli count

#MI(γ
+,Γ−; β)J ∈ o∨γ+ ⊗ oΓ− ⊗ oR (1.3)

is well-defined.
We would now like to define a differential

dJ : CC•(Y, ξ)λ → CC•−1(Y, ξ)λ (1.4)

which satisfies the Leibniz rule (d(1) = 0 and d(ab) = da · b+ (−1)|a|a · db) and is defined by
the property that it acts on oγ+ by pairing with

∑

Γ−→Pgood

µ(γ+,Γ−;β)=1

1

|Aut|
·#MI(γ

+,Γ−; β)J · Γ
− (1.5)

1More intrinsically, the symplectization of a co-oriented contact manifold (Y, ξ) is defined as the total space
of the bundle of 1-forms with kernel ξ, namely Ŷ := ker(T ∗Y → ξ∗)+. The restriction of the tautological

Liouville 1-form on T ∗Y is a Liouville 1-form λ̂ on Ŷ ; the associated Liouville vector field on Ŷ generates
an R-action on Ŷ which is simply scaling by es. A choice of contact form λ for ξ induces an identification of
(Ŷ , λ̂) with (R× Y, esλ).
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and contracting on the left with a chosen orientation of R (where Aut denotes a certain
group of automorphisms of the triple (γ+,Γ−; β) acting as the identity on γ+). When the
moduli spaces MI(γ

+,Γ−; β)J of index ≤ 2 are cut out transversally, this definition of dJ
makes sense, and consideration of the fact that #∂MI(γ

+,Γ−; β)J = 0 for index two moduli
spaces (since they are compact 1-manifolds) shows that dJ squares to zero.

Our main result, Theorem 1.1, allows the above construction of the differential to go
through without any transversality assumptions. More precisely, it provides a non-empty set
ΘI = ΘI(Y, λ, J), an element of which may be thought of as a specification of “perturbation
data” for the moduli spaces MI(γ

+,Γ−; β)J , and for each θ ∈ ΘI it defines rational “virtual
moduli counts”

#MI(γ
+,Γ−; β)virJ,θ ∈ o∨γ+ ⊗ oΓ− ⊗ oR ⊗Q. (1.6)

These virtual moduli counts furthermore satisfy #∂MI(γ
+,Γ−; β)virJ,θ = 0 and coincide with

the ordinary moduli counts when the moduli spaces are transverse. We thus obtain a differ-
ential

dJ,θ : CC•(Y, ξ)λ → CC•−1(Y, ξ)λ, (1.7)

and we denote the resulting homology by CH•(Y, ξ)λ,J,θ.

1.3 (II) The cobordism map

Let X̂2n be a manifold and let ω̂ be a symplectic form on X̂ , namely a closed 2-form such
that ω̂n is non-vanishing. Let (Y ±, λ±) be closed manifolds equipped with contact forms,
and let

([N,∞)× Y +, dλ̂+)→ (X̂, ω̂), (1.8)

((−∞,−N ]× Y −, dλ̂−)→ (X̂, ω̂), (1.9)

(any large N < ∞) be diffeomorphisms onto their (disjoint) images, proper, and such that
together they cover a neighborhood of infinity. A symplectic cobordism is a symplectic
manifold (X̂, ω̂) equipped with such markings (1.8)–(1.9), and it is called exact when there
is a globally defined primitive λ̂ for ω̂ coinciding with λ̂± in the ends.

Fix an almost complex structure Ĵ : TX̂ → TX̂ which is tamed by ω̂, meaning ω̂(v, Ĵv) >
0 for nonzero v ∈ TX̂, such that outside a compact set, Ĵ coincides with some Ĵ± for
J± : ξ± → ξ±. Also suppose that λ± are non-degenerate.

Let MII(γ
+,Γ−; β)Ĵ denote the compactified moduli space of connected Ĵ-holomorphic

curves of genus zero in X̂ from γ+ ∈ P+ = P(Y +, λ+) to Γ− → P− = P(Y −, λ−) in the
homotopy class β ∈ π2(X̂, γ

+ ⊔ Γ−).
It is shown in [BEHWZ03] that

⊔

〈ω̂,β〉<N MII(γ
+,Γ−; β)Ĵ is compact for any fixed γ+,

Γ−, and N < ∞. The condition 〈ω̂, β〉 < N may be interpreted with respect to any fixed
null-homology of [γ+] − [Γ−]. Note that when the symplectic cobordism is exact, it follows
that

⊔

(Γ−,β)MII(γ
+,Γ−; β)Ĵ is compact for any fixed γ+.

Theorem 1.1 provides virtual moduli counts for the moduli spaces MII in the following
form. There is a set ΘII = ΘII(X̂, ω̂, Ĵ , (1.8), (1.9)) together with a surjective forgetful map
ΘII ։ Θ+

I ×Θ−
I , where Θ±

I = ΘI(Y
±, λ±, J±), along with virtual moduli counts

#MII(γ
+,Γ−, β)vir

Ĵ,θ
∈ o∨γ+ ⊗ oΓ− ⊗Q (1.10)
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for θ ∈ ΘII and µ(γ
+,Γ−, β) = 0.

Now for exact symplectic cobordisms, we may define a unital Q-algebra map

Φ(X̂, λ̂)Ĵ,θ : CC•(Y
+, ξ+)λ+,J+,θ+ → CC•(Y

−, ξ−)λ−,J−,θ− (1.11)

for any θ ∈ ΘII mapping to (θ+, θ−) ∈ Θ+
I × Θ−

I , by pairing with the virtual moduli counts
as before (exactness ensures the relevant sum is finite). This is a chain map by virtue of the
fact that #∂MII = 0.

1.4 (III) The deformation homotopy

Let (X̂, ω̂t)t∈[0,1] be a one-parameter family of symplectic cobordisms, fixed near infinity
(meaning (1.8)–(1.9) are independent of t). Note that the a priori more general setup where
(1.8)–(1.9) are allowed to vary with t is easily reduced to the case of being fixed near infinity,
simply by conjugating by an appropriate family of diffeomorphisms ϕt : X̂ → X̂ .

Fix a family Ĵ t of almost complex structures as above, agreeing with Ĵ± outside of a
compact subset independent of t.

We consider moduli spaces MIII({γ
+
i ,Γ

−
i ; βi}i∈I)Ĵt parameterizing a choice of t ∈ [0, 1]

together with a Ĵ t-holomorphic curve from γ+i to Γ−
i in homotopy class βi for every i ∈ I.

For such moduli spaces, there are two natural notions of transversality: a point is called
regular iff the associated linearized operator is surjective as before, and a point is called
weakly regular iff the associated linearized operator becomes surjective once we also take
into account variations in t ∈ (0, 1) (but not at the endpoints of this interval).

It is shown in [BEHWZ03] that
⊔

supt〈ω̂
t,β〉<N MIII(γ

+,Γ−; β)Ĵ is compact for any fixed

γ+, Γ−, and N <∞.
Theorem 1.1 provides virtual moduli counts

#MIII({γ
+
i ,Γ

−
i ; βi}i∈I)

vir
Ĵt,θ
∈
⊗

i∈I

o∨
γ+i
⊗ oΓ−

i
⊗ o∨[0,1] ⊗Q (1.12)

for θ ∈ ΘIII := ΘIII(X̂, (ω̂
t, Ĵ t)t∈[0,1]) with a surjective map ΘIII ։ Θt=0

II ×Θ+×Θ− Θt=1
II .

For families of exact symplectic cobordisms, pairing with these virtual moduli counts
(and an orientation of [0, 1]) defines a Q-linear map

K(X̂, λ̂t)Ĵt,θ : CC•(Y
+, ξ+)λ+,J+,θ+ → CC•+1(Y

−, ξ−)λ−,J−,θ−. (1.13)

Note that, whereas in cases (I) and (II), we defined the differential and the cobordism map
on algebra generators and then extended using the multiplicative structure, here in case (III)
we define the homotopy on each monomial separately.

Consideration of #∂MIII = 0 shows that K(X̂, λ̂t)Ĵt,θ is a chain homotopy between

Φ(X̂, λ̂0)Ĵ0,θ0 and Φ(X̂, λ̂1)Ĵ1,θ1 , implying that the induced maps on homology

CH•(Y
+, ξ+)λ+,J+,θ+ CH•(Y

−, ξ−)λ−,J−,θ−

Φ(X̂,λ̂0)
Ĵ0,θ0

Φ(X̂,λ̂1)
Ĵ1,θ1

(1.14)

coincide.
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1.5 (IV) The composition homotopy

Let (X̂01, ω̂01) be a symplectic cobordism with positive end (Y 0, λ0) and negative end (Y 1, λ1),
and let (X̂12, ω̂12) be a symplectic cobordism with positive end (Y 1, λ1) and negative end
(Y 2, λ2). Given any sufficiently large t <∞, we can form a symplectic cobordism (X̂02,t, ω̂02,t)
by truncating the negative end of X̂01 to (−t, 0]× Y1, truncating the positive end of X̂12 to
[0, t)×Y1, and identifying these truncated ends by translation by t. Under this identification,
the forms ω̂01 and ω̂12 only agree up to a scaling factor of et, so their descent ω̂02,t to X̂02,t

is only well-defined up to scale; similarly the natural end markings (1.8)–(1.9) of X̂02,t only
respect symplectic forms up to scale (these ambiguities are never problematic, however, so
they will be ignored from now on). Let (X̂02,t, ω̂02,t)t∈[0,∞) denote this one-parameter family
of symplectic cobordisms with positive end (Y 0, λ0) and negative end (Y 2, λ2).

Fix almost complex structures Ĵ01 and Ĵ12 on X̂01 and X̂12 as before, agreeing with fixed
Ĵ0, Ĵ1, Ĵ2 near infinity. These descend naturally to Ĵ02,t on X̂02,t for sufficiently large t <∞,
and we fix an extension Ĵ02,t to all t ∈ [0,∞), agreeing with Ĵ0 and Ĵ2 near infinity.

We consider moduli spaces MIV({γ
+
i ,Γ

−
i ; βi}i∈I)Ĵ02,t parameterizing a choice of t ∈ [0,∞]

together with a Ĵ02,t-holomorphic curve in X̂02,t from γ+i to Γ−
i in homotopy class βi for

every i ∈ I.
Theorem 1.1 provides virtual moduli counts

#MIV({γ
+
i ,Γ

−
i ; βi}i∈I)

vir
Ĵt,θ
∈
⊗

i∈I

o∨
γ+i
⊗ oΓ−

i
⊗ o∨[0,∞] ⊗Q (1.15)

for θ ∈ ΘIV with a surjective map ΘIV ։ Θ02
II ×Θ0

I×Θ2
I
(Θ01

II ×Θ1
I
Θ12

II ).

In the exact setting, pairing with these virtual moduli counts and using #∂MIV = 0
produces a chain homotopy which shows that the following diagram commutes:

CH•(Y
1, ξ1)λ1,J1,θ1

CH•(Y
0, ξ0)λ0,J0,θ0 CH•(Y

2, ξ2)λ2,J2,θ2

Φ(X̂12,λ̂12)
Ĵ12,θ12

Φ(X̂02,λ̂02)
Ĵ02,θ02

Φ(X̂01,λ̂01)
Ĵ01,θ01 (1.16)

for any (θ0,1,2, θ01,12,02) ∈ Θ02
II ×Θ0

I×Θ2
I
(Θ01

II ×Θ1
I
Θ12

II ).

1.6 Main result

We now give a precise statement of our main result, Theorem 1.1, which has already been
alluded to in §§1.2–1.5 above. This result takes as input a datum D (as in any of Setups I–IV
below) and produces a set Θ(D) together with virtual moduli counts #M

vir
θ for θ ∈ Θ(D)

satisfying certain properties.

Setup I consists of a closed manifold Y equipped with a non-degenerate contact form λ and
a dλ-compatible almost complex structure J : ξ → ξ.

Setup II consists of a symplectic cobordism (X̂, ω̂) with positive end (Y +, λ+) and negative
end (Y −, λ−), together with an ω̂-tame almost complex structure Ĵ : TX̂ → TX̂ agreeing
with Ĵ± outside a compact set, where (Y ±, λ±, J±) are as in Setup I.
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Setup III consists of a one-parameter family of symplectic cobordisms (X̂, ω̂t)t∈[0,1] (fixed
near infinity) with positive/negative ends (Y ±, λ±), together with ω̂t-tame almost complex
structures Ĵ t agreeing with Ĵ± outside a compact set, where (Y ±, λ±, J±) are as in Setup I.

Setup IV consists of a one-parameter family of symplectic cobordisms (X̂02,t, ω̂02,t)t∈[0,∞)

with ends (Y 0, λ0) and (Y 2, λ2), which for sufficiently large t agrees with the t-gluing of a
symplectic cobordism (X̂01, ω̂01) with ends (Y 0, λ0) and (Y 1, λ1) and a symplectic cobordism
(X̂12, ω̂12) with ends (Y 1, λ1) and (Y 2, λ2), together with an appropriately compatible family
of almost complex structures Ĵ02,t, with (Y i, λi, J i) as in Setup I.

Theorem 1.1. Let D be a datum as in any of Setups I–IV. There exists a set Θ(D) along
with rational virtual moduli counts #M

vir
θ satisfying the following properties:

(i) Θ(D) and #M
vir
θ are functorial in D, meaning that an isomorphism i : D → D′

induces an isomorphism i∗ : Θ(D)
∼
−→ Θ(D′) such that id∗ = id, (i ◦ j)∗ = i∗ ◦ j∗, and

#M
vir
θ = #M

vir
i∗θ.

(ii) There are natural surjective forgetful maps

ΘI ։ ∗, (1.17)

ΘII ։ Θ+
I ×Θ−

I , (1.18)

ΘIII ։ Θ0
II ×Θ+

I ×Θ−
I
Θ1

II, (1.19)

ΘIV ։ Θ02
II ×Θ0

I×Θ2
I
(Θ01

II ×Θ1
I
Θ12

II ), (1.20)

covering the natural forgetful maps of data D.

(iii) #M
vir
θ is nonzero only for moduli spaces of virtual dimension zero.

(iv) #M
vir
θ = #M for (weakly) regular moduli spaces of dimension zero. In particular, if a

moduli space is empty then its virtual count is zero.

(v) The virtual moduli counts satisfy the “master equation”

#∂Mvir
θ = 0, (1.21)

where the left hand side denotes the sum over all codimension one boundary strata
of the relevant products of virtual moduli counts and inverse covering multiplicities of
intermediate orbits (this sum is finite by compactness).

1.7 The contact homology functor

Contact homology can be viewed as a functor (1.22), whose (mostly formal) construction
from Theorem 1.1 we now describe.

Let (Contact,Exact)n denote the category whose objects are closed co-oriented contact
manifolds (Y 2n−1, ξ) and whose morphisms are deformation classes of exact symplectic cobor-

disms (X̂2n, λ̂) between contact manifolds. Let Ring
Z/2
Q denote the category whose objects

are supercommutative Z/2-graded unital Q-algebras and whose morphisms are graded unital
Q-algebra homomorphisms. Contact homology is a symmetric monoidal functor

CH• : (Contact,Exact)
⊔
n → (Ring

Z/2
Q )⊗. (1.22)
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The symmetric monoidal structure on (Contact,Exact)n is disjoint union ⊔, and the symmet-

ric monoidal structure on Ring
Z/2
Q is the super tensor product ⊗ (A⊗B is endowed with the

multiplication (a⊗ b)(a′ ⊗ b′) := (−1)|a
′||b|aa′ ⊗ bb′, and the isomorphism A⊗B

∼
−→ B ⊗A is

given by a⊗ b 7→ (−1)|a||b|b⊗ a).
Concretely, to define (1.22) we should specify:

• For every co-oriented contact manifold (Y, ξ), a supercommutative Z/2-graded unital
Q-algebra CH•(Y, ξ).

• For every exact symplectic cobordism (X̂, λ̂) from (Y +, ξ+) to (Y −, ξ−), a graded unital
Q-algebra map Φ(X̂, λ̂) : CH•(Y

+, ξ+)→ CH•(Y
−, ξ−).

• Isomorphisms CH•(Y, ξ)⊗ CH•(Y
′, ξ′) = CH•(Y ⊔ Y

′, ξ ⊔ ξ′).

such that:

• The morphism Φ(X̂, λ̂) depends only on the deformation class of (X̂, λ̂).

• The morphism associated to the identity cobordism is the identity map.

• The morphism Φ(X̂02, λ̂02) associated to a composition of exact symplectic cobordisms
X̂02 = X̂01#X̂12 coincides with the composition Φ(X̂12, λ̂12) ◦ Φ(X̂01, λ̂01).

• The isomorphisms CH•(Y, ξ) ⊗ CH•(Y
′, ξ′) = CH•(Y ⊔ Y

′, ξ ⊔ ξ′) are commutative,
associative, and compatible with the cobordism maps.

The construction is as follows.
Theorem 1.1 applied to Setup I provides a supercommutative Z/2-graded unitalQ-algebra

CH•(Y, ξ)λ,J,θ (1.23)

for any co-oriented contact manifold (Y, ξ) with non-degenerate contact form λ, admissible
almost complex structure J , and θ ∈ ΘI(Y, λ, J).

Theorem 1.1 applied to Setup II provides a graded unital Q-algebra map

CH•(Y
+, ξ+)λ+,J+,θ+

Φ(X̂,λ̂)
Ĵ,θ

−−−−−−→ CH•(Y
−, ξ−)λ−,J−,θ− (1.24)

for any exact symplectic cobordism (X̂, λ̂) with λ± non-degenerate, admissible almost com-
plex structure Ĵ coinciding with Ĵ± near infinity, and θ ∈ ΘII(X̂, λ̂, Ĵ) mapping to θ± ∈ Θ±

I .
Theorem 1.1 applied to Setup III shows that the following two maps coincide:

CH•(Y
+, ξ+)λ+,J+,θ+ CH•(Y

−, ξ−)λ−,J−,θ−.
Φ(X̂,λ̂0)

Ĵ0,θ0

Φ(X̂,λ̂1)
Ĵ1,θ1

(1.25)

Note that this immediately implies that Φ(X̂, λ̂)Ĵ,θ is independent of Ĵ and θ, and depends

only on the deformation class of (X̂, λ̂). Thus we may rewrite (1.24) as

CH•(Y
+, ξ+)λ+,J+,θ+

Φ(X̂,λ̂)
−−−−→ CH•(Y

−, ξ−)λ−,J−,θ−. (1.26)
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Theorem 1.1 applied to Setup IV shows that the following diagram commutes:

CH•(Y
1, ξ1)λ1,J1,θ1

CH•(Y
0, ξ0)λ0,J0,θ0 CH•(Y

2, ξ2)λ2,J2,θ2.

Φ(X̂12,λ̂12)

Φ(X̂02,λ̂02)

Φ(X̂01,λ̂01) (1.27)

Lemma 1.2. Let (Y, ξ) be a co-oriented contact manifold with two non-degenerate contact
forms λ+, λ−. Let (X̂, λ̂) denote the trivial exact symplectic cobordism with positive end
(Y, λ+) and negative end (Y, λ−) (namely, X̂ is simply the symplectization Ŷ marked appro-
priately). The map

CH•(Y, ξ)λ+,J+,θ+
Φ(X̂,λ̂)
−−−−→ CH•(Y, ξ)λ−,J−,θ− (1.28)

is an isomorphism for any J± and θ±.

Proof. In view of the commutativity of (1.27), it suffices to treat the case λ+ = λ− = λ and
J+ = J− = J .

Choose the R-invariant almost complex structure Ĵ = Ĵ± on X̂ , and choose any θ ∈ ΘII

mapping to θ±. We will show that the map on chains

CC•(Y, ξ)λ,J,θ+
Φ(X̂,λ̂)

Ĵ,θ
−−−−−−→ CC•(Y, ξ)λ,J,θ− (1.29)

is an isomorphism, which is clearly sufficient.
We consider the ascending filtration on both sides of (1.29) whose ≤(a,k) filtered piece is

the Q-subspace generated by all monomials of Reeb orbits with total action < a or total
action = a and degree ≥ k. We claim that the map (1.29) as well as the differentials on both
its domain and codomain all respect this filtration. Indeed, the integral of dλ over any Ĵ-
holomorphic curve is ≥ 0, with equality iff the curve is a branched cover of a trivial cylinder
(note the difference between dλ and the symplectic form dλ̂ = d(esλ) = es(dλ + ds ∧ λ)).
Every branched cover of a trivial cylinder has at least one negative end, which proves the
claim. Since the filtration is well-ordered, to show that (1.29) is an isomorphism, it suffices
to show that the induced map on associated gradeds is an isomorphism.

The curves contributing to the action of (1.29) on associated gradeds are the branched
covers of trivial cylinders with exactly one negative end, and such curves are themselves
necessarily trivial cylinders by Riemann–Hurwitz. Since there is exactly one such trivial
cylinder for every Reeb orbit, it suffices to show that trivial cylinders are cut out transversally.
This is a standard fact, whose proof we recall in Lemma 2.40.

Now for a contact manifold (Y, ξ), all groups CH•(Y, ξ)λ,J,θ are canonically isomorphic

via the morphisms Φ(X̂, λ̂) associated to the trivial cobordisms (by Lemma 1.2 and the
commutativity of (1.27)). Thus we get a well-defined object

CH•(Y, ξ), (1.30)

independent of (λ, J, θ). Formally speaking, CH•(Y, ξ) is the limit (and the colimit) of
{CH•(Y, ξ)λ,J,θ}λ,J,θ, which is attained at any particular triple (λ, J, θ). Note that for any
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contact structure, the set of non-degenerate contact forms is generic (and in particular non-
empty).

The commutativity of (1.27) also implies that a deformation class of exact symplectic
coboordism (X̂, λ̂) from (Y +, ξ+) to (Y −, ξ−) induces a well-defined graded unital Q-algebra
map

Φ(X̂, λ̂) : CH•(Y
+, ξ+)→ CH•(Y

−, ξ−), (1.31)

and that Φ(X̂02, λ̂02) = Φ(X̂12, λ̂12) ◦ Φ(X̂01, λ̂01) for X̂02 = X̂01#X̂12.
To construct the symmetric monoidal structure on CH•, it suffices to observe that (as we

shall prove in Proposition 4.36) the sets ΘI, ΘII are themselves weakly symmetric monoidal
in a manner which preserves the virtual moduli counts. This completes the construction of
the contact homology functor (1.22) in terms of Theorem 1.1.

1.8 Applications and extensions

There is quite some literature devoted to properties and applications of contact homology and
symplectic field theory which relies, explicitly or implicitly, on the existence of “suitable”
virtual curve counting foundations. An exhaustive investigation of the applicability and
extendibility of our results to these myriad of settings is beyond the scope of this paper. We
nevertheless include some brief indications in this direction.

• (Grading by H1(Y )) Contact homology CH•(Y, ξ) has a grading by H1(Y ) (the grading
of a given monomial in Reeb orbits equals its total homology class).

• (Refinement of Z/2-grading) Contact homology CH•(Y, ξ) has a relative grading by
Z/2c1(ξ) ·H2(Y ), which is absolute over the 0 ∈ H1(Y ) graded piece. The homological
grading of γ is given by |γ| = CZ(γ) + n− 3.

• (Action filtration) If we equip (Y, ξ) with a contact form λ, then for a ∈ R, there
is an invariant CH•(Y, λ)

<a which is equipped with functorial maps CH•(Y, λ)
<a →

CH•(Y, λ
′)<a

′
for λ

a
≥ λ′

a′
(pointwise) such that

CH•(Y, ξ) = lim
−→

CH•(Y, λ)
<a. (1.32)

Namely, for λ non-degenerate, CH•(Y, λ)
<a is defined as the homology of the subcom-

plex CC•(Y, ξ)
<a
λ,J,θ ⊆ CC•(Y, ξ)λ,J,θ spanned by those monomials of total action < a,

and for general λ we define CH•(Y, λ)
<a as the direct limit of CH•(Y, λ

′)<a over non-
degenerate λ′ > λ. This invariant CH<a

• may be constructed out of Theorem 1.1 as in
§1.7.

• (Coefficients in Q[H2(Y )]) Contact homology CH•(Y, ξ) has a natural lift CH•(Y, ξ)
to the group ring Q[H2(Y ;Z)]. More intrinsically, CH• may be thought of as a local
system over the space of 1-cycles in Y , namely τ≥0C•+1(Y ). Contact homology with
group ring coefficients CH•(Y, ξ) has a relative Z-grading, where Q[H2(Y )] is Z-graded
by 2c1(ξ) : H2(Y ) → Z. This invariant CH• may be constructed out of Theorem 1.1
as in §1.7.
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• (Contact homology of contractible orbits) An invariant CHcontr
• (Y, ξ) is obtained from

the chain complex CCcontr
• (Y, λ) generated as an algebra by contractible Reeb orbits

(with a differential which counts curves whose asymptotic orbits are all contractible).
There is also an invariant CHα

• (Y, ξ) obtained from the chain complex CCα
• (Y, λ) gen-

erated as a module over CCcontr
• (Y, λ) by Reeb orbits in a fixed nontrivial homotopy

class α (with differential counting curves whose asymptotic orbits are either all con-
tractible or all contractible except for the positive end and one negative end both in
class α). These invariants CHcontr

• and CHα
• may be constructed out of Theorem 1.1

as in §1.7.

• (Cylindrical contact homology) If (Y, ξ) is hypertight (admits a contact form with no
contractible Reeb orbits) then there is an invariant CHcyl

• (Y, ξ) defined as follows. If
(Y, ξ) admits a non-degenerate contact form with no contractible Reeb orbits, then
CHcyl

• (Y, ξ) is defined as the homology of the complex CCcyl
• (Y, λ) :=

⊕

γ∈Pgood
oγ with

the differential which counts pseudo-holomorphic cylinders. If this is not the case,
then one must first define CHcyl

• (Y, λ)<a for non-degenerate contact forms λ with no
contractible Reeb orbits of action < a, and then let CHcyl

• (Y, ξ) := lim
−→

CHcyl
• (Y, λ)<a.

As this definition makes clear, to define CHcyl
• (Y, ξ) we actually only need to assume

that (Y, ξ) is asymptotically hypertight, namely that it admits a sequence of contact
forms λi converging uniformly to zero, each with no contractible Reeb orbits of action
< 1. This invariant CHcyl

• may be constructed out of Theorem 1.1 as in §1.7.

Eliashberg–Givental–Hofer [EGH00] assert that CHcyl
• (Y, ξ) can be defined assuming

only that (Y, ξ) admits a non-degenerate contact form with no contractible Reeb orbits
of index 1, 0, or −1. We have nothing positive to say about the applicability of our
methods to this question.

• (Even contact forms) It is trivial to calculate contact homology given a non-degenerate
contact form all of whose Reeb orbits are even, since the differential then vanishes
for index reasons. For examples of such situations, we refer the reader to Ustilovsky
[Ust99] and Abreu–Macarini [AM12].

• (Overtwisted contact manifolds) A given (connected, non-empty) contact manifold is
either tight or overtwisted. Overtwisted contact structures are classified completely by
an h-principle due to Eliashberg [Eli89] in dimension three and Borman–Eliashberg–
Murphy [BEM15] in general.

Contact homology (even with group ring coefficients) vanishes on any overtwisted con-
tact manifold. In dimension three, this is a result of Eliashberg [Eli98, p334, Theorem
3.5(2)] (a proof is given in Yau [Yau06] and the appendix by Eliashberg). In all dimen-
sions, this follows from the result of Bourgeois–van Koert [BvK10, Theorem 1.3] that
contact homology vanishes for any contact manifold admitting a negatively stabilized
open book, together with the result of Casals–Murphy–Presas [CMP19, Theorem 1.1]
that a contact manifold admits a negatively stabilized open book iff it is overtwisted.
These vanishing results are proved by exhibiting a contact form with a non-degenerate
Reeb orbit bounding exactly one pseudo-holomorphic plane in the symplectization
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(which is cut out transversally); in particular, they are valid for the contact homology
we construct here.

An a priori weaker notion of a contact manifold being PS-overtwisted was introduced
by Niederkrüger [Nie06] and Massot–Niederkrüger–Wendl [MNW13]. An argument,
due to Bourgeois–Niederkrüger, that contact homology vanishes for PS-overtwisted
contact manifolds is sketched in [Bou09]; the point is to count pseudo-holomorphic
disks with boundary on the plastikstufe/bLob, one boundary marked point constrained
to map to a fixed curve on the plastikstufe/bLob from its core/binding to its boundary,
and an arbitrary number of negative punctures. The proof of Theorem 1.1 generalizes
easily to provide sufficient virtual moduli counts for this argument.

• (Filling and cobordism obstructions) A contact manifold with vanishing contact homol-
ogy is not symplectically fillable, and more generally if the positive end of a symplectic
cobordism has vanishing contact homology then so does the negative end. Indeed, the
existence of a unital ring map 0 → R implies R = 0, and the cobordism in question
induces a unital map CH•(Y

+, ξ+)→ CH•(Y
−, ξ−) (to obtain such a map in the non-

exact case, one can count curves which represent zero in H2(X̂, Y
+ ⊔ Y −)). The curve

counts produced by Theorem 1.1 are sufficient for this argument.

It is an observation of Niederkrüger–Wendl [NW11] and Latschev–Wendl [LW11] that
a similar implication holds for “stable symplectic cobordisms” and contact homology
with twisted coefficients. (What we call a symplectic cobordism is often called a
“strong symplectic cobordism”, and the notion of a stable symplectic cobordism is
more general; see also Massot–Niederkrüger–Wendl [MNW13].) The literal statement
of Theorem 1.1 does not cover stable symplectic cobordisms, however its proof applies
to them without modification, as the differences between the two settings are simply
not relevant to any part of the argument (except for compactness, which is proved in
the requisite generality in [BEHWZ03]).

• (Invariants of contactomorphisms) There is a natural homomorphism

π0Cont(Y, ξ)→ AutQ(CH•(Y, ξ)), (1.33)

namely the tautological action of Cont(Y, ξ) on CH•(Y, ξ). This action admits the
following description in terms of cobordism maps which shows that it descends to π0.
For any ϕ ∈ Cont(Y, ξ), denote by Xϕ the exact symplectic cobordism from Y to itself
obtained from the trivial cobordism by changing the marking on the negative end by
ϕ. The action of ϕ on CH•(Y, ξ) clearly coincides with the cobordism map Φ(Xϕ). On
the other hand, Φ(Xϕ) only depends on the class of ϕ in π0 since cobordism maps are
invariant under deformation. It is also clear that ϕ 7→ Φ(Xϕ) is a group homomorphism
since Xϕ#Xψ = Xϕψ.

As pointed out by P. Massot, any contactomorphism which is symplectically pseudo-
isotopic to the identity (a notion due to Cieliebak–Eliashberg [CE12, §14.5]) lies in the
kernel of (1.33); indeed, ϕ is symplectically pseudo-isotopic to the identity iff Xϕ is
isomorphic to Xid as symplectic cobordisms from Y to itself. Thus a contactomorphism
which acts nontrivially on contact homology cannot be symplectically pseudo-isotopic
to the identity.
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• (Invariants of families of contactomorphisms) The above construction generalizes to
give a natural homomorphism

Hk(Cont(Y, ξ))→ HomQ(CH•(Y, ξ), CH•+k(Y, ξ)), (1.34)

as introduced by Bourgeois [Bou06] (more precisely, Bourgeois introduced the pre-
compositions of (1.33)–(1.34) with the map ΩξΞ(Y )→ Cont(Y, ξ) coming from Gray’s
fibration sequence Cont(Y, ξ) → Diff(Y, ξ) → Ξ(Y ), where Ξ(Y ) denotes the space of
contact structures on Y and Ωξ denotes the space of loops based at ξ ∈ Ξ(Y )). Namely,
a family of ϕ ∈ Cont(Y, ξ) gives rise to a family of cobordisms Xϕ, and case (III) of
Theorem 1.1 (and its proof) generalize immediately to such higher-dimensional families
of cobordisms, in the following form. For any family of cobordisms (X̂, (ω̂t, Ĵ t)t∈∆n),
there is a set ΘIII(n) = ΘIII(n)(X̂, (ω̂

t, Ĵ t)t∈∆n) (specializing to ΘIII(0) = ΘII and ΘIII(1) =
ΘIII) along with surjective maps

ΘIII(n)(X̂, (ω̂
t, Ĵ t)t∈∆n) ։ lim

∆k(∆n

[

ΘIII(k)(X̂, (ω̂
t, Ĵ t)t∈∆k)→ (Θ+

I ×Θ−
I )
]

(1.35)

(where the limit is in the category of sets over Θ+
I × Θ−

I ), and there are associated
virtual moduli counts satisfying the natural master equation, thus giving rise (in the
exact case) to “higher homotopies” K(X̂, λ̂t)Ĵt,θ satisfying

dJ−,θ−K(X̂, λ̂t)Ĵt,θ − (−1)nK(X̂, λ̂t)Ĵt,θdJ+,θ+

=

n
∑

k=0

i:∆[0...k̂...n] →֒∆[0...n]

(−1)kK(X̂, λ̂i(t))Ĵi(t),i∗θ. (1.36)

This defines (1.34).

We expect that it is possible to upgrade (1.33)–(1.34) into the statement that CC•(Y, ξ)
is an A∞-module over C•(Cont(Y, ξ)) (i.e. that contact chains of (Y, ξ) is a “derived
local system” over B Cont(Y, ξ)), by proving a more intricate higher-dimensional ver-
sion of case (IV) of Theorem 1.1. To realize this rigorously, it would be sufficient
to specify the correct compactified moduli spaces to consider and to show that their
stratifications are locally cell-like as in §§2.5,3.2 (these are essentially combinatorial
questions).

• (Chain homotopy vs DGA homotopy) Given a one-parameter family of exact symplec-
tic cobordisms, case (III) of Theorem 1.1 shows that the two cobordism maps

CC•(Y
+, ξ+)λ+,J+,θ+ CC•(Y

−, ξ−)λ−,J−,θ−

Φ(X̂,λ̂0)
Ĵ0,θ0

Φ(X̂,λ̂1)
Ĵ1,θ1

(1.37)

are chain homotopic, by constructing virtual moduli counts for moduli spaces of dis-
connected curves (and analogously for case (IV)). For certain purposes (such as defin-
ing linearized contact homology), one may need to know that such cobordism maps
are homotopic in a stronger sense, namely one which takes into account the algebra
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structure. The construction of such homotopies is sketched in Eliashberg–Givental–
Hofer [EGH00, §2.4] and in Ekholm–Oancea [EO17, §§5.4–5.5] in more detail (also see
Ekholm–Honda–Kálmán [EHK16, Lemma 3.13] for the related, but easier, case of Leg-
endrian contact homology). We have nothing positive to say about the applicability
of our methods to the rigorous construction of such homotopies. One can generalize
case (III) of Theorem 1.1 (and its proof) a little by counting curves occurring at times
0 ≤ t1 ≤ · · · ≤ tk ≤ 1 and obtain an A∞-homotopy, though it is not clear if this is any
improvement.

• (Symplectic field theory) To construct the symplectic field theory “homology groups”
as described in Cieliebak–Latschev [CL09] and Latschev–Wendl [LW11] (specializing
work of Eliashberg–Givental–Hofer [EGH00]) using the methods of this paper, it would
be sufficient to specify the correct compactified moduli spaces to consider and to show
that their stratifications are locally cell-like as in §§2.5,3.2 (these are essentially com-
binatorial questions).

• (Morse–Bott contact forms) It should be possible to define contact homology using
Morse–Bott contact forms, by counting appropriate pseudo-holomorphic cascades as in
Bourgeois [Bou02, Bou03]. To realize this rigorously, the main tasks would be to specify
the correct compactified moduli spaces to consider, to show that their stratifications
are locally cell-like as in §§2.5,3.2 (these are essentially combinatorial questions), and
to establish the relevant gluing result as in §5.

• (Integer coefficients) It is an interesting open question (promoted by Abouzaid) how
to naturally lift contact homology from Q to Z.

• (Non-equivariant contact homology) We conjecture that contact homology can be lifted
to a framed E2-algebra, namely an algebra over the operad whose space of n-ary
operations is the space of embeddings (D2)⊔n →֒ D2. More precisely, the free symmetric
Q-algebra on oγ for γ ∈ Pgood in (1.1) should be replaced with the free framed E2-
algebra on oγ for γ ∈ P subject to the relations that rotating any d-fold multiply covered
orbit by 2π/d acts on oγ by the corresponding sign (±1 according to whether the Reeb
orbit is good or bad). The differential of a given orbit γ+ should lift naturally to an
element of this (almost) free framed E2-algebra by taking into account the conformal
types of the domains of the pseudo-holomorphic curves in question. This lift can be
viewed as the “non-equivariant” version of contact homology (which should itself be
viewed as an S1-equivariant theory).

2 Moduli spaces of pseudo-holomorphic curves

In this section, we define the moduli spaces of pseudo-holomorphic curves which we will use
to define contact homology.
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2.1 Categories of strata S

We begin by introducing, for any datum D from any of Setups I–IV, a collection S = S(D) of
labeled trees which index the strata of the compactified moduli spaces of pseudo-holomorphic
curves (which of Setups I–IV is being considered is often indicated with a subscript, as in SI,
SII, etc.). A labeled tree describes the “combinatorial type” of a pseudo-holomorphic curve:
the tree is (almost) the dual graph of the domain, and it is labeled with the homotopy class
and asymptotics of the map.

Gluing pseudo-holomorphic curves corresponds to contracting a subset of the edges of
a tree and updating the labels accordingly. We regard these collections S as categories,
with such edge contractions as morphisms. Morphisms of labeled trees will induce maps of
compactified moduli spaces.

The categories S carry some additional (vaguely monoidal) structure, corresponding to
the fact that boundary strata in compactified moduli spaces can be expressed as products of
other “smaller” moduli spaces. The relevant operation on trees is that of “concatenation”,
where we take some collection of trees and identify some pairs of input/output edges with
matching labels to produce a new tree.

Figure 1: A tree. The edges are all directed downwards.

Figure 2: A contraction of trees. The edges which have been contracted are marked bold.

The category SI is defined as follows, with respect to some fixed datum of Setup I. An
object of SI consists first of a finite directed tree T (for us, the word “tree” entails being
non-empty) in which every vertex has a unique incoming edge (see Figure 1). Edges with
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missing source (called input edges) and edges with missing sink (called output edges) are
allowed, together these are called external edges, and the remaining edges will be called
interior edges. The tree T is further equipped with decorations as follows:

(i) For each edge e ∈ E(T ), a Reeb orbit γe ∈ P.

(ii) For each vertex v ∈ V (T ), a homotopy class βv ∈ π2(Y, γe+(v) ⊔ {γe−}e−∈E−(v)), where
we denote by e+(v) ∈ E(T ) the unique incoming edge at v, and by E−(v) the set of
outgoing edges at v.

(iii) For each external edge e ∈ Eext(T ), a basepoint be ∈ |γe|, where |γe| denotes the
underlying simple orbit of γe.

A morphism π : T → T ′ in SI consists first of a contraction of underlying trees. By this we
mean that some collection of interior edges of T is specified, and T ′ is identified with the
result of contracting these edges (see Figure 2). This identification must be compatible with
the decorations in the following sense:

(i) For each non-contracted edge e ∈ E(T ), we have γπ(e) = γe.

(ii) For each vertex v′ ∈ V (T ′), we have βv′ = #π(v)=v′βv.

Finally, we must specify for each external edge e ∈ Eext(T ) = Eext(T ′) a path along |γe|
between the basepoints be and b′e, modulo the relation that identifies two such paths iff
their “difference” lifts to γe (i.e. iff it has degree divisible by the covering multiplicity of
γe). Such paths will correspond, in the realm of pseudo-holomorphic curves, to ways of
moving asymptotic markers. Conceptually, we should really regard the input/output edges
of T as being labeled by objects of the category P̃ whose objects are Reeb orbits γ ∈ P

together with a basepoint b ∈ |γ| and whose morphisms are paths as just described (the set
of isomorphism classes in this category is |P̃| = P, and the automorphism group of an object
in the isomorphism class of γ ∈ P is (canonically) Z/dγ).

We now introduce the notion of a concatenation in SI. A concatenation in SI consists of
a finite non-empty collection of objects Ti ∈ SI along with a matching between some pairs
of external edges of the Ti’s (with matching γe) such that the resulting gluing is a tree,
along with a choice of paths between the basepoints for each pair of matched edges. Given a
concatenation {Ti}i in SI, there is a resulting object #iTi ∈ SI. A morphism of concatenations
{Ti}i → {T

′
i}i shall mean a collection of morphisms Ti → T ′

i covering a bijection of index
sets; a morphism of concatenations {Ti}i → {T

′
i}i induces a morphism #iTi → #iT

′
i . If {Ti}i

is a concatenation in SI and Ti = #jTij for some concatenations {Tij}j, there is a resulting
composite concatenation {Tij}ij with natural isomorphisms #ijTij = #i#jTij = #iTi.

Continuing on to Setup II, the category SII (again for a particular choice of datum of
Setup II) is defined as follows. An object of SII is a decorated tree T as before, but with
additional labels which specify the target of the pseudo-holomorphic curve corresponding to
each vertex. For ease of notation, we set X̂00 = Ŷ 0 := Ŷ +, X̂01 := X̂, and X̂11 = Ŷ 1 := Ŷ −.
The additional labels (which in turn determine the allowable decorations) are as follows:

(i) For each edge e ∈ E(T ), a symbol ∗(e) ∈ {0, 1} such that input edges are labeled with
0 and output edges are labeled with 1.

(ii) For each vertex v ∈ V (T ), a pair of symbols ∗±(v) ∈ {0, 1} such that ∗+(v) ≤ ∗−(v)
and ∗(e±(v)) = ∗±(v). If ∗+(v) = ∗−(v), we call v a symplectization vertex.

See Figure 3. These labels determine the allowable decorations: γe ∈ P(Y ∗(e), λ∗(e)) and
βv ∈ π2(X̂

∗(v), γe+(v) ⊔ {γe−}e−∈E−(v)). A morphism π : T → T ′ in SII consists first of a
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Figure 3: An object of SII, with vertex labels as shown. Note that the vertex labels determine
the edge labels uniquely (and conversely except for vertices with no outgoing edges).

00

00 00

00

00

01 01 01

11 11 11

00

00

01 01 01

11 1111

Figure 4: A morphism in SII. A morphism in SII is determined uniquely by the set of
contracted edges and the set of vertices whose label changes from 00 to 01 (only needed for
vertices with no outgoing edges).

00

0001 01

1111

11

Figure 5: This object of SII cannot be contracted along (only) the marked edge (there is no
way to consistently label the result).
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contraction of underlying trees, required to satisfy ∗+(π(v)) ≤ ∗+(v), ∗−(π(v)) ≥ ∗−(v),
and ∗(π(e)) = ∗(e) for non-contracted edges e. Given these, it makes sense to require
compatibility with the decorations and to specify paths between basepoints as before. See
Figures 4 and 5.

A concatenation {Ti}i in SII is defined as before, except that each Ti may be an object
of either SII, S

+
I , or S

−
I (where S

±
I = SI(Y

±, λ±)). Given a concatenation {Ti}i in SII, there
is a resulting object #iTi ∈ SII. If {Ti}i is a concatenation in SII and Ti = #jTij for some
concatenations {Tij}j (in whichever of SII, S

+
I , S

−
I contains Ti), there is a resulting composite

concatenation {Tij}ij with natural isomorphisms #ijTij = #i#jTij = #iTi.
Continuing on to Setup III, the category SIII is defined as follows. An object of SIII

is a forest (meaning connected and non-empty assumptions are dropped) with labels and
decorations as in the case of SII, together with a choice of set s ∈ {{0}, {1}, (0, 1)}. A
morphism T → T ′ in SIII is defined as for SII, with the additional requirement that s(T ) ⊆
s(T ′).

There are three types of concatenations in SIII. The first type consists of objects Ti ∈ S+
I ⊔

St=0
II ⊔S

−
I with the usual matching data, producing an object #iTi ∈ SIII with s(#iTi) = {0}.

The second type consists of objects Ti ∈ S+
I ⊔ St=1

II ⊔ S−
I with matching data, producing an

object #iTi ∈ SIII with s(#iTi) = {1}. The third type consists of objects Ti ∈ S+
I ⊔ SIII ⊔ S

−
I

(exactly one of which lies in SIII) with matching data, producing an object #iTi ∈ SIII

(where s(#iTi) = s(Ti) for the unique Ti ∈ SIII). A composition of concatenations is defined
as before.

The reason for the restriction that concatenations in SIII of the third type must contain ex-
actly one object of SIII is explained as follows. As mentioned earlier, a concatenation {Ti}i is
supposed to induce an identification of M(#iTi) with

∏

iM(Ti) (modulo the symmetry com-
ing from multiply covered orbits). The moduli spaces MIII parameterize pseudo-holomorphic
curves at varying times t ∈ [0, 1], and thus they come with a forgetful map to [0, 1]. Corre-
sponding to a concatenation in SIII of the third type without the requirement of containing
exactly one object of SIII, there is not an identification of M(#iTi) with

∏

iM(Ti), but rather
with the corresponding fiber product over [0, 1]. We do not discuss such identifications in this
paper because we do not know how to prove (or even formulate precisely) the correspond-
ing expected compatibility of virtual fundamental cycles with such fiber products (this is
related to the problem of showing compatibility of the homotopy with the algebra structure
on contact homology, see §1.8). The same remark will apply to concatenations in SIV.

The category SIV is defined as follows. An object in SIV is a forest T with the following
labels and decorations. Each edge shall be labeled with a symbol ∗(e) ∈ {0, 1, 2}, such
that input edges are labeled with 0 and output edges are labeled with 2. Each vertex
shall be labeled with a pair of symbols ∗±(v) ∈ {0, 1, 2} such that ∗+(v) ≤ ∗−(v) and
∗(e±(v)) = ∗±(v). There shall also be decorations γe ∈ P(Y ∗(e)) and βv ∈ π2(X

∗(v), γe+(v) ⊔
{γe−}e−∈E−(v)) with basepoints be ∈ |γe| for input/output edges as before. Finally, we specify
a set s ∈ {{0}, {∞}, (0,∞)} and we require that if s ∈ {{0}, (0,∞)} then ∗(v) ∈ {00, 02, 22}
for all v, and if s = {∞} then ∗(v) ∈ {00, 01, 11, 12, 22} for all v. A morphism T → T ′ in
SIV is defined as for SII, with the additional requirement that s(T ) ⊆ s(T ′).

There are three types of concatenations in SIV. The first type consists of objects Ti ∈
S0
I ⊔ S02

II ⊔ S2
I with matching data, producing an object #iTi ∈ SIV with s(#iTi) = {0}. The

second type consists of objects Ti ∈ S0
I ⊔S

01
II ⊔S

1
I ⊔S

12
II ⊔S

2
I with matching data, producing an
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object #iTi ∈ SIV with s(#iTi) = {∞}. The third type consists of objects Ti ∈ S0
I ⊔ SIV ⊔ S

2
I

(exactly one of which lies in SIV) with matching data, producing an object #iTi ∈ SIV

(where s(#iTi) = s(Ti) for the unique Ti ∈ SIV). A composition of concatenations is defined
as before.

2.2 Properties of categories S

The categories S together with their concatenation structure satisfy some basic properties
which will be used frequently. We begin with some basic definitions.

Definition 2.1 (Slice categories). For any category T and an object T ∈ T, denote by T/T the
“over-category” whose objects are morphisms T ′ → T . Similarly define the “under-category”
TT/ (objects are morphisms T → T ′) and TT//T ′ (objects are factorizations T → T ′′ → T ′ of
a fixed morphism T → T ′).

Definition 2.2 (Poset). A poset is a category T for which for every pair of objects x, y ∈ T,
there is at most one morphism x→ y. The cardinality of a poset is its number of isomorphism
classes of objects.

Both ST/ and ST//T ′ are finite posets for any T or T → T ′, respectively. On the other
hand, S/T is almost never finite nor a poset (see Figure 6).

Figure 6: A map of trees T ′ → T for which Aut(T ′/T ) = Z/2, corresponding to exchanging
the lower two vertices of T ′.

Definition 2.3 (Automorphism groups). Given a map T ′ → T , we denote by Aut(T ′/T )
the subgroup of Aut(T ′) compatible with the map T ′ → T (i.e. the automorphism group of
(T ′ → T ) ∈ S/T ). Given a concatenation {Ti}i, we denote by Aut({Ti}i/#iTi) the group
of automorphisms of {Ti}i acting trivially on #iTi (i.e. the product

∏

e Z/dγe over junction
edges, acting diagonally).

Definition 2.4. An object T ∈ S is called maximal iff the only morphism out of T is the
identity map (i.e. ST/ consists of a single object with trivial endomorphism monoid).

Maximality can be characterized concretely as follows:

(i) T ∈ SI is maximal iff it has exactly one vertex.

(ii) T ∈ SII is maximal iff it has exactly one vertex and this vertex has ∗(v) = 01.

(iii) T ∈ SIII is maximal iff every component of T has exactly one vertex, all these vertices
have ∗(v) = 01, and s(T ) = (0, 1).

(iv) T ∈ SIV is maximal iff every component of T has exactly one vertex, all these vertices
have ∗(v) = 02, and s(T ) = (0,∞).
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Lemma 2.5. Every object T ∈ S can be expressed as a concatenation of maximal Ti, uniquely
up to isomorphism. In particular, T ∈ S is maximal iff it cannot be expressed nontrivially
as a concatenation.

2.3 Moduli spaces M(T )

We now define the compactified moduli spaces of pseudo-holomorphic curves M(T ) relevant
for contact homology. We first define the strata M(T ) for each T ∈ S, and then we define
the compactified moduli spaces M(T ) as unions of strata M(T ′) for T ′ → T .

Equip R × S1 with coordinates (s, t) and with the standard almost complex structure
j(∂s) = ∂t, i.e. z = es+it.

Definition 2.6. Fix (Y, λ, J) as in Setup I, and let u : [0,∞)× S1 → Ŷ be a smooth map.
We say that u is C0-convergent to (the positive trivial cylinder over) a Reeb orbit γ ∈ P iff

u(s, t) = (Ls+ b, γ̃(t)) + o(1) as s→∞, (2.1)

for some b ∈ R and some γ̃ : S1 → Y with ∂tγ̃ = L · Rλ(γ̃) parameterizing γ, where o(1)
is meant with respect to any R-invariant Riemannian metric. When the error o(1) decays
like O(e−δ|s|) in all derivatives for some δ > 0, we say u is C∞-convergent with weight δ.
Similarly, we define the notion of u : (−∞, 0] × S1 → Ŷ being convergent to a negative
trivial cylinder by considering (2.1) in the limit s→ −∞.

It is straightforward to check that for any Riemann surface C and p ∈ C, it makes sense
to say that u : C \ p → Ŷ is C0- or C∞-convergent of weight δ ∈ (0, 1) to a trivial cylinder
at p, i.e. that this notion is independent of the choice of coordinates [0,∞) × S1 → C \ p
near p (though note the importance of δ < 1 in this statement). This notion also generalizes
immediately to maps to any X̂ from Setups II, III, IV, by virtue of the markings (1.8)–(1.9).

If u is Ĵ-holomorphic, then C0-convergence to a trivial cylinder implies C∞-convergence
of every weight δ < δγ, where δγ > 0 denotes the smallest nonzero absolute value among
eigenvalues of the linearized operator of γ as in Definition 2.29 (by Hofer–Wysocki–Zehnder
[HWZ02, Theorems 1.1, 1.2, and 1.3] which we restate as Proposition 2.20).

If u converges to a trivial cylinder over γ ∈ P at p ∈ C, then it induces a well-defined
constant speed parameterization of γ denoted up : SpC → Y , where SpC := (TpC \ 0)/R>0

is the tangent sphere at p, which is a U(1)-torsor due to the complex structure on C.

Definition 2.7 (Moduli space MI(T )). A pseudo-holomorphic building of type T ∈ SI con-
sists of the following data (see Figure 7):

(i) For every vertex v, a closed, connected, nodal Riemann surface of genus zero Cv, along
with distinct points {pv,e ∈ Cv}e indexed by the edges e incident at v.

(ii) For every vertex v, a smooth map uv : Cv \ {pv,e}e → Ŷ .

(iii) We require that uv be C0-convergent to the positively trivial cylinder over γe+(v) at
pv,e+(v) and to the negative trivial cylinders over γe− at pv,e− for e− ∈ E−(v), and be
in the homotopy class βv.

(iv) For every input/output edge e, an “asymptotic marker” b̃e ∈ Spv,eCv which is mapped
to the basepoint be ∈ |γe| by (uv)pv,e.
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Figure 7: A stable pseudo-holomorphic building and the corresponding tree.

(v) For every interior edge v
e
−→ v′, a “matching isomorphism” me : Spv,eCv → Spv′,eCv′

intertwining (uv)pv,e and (uv′)pv′,e .

(vi) We require that uv be Ĵ-holomorphic, i.e. (du)0,1
Ĵ

= 0.

An isomorphism ({Cv}, {pv,e}, {uv}, {b̃e}, {me}) → ({C ′
v}, {p

′
v,e}, {u

′
v}, {b̃

′
e}, {m

′
e}) between

pseudo-holomorphic buildings of type T consists of isomorphisms {iv : Cv → C ′
v} and real

numbers {sv ∈ R} such that uv = τsv ◦ u
′
v ◦ iv (τs : Ŷ → Ŷ denotes translation by s),

iv(pv,e) = p′v,e, i(b̃e) = b̃′e, and iv′ ◦me = m′
e ◦ iv. A pseudo-holomorphic building is called

stable iff its automorphism group is finite. We denote by MI(T ) the set of isomorphism
classes of stable pseudo-holomorphic buildings of type T . Note the tautological action of
Aut(T ) on M(T ) by changing the marking.

Remark 2.8. For topological reasons (exactness of Ŷ ), the domains Cv of every pseudo-
holomorphic building as in Definition 2.7 are in fact smooth (that is, are without nodes).
We find it convenient to set up all the definitions in the generality of nodal domains (which
do occur in non-exact cobordisms).

Remark 2.9. Concretely, a pseudo-holomorphic building is stable iff it does not contain
either (1) a trivial cylinder at a symplectization vertex of T , or (2) an unstable irreducible
component of Cv over which the map uv is constant.

Definition 2.10 (Moduli space MII(T )). A pseudo-holomorphic building of type T ∈ SII

consists of the following data:

(i) Domains Cv and punctures pv,e as in Definition 2.7(i).

(ii) For every vertex v, a smooth map uv : Cv \ {pv,e}e → X̂∗(v).

(iii) Aymptotic conditions on uv as Definition 2.7(iii).

(iv) Asymptotic markers b̃e as in Definition 2.7(iv).

(v) Matching isomorphisms me as in Definition 2.7(v).

(vi) Ĵ-holomorphicity condition on uv as Definition 2.7(vi).

An isomorphism between pseudo-holomorphic buildings of type T is defined as in Definition
2.7, except that there is a translation sv ∈ R only if v is a symplectization vertex. We denote
by MII(T ) the set of isomorphism classes of stable pseudo-holomorphic buildings of type T .
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Definition 2.11 (Moduli space MIII(T )). For T ∈ SIII, denote by MIII(T ) the union over
t ∈ s(T ) of the set of isomorphism classes of stable pseudo-holomorphic buildings of type T
(as in Definition 2.10) in (X̂, Ĵ t).

Definition 2.12 (Moduli space MIV(T )). For T ∈ SIV, denote by MIV(T ) the union over
t ∈ s(T ) of the set of isomorphism classes of stable pseudo-holomorphic buildings of type T
(as in Definition 2.10) in (X̂02,t, Ĵ02,t).

Definition 2.13 (Moduli spaces M(T )). For T ∈ S, we define

M(T ) :=
⊔

T ′→T

M(T ′)/Aut(T ′/T ). (2.2)

The union is over the set of isomorphism classes |S/T |.

For a morphism T ′ → T , there is a natural map

M(T ′)/Aut(T ′/T )→M(T ), (2.3)

and for a concatenation {Ti}i, there is an induced identification

∏

i

M(Ti)
/

Aut({Ti}i/#iTi)
∼
−→M(#iTi). (2.4)

We wish to warn the reader that (2.3) is not always an inclusion! The reason for this is
explained in §2.4, in particular Figure 8.

2.4 Stratifications of moduli spaces

We now discuss the tautological stratifications of the moduli spaces M(T ) by S/T . This
discussion is (slightly) less trivial than one might first expect, since S/T is not a poset (see
the discussion following Definition 2.2). A simple nontrivial example of a stratification by a
category is given in Figure 8.

Definition 2.14. A stratification of a topological space X by a poset T is a map X → T

for which X≥t (the inverse image of T≥t = Tt/) is open for all t ∈ T.

Definition 2.15. A stratification of a topological spaceX by a category T (with the property
that Tt/ is a poset for all t ∈ T) consists of the following data:

(i) For every x ∈ X , we specify an object tx ∈ T.

(ii) For every x ∈ X and every y sufficiently close to x, we specify a morphism fyx : tx → ty
in T (this data is regarded as a germ near x).

subject to the following requirements:

(iii) For every x ∈ X , every y sufficiently close to x, and every z sufficiently close to y, we
have fzyfyx = fzx.

(iv) For every x ∈ X , the induced germ of a map X → Ttx/ near x is a stratification in the
sense of Definition 2.14.
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Given a stratification by a poset X → T, for any element t ∈ T there is a “locally
closed stratum” X t ⊆ X and a “closed stratum” X≤t ⊆ X equipped with a stratification
X≤t → T≤t = T/t. Given a stratification by a category X → T, one can similarly define for
any t ∈ T topological spaces Xt and X/t, the latter equipped with a stratification by T/t.
The points of X/t are pairs (x ∈ X, fx : tx → t), and a neighborhood of such a pair (x, fx)
consists of those (y, fy) where y ∈ X is close to x and fyfyx = fx; the subspace Xt ⊆ X/t

consists of those pairs (x, fx) for which fx is an isomorphism. In general, both natural maps
Xt → X and X/t → X may fail to be injective.

Figure 8: Example of a stratification by a category. The two maps out of the tree with three
vertices collapse each of the two interior edges, respectively. The closed stratum associated
to the tree with a single vertex is simply the entire space, homeomorphic to D2. The closed
stratum associated to the tree with two vertices is homeomorphic to the interval [0, 1]. The
closed stratum associated to the tree with three vertices is two points. Evidently, the latter
two closed strata are “non-embedded”.

There is a tautological stratification

M(T )→ S/T (2.5)

in the sense of Definition 2.15 (this follows immediately from the definition of the Gromov
topology given in §2.9 below). The (not necessarily embedded!) closed stratum associated
to T ′ → T is naturally isomorphic to M(T ′). To understand this stratification, the reader
should satisfy themselves that they understand the example in Figure 8.

2.5 Local models G

We introduce spaces GT/ for T ∈ S which parameterize maps π : T → T ′ together with a
collection of maps

{π∗ : X̂v → X̂π(v)}v∈V (T ) (2.6)

(often defined only away from a small neighborhood of infinity in X̂v), where X̂v denotes the
target of the v-component of a pseudo-holomorphic building of type T (despite the notation,
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π∗ is not determined uniquely by π). These spaces have a natural stratification GT/ → ST/,
and we denote by GT//T ′ the inverse image of ST//T ′ . There is a unique basepoint 0 ∈ GT/

corresponding to the identity map T → T , and we only really care about a neighborhood of
this basepoint in G/T .

The definition of the Gromov topology on the moduli spaces M(T ) is based on these
spaces GT ′//T , and we will see in Theorem 2.54 that the regular loci of M(T ) are in fact

locally modelled on GT ′//T . To extract the virtual fundamental cycles of M(T ), a crucial
step is to show that the stratifications GT ′//T → ST ′//T are cell-like (see §3.2).

Remark 2.16. The spaces GT/ considered here are model real toric singularities, as studied
in Joyce [Joy16], Kottke–Melrose [KM15], and Gillam–Molcho [GM15] (though we do not
appeal to any of their results). This is most apparent after the change of variables h = e−g.

In Setup I, all targets X̂v are simply Ŷ , and we allow the map π∗ : Ŷ → Ŷ to be
any choice of R-translation. However, since overall translations of Ŷ for v ∈ V (T ′) induce
isomorphisms of pseudo-holomorphic buildings, it is only the differences of the translation
parameters which really matter. The result is that for T ∈ SI, we define

(GI)T/ := (0,∞]E
int(T ). (2.7)

There is a natural stratification (GI)T/ → (SI)T/, sending g = {ge}e to the map π : T → T ′

which contracts those edges e ∈ Eint(T ) for which ge < ∞. We denote by 0 ∈ (GI)T/ the
point corresponding to all gluing parameters equal to ∞ (i.e. corresponding to no gluing at
all).

In Setup II, the targets X̂v are either X̂ or one of Ŷ ±, and the possible maps π∗ are
Ŷ ± → Ŷ ±, X̂ → X̂ , and Ŷ ± → X̂ . Maps of the first type Ŷ ± → Ŷ ± are again allowed to be
any R-translation. Maps of the second type X̂ → X̂ must be the identity. Maps of the third
type Ŷ ± → X̂ are the pre-composition of the relevant boundary collar (1.8)–(1.9) with any
R-translation of Ŷ ±. For T ∈ SII, the space of such collections of maps π∗ is given by

(GII)T/ :=
{

({ge}e, {gv}v) ∈ (0,∞]E
int(T ) × (0,∞]V00(T )

∣

∣

∣

gv = ge + gv′ for edges v
e
−→ v′ with v ∈ V00(T )

}

. (2.8)

We interpret gv′ = 0 if v′ /∈ V00(T ). Here Vij(T ) ⊆ V (T ) is the subset of v with (∗+(v), ∗−(v)) =
(i, j). There is a natural stratification (GII)T/ → (SII)T/, sending g = ({ge}e, {gv}v) to the
map π : T → T ′ which contracts those edges e for which ge < ∞, and changes ∗(v) = 00
to ∗(v) = 01 for those vertices v with gv < ∞. We denote by 0 ∈ (GII)T/ the point
corresponding to all gluing parameters equal to ∞ (i.e. corresponding to no gluing at all).

In Setup III, the situation is identical to that of Setup II, except that we also include
variation in t ∈ [0, 1]. Namely, for T ∈ SIII, we set

(GIII)T/ :=
{

({ge}e, {gv}v) ∈ (0,∞]E
int(T ) × (0,∞]V00(T )

∣

∣

∣

gv = ge + gv′ for v
e
−→ v′ with v ∈ V00(T )

}

×











[0, 1) s(T ) = {0}

(0, 1) s(T ) = (0, 1)

(0, 1] s(T ) = {1}

(2.9)
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(the first factor is identical to (2.8)). There is a natural stratification (GIII)T/ → (SIII)T/,
sending g = ({ge}e, {gv}v, gt) to the map π : T → T ′ which contracts those edges e for
which ge < ∞, changes ∗(v) = 00 to ∗(v) = 01 for those vertices v with gv < ∞, and has
gt ∈ s(T ′).

In Setup IV, if T ∈ SIV satisfies s(T ) = {0} or s(T ) = (0,∞), then the situation is
identical to that of Setup III, so we set

(GIV)T/ :=
{

({ge}e, {gv}v) ∈ (0,∞]E
int(T ) × (0,∞]V00(T )

∣

∣

∣

gv = ge + gv′ for v
e
−→ v′ with v ∈ V00(T )

}

×

{

[0,∞) s(T ) = {0}

(0,∞) s(T ) = (0,∞)
(2.10)

(the first factor is identical to (2.8)). The case s(T ) = {∞} (i.e. the “split cobordism”) is
more complicated. The possible targets X̂v for a pseudo-holomorphic building of type T with
s(T ) = {∞} are Ŷ 0, X̂01, Ŷ 1, X̂12, Ŷ 2. If s(T ′) = {∞} as well, then the allowable maps
are the same as in Setup II. If s(T ′) = (0,∞), then the targets X̂v are Ŷ 0, X̂02,t, Ŷ 2, for a
choice of t ∈ (0,∞). The possible maps π∗ are R-translations Ŷ 0 → Ŷ 0 and Ŷ 2 → Ŷ 2, the
natural maps X̂01 → X̂02,t and X̂12 → X̂02,t defined away from a neighborhood of infinity
in the negative and positive ends, respectively, and the natural (up to R-translation) maps
Ŷ 0 → X̂02,t, Ŷ 1 → X̂02,t, Ŷ 2 → X̂02,t. We conclude that for T ∈ SIV with s(T ) = {∞}, we
should set

(GIV)T/ :=
{

({ge}e, {gv}v, gt) ∈ (0,∞]E
int(T ) × (0,∞]V00(T )⊔V11(T ) × (0,∞]

∣

∣

∣

gv = ge + gv′ for v
e
−→ v′, ∗(e) = 0, ∗(v) = 00

gv = ge + gv′ for v
e
−→ v′, ∗(e) = 1, ∗(v) = 11

gt = ge + gv′ for v
e
−→ v′, ∗(e) = 1, ∗(v) = 01







. (2.11)

We interpret gv′ = 0 if it is undefined. There is a natural stratification (GIV)T/ → (SIV)T/,
which in the case s(T ) = {∞} sends g = ({ge}, {gv}, gt) to the map π : T → T ′ which
contracts those edges e for which ge <∞, increments ∗−(v) for those vertices v with gv <∞,
and has gt ∈ s(T ′).

2.6 Deformation theory of Riemann surfaces

Given a closed Riemann surface C (without nodes), infinitesimal deformations of the almost
complex structure are given by C∞(C,End0,1(TC)). An infinitesimal diffeomorphism of C,
that is a vector field X , gives rise to an infinitesimal deformation LXj, where L denotes
the Lie derivative. Noting that End0,1(TC) = TC ⊗C Ω0,1

C , we are thus lead to consider the
two-term complex

C∞(C, TC)
X 7→LXj
−−−−−→ C∞(C, TC ⊗ Ω0,1

C ), (2.12)

which is simply the Dolbeaut complex calculating H•(C, TC). Thus H0(C, TC) classifies
infinitesimal automorphisms of C (though this is clear a priori) and H1(C, TC) classifies
infinitesimal deformations of C.
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Now suppose C has (a finite number of distinct) marked points pi. Infinitesimal deforma-
tions of the almost complex structure and the marked points are given by C∞(C,End0,1(TC))⊕
⊕

i TpiC, and the infinitesimal deformation associated to a vector fieldX is LXj⊕
⊕

i(−X(pi)).
This gives rise to the two-term complex

C∞(C, TC)
X 7→LXj⊕

⊕
i(−X(pi))

−−−−−−−−−−−−−→ C∞(C, TC ⊗ Ω0,1
C )⊕

⊕

i

TpiC, (2.13)

which calculates H•(C, TC(−P )), where P =
∑

i pi denotes the divisor of marked points. It
is somewhat more convenient for us to consider just those variations in the complex structure
which are supported away from the marked points. That is, we consider the subcomplex

{

X ∈ C∞(C, TC)

∣

∣

∣

∣

X holomorphic near pi
X(pi) = 0

}

X 7→LXj−−−−−→ C∞
c (C \ {pi}, TC ⊗ Ω0,1

C ). (2.14)

The inclusion of this subcomplex into (2.13) is a quasi-isomorphism (this is obvious except
for surjectivity of the map on cokernels, which follows from elliptic regularity).

Now suppose C has both marked points pi and “doubly marked points” qi, meaning qi
are marked points equipped with markings C ∼

−→ TqiC of their tangent fibers. The analogue
of (2.14) is now







X ∈ C∞(C, TC)

∣

∣

∣

∣

∣

∣

X holomorphic near pi, qi
X(pi) = 0
X(qi) = dX(qi) = 0







X 7→LXj−−−−−→ C∞
c (C \ {pi} ∪ {qi}, TC ⊗ Ω0,1

C ),

(2.15)
which calculates H•(C, TC(−P − 2Q)), where P =

∑

i pi and Q =
∑

i qi.
Finally, when C has nodes, we simply treat these as pairs of marked points on its nor-

malization C̃ and consider the deformation theory of C̃ instead.

Definition 2.17 (Normalization). For any nodal Riemann surface C, we denote by C̃ the
normalization of C, i.e. the unique smooth Riemann surface equipped with a map C̃ → C
which identifies points in pairs to form the nodes of C.

2.7 Moduli of Riemann surfaces

We denote by M0,n the Deligne–Mumford moduli space [DM69] of stable genus zero compact
nodal Riemann surfaces with nmarked points. We regardM0,n as a complex manifold (which
is compact). It comes equipped with a universal curve C0,n → M0,n (which is secretly just
the map forgetting the last marked point M0,n+1 → M0,n). The pair C0,n → M0,n can be
defined as the solution to a moduli problem, and it is thus unique up to unique isomorphism.

There is a stratification ofM0,n by locally closed analytic submanifolds M#nodes=r
0,n indexed

by integers r ≥ 0 consisting of those curves with exactly r nodes. The open stratum of smooth
curves M#nodes=0

0,n is usually denoted M0,n. Its complement M#nodes≥1
0,n is a divisor with normal

crossings, namely the pairM#nodes≥1
0,n ⊆M0,n is locally biholomorphic to {z1 · · · zk = 0} ⊆ CN

(any k ≤ N), and in such local coordinates, the “number of nodes” is simply the number of
coordinates z1, . . . , zk which vanish.
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If C is any point of M0,n (i.e. any stable smooth Riemann surface of genus zero with n
marked points), then there is a canonical isomorphism

TCM0,n = H1(C, TC(−P )). (2.16)

The map TCM0,n → H1(C, TC(−P )) is the Kodaira–Spencer map, which can be defined
by (smoothly) trivializing the universal curve in a neighborhood of C and invoking the
deformation theory reviewed in §2.6. This map TCM0,n → H1(C, TC(−P )) is well-known to
be an isomorphism (see, for instance, Wendl [Wen14, Theorem 4.30]). For C ∈M0,n with r
nodes, by considering the normalization C̃ equipped with the inverse images of the marked
points P̃ ⊆ C̃ and the inverse images of the nodes Ñ ⊆ C̃, we deduce a similar isomorphism

TCM
#nodes=r
0,n = H1(C̃, T C̃(−P̃ − Ñ)). (2.17)

2.8 Elliptic a priori estimates on pseudo-holomorphic curves

We record here some fundamental a priori estimates which guarantee the regularity of
pseudo-holomorphic curves. These estimates play a fundamental role in establishing the
basic local properties of moduli spaces of pseudo-holomorphic curves.

The first result implies that for pseudo-holomorphic curves, C0-close implies C∞-close.

Lemma 2.18 (Gromov [Gro85]). Let u : D2(1)→ (B2n(1), J) be J-holomorphic, where J is
tamed by dλ. For every k <∞, we have

‖u‖Ck(D2(1−s)) ≤M · (1 + s−k) (2.18)

for some constant M =M(k, J, λ) <∞.

Proof. The Gromov–Schwarz Lemma (see Gromov [Gro85, 1.3.A] or Muller [Mul94, Corol-
lary 4.1.4]) is the case k = 1. Standard elliptic bootstrapping allows one to upgrade this
to bounds on all higher derivatives (see [Par16, Lemma B.11.4]). Note that it is enough to
bound Dku at 0 ∈ D2(1); the full result is then recovered by restricting to the maximal disk
centered at a given point in D2(1).

The next two “long cylinder estimates” are crucial for proving compactness of moduli
spaces (which we do not discuss) and surjectivity of the gluing map (which we discuss in
detail). Note that both of these next results imply corresponding results for semi-infinite
cylinders [0,∞)× S1, simply by applying the results as stated to [0, N ]× S1 ⊆ [0,∞)× S1

and letting N →∞.

Lemma 2.19 (Well-known). Let u : [0, N ] × S1 → (B2n(1), J) be J-holomorphic, where J
is tamed by dλ. For every k <∞ and ε > 0, we have

‖u‖Ck([s,N−s]×S1) ≤ M · (1 + s−k)e−(1−ε)s (2.19)

for some constant M =M(k, ε, J, λ) <∞.

Proof. See [MS04] or [Par16, Proposition B.11.1].
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Proposition 2.20 (Hofer–Wysocki–Zehnder [HWZ02, Theorems 1.1, 1.2, and 1.3]). Let
(Y, λ, J) be as in Setup I. Suppose all periodic orbits of Rλ of action ≤ E0 < ∞ are non-
degenerate, let σ > 0 denote the minimum gap between any two elements of {0}∪a(P)∩[0, E0],
and let ε > 0. For any Ĵ-holomorphic map u : [0, N ]× S1 → Ŷ satisfying

sup
ϕ:R→[0,1]
ϕ′(s)≥0

∫

[0,N ]×S1

u∗d(ϕλ) ≤ E0, (2.20)

∫

[0,N ]×S1

u∗dλ ≤ σ − ε, (2.21)

at least one of the following holds for H = H(Y, λ, J, E0, ε) <∞:

• u([H,N −H ]× S1) ⊆ Bε(u(
N
2
, 0)).

• There exists γ ∈ P with a(γ) = L ≤ E0 such that for s ≥ H,

‖u(s, t)− (Ls+ b, γ̃(t))‖C0([s,N−s]×S1) ≤ H · e−(δγ−ε)min(s−H,N−H−s) (2.22)

for some b ∈ R and some γ̃ : S1 → Y with ∂tγ̃ = L · Rλ(γ̃) parameterizing γ ∈ P,
where δγ > 0 denotes the smallest absolute value of any eigenvalue of the asymptotic
operator of γ (see Definition 2.29).

The meaning of the energy bounds (2.20)–(2.21) is discussed further in §2.10.

Remark 2.21. Our statement of Proposition 2.20 is slightly more precise than that given by
Hofer–Wysocki–Zehnder [HWZ02] in that they state it with an unspecified constant δ > 0
in place of δγ > 0. We emphasize, however, that knowing the correct constant is not needed
for our work in this paper.

2.9 Gromov topology

We now define the Gromov topology on the moduli spaces M(T ), and we show that this
topology is Hausdorff.

Recall that a neighborhood of a point x in a topological space X is a subset N ⊆ X
such that there exists an open set U ⊆ X with x ∈ U ⊆ N . The neighborhood filter of x
is the collection Nx ⊆ 2X of all its neighborhoods. A neighborhood base at x is a cofinal
subset N◦

x ⊆ Nx (meaning, for every N ∈ Nx there exists N ′ ∈ N◦
x with N ′ ⊆ N). Given a

neighborhood base N◦
x, we may recover Nx as the collection of all subsets of X containing

some element of N◦
x.

Lemma 2.22. The system of neighborhood filters {Nx ⊆ 2X}x∈X at all the points of a
topological space X satisfies the following properties:

(i) For every N ∈ Nx, we have x ∈ N .

(ii) For every N ∈ Nx and every N ′ ⊇ N , we have N ′ ∈ Nx.

(iii) For every N,N ′ ∈ Nx, we have N ∩N ′ ∈ Nx.

(iv) For every N ∈ Nx, there exists N ′ ∈ Nx such that N ∈ Ny for every y ∈ N ′.
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Conversely, any system of subsets {Nx ⊆ 2X}x∈X satisfying the above properties is the system
of neighborhood filters for a unique topology on X.

We define the Gromov topology by specifying the neighborhood filter Nx of any given
pseudo-holomorphic building x and appealing to Lemma 2.22. More precisely, (1) we define
the “ε-neighborhood of x” for any (sufficiently small) ε > 0, given certain choices of auxiliary
data (metrics, etc.), (2) we define the neighborhood filter Nx of x to be that resulting from
declaring that the collection of all ε-neighborhoods (with respect to fixed auxiliary data)
forms a neighborhood base N◦

x at x, and (3) we observe that Nx is independent of the choice
of auxiliary data.

Definition 2.23 (Gromov topology). The ε-neighborhood of a pseudo-holomorphic building
x = ({Cv}, {pv,e}, {uv}, {b̃e}, {me}) of type T is defined as follows. Let g ∈ GT/ be ε-close
to the basepoint 0 ∈ GT/. Recall from §2.5 that g determines a map π : T → T ′ together
with a collection of (possibly only partially defined) maps

π∗ : X̂v → X̂π(v) (2.23)

for v ∈ V (T ). Fix (independently of ε > 0) large compact subsets X̂c
v ⊆ X̂v. Consider the

curves
Cv′ :=

⊔

π(v)=v′

Cv

/

∼ (2.24)

for v′ ∈ V (T ′), where pv1,e ∼ pv2,e for edges v1
e
−→ v2 with π(v1) = π(v2) = v′. These curves

Cv′ are equipped with points {pv′,e′} for edges e
′ ∈ E(T ′) incident at v′, namely the images

of the corresponding points pv,e ∈ Cv for π(e) = e′. Let C ′
v′ be any curve obtained from Cv′

by the following operations:

(i) An ε-C∞-small modification of the almost complex structure away from the ε-neighborhood
of the points {pv′,e′} and the nodes of Cv′ .

(ii) An arbitrary modification of the almost complex structure over the ε-neighborhood of
the points {pv′,e′} and the nodes of Cv′ .

(iii) Resolving the nodes of Cv′ created by the identifications pv1,e ∼ pv2,e, and possibly
resolving the other nodes of Cv′ (those coming from the nodes of Cv for π(v) = v′).
(Resolving a node means that its ε-neighborhood D2∨D2 gets replaced with a cylinder
[0, 1]× S1, equipped here with an arbitrary almost complex structure).

The locus referred to in (i) will be called the ε-thick part of C ′
v′ , and the locus referred

to in (ii)–(iii) will be called the ε-thin part of C ′
v′ . The ε-thin part of C ′

v′ is broken down
further into the nodal ε-thin part (that coming from nodes of Cv) and the Reeb ε-thin part
(that coming from the points {pv,e} of Cv, both those identified to form nodes in Cv′ and
those which become the points {pv′,e′}). Now let x′ = ({C ′

v′}, {pv′,e′}, {u
′
v′}, {b̃e′}, {me′}) be a

pseudo-holomorphic building of type T ′, upon which we impose the following requirements.
Most basically, we require that u′ be ε-C0-close to u (measured with respect to fixed metrics
on X̂v′ which are R-invariant in the ends) in the following sense:

(iv) Over the ε-thick part of C ′
v′ , we require u′v′ to be ε-C0-close to π∗ ◦

⊔

π(v)=v′ uv.

(v) Over the nodal ε-thin part of C ′
v′ , we require u′v′ to map into the ε-ball around the

image under π∗ ◦ uv of the corresponding node of Cv.
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(vi) Over the Reeb ε-thin part of C ′
v′ coming from an edge v1

e
−→ v2 with π(v1) = π(v2) = v′,

we require u′v′ to map into the ε-neighborhood of the trivial cylinder over γe inside the

finite cylindrical region in X̂v′ in between π∗(X̂
c
v1
) and π∗(X̂

c
v2
) (recall the large compact

subsets X̂c
v ⊆ X̂v fixed above).

(vii) Over the Reeb ε-thin part of C ′
v′ near a positive (respectively, negative) puncture

pv′,e′ associated to an edge v1
e
−→ v2 not collapsed by π with π(v2) = v′ (respectively,

π(v1) = v′), we require u′v′ to map into the ε-neighborhood of the trivial cylinder over

γe inside the half-infinite cylindrical region in X̂v′ above π∗(X̂
c
v2
) (respectively, below

π∗(X̂
c
v1
)).

Note that the a priori estimates of Hofer–Wysocki–Zehnder [HWZ02, Theorems 1.1, 1.2,
and 1.3] recalled in Proposition 2.20 imply that (vi)–(vii) imply that over the Reeb ε-thin
parts of C ′

v′ , the map u′v′ actually converges very rapidly to a trivial cylinder (to apply
Proposition 2.20, we should check that the integral of dλ over these ε-thin parts is small,
which can be seen by using Lemma 2.18 over the nearby ε-thick part and applying Stokes’
theorem). It follows that our choice of fixed large compact subsets X̂c

v ⊆ X̂v does not
matter. This convergence to trivial cylinders also allows us to make sense of the following
final requirements on the “discrete data” of x′:

(viii) The asymptotic markers {b̃e′} and matching isomorphisms {me′} of x
′ must agree with

those descended from x.

(ix) Over the glued edges e ∈ E(T ) (meaning those collapsed by π), the matching isomor-
phism induced by u′v′ must agree with me.

The ε-neighborhood of x is defined as the set of all possible x′ above. It is straightforward to
check that the resulting neighborhood filter Nx at x is independent of the choices involved.
We leave it as an exercise to check that these neighborhood filters satisfy the conditions in
Lemma 2.22 (only (iv) requires thought). We thus obtain a well-defined topology on each of
the spaces M(T ), which we call the Gromov topology.

Remark 2.24. There are various other ways to define the curve C ′
v′ and its identification

with Cv′ away from their ε-thin parts. For example, one could add stabilizing marked points
to Cv′ and then take C ′

v′ to be a nearby fiber of the universal curve over Deligne–Mumford
space. It is an exercise to check that this definition of C ′

v′ gives rise to the same neighborhood
filter.

Remark 2.25. A sequence (or net) xi of pseudo-holomorphic buildings converges in the Gro-
mov topology to a pseudo-holomorphic building x iff for every ε > 0, it holds that xi lies
in the ε-neighborhood of x for all sufficiently large i. Indeed, given any neighborhood base
N◦
x at a point x of a topological space, a sequence (or net) xi converges to x iff for every

N ∈ N◦
x, we have xi ∈ N for all sufficiently large i.

Lemma 2.26. The Gromov topology on M(T ) is Hausdorff.

Proof. Let x(1) and x(2) be two stable pseudo-holomorphic buildings such that for every
ε > 0, there exists a pseudo-holomorphic building xε lying in the ε-neighborhood of both
x(1) and x(2). Let C(1) :=

⊔

v C
(1)
v / ∼ (where pv1,e ∼ pv2,e for edges v1

e
−→ v2 as usual), and

similarly define C(2) and Cε.
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Choose finite collections of points P (1) ⊆ C(1) and P (2) ⊆ C(2) (disjoint from the nodes
and punctures) which stabilize each. By Remark 2.24, the curve Cε may be equipped with
marked points P (1),ε and P (2),ε (respectively) so that it is ε-close to (C(1), P (1)) and (C(2), P (2))
(respectively) in Deligne–Mumford space. We consider the curve (Cε, P (1),ε⊔P (2),ε) obtained
by adding both P (1),ε and P (2),ε as additional marked points (note that, without loss of
generality, we may perturb either P (1),ε or P (2),ε so that they are disjoint).

Since Deligne–Mumford space is compact, we may assume that (Cε, P (1),ε ⊔ P (2),ε) con-
verges to some stable (C, P (1)⊔P (2)) as ε→ 0. Since forgetting marked points and stabilizing
is continuous, we obtain canonical identifications

i1 : (C, P
(1))st

∼
−→ (C(1), P (1)), (2.25)

i2 : (C, P
(2))st

∼
−→ (C(2), P (2)). (2.26)

Any irreducible component C0 ⊆ C contracted by i1 but not by i2 would contradict stability
of x(2). Thus every irreducible component C0 ⊆ C contracted by either i1 or i2 is contracted
by both. We conclude that

i21 := i2 ◦ i
−1
1 : C(1) ∼

−→ C(2) (2.27)

is an isomorphism and that u(2) ◦ i21 = u(1).
To conclude that i21 defines an isomorphism x(1) → x(2), it remains only to observe that

the asymptotic markers and matching isomorphisms also agree as a consequence of (viii)–(ix)
in Definition 2.23.

2.10 Compactness

We now recall the compactness results due to Bourgeois–Eliashberg–Hofer–Wysocki–Zehnder
[BEHWZ03] in the context of the moduli spaces M(T ) which we have defined.

We begin by recalling from [BEHWZ03] the notion of Hofer energy first introduced
in [Hof93]. Note that the usual notion of energy of a pseudo-holomorphic map (namely
the integral of the pullback of the symplectic form) is not well-behaved when the target
symplectic manifold is a symplectization Ŷ equipped with the symplectic form ω̂ := dλ̂ =
d(esλ) = es(dλ + ds ∧ λ), as this energy is not invariant under R-translation and is almost
always infinite. We therefore remove the es factor, leaving dλ + ds ∧ λ, and we further
treat each of these terms separately (and differently). The resulting notions of energy we
now discuss are (beyond the case of symplectizations) only well-defined up to an overall
multiplicative constant.

The ω-energy of a pseudo-holomorphic map u : C → Ŷ is the integral

Eω(u) :=

∫

C

u∗ω where ω := dλ. (2.28)

To define the ω-energy of a pseudo-holomorphic map to a symplectic cobordism u : C → X̂ ,
we integrate the closed 2-form ω defined by splicing together ω̂ with ω± = dλ± in the ends;
more explicitly, in the positive end ω := d(α(s)λ+) for α : R → R satisfying α(s) = es for
s ≪ 0, α′(s) = 0 for s ≫ 0, and α′(s) ≥ 0, and similarly in the negative end. To define the
ω-energy of a pseudo-holomorphic map to an almost split symplectic cobordism X̂02,t with
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t→∞ as in case (IV), we integrate the closed 2-form ω02,t defined as the descent of ω01⊔ω12

from X̂01 ⊔ X̂12; over the identified regions these 2-forms agree up to a scaling factor which
is fixed as t→∞ (and hence irrelevant).

The ω-energy of a pseudo-holomorphic building is simply the sum of the ω-energies of
each of its components.

The integrand of the ω-energy is pointwise ≥ 0 for pseudo-holomorphic u, with equality
iff du = 0 or u is tangent to the vertical distribution R∂s at a point of a symplectization
region where ω is (up to a constant) dλ. If u is asymptotic to Reeb orbits at positive/negative
infinity, then the ω-energy is the pairing between the relative homology class of u and the
relative cohomology class of ω (both relative to the positive/negative asymptotics of u).

The λ-energy of a pseudo-holomorphic map u : C → Ŷ is the supremum

Eλ(u) := sup
φ:R→[0,1]
φ′(s)≥0

φ(s)=0 s≪0
φ(s)=1 s≫0

∫

C

u∗(dφ ∧ λ). (2.29)

The λ-energy of a pseudo-holomorphic map to a symplectic cobordism u : C → X̂ is the
supremum of

∫

C
u∗(dφ ∧ λ±) over all φ : X̂ → [0, 1] which are constant away from the ends

(1.8)–(1.9) and which in each of these ends are as above, namely they are functions of s
satisfying φ′(s) ≥ 0 and φ(s) = 0 for s≪ 0 and φ(s) = 1 for s≫ 0. To define the λ-energy
of a pseudo-holomorphic map to an almost split symplectic cobordism X̂02,t for large t as in
case (IV), we also allow φ to be non-constant over the middle finite symplectization region
of X̂02,t where the integrand is dφ ∧ λ1.

To define the λ-energy of a pseudo-holomorphic building of type T , we take the supremum
(of the analogous sum of integrals) over all choices of {φv : X̂v → [0, 1]}v as follows. Each
φv must be constant away from the symplectization regions, and over each symplectization
region φv must be a function of s with φ′

v(s) ≥ 0. Finally, each φv must be constant in a
neighborhood of positive/negative infinity; these constants must agree across interior edges
of T and must equal 1 and 0 for input/output edges of T respectively.

The integrand of the λ-energy is pointwise ≥ 0 for pseudo-holomorphic u. An argument
involving Stokes’ theorem shows that any candidate value

∫

C
u∗(dφ ∧ λ) of the λ-energy is

equal to (a constant times) any other candidate value, up to an error bounded above by (a
constant times) the ω-energy.

The Hofer energy of a pseudo-holomorphic map or building is the sum of the ω-energy
and the λ-energy:

E(u) := Eω(u) + Eλ(u). (2.30)

Up to a multiplicative constant, the Hofer energy depends only on the asymptotics and
homology class of the map/building u (for buildings, by this we mean only γe+, {γe−}, and
#vβv, not any of the intermediate Reeb orbits or the individual βv); compare [BEHWZ03,
Propositions 5.13 and 6.3]. Indeed, we have already seen above that the ω-energy depends
only on the asymptotics and homology class of u. We have also seen above that the various
candidate λ-energies differ by at most the ω-energy, so for the purposes of defining the Hofer
energy, we may as well replace the λ-energy term with one specific such candidate value,
such as the action of the positive asymptotic Reeb orbit or the sum of the actions of the
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negative asymptotic Reeb orbits. We conclude that for pseudo-holomorphic buildings u of
type T , we have

E(u) ≍ a(γe+) +
∑

e−

a(γe−) + 〈ω,#vβv〉 (2.31)

(equality up to a multiplicative constant). Finally, note that when we consider families
of cobordisms, the last term on the right hand side may be trivially bounded above by
supt〈ω

t,#vβv〉 in case (III) and by supt〈ω
02,t,#vβv〉 in case (IV) (note that the cohomology

class of ω02,t is independent of t for t sufficiently large, so this supremum is finite). Define
E(T ) as the right hand side of (2.31) with 〈ω,#vβv〉 replaced with the relevant supremum
in cases (III) and (IV), and note that E(T ) = E(T ′) for any morphism T → T ′.

Theorem 2.27 ([BEHWZ03, Theorems 10.1, 10.2, 10.3]). For any fixed datum D as in
Setup I–IV, each moduli space M(T ) is compact, and for every E < ∞ there are at most
finitely many (isomorphism classes of) T ∈ S with M(T ) non-empty and E(T ) ≤ E. In
particular, given T ∈ S there are at most finitely many (isomorphism classes of) T ′ → T
with M(T ′) non-empty.

The arguments of [BEHWZ03, §10] show that every net of pseudo-holomorphic build-
ings of Hofer energy ≤ E has a convergent subnet, which proves Theorem 2.27. Although
[BEHWZ03, §10] is presented as a proof of sequential compactness, it applies essentially
without change to yield the true compactness result we claim here. The fact that the moduli
spaces considered in [BEHWZ03] differ slightly from those considered here (there is a sur-
jective forgetful map from the moduli spaces in [BEHWZ03] to ours) also makes no serious
difference to the argument.

2.11 Linearized operators

We now recall the relevant linearized operators associated to the pseudo-holomorphic curves
that we consider.

Definition 2.28 (Linearized operators of Reeb orbits). For any γ ∈ P and a choice of
parameterization γ̃ : S1 → Y , denote by DN

γ the operator JLRλ
(where L denotes the Lie

derivative) acting on sections of γ̃∗ξ over S1, and define Dγ := DN
γ ⊕ i · d for i · d acting on

functions S1 → C.

The operator DN
γ defines a Fredholm map Hs(S1, γ̃∗ξ) → Hs−1(S1, γ̃∗ξ) for any s ∈ R

(either by Fourier analysis or by appealing to general elliptic regularity results). By the
analytic Fredholm theorem, the resolvent (DN

γ − zI)
−1 : Hs−1(S1, γ̃∗ξ)→ Hs(S1, γ̃∗ξ) varies

meromorphically in z ∈ C, with poles corresponding to the eigenvalues σ(DN
γ ) of D

N
γ . Since

DN
γ is formally self-adjoint, all these eigenvalues are real. The same discussion applies to i ·d

and to Dγ, and
σ(Dγ) = σ(DN

γ ) ∪ σ(i · d) = σ(DN
γ ) ∪ Z. (2.32)

Clearly 0 /∈ σ(DN
γ ) iff γ is non-degenerate (as is our standing assumption).

Definition 2.29. Denote by δγ > 0 the smallest absolute value of any element of σ(Dγ)\{0}.
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Convention 2.30 (Choices of metric and connection on domains). For the purposes of
defining function spaces, stating estimates, etc. involving a Riemann surface C equipped
with punctures {pe}e, we use a choice of holomorphic cylindrical coordinates

[0,∞)× S1 → C \ pe (2.33)

near each pe. We equip C with a Riemannian metric which equals ds2 + dt2 near pe, and we
equip TC with a j-linear connection for which ∂s is parallel near pe. Different choices of this
data will result in uniformly commensurable norms and estimates, so the particular choice
is not important.

Convention 2.31 (Choices of metric and connection on targets). For the purposes of defin-
ing function spaces, stating estimates, expressing linearized operators, etc. involving sym-
plectizations Ŷ , we use any choice of R-invariant Riemannian metric on Ŷ and any choice
of connection on T Ŷ which is Ĵ-linear (meaning Ĵ∇XY = ∇X ĴY , i.e. ∇Ĵ = 0) and which
is pulled back from a connection on T Ŷ |{0}×Y = TY ⊕ R. On symplectic cobordisms, use
metrics and connections which are of this form in the positive/negative ends. Different
choices of metric and connection will always result in uniformly commensurable norms, so
the particular choice is not important.

Convention 2.32 (Regularity classes of functions on nodal curves). A function on a nodal
curve C of a certain regularity class (C∞, W k,2, etc.) simply means a function on its normal-
ization C̃ (see Definition 2.17) of the given regularity class which agrees across each pair of
points identified under C̃ → C to form the nodes of C. We will only speak of functions on
nodal C in regularity classes which embed into C0, so that the above makes sense. Recall,
in particular, that W k,2 ⊆ C0 when k ≥ 2 [Ada75, Lemma 5.17].

We refer to Adams [Ada75] for basic properties and definitions of Sobolev spaces, includ-
ing here only a brief discussion. Recall that for integers k ≥ 0, a function is said to be of
class W k,2 iff all its derivatives (in the sense of distributions) of order ≤ k are in L2, and the
W k,2-norm of such a function is defined as the sum of the L2-norms of these derivatives. A
mollification argument [Ada75, Theorem 3.16] of Meyers–Serrin shows that any compactly
supported W k,2 function can be approximated in theW k,2-topology by a sequence of smooth
functions supported in a neighborhood of the original support.

It is well-known that it is frequently useful to introduce “weights” into the definition of
Sobolev spaces of functions on certain classes of non-compact manifolds. We now recall the
weighted Sobolev spaces relevant to our setting of pseudo-holomorphic curves with cylindrical
ends.

Remark 2.33. We frame our discussion for general k and δ so as to be precise as possible
regarding the constraints on k and δ required for each step. Nevertheless, it may help orient
the reader to remark that, for our intended purpose, it is sufficient to fix some sufficiently
large value of k (k ≥ 4 is sufficient) and to restrict our attention to δ > 0 satisfying δ < 1
and δ < δγ for all Reeb orbits γ under consideration.

Definition 2.34 (Weighted Sobolev spacesW k,2,δ). For k ≥ 0 and δ < 1, we define weighted
Sobolev spaces

W k,2,δ(C, u∗TX̂), (2.34)

W k,2,δ(C, u∗TX̂Ĵ ⊗C Ω0,1
C ), (2.35)
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where u : C \ {pe}e → X̂ is a smooth map which in a neighborhood of each puncture pe is
C∞-convergent with weight δ′ > δ to a Reeb orbit γe ∈ P± in the sense of Definition 2.6.
For (2.34), we allow C to have nodes, though in this case we require k ≥ 2 in accordance
with Convention 2.32.

The W k,2,δ-norm is defined as follows. Away from {pe}e, we use the usual W k,2-norm,
and near a given pe, the contribution to the norm squared is given by

∫

[0,∞)×S1

k
∑

j=0

∣

∣Djf
∣

∣

2
e2δs ds dt (2.36)

for any choice of local coordinates (2.33). Equivalently up to commensurability, one can
set ‖f‖k,2,δ := ‖µ · f‖k,2 for some smooth function µ which equals 1 away from the ends

and which equals eδ|s| in any end (multiplication by any such µ thus defines an isomorphism
W k,2,δ →W k,2, allowing properties ofW k,2 to be lifted toW k,2,δ). Our hypotheses that δ < 1
and that u is C∞-convergent with weight δ′ > δ imply that the W k,2,δ-norm is independent
up to commensurability of the choices involved in its definition.

Lemma 2.35. Smooth functions of compact support are dense in W k,2,δ.

Proof. By the Meyers–Serrin theorem [Ada75, Theorem 3.16] it is enough to show that
functions of compact support are dense in W k,2,δ. It is enough to examine the model case of
an end [0,∞)× S1. Let ϕ : R → [0, 1] be any smooth (cutoff) function satisfying ϕ(s) = 1
for s ≤ 1 and ϕ(s) = 0 for s ≥ 2. Now the sequence ϕ(s/N)f(s, t) (or even ϕ(s−N)f(s, t))
converges to f(s, t) in the W k,2,δ topology as N →∞.

Next, we introduce a space W̃ k,2,δ(C, u∗TX̂) which is a modification of the spaceW k,2,δ(C, u∗TX̂)
taking into account the space of deformations of the almost complex structure of C equipped
with the doubly marked points {pe}. Recall from §2.6 that when C is smooth, this deforma-
tion theory is governed by H•(C, TC(−2P )) where P :=

∑

e pe ⊆ C. When C has nodes,
this deformation theory (not taking into account resolutions of the nodes) is governed by
H•(C̃, T C̃(−2P − Ñ)), where Ñ ⊆ C̃ denotes the inverse images of the nodes N ⊆ C (recall
the normalization C̃ from Definition 2.17).

Definition 2.36 (Weighted Sobolev spaces W̃ k,2,δ). Let k, δ, and u be as in Definition 2.34.
We define a weighted Sobolev space

W̃ k,2,δ(C, u∗TX̂) (2.37)

as
W k,2,δ(C, u∗TX̂)⊕ C∞

c (C \ {pe} ∪N,End
0,1(TC)) (2.38)

modulo the subspace







Xu⊕ LXj

∣

∣

∣

∣

∣

∣

X ∈ C∞(C̃, T C̃)
X holomorphic near pe and Ñ
X(pe) = dX(pe) = 0

X(ñ) = 0 for ñ ∈ Ñ







. (2.39)
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Since X is holomorphic and vanishes to second order at each pe (so in local coordinates
(2.33) it equals f · ∂s for some holomorphic function f vanishing at pe), a calculation shows
that Xu ∈ W k,2,δ(C, u∗TX̂) since δ < 1 and u converges to a trivial cylinder with weight
δ′ > δ.

There is a unique commensurability class of norm on W̃ k,2,δ for which the natural map
W k,2,δ → W̃ k,2,δ is Fredholm, since this map has kernel H0(C̃, T C̃(−2P − Ñ)) and cokernel
H1(C̃, T C̃(−2P − Ñ)), both of which are finite-dimensional.

To better understand the spaces W̃ k,2,δ, we discuss a few special cases for smooth C.
If H1(C, TC(−2P )) = 0, namely if all variations of C with its markings at {pe} are trivial

up to gauge, then we have

W̃ k,2,δ(C, u∗TX̂) = W k,2,δ(C, u∗TX̂)
/

ker
(

aut(C, {pe}e)→
⊕

e

gl(TpeC)
)

,

where ker
(

aut(C, {pe}e)→
⊕

e gl(TpeC)
)

= H0(C, TC(−2P )) denotes the (finite-dimensional!)
Lie algebra of the group of automorphisms of C which fix each pe and act as the identity
on each TpeC. This Lie algebra of vector fields on C maps injectively (by stability) to

W k,2,δ(C, u∗TX̂) by differentiating u. In this case, W̃ k,2,δ is equipped with the natural quo-
tient norm from the presentation above.

IfH0(C, TC(−2P )) = 0, namely if C equipped with its markings at {pe} has no nontrivial
infinitesimal automorphisms, then we have

W̃ k,2,δ(C, u∗TX̂) = W k,2,δ(C, u∗TX̂)⊕ V, (2.40)

where V ⊆ C∞
c (C \ {pe}e,End

0,1(TC)) is any subspace projecting isomorphically onto
H1(C, TC(−2P )) (which by §2.6 is the space of deformations of C equipped with the doubly
marked points {pe}). In this case, W̃ k,2,δ is equipped with the direct sum norm induced by
(2.40) for any norm on V . This norm on W̃ k,2,δ is well-defined up to commensurability, since
every other such subspace V ′ may be obtained as the image of v 7→ v + LX(v)j for some
unique X : V → C∞(C, TC) with X = 0 and dX = 0 at pe, and the two resulting spaces
(2.40) are identified via (ξ, v) 7→ (ξ +X(v)u, v + LX(v)j).

To be even more concrete, suppose C is smooth of genus zero. If #{pe} = 1 (i.e. the case
of the plane), then it falls into the first case above with a one-dimensional (over C) space of
infinitesimal automorphisms, corresponding to translations of C (the automorphisms of C
acting trivially on the tangent space at infinity). If #{pe} = 2 (i.e. the case of the cylinder),
then it falls into the second case above with a one-dimensional space of deformations of the
almost complex structure. Namely, all cylinders are biholomorphic to C \ {0}, the space of
tangent space markings at 0 and ∞ is (C×)2 which is two-dimensional, and quotienting by
Aut(C \ {0}) = C× reduces this to the one-dimensional C×. In fact, #{pe} ≥ 2 all fall into
the second case above.

Definition 2.37 (Linearized operators). Let k, δ, and u be as in Definition 2.34, and suppose
k ≥ 1. For any choice of Ĵ-linear connection ∇ as in Convention 2.31, there is a linearized
operator

D∇
u : W k,2,δ(C, u∗TX̂)⊕ C∞

c (C \ {pe}e,End
0,1(TC))→W k−1,2,δ(C̃, u∗TX̂Ĵ ⊗C Ω0,1

C̃
)
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(recall the normalization C̃ from Definition 2.17) expressing the first order change in (du)0,1,
measured with respect to the chosen connection ∇, as u and j vary, namely

D∇
u (ξ, j

′) :=
d

d(ξ, j′)

∣

∣

∣

∣

(ξ,j′)=(0,j)

PT
∇
expu ξ→u

[

(d expu ξ)
0,1

j′,Ĵ

]

(2.41)

where PT denotes parallel transport. When u is Ĵ-holomorphic, the operator D∇
u is inde-

pendent of the choice of connection and descends to a map

Du : W̃
k,2,δ(C, u∗TX̂)→W k−1,2,δ(C̃, u∗TX̂Ĵ ⊗C Ω0,1

C̃
). (2.42)

For general u, we may still define such a map (2.42) by fixing a choice of connection ∇ and a
choice of subspace of (2.38) which projects isomorphically onto W̃ k,2,δ and intersects W k,2,δ

in a subspace of finite codimension.

The operator

D∇
u :W k,2,δ(C, u∗TX̂)→W k−1,2,δ(C̃, u∗TX̂Ĵ ⊗C Ω0,1

C̃
) (2.43)

is a real Cauchy–Riemann operator, in the sense that D∇
u (fs) = fD∇

u (s) + (∂̄f)s for real-
valued functions f . In particular, it is elliptic.

Proposition 2.38. The linearized operator (2.42) is Fredholm provided ±δ /∈ σ(Dγ) for
every orbit γ which u is positively/negatively asymptotic to.

Proof. It is equivalent to show that (2.43) is Fredholm under the given hypothesis on δ.
The main point of the proof of this (as compared with the standard Fredholm results for
elliptic operators on compact manifolds) is to prove suitable elliptic estimates in the ends of
C, which follow from the hypothesis δ /∈ σ(Dγ). This argument can be viewed as a special
case of a general result of Lockhart–McOwen [LM85], and proofs in the specific context of
pseudo-holomorphic curves with cylindrical ends can be found in Salamon [Sal99, §2] and
Wendl [Wen16, Lecture 4].

Definition 2.39 (Regularity of pseudo-holomorphic buildings). Given a pseudo-holomorphic
building {uv : Cv → X̂v}v∈V (T ), we consider the linearized operator

Du :
⊕

v∈V (T )

W̃ k,2,δ(C, u∗TX̂)→
⊕

v∈V (T )

W k−1,2,δ(C̃, u∗TX̂Ĵ ⊗C Ω0,1

C̃
) (2.44)

with δ ∈ (0, 1) and δ < δγ for every Reeb orbit γ = γe for e ∈ E(T ). This operator is
Fredholm by Proposition 2.38, and its kernel and cokernel are independent of the choice of
k and δ by elliptic regularity.

A point in a moduli space M(T ) is called regular iff this linearized operator is surjective.
A point is called weakly regular iff the linearized operator is surjective after adding variations
in t ∈ s(T ) to its domain (this is only relevant in cases (III) and (IV)).

Lemma 2.40. The trivial cylinder id× γ̃ : R×S1 → R×Y over any Reeb orbit γ is regular.
In fact, the associated linearized operator is an isomorphism.
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Proof. The linearized operator D may be decomposed into the tangential and normal de-
formation operators DT and DN . Precisely, there is a diagram whose rows are short exact
sequences (we write C = R× S1):

W̃ k,2,δ(C, TC) W̃ k,2,δ(C, γ∗TY ⊕ R∂s) W k,2,δ(C, γ∗ξ)

W k−1,2,δ(C, TC ⊗C Ω0,1
C ) W k−1,2,δ(C, (γ∗TY ⊕ R∂s)⊗C Ω0,1

C ) W k−1,2,δ(C, γ∗ξ ⊗C Ω0,1
C ).

du◦

DT D DN

du◦

(2.45)

Note that the domain of DT includes variations in complex structure on C, while the domain
of DN does not. It suffices to show that both DT and DN are isomorphisms.

To show that DN is an isomorphism, write DN = ∂s + Dγ, where Dγ = JLRλ
is the

linearized operator for γ (Definition 2.28). It follows from the fact that δ is not an eigenvalue
of Dγ that DN is an isomorphism.

To show that DT is an isomorphism, let us first observe that the complex

W k,2,δ(C, TC)
DT

−−→W k−1,2,δ(C, TC ⊗C Ω0,1
C ) (2.46)

calculates H•(P1, TP1(−2[0]− 2[∞])), that is we have

kerDT = H0(P1, TP1(−2[0]− 2[∞])), (2.47)

cokerDT = H1(P1, TP1(−2[0]− 2[∞])), (2.48)

where we identify C with P1 \ {0,∞}.
To show (2.47), argue as follows. By elliptic regularity, kerDT consists precisely of

those holomorphic sections of TC over C which lie in W k,2,δ. Thus we must show that a
holomorphic section of TP1 over P1\{0,∞} lies inW k,2,δ iff it vanishes to order ≥ 2 at 0,∞ ∈
P1. In fact, it suffices to show the seemingly much weaker statement that a holomorphic
section of TP1 over P1 \ {0,∞} lying in W k,2,δ must be meromorphic at 0,∞ ∈ P1 (this
implies the previous assertion by a straightforward calculation). So, let f be a holomorphic
section lying in W k,2,δ, and let us show that it is meromorphic at the punctures. Since f
lies in W k,2,δ, it can be integrated (with respect to a fixed non-vanishing area form on P1)
against any smooth function on P1 (more precisely, smooth section of the real dual of TP1)
which vanishes to order N at 0 and∞, for some N <∞ depending on k and δ. The space of
such smooth functions is of finite codimension in the space of all smooth functions on P1, so
we may extend f arbitrarily to a distribution f̃ on P1. Since f is holomorphic on P1\{0,∞},
the distribution ∂̄f̃ is supported at 0,∞ ∈ P1, so by Lemma 2.41 it is a finite sum of delta
functions and their derivatives at 0,∞ ∈ P1. It follows that zM ∂̄f̃ = 0 for sufficiently large
M <∞, for any local coordinate z near 0 or∞. We have ∂̄(zM f̃) = zM ∂̄f̃ = 0, so by elliptic
regularity zM f̃ is holomorphic at 0 and ∞. It follows that f is meromorphic at 0,∞ ∈ P1,
which finishes the proof of (2.47). To show (2.48), apply the same reasoning to the formal
adjoint to show that

(cokerDT )∨ = ker((DT )∨) = H0(P1,Ω⊗2
P1 (2[0] + 2[∞])) (2.49)

and apply Serre duality.
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It follows from (2.47)–(2.48) thatDT is an isomorphism. Indeed, kerDT = H0(P1, TP1(−2[0]−
2[∞])) = 0, and by definition W̃ k,2,δ is W k,2,δ direct sum a space which maps isomorphically
to H1(P1, TP1(−2[0]− 2[∞])) = cokerDT .

The following is an easy exercise (see [Hör69, Theorem 1.5.3]) and is frequently useful.

Lemma 2.41. A distribution supported at a single point is a linear combination of the delta
function at that point and its derivatives.

2.12 Index of moduli spaces

We now define a notion of index and virtual dimension for objects of S.

Definition 2.42 (Index µ(T )). We define µ(T ) to be the Fredholm index of the linearized
operator (2.44) for non-nodal Cv.

Note that (2.44) makes sense for any smooth building {uv}v for which uv approach trivial
cylinders sufficiently rapidly, and varies nicely in families of such {uv}v, hence µ(T ) is well-
defined.

Standard arguments allow one to express µ(T ) in terms of the Conley–Zehnder indices
of the Reeb orbits γe+ and {γe−i

}i and the homology class of #vβv (see [EGH00, Proposition

1.7.1] or [BM04, Proposition 4]):

µ(T ) = [CZτ+(γe+) + n− 3]−
∑

i

[CZτ−i (γe
−
i
) + n− 3] + 〈2c1(TX̂, τ),#vβv〉, (2.50)

where τ = (τ+, {τ−i }i) denotes any collection of trivializations of ξ± over the orbits γ, and
c1(TX̂, τ) denotes the first Chern class relative to the boundary trivialization of TX̂ obtained
by summing τ with the tautological trivialization of RRλ⊕R∂s (the expression on the right
hand side is independent of the choice of τ). We may thus define the homological grading of
a null-homologous Reeb orbit to be

|γ| := CZτ (γ) + n− 3 + 〈2c1(ξ, τ), β〉 ∈ Z/2c1(ξ) ·H2(Y ) (2.51)

for any trivialization τ and any null-homology β of γ. Analogously, there is a relative grading
on the set of (monomials of) Reeb orbits in a fixed homology class.

The index satisfies µ(T ) = µ(T ′) for any morphism T → T ′ (this is evident from the
formula in terms of Conley–Zehnder indices), and is additive under concatenations, that is
µ(#iTi) =

∑

i µ(Ti) (trivial by definition).

Definition 2.43 (Virtual dimension vdim(T )). The virtual dimension of T is defined as

vdim(T ) := µ(T )−#Vs(T ) + dim s(T ), (2.52)

recalling that Vs(T ) ⊆ V (T ) denotes the set of symplectization vertices, i.e. those v for which
∗+(v) = ∗−(v). This is the “expected dimension” of M(T ). For a morphism T ′ → T , let
codim(T ′/T ) := vdim T − vdim T ′.

Lemma 2.44. We have codim(T ′/T ) ≥ 0 with equality iff T ′ → T is an isomorphism, and
codim(T ′/T ) > 1 iff T → T ′ factors nontrivially.
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2.13 Orientations of moduli spaces

We now review the theory of orientations in contact homology. The general analytic meth-
ods used to orient moduli spaces of pseudo-holomorphic curves were introduced by Floer–
Hofer [FH93] (see also Bourgeois–Mohnke [BM04]). The resulting algebraic structure rele-
vant for contact homology was worked out by Eliashberg–Givental–Hofer [EGH00] (see also
Bourgeois–Mohnke [BM04]).

We find it most convenient to encode orientations via the formalism of orientation lines,
as introduced into the subject by Seidel. An orientation line is simply a free Z-module of
rank one, equipped with a Z/2-grading (i.e. declared to be either even or odd). For every
Reeb orbit γ with basepoint b, we will define an orientation line oγ,b. For every object T ∈ S,
we will define an orientation line o◦T , and we will show that there is a canonical isomorphism

o◦T = oγ+,b+ ⊗
⊗

γ−∈Γ−

oγ−,b−. (2.53)

The virtual orientation sheaf of M(T ) is canonically isomorphic to

oT := o◦T ⊗ (o∨R)
⊗Vs(T ) ⊗ os(T ). (2.54)

Recall that we are using the super tensor product ⊗ (see §1.1).

Definition 2.45. Denote by oV := HdimV (V, V \ 0) with parity dimV the orientation line2

of the vector space V . For a Fredholm map A : E → F , define o(A) = oA := okerA⊗ o∨cokerA.

Definition 2.46 (Orientation lines oγ,b of Reeb orbits). Let γ ∈ P = P(Y, λ), and fix a
constant speed parameterization γ̃ : S1 → Y of γ (equivalently, fix a basepoint b = γ̃(0) ∈
|γ|). We consider the bundle V := γ̃∗ξ⊕C over [0,∞)×S1 ⊆ C. The bundle V is equipped
with a connection, namely the connection on γ̃∗ξ induced by the Lie derivative LRλ

plus the
trivial connection on C, and this gives rise to a real Cauchy–Riemann operator ∂̄ on V . Now
extend the pair (V, ∂̄) to all of C, and define

oγ,b := o(V, ∂̄) := o(W k,2,δ(C, V )→W k−1,2,δ(C, V ⊗C Ω0,1
C )) (2.55)

for small δ > 0. We show in Lemma 2.47 immediately below that oγ,b is well-defined.

Note that (because of the well-definedness of oγ,b) any path between basepoints b → b′

in the sense of §2.1 gives rise to an isomorphism oγ,b → oγ,b′.

Lemma 2.47. The orientation line oγ,b defined by (2.55) independent of the choice of ex-
tension (V, ∂̄) up to canonical isomorphism.

(Refer to Solomon [Sol06, §2, Proposition 2.8] for a similar result.)

2One should distinguish the orientation line oV from the determinant line detV := ∧dimV V , as there is
no functorial isomorphism oV ⊗Z R = detV (rather only up to scaling by R>0).

41



Proof. The space of extensions of (V, ∂̄) is homotopy equivalent to Maps(S2, BU(n)) (noting
that π1(BU(n)) = π0(U(n)) = 0 so V is trivial over S1) and we have πiMaps(S2, BU(n)) =
πi+2(BU(n)) = πi+1(U(n)); in particular π0 = Z and π1 = 0. By simple connectivity, the line
oγ,b depends at most on the choice of connected component of Maps(S2, BU(n)) (classified
by relative Chern class).

To identify (canonically) the oγ,b from different relative Chern classes, argue as follows.
Choose an extension (V, ∂̄) for which ∂̄ is complex linear in a neighborhood of the origin
0 ∈ C (this is a contractible condition), so (V, ∂̄) is a holomorphic vector bundle near the
origin. Hence we may define (V (−[0]), ∂̄) near the origin as the holomorphic vector bundle
whose sheaf of holomorphic sections is the subsheaf of holomorphic sections of V which
vanish at the origin, and we extend (V (−[0]), ∂̄) to concide with (V, ∂̄) away from the origin.
Thus (V (−[0]), ∂̄) is another extension with relative Chern class one less than (V, ∂̄), so it
suffices to produce a canonical isomorphism o(V, ∂̄) = o(V (−[0]), ∂̄).

To produce this isomorphism, it suffices to construct the expected exact sequence

0→ H0
δ (V ([−0]), ∂̄)→ H0

δ (V, ∂̄)→ V0 → H1
δ (V ([−0]), ∂̄)→ H1

δ (V, ∂̄)→ 0 (2.56)

where H i
δ(V, ∂̄) denotes the cohomology of the two term complex appearing in (2.55) and

V0 denotes the fiber of V over 0 ∈ C (note that V0 is a complex vector space and hence is
canonically oriented). To produce this exact sequence, it suffices to apply the snake lemma
to the diagram obtained from the inclusion of the complex calculating H•

δ (V (−[0]), ∂̄) into
that calculating H•

δ (V, ∂̄). At the level of smooth sections, this is the diagram

0 C∞(C, V (−[0])) C∞(C, V ) J0,∞(V )0 0

0 C∞(C, V (−[0])⊗ Ω0,1
C ) C∞(C, V ⊗ Ω0,1

C ) J0,∞(V ⊗ Ω0,1
C )0 0,

(2.57)

where J0,∞(−)0 denotes the infinite anti-holomorphic jet space at 0 ∈ C, i.e. keeping track of
all anti-holomorphic derivatives ( ∂

∂z̄
)k at zero; note that the right vertical map is surjective

with kernel V0. Now the usual diagram chase (in combination with some appeals to elliptic
regularity) produces the desired exact sequence (2.56). In doing this diagram chase, it may
be helpful to remark that, to define the connecting homomorphism, one may, for convenience,
restrict consideration to lifts of elements of V0 to W k,2,δ(C, V ) which are holomorphic near
zero; also note that by elliptic regularity, all elements of H1

δ (C, V ) can be represented by
smooth sections of V ⊗ Ω0,1

C supported inside any given non-empty open subset of C.

Definition 2.48 (Parity of Reeb orbits). The parity |γ| ∈ Z/2 of γ ∈ P is the parity of oγ.

By (2.50) we have |γ| = CZ(γ) + n − 3, i.e. the parity is simply the reduction to Z/2
of the grading (2.51) (whenever the latter is defined). This formula for |γ| in terms of the
Conley–Zehnder index can also be expressed as |γ| = sign(det(I−Aγ)) ∈ {±1} = Z/2 where
Aγ denotes the linearized return map of γ acting on ξp (using the general property of the
Conley–Zehnder index (−1)CZ(Ψ) = (−1)n−1 sign(det(I −Ψ(1))) for Ψ : [0, 1]→ Sp2n−2(R)).
It thus follows that

|γ| = #(σ(Aγ) ∩ (0, 1)) ∈ Z/2, (2.58)

42



where σ(·) denotes the spectrum (recall that the spectrum of any matrix A ∈ Sp2n(R) lies in
R× ∪ {z ∈ C : |z| = 1} and that 1 /∈ σ(Aγ) is equivalent to the non-degeneracy of γ). Note
that by definition γ is non-degenerate iff 1 /∈ σ(Aγ). It follows that the index of the k-fold
multiple cover γk of γ is given by

|γk| = |γ|+ (k + 1)#(σ(Aγ) ∩ (−1, 0)) ∈ Z/2. (2.59)

Definition 2.49 (Good and bad Reeb orbits). There is an action of Z/dγ on oγ,b by functori-
ality, which just amounts to a homomorphism Z/dγ → {±1} (independent of b since Z/dγ is
abelian). The orbit γ is called good iff this homomorphism is trivial (and bad otherwise). For
good γ, we thus have an orientation line oγ independent of b up to canonical isomorphism.

The bad Reeb orbits are precisely the even multiple covers γ2k of simple orbits γ with
#(σ(Aγ) ∩ (−1, 0)) odd by [EGH00, Lemma 1.8.8, Remark 1.9.2]. To see this, it suffices
to show that a generator of the Z/k action on oγk acts by (−1)|γk |−|γ| and use (2.59). This
can be proven by pulling back the operator from (2.55) under z 7→ zk and analyzing the
representations of Z/k occurring in the kernel and cokernel (see [BM04, Proof of Theorem
3]).

Definition 2.50 (Orientation lines o◦T ). For any T ∈ S, we define the orientation line o◦T to
be the orientation line of the linearized operator (2.44) at any smooth building of type T .

We show in Lemma 2.51 immediately below that o◦T is well-defined (i.e. is independent of
the choice of smooth building, up to canonical isomorphism). Note that it does not matter
whether we define o◦T in terms of the linearized operator with domain W k,2,δ or W̃ k,2,δ, since
their “difference” is a complex vector space and thus is canonically oriented. Note also that
the parity of o◦T is just the index µ(T ) mod 2.

Lemma 2.51. The orientation line of the linearized operator (2.44) at a smooth building of
type T is canonically isomorphic to oγe+ ,be+ ⊗

⊗

e− o∨γe− ,be−
.

Proof. We consider the linearized operator (2.44) direct sum the operators from (2.55) for
each output Reeb orbit γe− of T . The orientation line of this direct sum is thus o◦T ⊗
⊗

e− oγe− ,be− .
Now the Floer–Hofer kernel gluing operation [FH93] (see also Bourgeois–Mohnke [BM04])

provides a canonical isomorphism between the orientation line of this operator and the
orientation line of the operator obtained by gluing the domains end to end in the specified
way (note the use of the basepoints be− for γe− specified by T ). Note that, for technical
convenience, it is enough to do this gluing just for maps uv which coincide with trivial
cylinders near infinity.

This glued up operator is now exactly of the form from (2.55) for γe+, so we deduce an
isomorphism o◦T ⊗

⊗

e− oγe− ,be− = oγe+ ,be+ .

Remark 2.52. Gluing the linearized operators with domainW k,2,δ results in an index increase
of two, gluing the linearized operators with domain W̃ k,2,δ preserves the index, and gluing
the linearized operators with domain W k,2,δ plus decay to constants in the ends results in an
index decrease of two. The Floer–Hofer kernel gluing operation can be done in any of these
contexts; Bourgeois–Mohnke choose the last.
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For any morphism T → T ′, there is a canonical isomorphism o◦T → o◦T ′, again by the
Floer–Hofer kernel gluing operation. Associativity of this operation implies that this isomor-
phism respects the identifications from Lemma 2.51 and that it makes o◦ into a functor from
SI to the category of orientation lines and isomorphisms. For any concatenation {Ti}, there
is a tautological identification o◦#iTi

=
⊗

i o
◦
Ti
; associativity of the Floer–Hofer operation

implies that this identification is compatible with Lemma 2.51.

Remark 2.53. The above reasoning, in particular the proof of Lemma 2.51, relies on the fact
that the topology of the curves in question is particularly simple. To prove the analogous
result in the SFT setting requires a more complicated argument; see Bourgeois–Mohnke
[BM04, Proposition 8].

For any T ∈ S, define
oT := o◦T ⊗ (o∨R)

⊗Vs(T ) ⊗ os(T ), (2.60)

where os(T ) denotes the global sections of the orientation sheaf of s considered as a real

manifold. We shall see that the virtual orientation sheaf of M(T ) is canonically isomorphic
to oT . Note that the parity of oT equals vdim(T ).

For any morphism T ′ → T , there is a canonical identification

oT ′ ⊗ oGT ′//T
⊗ o∨s(T ′) = oT , (2.61)

where GT ′//T denotes the space of gluing parameters defined in §2.5. The appearance of
o∨s(T ′) is explained by the fact that GT ′/ includes all variations of t, rather than just those

normal to s(T ′).
For any concatenation {Ti}, there is a tautological identification

o#iTi =
⊗

i

oTi . (2.62)

2.14 Local structure of moduli spaces via local models G

We now state the precise sense in which the spaces GT ′//T from §2.5 are local topological

models for the regular loci in the moduli spaces M(T ). We also state the compatibility of
this local topological structure with the natural maps on orientation lines discussed earlier.
These statements are in essence a gluing theorem, and their proofs are given in §5.

We denote by M(T )reg ⊆ M(T ) the locus of points which are regular and have trivial
isotropy (we do not discuss the entire locus of regular points, possibly with isotropy, just for
sake of simplicity, although it would not really present any additional difficulty to do so).

The (Banach space) implicit function theorem implies that M(T )reg is a (smooth) man-
ifold of dimension vdim T over the locus without nodes. Recall that for any morphism
T → T ′, we have µ(T ) = µ(T ′). Denote by N(x) the set of nodes of the domain curve of a
given point x ∈M(T ).

Theorem 2.54 (Local structure of M(T )reg). Let x0 ∈ M(T )reg be of type T ′ → T . Then
µ(T )−#Vs(T

′)− 2#N(x0) ≥ 0 and there is a local homeomorphism

(

GT ′//T × CN(x0) × Rµ(T )−#Vs(T ′)−2#N(x0), (0, 0, 0)
)

→
(

M(T ), x0
)

(2.63)
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whose image lands in M(T )reg and which commutes with the maps from both sides to ST ′//T×

s(T ) (as well as the stratifications by number of nodes).

Proof. See §§5.1–5.3.

The (Banach space) implicit function theorem moreover gives a canonical identification

oM(T )reg = oT . (2.64)

More precisely, this identification is made over the locus in M(T )reg without nodes, and has
a unique continuous extension to all of M(T )reg by virtue of the local topological description
in Theorem 2.54. It is also compatible with morphisms T ′ → T in the following precise
sense.

Theorem 2.55 (Compatibility of the “analytic” and “geometric” maps on orientations).
The following diagram commutes:

o
M(T ′)reg ⊗ oGT ′//T

⊗ o∨s(T ′) oT ′ ⊗ oGT ′//T
⊗ o∨s(T ′)

o
M(T )reg oT ,

(2.64)

(2.63) (2.61)

(2.64)

(2.65)

where the left vertical map is the “geometric” map induced by the local topological structure
of M(T )reg given in (2.63), and the right vertical map is the “analytic” map (2.61) defined
earlier via the “kernel gluing” operation.

Proof. See §5.4.

3 Implicit atlases

In this section, we define (topological) implicit atlases with cell-like stratification on the
moduli spaces M(T ) stratified by S/T . The notion of an implicit atlas with cell-like stratifi-
cation was introduced in [Par16, §§3,6], and our constructions of implicit atlases follow the
general procedure introduced in [Par16, §§1–2,9–10]. We will, however, give a self-contained
treatment.

3.1 Implicit atlases with cell-like stratification

We review the notion of an implicit atlas with cell-like stratification from [Par16, Defini-
tions 3.1.1, 3.2.1, 6.1.2, 6.1.6]. The notion we present here is, in fact, more general, as we
must allow stratifications by categories rather than just posets (recall Definitions 2.14 and
2.15). Specifically, we consider here stratifications by categories T satisfying the following
properties:

(i) T has a final object.

(ii) T is finite, meaning # |T| <∞ and #Hom(t1, t2) <∞ for t1, t2 ∈ T.

(iii) Tt/ is a poset for every t ∈ T.
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It will be useful to consider such categories T equipped with dimension and orientation data,
which consists of:

(i) A function dim : T → Z such that for every morphism f : t→ t′, we have dim t ≤ dim t′

with equality iff f is an isomorphism.

(ii) For every t ∈ T, an orientation line ot of parity dim t (more formally, this means
a functor from the subcategory of isomorphisms in T to the category of orientation
lines).

(iii) For every t → t′ of codimension one (meaning dim t′ = dim t + 1), an isomorphism
ot ⊗ oR≥0

∼
−→ ot′ (where oR≥0

= oR is denoted as oR≥0
to indicate that it represents the

orientation line of directions transverse to the boundary of a manifold with boundary).

Definition 3.1. Let T be a category as above equipped with dimension and orientation
data. An oriented cell-like stratification is a stratification X → T such that:

(i) For every t ∈ T, the closed stratum X/t is a topological manifold with boundary of
dimension dim t, whose interior is precisely the locally closed stratum Xt ⊆ X/t.

(ii) There are specified isomorphisms oX/t
= ot such that for every t → t′ of codimension

one, the isomorphism oX/t
⊗ oR≥0

∼
−→ oX/t′

induced by the local topology agrees with

the specified isomorphism ot ⊗ oR≥0

∼
−→ ot′.

Definition 3.2. Let X be a compact Hausdorff space with stratification by a category T as
above equipped with dimension and orientation data. An oriented implicit atlas with cell-like
stratification on X is an index set A along with the following data:

(i) (Covering groups) A finite group Γα for all α ∈ A (let ΓI :=
∏

α∈I Γα).

(ii) (Obstruction spaces) A finitely generated R[Γα]-module Eα for all α ∈ A (let EI :=
⊕

α∈I Eα).

(iii) (Thickenings) A Hausdorff ΓI-space XI for all finite I ⊆ A, equipped with a ΓI-
invariant stratification XI → T, and a homeomorphism X = X∅ respecting the strati-
fication.

(iv) (Kuranishi maps) A Γα-equivariant function sα : XI → Eα for all α ∈ I ⊆ A (for
I ⊆ J , let sI : XJ → EI denote

⊕

α∈I sα).

(v) (Footprints) A ΓI-invariant open set UIJ ⊆ XI for all I ⊆ J ⊆ A.

(vi) (Footprint maps) A ΓJ -equivariant function ψIJ : (sJ\I |XJ)
−1(0) → UIJ for all I ⊆

J ⊆ A.

(vii) (Regular and trivial isotropy locus) A ΓI-invariant subset X
reg
I ⊆ XI for all I ⊆ A.

which must satisfy the following “compatibility axioms”:

(i) ψIJψJK = ψIK and ψII = id.

(ii) sIψIJ = sI .

(iii) UIJ1 ∩ UIJ2 = UI,J1∪J2 and UII = XI .

(iv) The restriction of the stratification on XJ to (sJ\I |XJ)
−1(0) is identified with the

pullback of the stratification on XI via ψIJ . These identifications must be compatible
in triples I ⊆ J ⊆ K (this condition can be nontrivial when T is a category rather
than a poset).

(v) (Homeomorphism axiom) The footprint map ψIJ induces a homeomorphism (sJ\I |XJ)
−1(0)/ΓJ\I

∼
−→

UIJ .
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and the following “transversality axioms”:

(vi) ψ−1
IJ (X

reg
I ) ⊆ Xreg

J .

(vii) ΓJ\I acts freely on ψ−1
IJ (X

reg
I ).

(viii) (Openness axiom) Xreg
I ⊆ XI is open.

(ix) (Submersion axiom) The stratification of Xreg
I is cell-like of dimension dim t + dimEI

and oriented with respect to ot ⊗ oEI
. Furthermore, near every point of ψ−1

IJ (X
reg
I ) ⊆

Xreg
J , the map sJ\I : XJ → EJ\I is locally modelled on the projectionXreg

I ×R
dimEJ\I →

RdimEJ\I compatibly with oriented stratifications.

(x) (Covering axiom) X∅ =
⋃

I⊆A ψ∅I((sI |X
reg
I )−1(0)).

Definition 3.3. An oriented implicit atlas with boundary is an oriented implicit atlas with
cell-like stratification by the two-element poset {∂, ◦} with ∂ < ◦.

Remark 3.4. Given an oriented implicit atlas with cell-like stratification, one may obtain an
oriented implicit atlas with boundary simply by collapsing all strata other than the maximal
stratum ◦ into a single stratum ∂.

The virtual dimension d of a space equipped with an implicit atlas shall mean dim tmax,
where tmax ∈ T is the final object, and the virtual orientation line o of such a space shall
mean otmax .

3.2 Stratifications of G are cell-like

We now show that the natural stratifications GT/ → ST/ are cell-like in the sense of Definition
3.1, where we equip ST/ with the dimension function

ST/ → Z (3.1)

(T → T ′) 7→ codim(T/T ′) + dim s(T ) (3.2)

and orientation data

(T → T ′) 7→ (o∨R)
⊗Vs(T ′) ⊗ (oR)

⊗Vs(T ) ⊗ os(T ′). (3.3)

Lemma 3.5. The stratification (GI)T/ → (SI)T/ is cell-like.

Proof. By inspection.

Lemma 3.6. The stratification (GII)T/ → (SII)T/ is cell-like.

Proof. Observe that for any f : T → T ′, we have

(GII)T//T ′ =
∏

∗(v′)=00

(G+
I )f−1(v′)/ ×

∏

∗(v′)=01

(GII)f−1(v′)/ ×
∏

∗(v′)=11

(G−
I )f−1(v′)/,

(SII)T//T ′ =
∏

∗(v′)=00

(S+
I )f−1(v′)/ ×

∏

∗(v′)=01

(SII)f−1(v′)/ ×
∏

∗(v′)=11

(S−
I )f−1(v′)/,

compatibly with stratifications. Note that a product of cell-like stratifications is cell-like.
Thus by induction (say, on the number of vertices of T ), it suffices to show that (GII)T/ is a
topological manifold with boundary, whose interior coincides with the top stratum.
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To show that (GII)T/ is a topological manifold with boundary, we perform a change
of variables h = e−g ∈ [0, 1). For convenience, we will allow h ∈ [0,∞) (this relaxation
is certainly permitted for the present purpose). The relation gv = ge + gv′ now becomes
hv = hehv′ . Under this relation hv = hehv′ , observe that hv ∈ [0,∞) and h2e−h

2
v′ ∈ (−∞,∞)

determine he ∈ [0,∞) and hv′ ∈ [0,∞) uniquely, since

(he + ihv′)
2 = (h2e − h

2
v′) + 2ihv. (3.4)

Thus if we perform another change of variables qe = h2e − h
2
v′ for v

e
−→ v′, then we have

(GII)T/ =







hvmax ∈ [0,∞) if ∗(vmax) = 00

qe ∈ (−∞,∞) for v
e
−→ v′ with ∗(v′) = 00

he ∈ [0,∞) for ∗ (e) = 1







. (3.5)

This is clearly a topological manifold with boundary of dimension #Vs(T ). Furthermore,
the top stratum is the locus where hvmax > 0 and he > 0, which is clearly its interior.

Though not logically necessary due to the inductive reasoning above, let us remark that
one can also express the stratification of (GII)T/ by (SII)T/ concretely in terms of the coor-
dinates (3.5) and thereby verify explicitly that it is cell-like.

Lemma 3.7. The stratification (GIII)T/ → (SIII)T/ is cell-like.

Proof. Express the underlying forest of T ∈ SIII as the disjoint union of Ti ∈ SII, so we have

(GIII)T/ =
∏

i∈I

(GII)Ti/ ×











[0, 1) s(T ) = {0}

(0, 1) s(T ) = (0, 1)

(0, 1] s(T ) = {1},

(3.6)

(SIII)T/ =
∏

i∈I

(SII)Ti/ ×











{{0} < (0, 1)} s(T ) = {0}

{(0, 1)} s(T ) = (0, 1)

{(0, 1) > {1}} s(T ) = {1}.

(3.7)

Now apply Lemma 3.6 and note that the product of two cell-like stratifications is again
cell-like.

Lemma 3.8. The stratification (GIV)T/ → (SIV)T/ is cell-like.

Proof. For s 6= {∞}, this is just Lemma 3.7.
For s = {∞}, argue as follows. For any given T → T ′, we may express (GIV)T//T ′ →

(SIV)T//T ′ as a product as in the first step of the proof of Lemma 3.6, by expressing T ′

as a concatenation of maximal Ti. Thus by induction, it suffices to show that (GIV)T/
is a topological manifold with boundary whose interior is the stratum corresponding to the
maximal contraction of T . To see this, we perform the same change of variables as in Lemma
3.6 to write

(GIV)T/ =























hvmax ∈ [0,∞) if ∗(vmax) = 00

qe ∈ (−∞,∞) for v
e
−→ v′ with ∗(v′) = 00

τ ∈ [0,∞)

qe ∈ (−∞,∞) for v
e
−→ v′ with ∗(v′) = 11

he ∈ [0,∞) for ∗(e) = 2























. (3.8)

This is clearly a topological manifold of dimension #Vs(T ) + 1, and its maximal stratum is
the locus where τ > 0, hvmax > 0, and he > 0, which is clearly its interior.
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3.3 Sets of thickening datums A(T )

We define sets of “thickening datums” A(T ) for the implicit atlases on M(T ). Roughly
speaking, a thickening datum α ∈ A(T ) is a collection of data (rα, Dα, Eα, να) from which
we will construct a “thickened” version of a given moduli space by: (1) adding rα marked
points to the domain (constrainted to lie on the codimension two submanifold D̂α), (2)
adding an extra parameter eα lying in the vector space Eα, and (3) adding an extra term
να(eα) (which depends on the location of the rα added points and the positive/negative ends
Eext(T ) in the domain) to the pseudo-holomorphic curve equation.

Recall from §2.7 that M0,n (n ≥ 3) denotes the Deligne–Mumford moduli space of stable
nodal Riemann surfaces of genus zero with n marked points labeled with {1, . . . , n}. We
denote by C0,n →M0,n the universal family. Recall that M0,n is a compact smooth manifold.
We usually prefer to label the marked points using a set other than {1, . . . , n}, so we will
also use the notation M0,n and C0,n when n is a finite set (#n ≥ 3) used to label the marked
points.

Definition 3.9 (Set of thickening datums AI). A thickening datum α for T ∈ SI consists of
the following data:

(i) rα ≥ 0 an integer such that rα +#Eext(T ) ≥ 3.

(ii) nα ≥ 0 an integer (let Eα := Rnα) and an action on Eα of Srα (the group of permuta-
tions of {1, . . . , rα}).

(iii) Dα ⊆ Y a compact codimension two submanifold with boundary. We let D̂α :=
R×Dα ⊆ Ŷ .

(iv) να : Eα → C∞(Ŷ × C0,Eext(T )∪{1,...,rα}, T Ŷ ⊗R Ω0,1

C0,Eext(T )∪{1,...,rα}/M0,Eext(T )∪{1,...,rα}

)R an

Srα-equivariant linear map which vanishes in a neighborhood of the nodes and the
Eext(T )-marked points of the fibers of C0,Eext(T )∪{1,...,rα} → M0,Eext(T )∪{1,...,rα}. The

superscript R indicates taking the subspace of R-invariant sections (where R acts on Ŷ
by translation).

We denote by AI(T ) the set of such thickening datums. Note that for any morphism T → T ′,
there is a tautological identification AI(T ) = AI(T

′).

Definition 3.10 (Set of thickening datums AII). A thickening datum α for T ∈ SII consists
of the following data:

(i) rα, Eα as in Definition 3.9(i),(ii).

(ii) D±
α ⊆ Y ±, ν±α : Eα → C∞(Ŷ ±×C0,Eext(T )∪{1,...,rα}, T Ŷ

±⊗RΩ
0,1

C0,Eext(T )∪{1,...,rα}/M0,Eext(T )∪{1,...,rα}

)R

as in Definition 3.9(iii),(iv).

(iii) D̂α ⊆ X̂ a closed codimension two submanifold with boundary. We require that D̂α

coincide (via (1.8)–(1.9)) with D̂±
α outside a compact subset of X̂.

(iv) να : Eα → C∞(X̂×C0,Eext(T )∪{1,...,rα}, T X̂⊗RΩ
0,1

C0,Eext(T )∪{1,...,rα}/M0,Eext(T )∪{1,...,rα}

) an Srα-

equivariant linear map vanishing in a neighborhood of the nodes and Eext(T )-marked
points. We require that να coincide (via (1.8)–(1.9)) with ν±α outside a compact subset
of X̂ .

We denote by AII(T ) the set of such thickening datums. Note that for any morphism T → T ′,
there is a tautological identification AII(T ) = AII(T

′).
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Definition 3.11 (Set of thickening datums AIII). A thickening datum α for a connected
non-empty T ∈ SIII is defined identically as a thickening datum for T ∈ SII. This makes
sense since in Setup III, the identifications (1.8)–(1.9) are independent of t and the definition
of a thickening datum does not make reference to λt or J t. We denote by AIII(T ) the set
of such thickening datums. Note that for any morphism T → T ′, there is a tautological
identification AIII(T ) = AIII(T

′).

Definition 3.12 (Set of thickening datums AIV). A thickening datum α for a connected
non-empty T ∈ SIV consists of the following data:

(i) rα, Eα as in Definition 3.9(i),(ii).

(ii) {Di
α ⊆ Y i}i=0,1,2, {ν

i
α : Eα → C∞(Ŷ i×C0,Eext(T )∪{1,...,rα}, T Ŷ

i⊗RΩ
0,1

C0,Eext(T )∪{1,...,rα}/M0,Eext(T )∪{1,...,rα}

)R}i=0

as in Definition 3.9(iii),(iv).

(iii) {D̂i,i+1
α ⊆ X̂ i,i+1}i=0,1 as in Definition 3.10(iii).

(iv) D̂02,t
α ⊆ X̂02,t a smoothly varying family of compact codimension two submanifolds

with boundary for t ∈ [0,∞) as in Definition 3.10(iii) which coincides with the descent
of D̂01

α ⊔D̂
12
α for sufficiently large t. “Smoothly varying” means the projection to [0,∞)

is a submersion (and remains a submersion when restricted to the boundary).

(v) {νi,i+1
α : Eα → C∞(X̂ i,i+1×C0,Eext(T )∪{1,...,rα}, T X̂

i,i+1⊗RΩ
0,1

C0,Eext(T )∪{1,...,rα}/M0,Eext(T )∪{1,...,rα}

)}i=0,1

as in Definition 3.10(iv).

(vi) ν02,tα : Eα → C∞(X̂02,t×C0,Eext(T )∪{1,...,rα}, T X̂
02,t,⊗RΩ

0,1

C0,Eext(T )∪{1,...,rα}/M0,Eext(T )∪{1,...,rα}

)

as in Definition 3.10(iv) coinciding with the descent of ν01α ⊔ ν
12
α for sufficiently large t,

and varying smoothly with t.

We denote by AIV(T ) the set of such thickening datums. Note that for any morphism T → T ′,
there is a tautological identification AIV(T ) = AIV(T

′).

3.4 Index sets Ā(T )

We define the index sets Ā(T ) of the implicit atlases on M(T ) as unions of copies of the sets
of thickening datums A(T ). Precisely, we define

Ā(T ) :=
⊔

T ′⊆T

A(T ′), (3.9)

where the disjoint union is over all subtrees T ′ of T . What qualifies as a subtree depends on
which case (I), (II), (III), (IV) we are in, and we discuss each case individually. Informally,
in cases (I) and (II), a subtree of T is a tree T ′ which appears in some concatenation
yielding T , however this interpretation breaks down somewhat in cases (III) and (IV) due
to connectedness issues.

Let us first explain what we mean by a subtree of an ordinary directed tree T (or forest),
as opposed to an object of one of the categories S. Choosing some subset of the vertices
V (T ′) ⊆ V (T ), we define E(T ′) ⊆ E(T ) as all edges incident to an element of V (T ′) (at
at least one of its endpoints). The resulting graph T ′ will be called a subtree when it is
connected and non-empty. Below, we will use the word “physical subtree” for this notion, to
distinguish it from the notion of a subtree of an object of some S. An example is illustrated
in Figure 9.
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Figure 9: A tree and its six physical subtrees.

Definition 3.13 (Index set ĀI). For T ∈ SI, we define

ĀI(T ) :=
⊔

T⊇T ′∈SI

AI(T
′). (3.10)

More precisely, there is exactly one subtree T ⊇ T ′ ∈ SI for every physical subtree of the
underlying tree of T . A physical subtree becomes an object of SI simply by restricting the
vertex and edge decorations from T . Note that there is no canonical way to choose basepoints
for the input/output edges of subtrees T ′ ∈ SI, however the disjoint union (3.10) remains
well-defined since the subgroup of Aut(T ′) given by paths between basepoints acts trivially
on AI(T

′).

Definition 3.14 (Index set ĀII). For T ∈ SII, we define

ĀII(T ) :=
⊔

T⊇T ′∈S+I

A+
I (T

′) ⊔
⊔

T⊇T ′∈S−I

A−
I (T

′) ⊔
⊔

T⊇T ′∈SII

AII(T
′). (3.11)

More precisely, physical subtrees of T give rise to terms in this disjoint union as follows:

(i) T ⊇ T ′ ∈ SII are those with ∗(e+) = 0 and ∗(e−) = 1 for e± ∈ E±(T ′).

(ii) T ⊇ T ′ ∈ S+
I are those for which all edges and vertices have ∗ = 0.

(iii) T ⊇ T ′ ∈ S−
I are those for which all edges and vertices have ∗ = 1.

Note that those physical subtrees T ′ ⊆ T for which all edges and vertices have ∗ = 0 and
which have no negative external edges can be regarded as objects of S+

I or SII, and thus
appear twice in (3.11).

Definition 3.15 (Index set ĀIII). For T ∈ SIII, we define

ĀIII(T ) :=
⊔

T⊇T ′∈S+I

A+
I (T

′) ⊔
⊔

T⊇T ′∈S−I

A−
I (T

′)

⊔
⊔

T⊇T ′∈St=0
II

At=0
II (T ′) ⊔

⊔

T⊇T ′∈St=1
II

At=1
II (T ′) ⊔

⊔

T⊇T ′∈SIII

AIII(T
′). (3.12)

More precisely, physical subtrees of T give rise to terms in this disjoint union as follows:

(i) T ⊇ T ′ ∈ SIII are those with ∗(e+) = 0 and ∗(e−) = 1 for e± ∈ E±(T ′).

(ii) T ⊇ T ′ ∈ St=0
II are those with ∗(e+) = 0 and ∗(e−) = 1 for e± ∈ E±(T ′) and s(T ) = {0}.

(iii) T ⊇ T ′ ∈ St=1
II are those with ∗(e+) = 0 and ∗(e−) = 1 for e± ∈ E±(T ′) and s(T ) = {1}.

(iv) T ⊇ T ′ ∈ S+
I are those for which all edges and vertices have ∗ = 0.

(v) T ⊇ T ′ ∈ S−
I are those for which all edges and vertices have ∗ = 1.
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It should be emphasized that subtrees T ⊇ T ′ ∈ St=0
II (respectively T ⊇ T ′ ∈ St=1

II ) are only
present when s(T ) = {0} (respectively s(T ) = {1}). It should also be emphasized that we
consider only subtrees (required to be connected and non-empty), rather than subforests.

Definition 3.16 (Index set ĀIV). For T ∈ SIV, we define

ĀIV(T ) :=
⊔

T⊇T ′∈S0I

A0
I (T

′) ⊔
⊔

T⊇T ′∈S2I

A2
I (T

′) ⊔
⊔

T⊇T ′∈S02II

A02
II (T

′)

⊔
⊔

T⊇T ′∈S01II

A01
II (T

′) ⊔
⊔

T⊇T ′∈S1I

A1
I (T

′) ⊔
⊔

T⊇T ′∈S12II

A12
II (T

′) (3.13)

⊔
⊔

T⊇T ′∈SIV

AIV(T
′).

More precisely, physical subtrees of T give rise to terms in this disjoint union as follows:

(i) T ⊇ T ′ ∈ SIV are those with ∗(e+) = 0 and ∗(e−) = 2 for e± ∈ E±(T ′).

(ii) T ⊇ T ′ ∈ S01
II are those with ∗(e+) = 0 and ∗(e−) = 1 for e± ∈ E±(T ′) and s(T ) = {∞}.

(iii) T ⊇ T ′ ∈ S12
II are those with ∗(e+) = 1 and ∗(e−) = 2 for e± ∈ E±(T ′) and s(T ) = {∞}.

(iv) T ⊇ T ′ ∈ S02
II are those with ∗(e+) = 0 and ∗(e−) = 2 for e± ∈ E±(T ′) and s(T ) = {0}.

(v) T ⊇ T ′ ∈ S0
I are those for which all edges and vertices have ∗ = 0.

(vi) T ⊇ T ′ ∈ S1
I are those for which all edges and vertices have ∗ = 1.

(vii) T ⊇ T ′ ∈ S2
I are those for which all edges and vertices have ∗ = 2.

A morphism T → T ′ induces a natural inclusion

Ā(T ′) →֒ Ā(T ), (3.14)

since given T → T ′, any subtree T ′′ ⊆ T ′ pulls back to a subtree of T .
For any concatenation {Ti}i, there is a natural inclusion

⊔

i

Ā(Ti) →֒ Ā(#iTi). (3.15)

3.5 Thickened moduli spaces

We now define the thickened moduli spaces for the implicit atlases on the moduli spaces M.

Definition 3.17 (Moduli space MI(T )I). Let T ∈ SI and let I ⊆ ĀI(T ) be finite. An
I-thickened pseudo-holomorphic building of type T consists of the following data:

(i) Domains Cv and punctures pv,e as in Definition 2.7(i). For α ∈ I, let Cα :=
⊔

v∈Tα
Cv/∼,

where T ⊇ Tα ∈ SI denotes the subtree indexing the term in (3.10) containing α ∈ I,
and ∼ identifies pv,e ∼ pv′,e for interior edges v

e
−→ v′ of Tα (see Figure 10).

(ii) Maps uv, asymptotic markers b̃e, and matching isomorphisms me as in Definition
2.7(ii),(iii),(iv),(v).

(iii) For all α ∈ I, we require that (u|Cα) ⋔ D̂α with exactly rα intersections, which
together with {pv,e}v,e stabilize Cα. By (u|Cα) ⋔ D̂α, we mean that γe ∩ Dα = ∅ for

edges e ∈ E(Tα), (u|Cα)
−1(∂D̂α) = ∅, (u|Cα)

−1(D̂α) does not contain any node, and
(du)p : TpCα → Tu(p)Ŷ /Tu(p)D̂α is surjective for p ∈ (u|Cα)

−1(D̂α).

52



Figure 10: A tree with its six subtrees, and a corresponding pseudo-holomorphic building
with its corresponding subbuildings.

(iv) {φα : Cα → C0,Eext(Tα)∪{1,...,rα}}α∈I , where each φα maps Cα isomorphically onto a

fiber of C0,Eext(Tα)∪{1,...,rα}, where Cα is equipped with its given marked points pv,e for

e ∈ Eext(Tα) and any marking of (u|Cα)
−1(D̂α) with {1, . . . , rα}. Note that under

(iii) above, choosing φα is equivalent to choosing a marking of (u|Cα)
−1(D̂α) with

{1, . . . , rα}.

(v) {eα ∈ Eα}α∈I .

(vi) We require that u satisfy

(

du+
∑

α∈I

να(eα)(φα(·), u(·))
)0,1

Ĵ
= 0. (3.16)

Note that the term in
∑

α∈I corresponding to α makes sense only over Cα, and we
define it to be zero elsewhere.

An isomorphism ({Cv}, {pv,e}, {uv}, {b̃e}, {me}, {φα}, {eα})→ ({C ′
v}, {p

′
v,e}, {u

′
v}, {b̃

′
e}, {m

′
e}, {φ

′
α}, {e

′
α})

between I-thickened pseudo-holomorphic buildings of type T is defined as in Definition 2.7,
with the additional requirements that eα = e′α and φα,v = φ′

α,v ◦ iv for v ∈ Tα. We denote by
MI(T )I the set of isomorphism classes of stable I-thickened pseudo-holomorphic buildings
of type T . Note the tautological action of Aut(T ) on M(T ) by changing the marking.

Note that the sum over α in (3.16) is supported away from the punctures pv,e ∈ Cv,

and hence uv is genuinely Ĵ-holomorphic near pv,e. Note also that (3.16) is equivalent to

the assertion that the graph (id, uv) : Cv → Cv × Ŷ is pseudo-holomorphic for the almost
complex structure on Cv × Ŷ given by

(

jCv 0

(
∑

α∈I να(eα)(φα(·), ·))
0,1 Ĵ

)

. (3.17)

Hence solutions to the I-thickened pseudo-holomorphic curve equation enjoy all of the nice
local a priori estimates from §2.8. Specifically, Lemma 2.18 applied to the graph of u implies
that C0-estimates imply C∞-estimates, and Lemma 2.19 and Proposition 2.20 apply to u
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itself since the perturbation terms να are supported away from the nodes and the long
cylinders of the domain.

Definition 3.18 (Moduli space MII(T )I). Let T ∈ SII and let I ⊆ ĀII(T ). An I-thickened
pseudo-holomorphic building of type T consists of the following data:

(i) Domains Cv and punctures pv,e as in Definition 2.7(i).

(ii) Maps uv, asymptotic markers b̃e, and matching isomorphisms me as in Definition
2.7(ii),(iii),(iv),(v) (the target of uv is X̂

∗(v)).

(iii) For all α ∈ I, we require that (u|Cα) ⋔ D̂α with exactly rα intersections, which together
with {pv,e}v,e stabilize Cα. More precisely, we intersect uv with the relevant D̂α ⊆ X̂

or D̂±
α ⊆ Ŷ ± depending on ∗(v).

(iv) {φα : Cα → C0,Eext(Tα)∪{1,...,rα}}α∈I as in Definition 3.17(iv).

(v) We require that u satisfy (3.16), noting to use να or ν±α depending on ∗(v).

An isomorphism between pseudo-holomorphic buildings of type T is defined as in Definition
3.17, except that there is a translation sv ∈ R only if v is a symplectization vertex. We
denote by MII(T )I the set of isomorphism classes of stable I-thickened pseudo-holomorphic
buildings of type T .

Definition 3.19 (Moduli space MIII(T )I). Let T ∈ SIII and let I ⊆ ĀIII(T ) be finite. We
denote by MIII(T )I the union over t ∈ s(T ) of the set of isomorphism classes of stable
I-thickened pseudo-holomorphic buildings of type T .

Definition 3.20 (Moduli space MIV(T )I). Let T ∈ SIV and let I ⊆ ĀIV(T ) be finite. We
denote by MIV(T )I the union over t ∈ s(T ) of the set of isomorphism classes of stable
I-thickened pseudo-holomorphic buildings of type T .

Definition 3.21 (Moduli spaces MI). For T ∈ S and I ⊆ Ā(T ), we define

M(T )I :=
⊔

T ′→T
M(T ′)6=∅

M(T ′)I/Aut(T
′/T ). (3.18)

Each such set M(T )I has a natural Gromov topology which is Hausdorff.

The stratifications (2.5) are clearly defined on the thickened moduli spaces M(T )I . The
tautological functorial structure (2.3) (combined with (3.14)) and (2.4) (combined with
(3.15)) also exists for the thickened moduli spaces.

Definition 3.22 (Regularity of I-thickened pseudo-holomorphic buildings). As in Definition
2.39, given an I-thickened pseudo-holomorphic building of type T , we consider the linearized
operator

EI ⊕
⊕

v∈V (T )

W̃ k,2,δ(Cv, u
∗
vTX̂v)→

⊕

v∈V (T )

W k−1,2,δ(C̃v, u
∗
v(TX̂v)Ĵv ⊗C Ω0,1

C̃v
) (3.19)

(recall that EI :=
⊕

α∈I Eα). Note that when rα > 0 for some α ∈ I, we must take k ≥ 2
so that W k,2 ⊆ C0 (see [Ada75, Lemma 5.17]) so that the first variation of φα under W k,2

deformations of u is defined.
A point in a moduli space M(T )I is called regular iff this linearized operator is surjective.

We denote by M(T )regI ⊆M(T )I the locus of points which are regular and which have trivial
automorphism group.
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3.6 Implicit atlas structure

We now define the rest of the implicit atlas structure for the implicit atlases Ā(T ) on M(T ).
Recall that the covering groups Γα and the obstruction spaces Eα are already built into

the definition of Ā(T ) from §§3.3–3.4. The thickened moduli spaces M(T )I and their regular
loci M(T )regI ⊆ M(T )I were defined in §3.5. The Kuranishi maps sα : M(T )I → Eα are
the tautological maps picking out eα (Definition 3.17(v)), and the footprint maps ψIJ :
(sJ\I |M(T )J)

−1(0)→M(T )I are the tautological forgetful maps.

The footprint UIJ ⊆M(T )I is defined as the locus of buildings which satisfy the transver-
sality condition Definition 3.17(iii) for all α ∈ J , and it follows immediately from this defini-
tion that ψIJ induces a bijection (sJ\I |M(T )J)

−1(0)/ΓJ\I → UIJ . Inspection of the definition

of the Gromov topology shows that this map is a homeomorphism and that UIJ ⊆M(T )I is
open.

Theorem 3.23. The above data define oriented implicit atlases Ā(T ) on M(T ).

Proof. Of the axioms which have not already been discussed (and which are nontrivial), the
covering axiom follows from Propositions 3.26–3.30 below, and the openness and submersion
axioms follow from Theorems 3.31 and 3.32 below.

3.7 Stabilization of pseudo-holomorphic curves

We now verify the covering axiom for the implicit atlases Ā(T ) on M(T ). Namely, we show
that the moduli spaces M(T ) are covered by the regular loci in their thickenings M(T )regI .
The essential content is to show that at every point in each moduli space M(T ), there exists
a codimension two submanifold (as in Definition 3.9(iii)) which stabilizes the domain (i.e.
satisfies Definition 3.17(iii)).

Lemma 3.24. Let u : D2 → (X, J) be J-holomorphic (for an almost complex manifold
(X, J)). Then either du : TpC → Tu(p)X is injective for some p ∈ D2 or3 u is constant.

Proof. If du is non-injective, it must be zero by J-holomorphicity.

Lemma 3.25. Let u : D2 → (Ŷ , Ĵ) be Ĵ-holomorphic (for (Y, λ, J) as in Setup I). Denote
by πξ : T Ŷ → ξ the projection under the splitting T Ŷ = ξ ⊕ RRλ ⊕ R∂s. Then either
πξdu : TpC → ξu(p) is injective for some p ∈ D2 or4 u factors through id×γ : R×R→ R×Y
for some Reeb trajectory γ : R→ Y .

Proof. If πξdu is non-injective, it must be zero. If πξdu vanishes identically, then du is

everywhere tangent to the 2-dimensional foliation of Ŷ by RRλ ⊕ R∂s, and thus u factors
through one of its leaves.

Recall that UIJ ⊆ M(T )I denotes the locus of buildings satisfying the transversality
condition in Definition 3.17(iii) for α ∈ J \ I.

3In fact, it is a standard (but nontrivial) fact that the first alternative can be strengthened to state that
the zeroes of du form a discrete set (see [MS04, Lemma 2.4.1]).

4In fact, it is a standard (but nontrivial) fact that the first alternative can be strengthened to state that
the zeroes of πξdu form a discrete set (see Hofer–Wysocki–Zehnder [HWZ95, Proposition 4.1]).
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Proposition 3.26. For every x ∈ MI(T ), there exists α ∈ AI(T ) such that x ∈ U∅,{α} and

ψ−1
∅,{α}(x) ⊆MI(T )

reg
{α}.

Proof. The point x is an isomorphism class of stable pseudo-holomorphic building of type
T ′ → T .

We claim that for all v ∈ V (T ′), either Cv is stable (i.e. the degree of v is ≥ 3) or πξduv
is injective somewhere on Cv. To see this, suppose that πξduv ≡ 0 and apply Lemma 3.25

to uv : Cv → Ŷ . If the resulting Reeb trajectory γ : R → Y is not a closed orbit, then uv
factors through R×R→ R× Y , and consideration of the positive puncture of Cv leads to a
contradiction. Thus uv factors through a trivial cylinder R × S1 → R × Y for some simple
Reeb orbit γ : S1 → Y . The map Cv → R×S1 is holomorphic, and it must have ramification
points, as otherwise the building x would be unstable. It now follows from Riemann–Hurwitz
that Cv is stable. Thus the claim is valid.

Now using the claim, it follows from Sard’s theorem that there exists Dα ⊆ Y satisfying
Definition 3.17(iii) for some rα ≥ 0. Now to show the existence of Eα and να so that x is
regular for the thickening datum α = (Dα, rα, Eα, να), it suffices to show that

⊕

v∈V (T ′)

C∞
c (C̃v \ ({pv,e}e ∪ Ñv), u

∗
vT ŶĴ ⊗C Ω0,1

C̃v
) (3.20)

surjects onto the (finite-dimensional) cokernel of the linearized operator at x (where Ñv ⊆ C̃v
denotes the pre-images of the nodes of Cv). Let ε be a continuous linear functional on

⊕

v∈V (T ′)

W k−1,2,δ(C̃v, u
∗
vT ŶĴ ⊗C Ω0,1

C̃v
) (3.21)

which vanishes both on (3.20) and on the image of the linearized operator; it suffices to show
that ε = 0. By Lemma 2.35, the space

⊕

v∈V (T ′)

C∞
c (C̃v \ {pv,e}e, u

∗
vT ŶĴ ⊗C Ω0,1

C̃v
) (3.22)

is dense in (3.21), so it suffices to show that ε vanishes as a distribution. Since ε annihilates
(3.20), it is supported over the finite set Ñv. When k = 2, no nonzero distribution of finite
support is continuous on W k−1,2 (recall Lemma 2.41 and note that W 1,2 * C0 [Ada75,
Example 5.26]). Since we did not use the fact that ε annihilates the image of the linearized
operator, we have in fact shown that (3.20) is dense in (3.21).

Remark 3.27. There are two alternative ways to conclude the proof of Proposition 3.26.
First, using the fact that ε annihilates the image of D, it follows that D∗ε (D∗ denotes the
formal adjoint of D) is a linear combination of δ-functions supported over Ñv. But such
δ-functions live in H−2 (by Sobolev embedding H2 ⊆ C0 [Ada75, Lemma 5.17]) and the
formal adjoint is elliptic, so this means ε ∈ H−1, which contains no nonzero distributions
supported at single points as argued above. Second, we could define the linearized operator
for nodal curves using weights near the nodes (as we do in §5.2.1 to prove gluing) and simply
cite Lemma 2.35 to conclude that (3.20) is dense in the target weighted Sobolev space for
all k ≥ 2.
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Proposition 3.28. For every x ∈MII(T ), there exists α ∈ AII(T ) such that x ∈ U∅,{α} and

ψ−1
∅,{α}(x) ⊆MII(T )

reg
{α}.

Proof. The point x is an isomorphism class of stable pseudo-holomorphic building of type
T ′ → T .

As in the proof of Proposition 3.26, for v ∈ V (T ′) with ∗(v) = 00 or ∗(v) = 11, either Cv
is stable or πξduv is injective somewhere on Cv. For ∗(v) = 01, every irreducible component
of Cv is either stable or has a point where duv injective by Lemma 3.24.

Now we can find a (compact) codimension two submanifold D̂α ⊆ X̂ such that u ⋔ D̂α

with intersections stabilizing every Cv with ∗(v) = 01. Now we consider the remaining
unstable Cv (∗(v) = 00 or ∗(v) = 11), and we choose codimension two submanifoldsD±

α ⊆ Y ±

stabilizing these. We then cutoff D̂±
α near infinity in X̂ and add this to D̂α. Thus u ⋔ D̂α

with rα intersections which stabilize C.
Now (Eα, να) are constructed as in Proposition 3.26.

Proposition 3.29. For every x ∈ MIII(T ), there exist αi ∈ AIII(Ti) such that x ∈ U∅,{αi}i

and ψ−1
∅,{αi}i

(x) ⊆MIII(T )
reg
{αi}i

(writing T =
⊔

i Ti with Ti connected and non-empty).

Proof. Apply Proposition 3.28 to each subbuilding of type Ti to get αi.

Proposition 3.30. For every x ∈ MIV(T ), there exist αi ∈ AIV(Ti) such that x ∈ U∅,{αi}i

and ψ−1
∅,{αi}i

(x) ⊆MIV(T )
reg
{αi}i

(writing T =
⊔

i Ti with Ti connected and non-empty).

Proof. Essentially the same as the proof of Propositions 3.28–3.29.

3.8 Local structure of thickened moduli spaces via local models G

We now state the precise sense in which the spaces GT ′//T are local topological models for

the regular loci in the thickened moduli spaces M(T ). We also state the compatibility of
this local topological structure with the natural maps on orientation lines discussed earlier.
These statements (which contain those from §2.14 as a special case) are in essence a gluing
theorem, and their proofs are given in §5. They imply that the openness and submersion
axioms hold for the implicit atlases we have defined, and they give canonical isomorphisms
oM(T ) = oT .

The (Banach space) implicit function theorem implies that M(T )regI is a (smooth) mani-
fold of dimension µ(T )−#Vs(T ) + dim s(T ) + dimEI over the locus without nodes.

Theorem 3.31 (Local structure of M(T )regI ). Let I ⊆ J ⊆ Ā(T ). Let x0 ∈M(T )J be of type
T ′ → T and satisfy sJ\I(x0) = 0 and ψIJ(x0) ∈M(T )regI . Then µ(T )−#Vs(T

′)−2#N(x0)+
dimEI ≥ 0 and there is a local homeomorphism

(

GT ′//T × EJ\I × CN(x0) × Rµ(T )−#Vs(T ′)−2#N(x0)+dimEI , (0, 0, 0)
)

→
(

M(T )J , x0
)

(3.23)

whose image lands in M(T )regJ and which commutes with the maps from both sides to ST ′//T×

s(T )×EJ\I (as well as the stratifications by number of nodes).

Proof. See §§5.1–5.3.
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The (Banach space) implicit function theorem moreover gives a canonical identification

oM(T )regI
= oT ⊗ oEI

. (3.24)

More precisely, this identification is made over the locus in M(T )regI without nodes, and has
a unique continuous extension to all of M(T )regI by virtue of the local topological description
in Theorem 3.31. This identification is easily seen to be compatible with ψIJ and with
concatenations. It is also compatible with morphisms T ′ → T in the following precise sense.

Theorem 3.32 (Compatibility of the “analytic” and “geometric” maps on orientations).
The following diagram commutes:

oM(T ′)regI
⊗ oGT ′//T

⊗ o∨s(T ′) oT ′ ⊗ oEI
⊗ oGT ′//T

⊗ o∨s(T ′)

o
M(T )regI

oT ⊗ oEI
,

(3.24)

(3.23) (2.61)

(3.24)

(3.25)

where the left vertical map is the “geometric” map induced by the local topological structure of
M(T )regI coming from (3.23), and the right vertical map is the “analytic” map (2.61) defined
earlier via the “kernel gluing” operation.

Proof. See §5.4.

4 Virtual fundamental cycles

In this section, we prove Theorem 1.1 as stated in the introduction. Specifically, Theorem 1.1
follows by combining Definition 4.32 with Remark 4.15, Proposition 4.33, and Proposition
4.34.

4.1 Review of the VFC package

We begin with a review of the framework introduced in [Par16] for defining the virtual
fundamental cycle of a space equipped with an implicit atlas. We state here all the results
from [Par16] which we will be appealing to in the rest of this section. We use Q coeffients
throughout, and orientation lines are tacitly tensored up to Q.

4.1.1 The basic formalism

Let X be a compact Hausdorff space equipped with an implicit atlas A with boundary
in the sense of Definition 3.3 (recall also Remark 3.4), oriented with respect to o and of
virtual dimension d (meaning these are the orientation line and virtual dimension of the top
stratum). Assume for the moment that A is finite, and let

C•(E;A) := CdimEA+•(EA, EA \ 0; o
∨
EA

)ΓA (4.1)
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following [Par16, Definition 4.2.4] (the superscript indicates taking ΓA-invariants); note that
there is a canonical isomorphism H•(E;A) = Q (concentrated in degree zero). Now for any
(X,A) as above, [Par16, Definition 4.2.6] defines a cochain complex

C•
vir(X rel ∂;A) (4.2)

together with a canonical pushforward map

Cd+•
vir (X rel ∂;A)→ C−•(E;A), (4.3)

and [Par16, Theorem 4.3.4] provides a canonical isomorphism

H•
vir(X rel ∂;A) = Ȟ•(X, j!o), (4.4)

where j : X \ ∂X →֒ X . The map (4.3) is the (chain level!) virtual fundamental cycle of
X (taking cohomology and combining with (4.4) yields a map Ȟd(X, j!o)→ Q which is, by
definition, integration over the virtual fundamental class of X).

Remark 4.1. As an aside, let us provide some very brief motivation for this formalism of
virtual fundamental cycles (the reader may refer to [Par16, §§1–2] for details). Suppose
that for some α ∈ A, the α-thickened space Xα is everywhere regular (namely Xα = Xreg

α ),
has no isotropy (meaning Γα = 1), and has footprint all of X (that is U∅,{α} = X∅). In
this situation, we have X = s−1

α (0) for sα : Xα → Eα, and we obviously want to define
[X ]vir := [Xα]∩ s

∗
ατEα, where τEα denotes the Thom class of Eα. Another way of stating the

equality [X ]vir = [Xα]∩ s
∗
ατEα is to say that evaluation on [X ]vir is given by the composition

Ȟ•(X) = HdimXα−•(Xα, Xα \X)
(sα)∗
−−−→ HdimXα−•(Eα, Eα \ 0) = Q[dimEα − dimXα] (4.5)

(ignoring orientation lines for the moment), where the first equality is a form of Poincaré
duality. In general, the complex C•

vir(X rel ∂;A) is built out of relative chain groups of
(roughly speaking) the regular loci in the thickened spaces Xreg

I , and (4.3)–(4.4) are a direct
generalization of (4.5).

For an inclusion of implicit atlases A ⊆ A′ on the same space X , there are canonical
quasi-isomorphisms

C•
vir(X rel ∂;A)

∼
−→ C•

vir(X rel ∂;A′), (4.6)

C•(E;A)
∼
−→ C•(E;A

′), (4.7)

which compose as expected and are compatible with (4.3) (on the chain level), see [Par16,
Definition 4.2.7].5 These maps allow us to remove our assumption that A is finite, namely
by defining C•(E;A) and C•

vir(X rel ∂;A) for general A by taking the direct limit over the
collection of finite subsets of A.

Lemma 4.2 ([Par16, Lemma 5.2.6]). If X = Xreg, then the map Ȟd(X ; j!o)→ Q from (4.3)
is evaluation on the ordinary fundamental class [X ] ∈ Hd(X, ∂X ; o∨).

5More precisely, the maps defined in [Par16] carry an extra factor of ⊗ C•(E;A′ \ A) on the left. Let
[Eα] ∈ C0(E;α) be the fundamental cycle obtained by pulling back some [Rn] ∈ Cn(Rn,Rn \ 0; o∨

Rn) (fixed
once and for all) under the specified identification Eα = Rnα and averaging over Γα (alternatively, we could
modify the definition of a thickening datum to include the data of a fundamental cycle [Eα] ∈ C0(E;α)).
Now (4.6)–(4.7) are defined by pre-composing the maps in [Par16] with ⊗

⊗

α∈A′\A[Eα].
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4.1.2 Homotopy sheaves

Recall from [Par16, Definition A.2.5] that a presheaf of complexes F• on the category of
compact subsets of a locally compact Hausdorff space X is called a homotopy sheaf iff it
satisfies the following three axioms:

(hSh1) F•(∅) is acyclic.

(hSh2)
[

F•(K1∪K2)→ F•−1(K1)⊕F•−1(K2)→ F•−2(K1∩K2)
]

is acyclic for all K1, K2 ⊆ X .

(hSh3) lim
−→ K⊆U

U open
F•(U)→ F•(K) is a quasi-isomorphism for all K ⊆ X .

A homotopy sheaf should be thought of as a complex of presheaves which calculates its own
cohomology, in the sense that the natural map H•F•(K) → Ȟ•(K,F•) is an isomorphism
[Par16, Proposition A.4.14].

Recall from [Par16, Definition A.5.1] that a homotopy sheaf F• is called pure iff it satisfies
the following two axioms:

For all p ∈ X and i 6= 0, we have H iF•({p}) = 0. (4.8)

For all p ∈ X , there exists a neighborhood U ⊆ X of p and an integer i0 (4.9)

such that H iF•(K) = 0 for all K ⊆ U and i ≤ i0.

From a conceptual standpoint, it is condition (4.8) which is most significant, and it should be
thought of as saying that F• is (stalkwise) quasi-isomorphic to a sheaf H0F• [Par16, Lemma
A.5.3]. In particular, for any pure homotopy sheaf F•, there is a canonical isomorphism

H•F•(X) = Ȟ•(X ;H0F•) (4.10)

by [Par16, Proposition A.5.4].
The complex C•

vir(X rel ∂;A) extends naturally to a presheaf of complexes

K 7→ C•
vir(X rel ∂;A)K (4.11)

on compact subsetsK ⊆ X , with complex of global sections C•
vir(X rel ∂;A) = C•

vir(X rel ∂;A)X .
6

By [Par16, Proposition 4.3.3], this presheaf is a pure homotopy sheaf. In more detail, axiom
(hSh1) is trivial, axiom (hSh2) follows from Mayer–Vietoris for singular chains, axiom (hSh3)
follows from compactness of simplices, axiom (4.8) is a local homology calculation (essen-
tially HdimM−•(M,M \ p) = oM,p), and axiom (4.9) follows from the finite-dimensionality of
the thickened moduli spaces comprising the implicit atlas A.

The sheaf K 7→ H0
vir(X rel ∂;A)K associated to (4.11) is canonically isomorphic to j!o

on X . Furthermore, this isomorphism has a natural local description in terms of Poincaré
duality [Par16, Lemma 4.3.2]. The isomorphism (4.4) is thus a special case of (4.10).

4.1.3 Stratifications

Let X be a compact Hausdorff space equipped with an implicit atlas A with oriented cell-like
stratification in the sense of Definition 3.2. The implicit atlas on X induces implicit atlases
on each closed stratum X/t for t ∈ T, simply by defining (X/t)I := (XI)/t. To understand

6In [Par16], the relatively inferior notation C•
vir(K rel∂;A) is used in place of C•

vir(X rel ∂;A)K .
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how the virtual fundamental cycles of each of the strata X/t fit together, [Par16, Definition
6.2.2] defines

C•
vir(X,T;A) :=

⊕

t∈T

[

C•
vir(X/t rel ∂;A)⊗ o∨t ⊗ otmax

]Aut(t)
, (4.12)

(the superscript indicates taking Aut(t)-invariants) equipped with the differential given by
(the internal differential plus) pushing forward along all codimension one maps t → t′ in
T (and contracting on the left with a chosen orientation of R). There is now a canonical
isomorphism

H•
vir(X ;A) = Ȟ•(X ; otmax). (4.13)

This is shown in [Par16, Propositions 6.2.3 and 4.3.3] for stratifications by posets, and
the reasoning there applies without modification to the present setting of stratifications by
categories in the sense of Definition 2.15.

To be more precise, the proof of the isomorphism (4.13) proceeds by considering the
presheaf of complexes on X given by

K 7→ C•
vir(X,T;A)K :=

⊕

t∈T

[

C•
vir(X/t rel ∂;A)K/t

⊗ o∨t ⊗ otmax

]Aut(t)

, (4.14)

with differential as in (4.12). It is easy to see that K 7→ C•
vir(X rel ∂;A)K being a homotopy

sheaf implies the same for K 7→ C•
vir(X,T;A)K [Par16, Lemma A.2.11], and it is straightfor-

ward to argue that purity also passes. The sheaf K 7→ H0
vir(X,T;A)K now has a filtration

whose associated graded is the direct sum

K 7→
⊕

t∈T

[

H0
vir(X/t rel ∂;A)K/t

⊗ o∨t ⊗ otmax

]Aut(t)

(4.15)

There is thus a natural stalkwise isomorphism of K 7→ H0
vir(X,T;A)K with the constant

sheaf otmax on X , and a local construction [Par16, Example 6.2.1] along with [Par16, Lemma
4.3.2] shows that it comes from an isomorphism of sheaves.

4.1.4 Products

For spaces X and Y with implicit atlases A and B, by [Par16, Definition 6.3.2] there is a
canonical product map

C•
vir(X rel ∂;A)⊗ C•

vir(Y rel ∂;B)→ C•
vir(X × Y rel ∂;A ⊔ B), (4.16)

compatible with (4.3) and (4.6)–(4.7). Under the isomorphisms (4.4), this map is simply the
usual Künneth product map. This is not mentioned explicitly in [Par16], rather it follows
from Lemma 4.3 below and recalling from [Par16, Definition 6.3.2] that the map (4.16)
extends naturally to a family of maps

C•
vir(X rel ∂;A)K ⊗ C

•
vir(Y rel ∂;B)K ′ → C•

vir(X × Y rel ∂;A ⊔B)K×K ′ (4.17)

compatible with restriction.
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Lemma 4.3. Let F•, G•, H• be pure homotopy sheaves on spaces X, Y , X×Y , respectively.
Let F•(K)⊗G•(K ′)→ H•(K×K ′) be a collection of maps compatible with restriction. Then
the following diagram commutes:

H•F•(X)⊗H•G•(Y ) H•H•(X × Y )

Ȟ•(X ;H0F•)⊗ Ȟ•(Y ;H0G•) Ȟ•(X × Y ;H0H•),

(4.10) (4.10) (4.18)

where the bottom horizontal arrow is the usual Künneth cup product map.

Proof. We consider the following commutative diagram:

H•F•(X)⊗H•G•(Y ) H• [F•(X)⊗ G•(Y )] H•H•(X × Y )

Ȟ•(X ;F•)⊗ Ȟ•(Y ;G•) H•
[

Č•(X ;F•)⊗ Č•(Y ;G•)
]

Ȟ•(X × Y,H•)

Ȟ•(X ; τ≤0F
•)⊗ Ȟ•(Y ; τ≤0G

•) H•
[

Č•(X ; τ≤0F
•)⊗ Č•(Y ; τ≤0G

•)
]

Ȟ•(X × Y, τ≤0H
•)

Ȟ•(X ;H0F•)⊗ Ȟ•(Y ;H0G•) H•
[

Č•(X ;H0F•)⊗ Č•(Y ;H0G•)
]

Ȟ•(X × Y,H0H•).

∼ ∼

∼ ∼

∼ ∼

(4.19)

Note that there is a natural map τ≤0F
• ⊗ τ≤0G

• → τ≤0(F
• ⊗ G•) → τ≤0H

•, but no such
natural map with τ≥0 in place of τ≤0. It is therefore important that the vertical columns
above are of the form F• ← τ≤0F

• → H0F• rather than F• → τ≥0F
• ← H0F•.

Now the far right and far left vertical maps above are all isomorphisms and define (4.10)
(see the proof of [Par16, Proposition A.5.4]). The outer square is exactly the desired diagram,
so we are done.

4.2 Sketch of the construction

We now sketch the construction of virtual fundamental cycles on the moduli spaces M(T ).
The remainder of this section is then devoted to turning this sketch into an actual proof.

The virtual fundamental cycle of a space with an implicit atlas is represented by the
pushforward map (4.3). Specializing this to the case at hand, the virtual fundamental class
[M(T )]vir is represented by a canonical map

C
vdim(T )+•
vir (M(T ) rel ∂; Ā(T ))→ C−•(E; Ā(T )). (4.20)

The domain of this map is quasi-isomorphic to the complex of Čech cochains Čvdim(T )+•(M(T ) rel ∂; oT )
by (4.4), and the target is quasi-isomorphic to Q. Thus, up to quasi-isomorphism, (4.20)
can be regarded as a map

Čvdim(T )+•(M(T ) rel ∂; oT )→ Q, (4.21)
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which is nothing other than a cycle

[M(T )]vir ∈ Cvdim(T )(M(T ) rel ∂; o∨T ). (4.22)

We note that the dual of Čech cochains Č• is Steenrod chains C• (see [Par16, §A.9] and
the references therein), although this level of precision is not really relevant for the present
sketch.

Now the functoriality of (4.20) with respect to morphisms and concatenations in S implies
that the virtual fundamental cycles (4.22) satisfy

∂[M(T )]vir =
∑

codim(T ′/T )=1

1

|Aut(T ′/T )|
[M(T ′)]vir, (4.23)

[M(#iTi)]
vir =

1

|Aut({Ti}i/#Ti)|

∏

i

[M(Ti)]
vir, (4.24)

which clearly imply the desired master equations.
To turn this sketch into an actual construction, we must carry out the above arguments

on the chain level, with all the necessary chain level functoriality with respect to morphisms
and concatenations in S. This is not completely trivial, since many of the chain maps we
are given go in the wrong direction (basically, we need to “invert quasi-isomorphisms”). The
rest of this section is devoted to performing the necessary algebraic manipulations.

4.3 S-modules

We begin by introducing the notion of an S-module. This notion formalizes the way in which
the moduli spacesM(T ) fit together under morphisms and concatenations in S (namely (2.3)–
(2.4)) and will be used below to efficiently encode the identities (4.23)–(4.24) satisfied by
the virtual fundamental cycles. In fact, many (or even most) of the objects introduced and
studied earlier in this paper are S-modules, as we explain in the examples which follow the
definition. The notion of an S-module plays a key organizational role in what follows.

Definition 4.4. An object T ∈ S will be called effective iff M(T ) 6= ∅.

Note that (1) for any morphism T → T ′, if T is effective, then so is T ′, and (2) for
any concatenation {Ti}i, every Ti is effective iff #iTi is effective. For the remainder of this
section, we will use S to denote the full subcategory spanned by effective objects.

Definition 4.5. An SI-module XI valued in a symmetric monoidal category C⊗ consists of
the following data:

(i) A functor XI : SI → C.

(ii) For every concatenation of {Ti}i in SI, a morphism

⊗

i

XI(Ti)→ XI(#iTi), (4.25)
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such that the following diagrams commute:

⊗

i

XI(Ti) XI(#iTi)

⊗

i

XI(T
′
i ) XI(#iT

′
i ),

(4.25)

(4.25)

⊗

i

XI(#jTij)

⊗

i,j

XI(Tij) XI(#ijTij),

(4.25)
⊗

i (4.25)

(4.25)

(4.26)

for any morphism of concatenations {Ti}i → {T
′
i}i and any composition of concatena-

tions, respectively.

A morphism of SI-modules is a natural transformation of functors compatible with (4.25).
An S

op
I -module is defined similarly, except that XI : S

op
I → C and the vertical arrows in

the leftmost diagram in (4.26) are reversed. Note that an S
op
I -module valued in C is not the

same thing as an SI-module valued in Cop (this is analogous to the difference between a lax
monoidal functor and an oplax monoidal functor).

Example 4.6. The functor MI is an SI-module (valued in the category of compact Hausdorff
spaces, with the product symmetric monoidal structure).

Example 4.7. The functor o◦ is an SI-module (valued in the category of orientation lines and
isomorphisms, with the super tensor product symmetric monoidal structure).

Example 4.8. The functor ĀI is an S
op
I -module (valued in the category of sets, with the

disjoint union symmetric monoidal structure).

Example 4.9. The functor T 7→ (SI)/T is an SI-module (valued in the category of categories,
with the product symmetric monoidal structure).

Definition 4.10. An SII-module XII valued in C⊗ consists of the following data:

(i) An S+
I -module X+

I valued in C⊗.

(ii) An S−
I -module X−

I valued in C⊗.

(iii) A functor XII : SII → C.

(iv) For every concatenation {Ti}i in SII, a morphism

⊗

Ti∈S
+
I

X+
I (Ti)⊗

⊗

Ti∈S
−
I

X−
I (Ti)⊗

⊗

Ti∈SII

XII(Ti)→ XII(#iTi), (4.27)

such that the following diagrams commute:

⊗

i

XI/II(Ti) XI/II(#iTi)

⊗

i

XI/II(T
′
i ) XI/II(#iT

′
i ),

⊗

i

XI/II(#jTij)

⊗

i,j

XI/II(Tij) XI/II(#ijTij),

(4.28)

for any morphism or composition of concatenations, respectively.
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A morphism of SII-modules consists of natural transformations of functors compatible with
(4.25), (4.27).

It would perhaps be more proper to speak of “(S±
I , SII)-modules (X±

I , XII)”, though such
notation rapidly becomes unwieldy. It will usually be clear from context what X±

I are once
we have specified XII, though at times we will specify the pair (X±

I , XII) for sake of clarity.
Examples 4.6–4.9 all generalize: (M±

I ,MII) is an (S±
I , SII)-module, etc.

Definition 4.11. An SIII-module XIII valued in C⊗ consists of the following data:

(i) An S
+
I -module X+

I valued in C⊗.

(ii) An S−
I -module X−

I valued in C⊗.

(iii) An (S±
I , S

t=0
II )-module (X±

I , X
t=0
II ) valued in C⊗.

(iv) An (S±
I , S

t=1
II )-module (X±

I , X
t=1
II ) valued in C⊗.

(v) A functor XIII : SIII → C.

(vi) For every concatenation {Ti}i in SIII, a morphism

⊗

i

XI/II/III(Ti)→ XIII(#Ti), (4.29)

satisfying the natural compatibility conditions, as in Definition 4.10.

A morphism of SIII-modules consists of natural transformations of functors compatible with
(4.25), (4.27), (4.29).

Definition 4.12. An SIV-module XIV valued in C⊗ consists of the following data:

(i) SiI-modules X i
I valued in C⊗ for 0 ≤ i ≤ 2.

(ii) (Si,jI , S
ij
II)-modules (X i,j

I , X ij
II ) valued in C⊗ for 0 ≤ i < j ≤ 2.

(iii) A functor XIV : SIV → C.

(iv) For every concatenation {Ti}i in SIV, a morphism

⊗

i

XI/II/IV(Ti)→ XIV(#iTi), (4.30)

satisfying the natural compatibility conditions, as in Definition 4.10.

A morphism of SIV-modules consists of natural transformations of functors compatible with
(4.25), (4.27), (4.30).

4.4 Sketch of the construction (revisited)

We now revisit the sketch from §4.2 using the language of S-modules.
Recall that the virtual fundamental cycles of the moduli spaces M(T ) come packaged

via the maps (4.20). Now the key coherence properties of these cycles (4.23)–(4.24) shall be
encoded in the fact that (4.20) is a map of S-modules. Thus our first task is to define the
S-modules C•+vdim

vir (M rel ∂) and C•(E) along with the pushforward map

C•+vdim
vir (M rel ∂)→ C−•(E). (4.31)
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We then must relate C•+vdim
vir (M rel ∂) to Č•+vdim(M rel ∂; o) (with an appropriate S-module

structure), and we must relate C•(E) to Q (with the trivial S-module structure). If all goes
well, this will give virtual fundamental cycles (4.22) satisfying (4.23)–(4.24).

In reality, it is somewhat cumbersome to make sense out of Č•+vdim(M rel ∂; o) as an S-
module, so we will take a shortcut by taking advantage of the fact that we are only interested
in integrating the constant function 1 (and not more general cohomology classes) over the
virtual fundamental cycles. We will define an S-module Q[S], which can be thought of as
“the subcomplex of Č•+vdim(M rel ∂; o) generated by the Poincaré duals of the closed strata”,
and we will construct a corresponding map of S-modules

Q[S]→ C•+vdim
vir (M rel ∂). (4.32)

Now combining this map with (4.31) and our understanding of C•(E) ∼= Q, we obtain a map
of S-modules

Q[S]→ Q. (4.33)

Morally speaking, this map is the intersection pairing between the closed strata of M(T ) and
its virtual fundamental cycle. From any map (4.33), it is straightforward to read off virtual
moduli counts satisfying the master equations.

4.5 S-modules Q and Q[S]

We now introduce the two basic S-modules Q and Q[S]. We also make the elementary but
crucial observation that a map of S-modules Q[S]→ Q is nothing other than a collection of
virtual moduli counts satisfying the relevant master equations.

Definition 4.13 (S-module Q). Denote by Q the S-module defined by Q(T ) = Q for all
T ∈ S, where the pushforward maps are the identity and the concatenation maps are multi-
plication.

Before defining Q[S], we motivate it as follows. It is not hard to check that Č•(M(T ) rel ∂; oT )
is quasi-isomorphic to the total complex

[

Č•(M(T ); oT ) −→
⊕

codim(T ′/T )=1

Č•−1(M(T ′)/Aut(T ′/T ); oT ′)

−→
⊕

codim(T ′′/T )=2

Č•−2(M(T ′′)/Aut(T ′′/T ); oT ′′) −→ · · ·

]

. (4.34)

This chain model is convenient because it is manifestly an S-module: a morphism T ′ → T
clearly induces a map of complexes (4.34) of degree codim(T ′/T ), while it is not so clear how
to canonically define a corresponding map Č•(M(T ′) rel ∂; oT ′)→ Č•+codim(T ′/T )(M(T ) rel ∂; oT ).
The complex Q[S](T ) which we now define should be thought of as the subcomplex of (4.34)
spanned by the images of the constant sections

oT ′ → Č0(M(T ′); oT ′)→ Č0(M(T ′)/Aut(T ′/T ); oT ′) ⊆ Čcodim(T ′/T )(M(T ) rel ∂; oT ) (4.35)

for T ′ → T .
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Definition 4.14 (S-module Q[S]). For T ∈ S, we define

Q[S](T ) := Q[S/T ] =
⊕

T ′→T

oT ′ [vdim(T ′)] (4.36)

(note that this definition makes sense since automorphisms of T ′ over T act trivially on oT ′;
though the action is trivial, it may be conceptually helpful to think of oT ′ instead as its
Aut(T ′/T )-coinvariants). We equip Q[S](T ) with the differential given by the sum over all
codimension one maps T ′′ → T ′ (maps in S/T ) of the boundary map oT ′ → oT ′′ induced by
(2.61) and pairing on the left with a chosen orientation of R.

A morphism T ′ → T induces a map

Q[S](T ′)→ Q[S](T ) (4.37)

via pushforward under the functor S/T ′ → S/T .
A concatenation {Ti}i induces a map

⊗

i

Q[S](Ti)→ Q[S](#iTi) (4.38)

by consideration of the isomorphism S/#iTi =
∏

i S/Ti, covered by the tautological identifi-
cations o#iT ′

i
=

⊗

i oT ′
i
multiplied by the factor |Aut({T ′

i}i/#iT
′
i )| = |Aut({Ti}i/#iTi)| (this

factor is explained by it being the “degree” of the map
∏

iM(T ′
i )→M(#iT

′
i )).

Thus Q[S] is an S-module (meaning Q[SI] is an SI-module, (Q[S±
I ],Q[SII]) is an (S±

I , SII)-
module, etc.).

Remark 4.15. It is easy to check that there is a natural bijection between morphisms of
S-modules Q[S] → Q and collections of virtual moduli counts #M(T )vir ∈ (o∨T )

Aut(T ) for
vdim(T ) = 0 satisfying

0 =
∑

codim(T ′/T )=1

1

|Aut(T ′/T )|
#M(T ′)vir (4.39)

#M(#iTi)
vir =

1

|Aut({Ti}i/#Ti)|

∏

i

#M(Ti)
vir (4.40)

(where M(T ) is interpreted as zero if vdim(T ) 6= 0). Note that Aut(T )-invariance forces
#M(T )vir to vanish if any of the input/output edges of T is labeled with a bad Reeb orbit.

4.6 S-modules C•+vdim
vir (M rel ∂) and C•(E)

We now define the two S-modules C•+vdim
vir (M rel ∂) and C•(E).

Defining C•+vdim
vir (M rel ∂) as an S-module is nontrivial for the following reason. We would

like to associate to T ∈ S the complex C
•+vdim(T )
vir (M(T ) rel ∂; Ā(T )). However, a map T ′ → T

does not induce a map on such complexes as desired, rather only a diagram

C
•+vdim(T ′)
vir (M(T ′) rel ∂; Ā(T ))

C
•+vdim(T ′)
vir (M(T ′) rel ∂; Ā(T ′)) C

•+vdim(T )
vir (M(T ) rel ∂; Ā(T )).

∼ (4.41)
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Fortunately, this diagram also suggests a solution. Namely, we instead associate to T ∈ S a

suitable homotopy colimit of C
vdim(T ′)+•
vir (M(T ′) rel ∂, Ā(T ′)) over T ′ ∈ S/T .

Definition 4.16 (Homotopy diagram). Let T be a finite category (meaning # |T| <∞ and
#Hom(t1, t2) <∞ for t1, t2 ∈ T). A homotopy diagram over T shall mean the following:

(i) Let ∆p denote the simplex category (so that a functor ∆p → T is a chain of morphisms
t0 → · · · → tp). For every functor σ : ∆p → T, we specify a complex A•(σ), and for
every map of simplices r : ∆q → ∆p, we specify a map A•(σ) → A•(σ ◦ r). In other
words, A• is a functor from the category whose objects are morphisms ∆p → T and
whose morphisms (∆p → T)→ (∆q → T) are factorizations ∆q → ∆p → T.

(ii) We require that if r : ∆q → ∆p satisfies r(0) = 0, then the induced map A•(σ) →
A•(σ ◦ r) is an isomorphism.

For example, an ordinary diagram B• over T gives rise to a homotopy diagram by setting
A•(σ) := B•(σ(0)).

Definition 4.17 (Homotopy colimit). Let T be a finite category, and let A• be a homotopy
diagram over T. We define

hocolim
T

A• :=
⊕

p≥0

⊕

t0→···→tp

A•(t0 → · · · → tp)Aut(t0→···→tp) ⊗ o∆p, (4.42)

equipped with the differential which arises upon regarding the right hand side as chains on
the nerve of T (the subscript indicates taking coinvariants with respect to the natural action
of Aut(t0 → · · · → tp)).

Given a functor f : T → T′ and a homotopy diagram A• over T′, there is a natural
pullback diagram f ∗A• over T and a natural map

hocolim
T

f ∗A• → hocolim
T′

A•. (4.43)

Given a finite collection A•
i of homotopy diagrams over Ti, there is an Eilenberg–Zilber

quasi-isomorphism
⊗

i

hocolim
Ti

A•
i

∼
−→ hocolim∏

i Ti

⊗

i

A•
i , (4.44)

corresponding to the standard simplicial subdivision of ∆p ×∆q into
(

p+q
p

)

copies of ∆p+q.

Lemma 4.18. If T has a final object tmax, then the natural map

A•(tmax)
∼
−→ hocolim

T
A• (4.45)

is a quasi-isomorphism.

Proof. Filter the homotopy colimit by the number of ti which are not isomorphic to tmax.

Definition 4.19 (S-module C•+vdim
vir (M rel ∂)). For T ∈ S, we define

C•
vir(M rel ∂)(T ) := hocolim

T0→···→Tp→T
C

•−codim(T0/T )
vir (M(T0) rel ∂, Ā(Tp)). (4.46)
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This homotopy colimit is over the category S/T , and the structure maps of the homotopy
diagram are those appearing in (4.41) (note that Definition 4.16(ii) is satisfied as the leftmost
map in (4.41) is a quasi-isomorphism). The natural inclusion map

C•
vir(M(T ) rel ∂; Ā(T )) →֒ C•

vir(M rel ∂)(T ) (4.47)

is a quasi-isomorphism by Lemma 4.18.
Now C•+vdim

vir (M rel ∂) naturally has the structure of an S-module, as follows. A morphism
T → T ′ induces a natural pushforward map (4.43) induced by the functor S/T → S/T ′ , which
is covered by a natural isomorphism of homotopy diagrams. Given a concatenation {Ti}i,
there is a natural Eilenberg–Zilber map (4.44) induced by the isomorphism S/#iTi =

∏

i S/Ti ,
which is covered by a morphism of homotopy diagrams coming from the product maps (4.16).

Definition 4.20 (S-module C•(E)). For T ∈ S, we define

C•(E)(T ) := hocolim
T0→···→Tp→T

C•(E; Ā(Tp)). (4.48)

Again by Lemma 4.18, we have

H•(E)(T ) = H•(E; Ā(T )) = Q. (4.49)

As in Definition 4.19, C•(E) naturally has the structure of a S-module. The isomorphism
above is in fact an isomorphism of S-modules H•(E) = Q.

There is a canonical map of S-modules

C•+vdim
vir (M rel ∂)→ C−•(E) (4.50)

induced by (4.3).

Definition 4.21 (Sop-module HomS/T
(Q[S], C•+vdim

vir (M rel ∂))). For T ∈ S, we consider

HomS/T
(Q[S], C•+vdim

vir (M rel ∂)). (4.51)

Namely, an element of this group is a natural transformation of functors from S/T to the
category of graded Q-vector spaces, and we equip it with the usual differential d◦f−(−1)|f |f ◦
d.

Now (4.51) is an Sop-module as follows. A map T → T ′ clearly gives a restriction map
from homomorphisms over S/T ′ to homomorphisms over S/T . A concatenation {Ti}i induces
the necessary map by virtue of the fact that S/#iTi =

∏

i S/Ti and the concatenation maps
for Q[S] are isomorphisms.

Definition 4.22 (Sop-module Ȟ•(M(T ))). We equip the functor T 7→ Ȟ•(M(T )) with
the structure of an Sop-module as follows. A map T → T ′ clearly gives a pullback map
Ȟ•(M(T ′))→ Ȟ•(M(T )). A concatenation {Ti}i induces a map

⊗

i

Ȟ•(M(Ti))→ Ȟ•
(

∏

i

M(Ti)
)

→ Ȟ•
(

∏

i

M(Ti)
)Aut({Ti}i/#iTi) ∼

←− Ȟ•(M(#iTi)),

(4.52)
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where the middle map is averaging over the group action, and on the right we use (2.4)
together with the general result that the pullback map Ȟ•(X/G)

∼
−→ Ȟ•(X)G is an iso-

morphism for any compact Hausdorff space X with an action by a finite group G [Par16,
Lemma A.4.9]. Commutativity of the first diagram in (4.26) follows from the fact that a
morphism of concatenations {Ti}i → {T

′
i}i induces a map of diagrams (4.52), noting that

Aut({Ti}i/#iTi) = Aut({T ′
i}i/#iT

′
i ). Commutativity of the second diagram in (4.26) follows

from a diagram chase.

Lemma 4.23. The cohomology of the Sop-module from Definition 4.21 is canonically iso-
morphic to the Sop-module from Definition 4.22.

Proof. First, observe that

HomS/T
(Q[S], C•+vdim

vir (M rel ∂)) =
∏

T ′→T

[

o∨T ′ ⊗ C•
vir(M rel ∂)(T ′)

]Aut(T ′/T )
.

Now
∏

T ′→T

[

o∨T ′ ⊗ C•
vir(M(T ′) rel ∂; Ā(T ))

]Aut(T ′/T )
(4.53)

includes quasi-isomorphically into the right hand side above, as the composition of the final
object quasi-isomorphism (4.47) and the atlas enlargment quasi-isomorphism (4.6). Now
(4.53) is exactly the complex

C•
vir(M(T ), S/T ; Ā(T ))⊗ o∨T , (4.54)

where the left factor is as defined in (4.12). Appealing to (4.13), we deduce the desired
isomorphism

H•HomS/T
(Q[S], C•+vdim

vir (M rel ∂)) = Ȟ•(M(T )). (4.55)

It remains to compare pullback and concatenation maps.
Compatibility of (4.55) with pullback maps is shown as follows. The pullback map on

HomS/T
(Q[S], C•+vdim

vir (M rel ∂)) for T ′ → T becomes, under the quasi-isomorphisms above,
the natural restriction map

C•
vir(M(T ), S/T ; Ā(T ))→ C•

vir(M(T ′), S/T ′ ; Ā(T ))
∼
−→ C•

vir(M(T ′), S/T ′ ; Ā(T ′)). (4.56)

Since the isomorphism (4.10) is natural, the map Ȟ•(M(T ))→ Ȟ•(M(T ′)) induced by (4.56)
is simply the map induced by the corresponding map of H0 sheaves, which by definition is
just restriction, as needed.

To show compatibility of (4.55) with concatenation maps, again under the quasi-isomorphisms
above, the concatenation maps for HomS/T

(Q[S], C•+vdim
vir (M rel ∂)) become the natural maps

⊗

i

C•
vir(M(Ti), S/Ti ; Ā(Ti))

(4.16)
−−−→ C•

vir

(

∏

i

M(Ti),
∏

i

S/Ti;
∐

i

Ā(Ti)
)

→ C•
vir(M(#iTi), S/#iTi, Ā(#iTi)). (4.57)

Now appealing to Lemma 4.3, it is enough to observe that the induced maps on H0 sheaves
are the natural ones.
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4.7 Cofibrant S-modules

We would like to upgrade the isomorphism of S-modules H•(E) = Q to a quasi-isomorphism
of S-modules C•(E)

∼
−→ Q. Unfortunately, the natural strategy to construct such a quasi-

isomorphism, namely by induction on T , fails. As a substitute, we introduce the notion of
a cofibrant S-module, and we construct a cofibrant S-module Ccof

• (E) with a natural quasi-
isomorphism Ccof

• (E)
∼
−→ C•(E). Cofibrancy is exactly the condition which ensures that the

natural inductive construction of a quasi-isomorphism Ccof
• (E)

∼
−→ Q succeeds. The resulting

diagram
C•(E)

∼
←− Ccof

• (E)
∼
−→ Q (4.58)

turns out to be enough for our purposes. Cofibrancy of the S-module Q[S] will also end up
being important for the inductive construction of virtual fundamental cycles.

Definition 4.24 (Cofibrant S-module). An S-module X valued in chain complexes shall be
called cofibrant iff it satisfies the following two properties:

(i) For all concatenations {Ti}i in S, the induced map

[

⊗

i

X(Ti)

]

Aut({Ti}i/#Ti)

∼
−→ X(#iTi) (4.59)

is an isomorphism (the subscript indicates taking coinvariants with respect to the
natural action of Aut({Ti}i/#Ti)). Note that this follows if (4.25)/(4.27)/(4.29)/(4.30)
is itself an isomorphism.

(ii) For maximal T ∈ S, the map

colim
codim(T ′/T )≥1

X(T ′)  X(T ) (4.60)

is injective. The left side denotes the colimit over the full subcategory of S/T spanned
by objects T ′ → T with codim(T ′/T ) ≥ 1.

Note that for (S±
I , SII)-modules, the above conditions are imposed over each of S±

I , SII, and
so on.

Lemma 2.5 will be used frequently below.

Lemma 4.25. Injectivity of (4.60) for maximal T implies injectivity for all T .

Proof. Fix T ∈ S, and write T = #iTi for maximal Ti. Now we have S/T =
∏

i S/Ti . Consider
the cubical diagram

⊗

i

[

colim
codim(T ′

i /Ti)≥1
X(T ′

i )  X(Ti)

]

. (4.61)

Now (4.60) for T is precisely the map to the top vertex of the cube (4.61) from the colimit
over its remaining vertices. This map is clearly injective given that each map in (4.61) is
injective.

Lemma 4.26. The S-module Q[S] is cofibrant.

71



Proof. The concatenation maps are isomorphisms by definition since S/#iTi =
∏

i S/Ti . Let
us now show that

colim
codim(T ′/T )≥1

Q[S](T ′)  Q[S](T ) (4.62)

is an isomorphism onto the subspace of Q[S](T ) generated by those T ′ → T of codimension
≥ 1 (certainly this is sufficient).

Both sides of (4.62) are graded by |S/T |, so it suffices to fix T ′ → T of codimension ≥ 1
and show that (4.62) is an isomorphism on T ′-graded pieces. The map (4.62) is certainly
surjective onto the T ′-graded piece oT ′ ⊆ Q[S](T ). Moreover, there is a section from oT ′ back
to the left side of (4.62) via the inclusion oT ′ ⊆ Q[S](T ′). Now it is enough to argue that
this section is surjective (onto the T ′-graded piece), but this is clear since a contribution of
Q[S](T ′′) to the T ′-graded piece is the same thing as a factorization T ′ → T ′′ → T .

Definition 4.27 (Partial order on |S|). For T, T ′ ∈ S, let us write T ′ � T iff there is a
morphism #iTi → T with some Ti isomorphic to T ′.

Since we are restricting to effective objects of S, compactness of M implies that the rela-
tion � is well-founded (i.e. there is no infinite strictly decreasing sequence T1 ≻ T2 ≻ · · · ).
The relation � is also a partial order (reflexivity and transitivity are obvious, and antisym-
metry follows from well-foundedness). It follows that induction on |S| partially ordered by
� is justified.

Definition 4.28 (Cofibrant S-module Ccof
• (E)). We now define a cofibrant S-module Ccof

• (E)
together with a quasi-isomorphism

Ccof
• (E)

∼
−→ C•(E) (4.63)

which is surjective for maximal T . Furthermore, the action of the “paths between basepoints”
subgroup of Aut(T ) on Ccof

• (E)(T ) will be trivial for all T (as it is for C•(E)(T )).
We construct Ccof

• (E)(T ) by induction on T , partially ordered as in Definition 4.27. For
T non-maximal, write T = #iTi with Ti maximal. The definition of cofibrancy both forces
us to take Ccof

• (E)(T ) :=
⊗

i C
cof
• (E)(Ti) and assures that the S-module structure maps with

target Ccof
• (E)(T ) exist and are unique. For T maximal, consider the diagram

colim
codim(T ′/T )≥1

Ccof
• (E)(T ′) Ccof

• (E)(T )

colim
codim(T ′/T )≥1

C•(E)(T
′) C•(E)(T ).

(4.63) (4.63)∼ (4.64)

We define Ccof
• (E)(T ) to be the mapping cylinder of the composition of the two solid maps,

which clearly fits into the diagram as desired. Now the top horizontal map defines the
S-module structure maps with target Ccof

• (E)(T ), and the commutativity of the diagram
ensures that (4.63) is a map of S-modules.
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Lemma 4.29. Let T ⊆ S/Ta be a full subcategory which is “downward closed” in the sense
that T ′ → T and T ∈ T implies T ′ ∈ T. Then the natural map

C•N•T
∼= hocolim

T∈T
Ccof

• (E)(T )
∼
−→ colim

T∈T
Ccof

• (E)(T ) (4.65)

is a quasi-isomorphism. In particular, the homology of the right side is supported in degrees
≥ 0 and in degree zero is generated by the images of Hcof

0 (E)(T ) for T ∈ T.

Proof. We argue by induction on #T (note that |S/T | is finite by our restriction to effective
objects), the case #T = 0 being trivial.

Pick a maximal object T0 ∈ T. If T = T≤T0 , then the desired conclusion follows from
Lemma 4.18; otherwise argue as follows. Let us abbreviate X := Ccof

• (E). We claim that
there is a short exact sequence

0→ colim
T∈T<T0

X(T )→ colim
T∈T≤T0

X(T )⊕ colim
T∈T\{T0}

X(T )→ colim
T∈T

X(T )→ 0. (4.66)

(Note that the expressions T<T0 , T≤T0 , T \ {T0} refer to full subcategories of T, not any
sort of over-categories.) Exactness on the right and in the middle follows from the universal
property of colim. To show exactness on the left, we show the stronger statement that

colim
T∈T<T0

X(T ) →֒ colim
T∈T≤T0

X(T ) (4.67)

is injective. To see this, note that cofibrancy of X (and Lemma 4.25) and exactness of
AutT(T0)-coinvariants imply that the map

(

colim
T∈T/T0

X(T )
)

AutT(T0)
→֒ X(T0)AutT(T0) (4.68)

is injective. The right hand sides of (4.68) and (4.67) coincide, and the left hand side of
(4.68) surjects onto the left hand side of (4.67), so we conclude the desired injectivity of
(4.67).

Now (4.66) induces a long exact sequence on homology. There is a similar long exact
sequence with hocolim in place of colim, together with a map from the sequence of hocolim’s
to the sequence of colim’s. Now the five lemma and the induction hypothesis (together with
the fact that T≤T0 $ T) give the desired result.

Lemma 4.30. There exists a quasi-isomorphism of S-modules

Ccof
• (E)

∼
−→ Q (4.69)

inducing the canonical isomorphism Hcof
• (E) = H•(E) = Q from (4.49).

Proof. We argue by induction on T ∈ S, partially ordered as in Definition 4.27.
For T non-maximal, write T = #iTi for Ti maximal. Then cofibrancy of Ccof

• (E) both
forces us to take p∗(T ) :=

⊗

i p∗(Ti) and assures that this choice is compatible with the maps
defined thus far.
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For maximal T , we would like to fill in the diagram

colim
codim(T ′/T )≥1

Ccof
• (E)(T ′) Ccof

• (E)(T )

Q

p∗ p∗

(4.70)

with a map Ccof
• (E)(T ) → Q in a particular chain homotopy class. The horizontal map

is injective since Ccof
• (E) is cofibrant; it follows that it is enough to show that (4.70) com-

mutes up to chain homotopy. For chain complexes C• over Q, we have an isomorphism
H0Hom(C•,Q)

∼
−→ Hom(H0C•,Q), so it suffices to show that (4.70) commutes on homology,

which follows from Lemma 4.29. Finally, we may ensure p∗ is Aut(T )-invariant by averaging
(this is necessary for p∗ to be a natural transformation of functors).

Lemma 4.31. There exists a map of S-modules

Q[S]→ C•+vdim
vir (M rel ∂) (4.71)

with the following property. Such a map determines for all T ∈ S a cycle in (4.51), which by
Lemma 4.23 determines an element of Ȟ0(M(T )). We require these elements coincide with
the class of the constant function 1 ∈ Ȟ0(M(T )) for all T ∈ S.

Proof. We argue by induction on T .
For T non-maximal, write T = #iTi with Ti maximal; now cofibrancy of Q[S] (Lemma

4.26) determines the map completely on Q[S](T ), and the map has the desired property by
Lemma 4.23.

For maximal T , consider the following restriction map:

∏

T ′→T

[

o∨T ′ ⊗ C•
vir(M rel ∂)(T ′)

]Aut(T ′/T )
→

∏

codim(T ′/T )≥1

[

o∨T ′ ⊗ C•
vir(M rel ∂)(T ′)

]Aut(T ′/T )
.

(4.72)
The part of the map (4.71) defined thus far determines a cycle on the right, which we must
lift to a cycle on the left in a particular cohomology class. Since (4.72) is surjective, it suffices
to show that the desired cohomology class on the left is mapped to the given cohomology
class on the right. Identifying (4.72) with the map on global sections of a corresponding map
of pure homotopy sheaves as in Lemma 4.23, we see that on cohomology this map is simply
the restriction map Ȟ•(M(T ))→ Ȟ•(∂M(T )). It thus suffices to show that the cycle on the
right equals the constant function 1 ∈ Ȟ0(∂M(T )), which can be checked on each M(T ′) for
codim(T ′/T ) ≥ 1, where it holds by the induction hypothesis.

4.8 Sets Θ

We now conclude by defining the sets Θ which index all possible choices of the extra data
necessary to fix coherent virtual fundamental cycles on the moduli spaces M.
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Definition 4.32 (Sets Θ(D)). Given a datum D as in any of Setups I–IV, an element
θ ∈ Θ(D) consists of a commuting diagram7 of S-modules

Q[S] Ccof
−• (E) Q

C•+vdim
vir (M rel ∂) C−•(E)

w̃∗

w∗

p∗

(4.63)∼

(4.50)

(4.73)

satisfying the following properties:

• We require that p∗ induce the canonical isomorphism Hcof
• (E) = H•(E) = Q from

Definition 4.20.

• We require that w∗ satisfy the conclusion of Lemma 4.31.

Note that there are natural forgetful maps

ΘII → Θ+
I ×Θ−

I , (4.74)

ΘIII → Θt=0
II ×Θ+

I ×Θ−
I
Θt=1

II , (4.75)

ΘIV → Θ02
II ×Θ0

I×Θ2
I
(Θ01

II ×Θ1
I
Θ12

II ). (4.76)

An element θ ∈ Θ evidently gives rise to a morphism of S-modules p∗ ◦ w̃∗ : Q[S] → Q.
Such a morphism corresponds to virtual moduli counts #M(T )virθ satisfying the relevant
master equation by Remark 4.15.

Proposition 4.33. If M(T ) is weakly regular and vdim(T ) = 0, then M(T ) = M(T ) and
#M(T )virθ = #M(T ).

Proof. There are no nontrivial (effective) T ′ → T for dimension reasons, so M(T ) = M(T ).
Evaluating the diagram (4.73) at T and taking cohomology gives

oT Q Q

Ȟ•(M(T ); oT ) Q.

w̃∗

w∗

id

id

[M(T )]vir

(4.77)

Unravelling the isomorphism in Lemma 4.31, we see that the left vertical map is just the
tautological map to Ȟ0. The bottom horizontal map is by definition the virtual fundamental
class [M(T )]vir from (4.3). Thus we would like to appeal to Lemma 4.2 to conclude that the
virtual fundamental class coincides with the ordinary fundamental class.

For cases (I) and (II), our regularity assumption on M(T ) ensures that the hypothesis
M(T ) = M(T )reg of Lemma 4.2 is satisfied (one should observe here that for moduli spaces
of virtual dimension zero, the regular locus automatically has trivial isotropy, due to our
use of asymptotic markers and the fact that nodes appear only in codimension two). For
cases (III) and (IV), there is a gap between our assumption that M(T ) is weakly regular

7Note that the categories S are essentially small, so the collection of such diagrams forms a set.
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and the hypothesis M(T ) = M(T )reg of Lemma 4.2 (see Definition 2.39). It suffices, though,
to observe that the implicit atlas on M(T ) remains an implicit atlas if we enlarge M(T )regI
to include all points which are weakly regular and have trivial isotropy. The only thing to
check is that the manifold/openness/submersion axioms still hold, but this is easy since the
thickened moduli spaces have only the top stratum M(T )I and hence can be described by
the usual Banach manifold Fredholm setup.

Proposition 4.34. The set ΘI is non-empty (resp. (4.74)–(4.76) are surjective).

Proof. Concretely, we must construct p∗, w∗, w̃∗ as in Definition 4.32. We will in fact give
a construction of such data by induction on T ∈ S with respect to the partial order from
Definition 4.27. The inductive nature of our proof (in addition to being the only reasonable
approach) implies surjectivity of (4.74)–(4.76) (as opposed to mere non-emptiness of ΘII,
ΘIII, ΘIV).

The existence of p∗ and w∗ follow from Lemmas 4.30 and 4.31 respectively. Note that
both are proved by induction on T , so their use here is permissible.

To show the existence of w̃∗, we argue by induction on T . Note that Q[S] is cofibrant by
Lemma 4.26. For non-maximal T , cofibrancy of Q[S] determines w̃∗(T ) uniquely and implies
that the diagram still commutes. For maximal T , we are faced with the following lifting
problem:

colim
codim(T ′/T )≥1

Q[S](T ′) Ccof
• (E)(T )

Q[S](T ) C•(E)(T ).

w̃∗

(4.63)∼

(4.50)◦w∗

w̃∗ (4.78)

The left vertical map is injective by Lemma 4.26, and the right vertical map is a surjective
quasi-isomorphism by Definition 4.28. All four complexes are bounded below. Now Lemma
4.35 ensures that a lift exists, and we make it Aut(T )-equivariant by averaging.

Lemma 4.35. Consider a diagram of chain complexes bounded below over a ring R:

A• X•

B• Y•

∼ (4.79)

where the right vertical map is a surjective quasi-isomorphism and the left vertical map is
an injection whose cokernel is degreewise projective. Then there exists a lift as illustrated.

Proof. This is the fact that “cofibrations have the left lifting property with respect to acyclic
fibrations” in the projective model structure on Ch•≥0(R). It can be proved by a straight-
forward diagram chase.

4.9 Symmetric monoidal structure on Θ

We now show that the sets Θ in cases (I) and (II) are naturally symmetric monoidal with
respect to disjoint union of data D. Concretely, this means we are relating the virtual
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moduli counts associated to a disjoint union of contact manifolds or symplectic cobordisms
with those associated to each piece (compare §1.7). In fact, to do this we will consider not
Θ as defined in Definition 4.32 but rather an (equivalent) enlargement thereof (for which all
of the results proven earlier remain valid), explained during the course of the proof.

Proposition 4.36. There are functorial maps associated to finite disjoint unions (indexed
by i ∈ I)

ΘI(Y, λ, J)←
∏

i∈I

ΘI(Yi, λi, Ji) for (Y, λ, J) =
⊔

i∈I

(Yi, λi, Ji) (4.80)

ΘII(X̂, ω̂, Ĵ)←
∏

i∈I

ΘII(X̂i, ω̂i, Ĵi) for (X̂, ω̂, Ĵ) =
⊔

i∈I

(X̂i, ω̂i, Ĵi) (4.81)

preserving the virtual moduli counts and turning ΘI and ΘII into weak symmetric monoidal
functors.

Proof. Note that (restricting to effective objects), we have

SI(Y, λ, J) =
⊔

i∈I

SI(Yi, λi, Ji) for (Y, λ, J) =
⊔

i∈I

(Yi, λi, Ji), (4.82)

SII(X̂, ω̂, Ĵ) =
⊔

i∈I

SII(X̂i, ω̂i, Ĵi) for (X̂, ω̂, Ĵ) =
⊔

i∈I

(X̂i, ω̂i, Ĵi), (4.83)

so an SI(Y, λ, J)-module is the same as a tuple of SI(Yi, λi, Ji)-modules for i ∈ I (and the
same for SII-modules). There are also natural inclusions

AI(Y, λ, J)(T ) ←֓ AI(Yi, λi, Ji)(T ) for T ∈ SI(Yi, λi, Ji), (4.84)

AII(X̂, ω̂, Ĵ)(T ) ←֓ AII(X̂i, ω̂i, Ĵi)(T ) for T ∈ SII(X̂i, ω̂i, Ĵi). (4.85)

Precisely, these maps preserve r, E, D, and extend λ as zero on Y \ Yi (resp. X̂ \ X̂i).
Now we modify the definition of Θ to include a choice of Aut(T )-invariant subatlases

B(T ) ⊆ A(T ) on M(T ) for all maximal T ∈ S (e.g. in case (II), we choose B±
I (T ) ⊆ A±

I (T )
and BII(T ) ⊆ AII(T )). We define B̄(T ) as in (3.10), and we use B̄ in place of Ā in the
definitions from §§4.6–4.7.

With this modification done, the map (4.80) is defined by taking the images of the sets
BI(T ) under (4.84) and using the “same” diagrams of SI-modules. The map (4.81) is defined
similarly. It follows by definition that these maps are functorial and preserve the virtual
moduli counts.

5 Gluing

This section is devoted to the proof of Theorems 3.31 and 3.32 (of which Theorems 2.54 and
2.55 are special cases). Namely, we prove that the regular loci in the thickened moduli spaces
M(T )I admit the expected local topological description in terms of the spaces GT ′//T from
§2.5, and we verify that the natural “geometric” and “analytic” maps between orientation
lines agree. We will give the argument for all cases (I), (II), (III), (IV) simultaneously.

77



The gluing techniques we use in this section are, to the best of our knowledge, standard in
the field (perhaps the most similar published result is Hutchings–Taubes [HT07, HT09]). We
learned these methods (while writing the gluing theorems in [Par16, §§B–C]) from Abouzaid
[Abo12], McDuff–Salamon [MS04, MS94], and discussions with Mohammed Abouzaid, To-
bias Ekholm, Helmut Hofer, and Rafe Mazzeo.

5.1 Gluing setup

Proof of Theorem 3.31. Fix T ∈ S, I ⊆ J ⊆ Ā(T ), and x0 ∈ M(T )J of type T ′ → T with
sJ\I(x0) = 0 and ψIJ(x0) ∈M(T )regI . A neighborhood of x0 ∈M(T )J is stratified by ST ′//T .

Our goal is to construct a local homeomorphism

(

GT ′//T × EJ\I × Rµ(T ′)−#Vs(T ′)+dimEI , (0, 0, 0)
)

→
(

M(T )J , x0
)

(5.1)

which lands in M(T )regJ and which commutes with the maps from both sides to ST ′//T ×

s(T )×EJ\I . We denote by 0 ∈ GT ′//T the basepoint corresponding to all gluing parameters
equal to ∞ (i.e. corresponding to no gluing at all) and t = t(x0).

The basepoint x0 corresponds to a map u0 : C0 → X̂0 and an element e0 ∈ EI ⊆ EJ ,
along with “discrete data” consisting of asymptotic markers, matching isomorphisms, and
markings φα : (C0)α → C0,Eext(Tα)∪{1,...,rα} for α ∈ J .

5.1.1 Domain stabilization via submanifolds D̂v,i and points qv,i

We first stabilize the domain C0 by adding marked points qv,i where it intersects certain

codimension two submanifolds D̂v,i, arguing much the same as we did in §3.7. Such D̂v,i

automatically stabilize the domains of all maps in a neighborhood of x0 ∈M(T )J , and thus
we need only consider stable domain curves in the main gluing argument which follows.

For every vertex v ∈ V (T ′), we add marked points qv,i ∈ (C0)v and choose local codi-

mension two submanifolds D̂v,i ⊆ (X̂0)v (required to be R-invariant if v is a symplectization

vertex) with u0(qv,i) ∈ D̂v,i intersecting transversally, such that (C0)v equipped with the
marked points {pv,e}e and {qv,i}i is stable. These new marked points qv,i bear no logical
relation to the marked points labeled by {1, . . . , rα} for α ∈ J (in particular, there is no
need to require that the qv,i be disjoint from these other marked points).

To show the existence of such points, it suffices to show that each unstable irreducible
component of (C0)v (equipped with just {pv,e}e as marked points) has a point (and hence a
non-empty open set) where du0 (resp. πξdu0 if v is a symplectization vertex) is injective. If

(C0)v * (C0)α for all α ∈ I, then u0|(C0)v is Ĵv-holomorphic and the existence of such points
follows from the arguments given in the proofs of Lemmas 3.26 and 3.28. For components
(C0)v ⊆ (C0)α for some α ∈ J , such points exist since uv|(C0)v satisfies Definition 3.17(iii).

5.1.2 Glued cobordisms X̂g and points q′v

Given any gluing parameter g ∈ GT ′//T , we may form the glued cobordism X̂g as follows
(all statements involving a choice of g ∈ GT ′//T carry the (often tacit) assumption that g

lies in a sufficiently small neighborhood of 0). Note that X̂0 is equipped with cylindrical
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coordinates (1.8)–(1.9) in each end. Now we truncate each positive (resp. negative) end
[0,∞) × Ye (resp. (−∞, 0] × Ye) to [0, ge] × Ye (resp. [−ge, 0] × Ye) and identify truncated
ends by translation by ge (if ge =∞ we do nothing). By construction, X̂g is the target for
pseudo-holomorphic buildings of type T ′

g
(denoting by T ′ → T ′

g
→ T the image of g under

the map GT ′//T → ST ′//T ).
For every symplectization vertex v ∈ Vs(T

′), fix a section q′v of the universal curve over a
neighborhood of C0 ∈M0,Eext(T ′)∪{qv,i}v,i such that q′v(C0) ∈ (C0)v. Now over a neighborhood

of x0 ∈ M(T )J , the sections q′v determine points q′v in the domain of each map. Over this
neighborhood, we can identify the target with X̂g for a unique g ∈ GT ′//T by requiring

that each q′v be mapped to the corresponding “zero level” 0v ⊆ X̂g (i.e. the descent of

0v := {0} × Yv ⊆ X̂0).

5.1.3 Family of almost complex structures jy on C0

We now proceed to fix a family of almost complex structures on C0 inducing a local biholo-
morphism onto the relevant moduli space of marked Riemann surfaces. Let N ⊆ C0 denote
the set of nodes (note that {pv,e}v,e are not nodes), and let Nv := N ∩ (C0)v.

We denote by M0,n+m(2)
→ M0,n+m the total space of the bundle over M0,n+m with

fiber
∏m

i=1(TqiC \ 0) (thought of as the space of markings C ∼
−→ TqiC at the last m marked

points). As in §§2.6–2.7, the tangent space to the nodal stratum M
#nodes=r
0,n+m(2)

at a given

curve C with marked points P and doubly marked points Q is canonically isomorphic to
H1(C̃, T C̃(−P̃ − 2Q̃− Ñ)).

For every vertex v ∈ V (T ′), fix a local biholomorphism

Jv := C2#{pv,e}e+#{qv,i}i−#Nv−3 →M
#nodes=#Nv

0,{qv,i}i+({pv,e}e)(2)
(5.2)

sending 0 to (C0)v equipped with its doubly marked points {pv,e}e and marked points {qv,i}i.
Further fix a smooth trivialization of the universal curve over these spaces (over a neighbor-
hood of (C0)v, that is the origin in Jv), which near the nodes and marked points of the fibers
is holomorphic (on total spaces) and preserves the tangent space markings.

We thus obtain a description of the universal curve over Jv as the curve (C0)v with
its doubly marked points {pv,e}e, its marked points {qv,i}i, and a modified almost complex
structure jy varying smoothly in y ∈ Jv and fixed in a neighborhood of {pv,e}e, {qv,i}i, and
Nv. Since (5.2) is a local biholomorphism, the derivative

djy
dy

: T0Jv = C2#{pv,e}e+#{qv,i}i−#Nv−3 → C∞
c ((C0)v \ ({qv,i}i ∪ {pv,e}e ∪Nv),End

0,1(T (C0)v))

(5.3)
induces an isomorphism between its domain and the deformation space of (C0)v equipped
with its doubly marked points {pv,e}e and marked points {qv,i}i as recalled above. We set

J :=
∏

v∈V (T ′)

Jv. (5.4)

All statements involving a choice of y ∈ Jv or y ∈ J carry the (often tacit) assumption that
y lies in a sufficiently small neighborhood of 0.
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5.1.4 Cylindrical coordinates on C0 and X̂0

We now fix positive (resp. negative) holomorphic cylindrical coordinates

[0,∞)× S1 → C0 (5.5)

(−∞, 0]× S1 → C0 (5.6)

near each positive (resp. negative) puncture. We also fix such cylindrical coordinates on
either side of each node n ∈ N (choosing which side is positive/negative arbitrarily).

We assume that with respect to these fixed cylindrical coordinates, we have

u0(s, t) = (Ls, γ̃(t)) + o(1) as |s| → ∞ (5.7)

(i.e. the constant b in (2.1) vanishes) with respect to the cylindrical coordinates (1.8)–(1.9)
on X̂0. To ensure that we can achieve (5.7), we allow the possibility that (5.5)–(5.6) are
only defined for |s| sufficiently large. Recall from Proposition 2.20 due to Hofer–Wysocki–
Zehnder [HWZ02, Theorems 1.1, 1.2, and 1.3] that the convergence (5.7) holds in C∞ with
error O(e−δ|s|) for every δ < δγ.

5.1.5 Glued curves Cg and points q′′e

Given any gluing parameter β ∈ CEint(T ′) ×CN (i.e. one for each interior edge of T ′ and one
for each node n ∈ N), we may form the glued curve Cβ as follows (all statements involving

a choice of β ∈ CEint(T ′) × CN carry the (often tacit) assumption that β lies in a sufficiently
small neighborhood of 0). For each interior edge v

e
−→ v′ (or node n ∈ N), we truncate the

positive (resp. negative) end [0,∞)×S1 (resp. (−∞, 0]×S1) to [0, S]×S1 (resp. [−S, 0]×S1)
and identify them by s = s′ + S and t = t′ + θ where β = e−S−iθ (if β = 0 we do nothing).
Note that the points qv,i and the complex structures jy both descend naturally to Cβ. This

operation gives analytic families of curves over Jv×CNv and J×CEint(T ′)×CN inducing local
biholomorphisms

Jv × CNv →M0,{qv,i}i+({pv,e}e)(2) , (5.8)

J× CN →
∏

v∈V (T ′)

M0,{qv,i}i+({pv,e}e)(2) . (5.9)

The glued curve Cβ is actually a bit too general for our purposes: in the current setting the
gluing parameters at interior edges must come from the same gluing parameters g ∈ GT ′//T

used to glue the target cobordism.
Namely, to any g ∈ GT ′//T , we associate the gluing parameter β = β(g) ∈ CEint(T ′) given

by Se := L−1
e ge and the unique θe corresponding to the matching isomorphism Spv,eCv →

Spv′,eCv′ . For g ∈ GT ′//T × CN , we thus have a glued curve Cg. For e with ge < ∞, let

q′′e ∈ Cg denote the point in the middle of the corresponding neck, namely s = ±1
2
S with

respect to the coordinates (5.5)–(5.6) (the angular coordinate t ∈ S1 of q′′e is irrelevant as
long as it is fixed). Now for any fixed g ∈ GT ′//T , this construction gives a map

J× CN →
∏

v∈V (T ′
g)

M0,{qv′,i}v′ 7→v,i+{q′′e }e7→v+({pv,e}e)(2) . (5.10)

80



This map is a local biholomorphism near 0 ∈ J×CN uniformly in g, in the sense that there
is a neighborhood of 0 ∈ J × CN over which (5.10) is a biholomorphism onto its image for
all g ∈ GT ′//T near zero (we will prove this just below).

The purpose of including the points q′′e as part of the structure of the glued curve is
exactly to ensure that (5.10) is a local biholomorphism. Later, we will impose a codimension
two condition at q′′e on our glued maps, so that over a neighborhood of x0 ∈ M(T )J , the
points q′′e in the domain are determined uniquely, and hence the parameters (y, β) ∈ J×CN

are determined uniquely. We denote by q′v ∈ (Cg, jy) the value of the section q′v at (Cg, jy)
for g ∈ GT ′//T × CN and y ∈ J (note that this q′v may not coincide with the descent of
q′v ∈ C0, even for g = 0).

To conclude, let us give the proof that (5.10) is a local biholomorphism, as claimed
above. In fact, to make the proof work we impose the following additional compatibility
condition between the cylindrical coordinates (5.5)–(5.6) and the smooth trivialization of

the universal curve over M
#nodes=#Nv

0,{qv,i}i+({pv,e}e)(2)
near (C0)v fixed in §5.1.3. The universal curve

is pulled back under the forgetful map M0,{qv,i}i+({pv,e}e)(2) → M0,{qv,i}i+{pv,e}e which is a

principal (C \ 0){pv,e}e-bundle (acting via changing the tangent space markings at {pv,e}e).
We require that the induced action of (C \ 0){pv,e}e on the total space, when pulled back
to (C0)v under the chosen trivialization and then expressed in the cylindrical coordinates
(5.5)–(5.6) near each pv,e, must coincide with the tautological action of C\0 on the standard
end [0,∞)× S1 (resp. (−∞, 0]× S1). To construct such a smooth trivialization compatible
with a given choice of cylindrical coordinates (5.5)–(5.6), first fix the trivialization over the
image of a section of the forgetful map, then extend to a neighborhood of {pv,e}e as dictated
by the desired compatibility property, and then finally extend to the rest.

Given this compatibility property, the local biholomorphism property for (5.10) now
follows easily from the standard local biholomorphism property for the usual ‘local gluing

charts’ on Deligne–Mumford space. Namely, for any open subset U ⊆M
#nodes=r

0,n ⊆M0,n (or

M0,n+m(2)
) and any choice of local holomorphic (on the total space) cylindrical coordinates

[0,∞)× S1 ×M
#nodes=r

0,n → C
#nodes=r

0,n (5.11)

(defined over U) on each side of each of the r nodes, there is an induced holomorphic map

U × Cr →M0,n (5.12)

given by the usual gluing construction (via e−s1−it1e−s2−it2 = β). It is well-known that (5.12)
is a local biholomorphism near U (indeed, it is enough to verify that for every curve C
(a point of U) and every node a ∈ C, the map C → M0,n given by gluing C at a with
respect to (5.11) with gluing parameter β ∈ C induces an isomorphism between T0C and the

tangent space to the local branch of M
#nodes=r+1

0,n corresponding to a, and this can be shown
by a standard calculation). Now to deduce the local biholomorphism property for (5.10), it
suffices to apply the local biholomorphism property for (5.12) in a setup which depends only
on T ′

g
(and hence is uniform in g).
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5.1.6 Preglued maps ug

We now define a “preglued” map ug : Cg → X̂g close to u0 : C0 → X̂0. As we shall see later,
this preglued map is very close to solving the relevant (thickened) pseudo-holomorphic curve
equation. Our goal will then be to understand the true solutions near ug and to show that
this construction gives a local parameterization of the moduli space near u0.

Fix a smooth (cutoff) function χ : R→ [0, 1] satisfying

χ(x) =

{

1 x ≤ 0

0 x ≥ 1.
(5.13)

Definition 5.1 (Flattening). For g ∈ GT ′//T × CN , we define the “flattened” map

u0|g : C0 → X̂0 (5.14)

as follows. Away from the ends, u0|g coincides with u0. Over a positive end asymptotic to a
parameterized Reeb orbit γ̃(t) := u0(∞, t), we define u0|g by

u0|g(s, t) :=















u0(s, t) s ≤ 1
6
S

exp(Ls,γ̃(t))

[

χ
(

s− 1
6
S
)

· exp−1
(Ls,γ̃(t)) u0(s, t)

]

1
6
S ≤ s ≤ 1

6
S + 1

(Ls, γ̃(t)) 1
6
S + 1 ≤ s.

Over a positive end at a node n ∈ N , we define u0|g by

u0|g(s, t) :=















u0(s, t) s ≤ 1
6
S

expu0(n)

[

χ
(

s− 1
6
S
)

· exp−1
u0(n)

u0(s, t)
]

1
6
S ≤ s ≤ 1

6
S + 1

u0(n)
1
6
S + 1 ≤ s.

An analogous definition applies over negative ends. Here exp : TX̂0 → X̂0 denotes any fixed
exponential map (i.e. a smooth map defined in a neighborhood of the zero section satisfying
exp(p, 0) = p and d exp(p, ·) = idTpX̂0

) which is R-equivariant in any end.

Definition 5.2 (Pregluing). For g ∈ GT ′//T × CN , we define the “preglued” map

ug : Cg → X̂g (5.15)

as the natural “descent” of u0|g from C0 to Cg.

5.2 Gluing estimates

With the above setup understood, our aim is now to describe the “true solutions” close to
the “approximate solution” ug : Cg → X̂g. This forms the core part of the gluing argument.
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5.2.1 Weighted Sobolev norms

Our first step is simply to define the weighted Sobolev spaces W k,2,δ relevant for the gluing
argument and to specify norms on these spaces, up to commensurability uniform in g near
zero (uniformity in g is crucial for the key gluing estimates to have any meaning or utility
at all). The weighted Sobolev spaces we define here differ from those of §2.11 in that
we put weights not just over the ends asymptotic to Reeb orbits but also near the nodes
(this necessitates a comparison of linearized operators in the two contexts, which we do
immediately after the definition of Sobolev norms below). We also put weights over the
necks (which has meaning since we work up to commensurability uniform in g).

Fix metrics and connections as in Conventions 2.30–2.31 on C0 and X̂0 with respect to
the cylindrical coordinates fixed above and which (for convenience) agree across the parts to
be glued (thus descending to Cg and X̂g). We suppose throughout that δ > 0 satisfies δ < 1
and δ < δγ for every asymptotic Reeb orbit γ of u0. As in Remark 2.33, it is sufficient to fix
any k ≥ 4, though for the moment we only need to assume k ≥ 0 (k ≥ 2 if C0 has nodes).

Remark 5.3. Although these choices of metrics, connections, k, and δ affect the constants
appearing in the gluing estimates, they do not affect either the final gluing map or (the
restriction to smooth functions/sections of) any of the intermediate maps we study and/or
construct.

Away from the ends/necks of Cg, we use the usual W k,2-norm. In an end asymptotic to
a Reeb orbit, the contribution to the norm squared is

∫

[0,∞)×S1

k
∑

j=0

∣

∣Djf
∣

∣

2
e2δs ds dt. (5.16)

In an end asymptotic to a node n ∈ N , we distinguish two cases: for Sobolev spaces of
(0, 1)-forms on Cg, we use (5.16), and for spaces of functions we allow decay to a constant,
i.e. the contribution to the norm squared is

|f(n)|2 +

∫

[0,∞)×S1

k
∑

j=0

∣

∣Dj[f − f(n)]
∣

∣

2
e2δs ds dt (5.17)

The contribution of a neck is given as follows (first is for necks over Reeb orbits and necks
over nodes for spaces of (0, 1)-forms; second is for necks over nodes for spaces of functions):

∫

[0,S]×S1

k
∑

j=0

∣

∣Djf
∣

∣

2
e2δmin(s,S−s) ds dt, (5.18)

∫

[0,S]×S1

k
∑

j=0

∣

∣

∣

∣

Dj

[

f −
1

2π

∫

S1

f
(

1
2
S, t

)

dt

]
∣

∣

∣

∣

2

e2δmin(s,S−s) ds dt+

∣

∣

∣

∣

1

2π

∫

S1

f
(

1
2
S, t

)

dt

∣

∣

∣

∣

2

.

(5.19)

We use parallel transport to make sense of the differences f−f(n), etc. To meausre/differentiate
(0, 1)-forms, we use the usual Riemannian metric on [0,∞)×S1 (resp. [0, S]×S1) and usual
flat connection on forms. Different choices of metrics and connections yield norms which are
equivalent, uniformly in g, for any fixed k and δ as above.
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Remark 5.4. We emphasize that, although we refer to the weighted Sobolev norms in §2.11
informally as “without weights at the nodes”, they are not the same as the weighted Sobolev
norms above specialized to δ = 0 at the nodes.

We now provide the promised comparison of linearized operators defined using the weighted
Sobolev norms above (with weights near the nodes) and using the weighted Sobolev norms
from §2.11 (without weights near the nodes). That is, we argue that both linearized oper-
ators are Fredholm, with the same kernel and cokernel. Let us temporarily write W k,2,δ,δ

for the weighted Sobolev spaces defined above and W k,2,δ for the weighted Sobolev spaces
from §2.11. We suppose that k is large enough so that the linearized operators are defined
(see Definitions 2.37 and 3.22). We have already seen in Proposition 2.38 that the linearized
operator acting on W k,2,δ is Fredholm for such δ. The same argument applies to the lin-
earized operator acting on W k,2,δ,δ, using the fact that δ ∈ (0, 1) is not an eigenvalue of
the asymptotic operators at the nodes (all of which have spectrum Z). There are inclusions
W k,2,δ ⊆ W k,2,δ,δ (since δ < 1) which are dense by Lemma 2.35. We get induced maps from
the kernel and cokernel of the linearized operator acting on W k,2,δ to those of the operator
acting on W k,2,δ,δ. The map on kernels is obviously injective, and the map on cokernels is
obviously surjective. To show surjectivity on kernels and injectivity on cokernels, it suffices
to show that if Dξ = η with ξ ∈ W k,2,δ,δ and η ∈ W k−1,2,δ, then ξ ∈ W k,2,δ. Now as distri-
butions, we have Dξ = η + ε, for some distribution ε supported over the inverse images of
the nodes Ñv ⊆ C̃v. By elliptic regularity, it suffices to show that ε = 0. But now for any
smooth test function ϕ supported over a small neighborhood of Ñv, we have

〈ε, ϕ〉 = 〈Dξ − η, ϕ〉 = 〈ξ,D∗ϕ〉 − 〈η, ϕ〉. (5.20)

The first term is bounded by a constant times ‖ϕ‖1,1 since D∗ (the formal adjoint) is first
order and ξ ∈ W k,2,δ,δ ⊆ C0. The second term is bounded by a constant times ‖ϕ‖2 since
η ∈ W k−1,2,δ ⊆ L2. Now ε is supported at a finite number of points, so must be a linear
combination of δ-functions and their derivatives (see Lemma 2.41), but these do not satisfy
such bounds (recall that W 1,1 * C0 since we are in two dimensions [Ada75, Example 5.25]).

5.2.2 Nonlinear Fredholm setup for fixed g

We now formulate precisely what we mean by “solutions close to ug : Cg → X̂g”. What we
mean is “small zeroes of Fg”, where Fg is the map

Fg : W k,2,δ(Cg, u
∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕ J⊕EJ

→W k−1,2,δ(C̃g, u
∗
g
(TX̂g)Ĵgt

⊗C Ω0,1

C̃g

)⊕ RVs(T ′) (5.21)

defined by

Fg(ξ, y, e) :=
[

(PTgt

expug
ξ→ug

⊗ Iy)
(

d(expug ξ) +
∑

α∈J

να((e0 + e)α)(φ
g,ξ
α , expug ξ)

)0,1

jy,Ĵgt

⊕
⊕

v∈Vs(T ′)

πR(expug ξ)(q
′
v(y))

]

. (5.22)
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We explain the notation. We denote by exp : TX̂0 → X̂0 a fixed exponential map which is
R-equivariant in ends and over symplectizations and agrees across the parts to be glued, thus
descending to X̂g. We fix a Ĵ0-linear connection on TX̂0 which is R-equivariant in ends and

over symplectizations and agrees across the parts to be glued, thus descending to X̂g. We

denote by PT
gt parallel transport with respect to the Ĵgt-linear part of this fixed connection.

The map Iy : Ω
0,1
Cg,jy

→ Ω0,1
Cg ,j0

denotes the composition Ω0,1
Cg,jy

→ Ω1
Cg
⊗R C → Ω0,1

Cg ,j0
(which

is C-linear).
The map Fg is defined over the ball of some fixed radius c′k,δ > 0 uniformly in g near

zero, for any k ≥ 3. The constraint k ≥ 3 ensures that W k,2 ⊆ C1 (see [Ada75, Lemma
5.17]), which is needed so that φg,ξ

α is defined for ‖ξ‖k,2,δ small.

5.2.3 Estimate for ‖Fg(0)‖

We now show that Fg(0) is very small (i.e. the preglued map ug : Cg → X̂g is very close to
being a true solution).

Lemma 5.5. We have
‖Fg(0)‖k−1,2,δ → 0 as g → 0 (5.23)

for all k ≥ 1.

Proof. Away from the necks and ends, the 1-form part of Fg(0) is only nonzero because of

using Ĵgt in place of Ĵ0 and because of using φg,0
α in place of φ0,0

α = φα. This difference clearly
goes to zero as g→ 0.

Over Reeb ends, the 1-form part of Fg(0) is identically zero. Over Reeb necks, the 1-
form part of Fg(0) is supported near 1

6
S and 5

6
S, and the desired estimate follows from the

exponential convergence of (5.7) and the fact that δ < δγ .
The same applies to nodal ends/necks, except that in addition there is a term coming

from using Ĵgt in place of Ĵ0. This again is bounded as desired since δ < 1.
The RVs(T ′) part of Fg(0) satisfies the desired estimate since q′v ∈ (Cg, j0) approaches the

descent of q′v ∈ (C0, j0) as g→ 0.

5.2.4 Regularity of the map Fg (quadratic estimate)

We now prove a “quadratic estimate” quantifying the regularity of Fg near zero, i.e. giving
a uniform upper bound on certain of its derivatives near zero. This estimate is used when
we apply the (Banach space) inverse function theorem to understand F−1

g
(0) near zero. We

begin with a general discussion of the smoothness properties of Fg before specializing to the
specific estimate we need.

The first term in Fg (the usual pseudo-holomorphic curve equation) is smooth and local.
The second term (the “thickening” terms να) is non-local; its only non-smoothness comes
from the association ξ 7→ φg,ξ

α . It thus is Cℓ as long as the function which assigns to ξ
the set (expug ξ)

−1(D̂α) is Cℓ. By the inverse function theorem, this is the case whenever

W k,2 ⊆ Cℓ, which in turn holds whenever k ≥ ℓ + 2 [Ada75, Lemma 5.17]. The third term
is also Cℓ whenever W k,2 ⊆ Cℓ (these both come down to the fact that the evaluation map
W k,2(C,X)× C → X is of class Cℓ whenever W k,2 ⊆ Cℓ).
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The specific sort of estimate we need to apply the inverse function theorem to understand
F−1
g
(0) is a “quadratic estimate” quantifying, uniformly in g, the fact that the derivative of

Fg is Lipschitz. It is thus sufficient to assume that k ≥ 4, so that the above discussion shows
that Fg is of class C2.

Proposition 5.6. For ‖ζ‖k,2,δ , ‖ξ‖k,2,δ ≤ c′k,δ, we have

∥

∥F
′
g
(0, ξ)− F

′
g
(ζ, ξ)

∥

∥

k−1,2,δ
≤ ck,δ ‖ζ‖k,2,δ ‖ξ‖k,2,δ (5.24)

for constants ck,δ <∞ and c′k,δ > 0 uniformly in g near 0, for all k ≥ 4.

Proof. We have already observed above that Fg is of class C2 for k ≥ 4, which implies that
(5.24) holds for some ck,δ < ∞ and c′k,δ > 0 possibly depending on g. Our present task is
thus to make the above reasoning precise enough to extract bounds which are uniform in
g. In a word, the point of the proof is simply that the constants ck,δ < ∞ and c′k,δ > 0 in

question depend only on the W k,∞-norms of ug and the various operations comprising Fg

(in particular, the total area of Cg is irrelevant).
Choose a covering {Uα}α of Cg of locally bounded geometry by open sets Uα of bounded

diameter (e.g. over ends/necks, we can use the covering by sets of the form [s, s+2]×S1 for
integers s). The local geometry of the cover can be bounded uniformly in g, and thus we
can write any ξ ∈ W k,2,δ as a sum ξ =

∑

α ξα where ξα is supported inside Uα and

∑

α

‖ξα‖k,2,δ ≤ ck,δ ‖ξ‖k,2,δ (5.25)

for some constant ck,δ < ∞ uniform in g. Hence it is enough to show the desired estimate
(5.24) for ξ whose support has bounded diameter. We know from our earlier reasoning that
the estimate (5.24) holds for all ξ, and it is clear that the resulting constants ck,δ < ∞ and
c′k,δ > 0 depend only on the derivatives of ug over the support of ξ (which we now assume
has bounded diameter, and thus bounded geometry). The derivatives of ug are bounded
uniformly in g, so we conclude that the constants ck,δ <∞ and c′k,δ > 0 are as well.

Note that integrating (5.24) from ξ1 to ξ2 gives

∥

∥Dg(ξ1 − ξ2)− (Fgξ1 − Fgξ2)
∥

∥

k−1,2,δ
≤ ck,δ ‖ξ1 − ξ2‖k,2,δmax(‖ξ1‖k,2,δ , ‖ξ2‖k,2,δ) (5.26)

for ‖ξ1‖k,2,δ , ‖ξ2‖k,2,δ ≤ c′k,δ.

5.2.5 Bounded right inverses and kernel gluing I: relating D0 and Dg

The final step in understanding F−1
g
(0) is to construct a sufficiently nice bounded right inverse

Qg for Dg := F′
g
(0, ·). In particular, we will need to show that ‖Qg‖ is bounded uniformly

for g near 0, and that imQg “varies continuously” (in a sense which we will make precise)
as g varies. We will also construct a natural “kernel gluing” isomorphism kerD0 → kerDg.

86



To study the linearized operator Dg, and in particular to construct Qg, we consider the
following diagram, which allows us to relate Dg to D0.

W k,2,δ(Cg, u
∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕ J⊕ EJ W k−1,2,δ(C̃g, u
∗
g
(TX̂g)Ĵgt

⊗C Ω0,1

C̃g

)⊕ RVs(T ′)

W k,2,δ(Cg, u
∗
g
TX̂g)ξ(qv,i)∈TD̂v,i

⊕ J⊕ EJ W k−1,2,δ(C̃g, u
∗
g
(TX̂g)Ĵgt

⊗C Ω0,1

C̃g

)⊕ RVs(T ′)

W k,2,δ(C0, u
∗
0|gTX̂0)ξ(qv,i)∈TD̂v,i

⊕ J⊕ EJ W k−1,2,δ(C̃0, u
∗
0|g(TX̂0)Ĵgt

⊗C Ω0,1

C̃0
)⊕ RVs(T ′)

W k,2,δ(C0, u
∗
0TX̂0)ξ(qv,i)∈TD̂v,i

⊕ J⊕EJ W k−1,2,δ(C̃0, u
∗
0(TX̂0)Ĵ0 ⊗C Ω0,1

C̃0
)⊕ RVs(T ′)

Dg

calib

Dg

glue break

D0|g

PT PT◦id1,0

D0

(5.27)
The maps in this diagram are defined as follows.

The horizontal maps are the linearized operators at the maps u0, u0|g, ug.

The maps PT are parallel transport with respect to the fixed connection on TX̂0.
The map id1,0 : (TX̂0)Ĵ0 → (TX̂0)Ĵgt

is the (1, 0)-component of the identity map.

Let us define the break map from (5.27). Fix a smooth function χ̄ : R→ [0, 1] such that

χ̄(x) =

{

1 x ≤ −1

0 x ≥ +1
χ̄(x) + χ̄(−x) = 1. (5.28)

Now break(η) is simply η except over the ends of C0, where we define it to be

break(η)(s, t) :=











η(s, t) s ≤ 1
2
S − 1

χ̄(s− 1
2
S) · η(s, t) 1

2
S − 1 ≤ s ≤ 1

2
S + 1

0 1
2
S + 1 ≤ s.

(5.29)

Thus the “trace” of break(η) from C0 to Cg (adding along fibers) is precisely η.
Let us define the glue map from (5.27). The map glue acts only on the vector field

component (it acts identically on the other components). Away from the necks, we set
glue(ξ) := ξ, and in any particular neck [0, S] × S1 ⊆ Cg, we define (respectively for necks
near Reeb orbits and necks near nodes n ∈ N)

glue(ξ)(s, t) :=











ξ(s, t) s ≤ 1
3
S − 1

χ(s− 2
3
S)ξ(s, t) + χ(2

3
S − s′)ξ(s′, t′) 1

3
S − 1 ≤ s ≤ 2

3
S + 1

ξ(s′, t′) 2
3
S + 1 ≤ s,

glue(ξ)(s, t) :=



















ξ(s, t) s ≤ 1
3
S − 1

ξ(n) + χ(s− 2
3
S)[ξ(s, t)− ξ(n)]

+ χ(2
3
S − s′)[ξ(s′, t′)− ξ(n)] 1

3
S − 1 ≤ s ≤ 2

3
S + 1

ξ(s′, t′) 2
3
S + 1 ≤ s,
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(noting the corresponding ends (s, t) ∈ [0,∞)× S1 ⊆ C0 and (s′, t′) ∈ (−∞, 0] × S1 ⊆ C0,
glued via s = s′ + S and t = t′ + θ).

Let us define the calib map from (5.27). For every edge e ∈ Eint(T ′) with ge < ∞, we
consider the vector field Cg → u∗

g
TX̂g given in this neck by

χ(s− 2
3
S)χ(2

3
S − s′) · ∂sug. (5.30)

We denote by X the C-span of these vector fields. Now we have

W k,2,δ(Cg, u
∗
g
TX̂g)ξ(qv,i)∈TD̂v,i

=W k,2,δ(Cg, u
∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕X, (5.31)

and the map calib is simply the associated projection onto the first factor.
This completes the definition of the maps in (5.27).

Lemma 5.7. The maps in (5.27) are all bounded uniformly in g.

Proof. To show uniform boundedness of the linearized operators D0, D0|g, Dg, it is enough
to cover the domain curve C0 or Cg with small open sets of bounded geometry and to prove
a uniform bound on D0, D0|g, Dg restricted to sections supported in each such small open
set (compare the proof of Proposition 5.6). For sake of concreteness, we can take these
“small open sets of bounded geometry” to be of the form [n, n + 2]× S1 in the ends/necks
(note that the total number of these open sets does not matter). The maps u0, u0|g, ug are
very well behaved in the ends/necks, uniformly in g, which is enough. More succinctly, the
point is simply that the norms of the linearized operators D0, D0|g, Dg depend only on the
W k,∞-norms of their “coefficients” and of u0, u0|g, ug (so, in particular, the total area of Cg

is irrelevant).
The maps break and glue are uniformly bounded because the derivatives of χ and χ̄ are

bounded and the weights agree (up to a constant factor) at the relevant corresponding points
of the domains.

To show that the map calib is uniformly bounded, it is enough to show that the projection
onto the second factor in (5.31) is uniformly bounded. This projection is uniformly bounded
since the norm of (5.30) is uniformly commensurable with its value at q′′e ∈ [0, S]×S1 (which
holds because δ > 0 and q′′e is given the maximum weight).

The maps PT and id1,0 are bounded uniformly by the same argument used for the lin-
earized operators D0, D0|g, Dg.

5.2.6 Bounded right inverses and kernel gluing II: estimates

The diagram (5.27) does not commute, but is very close to commuting for g close to zero,
as the following estimates make precise.

Lemma 5.8. We have the following estimates

‖PT ◦D0 −D0|g ◦ PT‖ → 0 (5.32)

‖(Dg ◦ glue)(ξ)− η‖ = o(1) · ‖ξ‖ for break(η) = D0|gξ (5.33)

‖Dg ◦ calib−Dg‖ → 0 (5.34)

as g→ 0, for any fixed k ≥ 2.
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Proof. To prove (5.32), argue as follows. The first difference between the two operators
is over the [1

6
S,∞) × S1 subset of some ends. In this region, both are linear differential

operators, which we may write in local coordinates (s, t) on C0 and exponential coordinates
on the target near the asymptotic orbit or point. The desired bound then follows from the
exponential convergence of (5.7) (near n ∈ N , observe that smoothness of u0 implies decay
of all derivatives like e−|s| in cylindrical coordinates). The second difference between the two
operators is Ĵ0 vs Ĵgt, and this is also bounded as desired, since Ĵgt → Ĵ0 in C∞.

To prove (5.33), argue as follows. Away from ends/necks, the difference is only nonzero
due to using φg,ξ

α in place of φ0,ξ
α , and it is straightforward to see that this is bounded as

desired. In the ends/necks, the difference is only nonzero over the ([1
3
S − 1, 1

3
S] ∪ [2

3
S, 2

3
S +

1])×S1 subsets of each neck. By symmetry, we discuss only the [2
3
S, 2

3
S+1]×S1 part, where

it equals D0|g(χ(s−
2
3
S)ξ(s, t)). Now we note that D0|g(χ(s−

2
3
S)ξ(s, t)) has W k−1,2,δ(C̃0)-

norm bounded by ‖ξ‖k,2,δ. But we are interested in theW k−1,2,δ(C̃g)-norm, where the weight

is smaller by a factor of e−
1
3
δS , giving the desired estimate since δ > 0.

To prove (5.34), argue as follows. It suffices to show that ‖Dg(X(ξ))‖ = o(1)‖ξ‖, where
X(ξ) ∈ X denotes ξ − calib(ξ), i.e. the second projection in (5.31). Note that the norm

of ξ(q′′e ) (which determines X(ξ)) is bounded by a constant times e−
1
2
δS‖ξ‖k,2,δ (i.e. ‖ξ‖k,2,δ

divided by the weight in the middle of the neck). Now Dg(X(ξ)) is only nonzero over the

([1
3
S − 1, 1

3
S]∪ [2

3
S, 2

3
S + 1])× S1 subsets of each neck, where the weight is e

1
3
δS. Its norm is

thus bounded by e(
1
3
− 1

2
)δS‖ξ‖k,2,δ, giving the desired result since δ > 0.

5.2.7 Bounded right inverses and kernel gluing III: goal

Recall that by assumption, D0 is surjective and the natural projection kerD0 → EJ\I is
surjective; indeed, this is what it means for ψIJ(x0) to lie in M(T ′)regI . Let Q0 denote any
bounded right inverse for D0, meaning D0Q0 = 1. Then we have a direct sum decomposition

W k,2,δ(C0, u
∗
0TX̂0)ξ(qv,i)∈TD̂v,i

⊕ J⊕ EJ = kerD0 ⊕ imQ0. (5.35)

In fact, choosing a bounded right inverse Q0 is equivalent to choosing a closed complement
imQ0 of kerD0. The classical Banach space implicit function theorem (taking as input Q0

and the quadratic estimate (5.24)) then implies that the map from F−1
0 (0) to kerD0 by

projection along imQ0 is a local diffeomorphism near zero.
Our goal is to generalize this setup to g in a neighborhood of zero (using (5.27) and

Lemma 5.8). Namely, we will construct a right inverse Qg for Dg (equivalently, we will
choose a complement imQg for kerDg), so we that have a direct sum decomposition

W k,2,δ(Cg, u
∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕ J⊕ EJ = kerDg ⊕ imQg. (5.36)

The same implicit function theorem argument applies as long as ‖Qg‖ is bounded uniformly
for g near zero. Note also that uniform boundedness of Qg implies that both projections in
(5.36) are uniformly bounded (since they are given by 1−QgDg and QgDg respectively).

Now to ensure that the individual parameterizations of F−1
g
(0) byKg near zero fit together

continuously as g varies, we also need to show that the direct sum decomposition (5.36) is
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“continuous in g” in some sense. Let us now describe more precisely the sense we mean. For
some points wi ∈ C0 \ ({pv,e}v,e ∪N), consider the linear functional

L0 : W
k,2,δ(C0, u

∗
0TX̂0)ξ(qv,i)∈TD̂v,i

⊕ J⊕EJ →

(

⊕

i

Tu0(wi)X̂0 ⊕ J⊕ EJ

)

/

B

for some subspace B projecting trivially onto EJ\I . Fix B so that L0|kerD0 is an isomorphism;
this is possible since kerD0 → EJ\I is surjective. Since L0|kerD0 is an isomorphism, we have
a direct sum decomposition

W k,2,δ(C0, u
∗
0TX̂0)ξ(qv,i)∈TD̂v,i

⊕ J⊕EJ = kerD0 ⊕ kerL0. (5.37)

Now denote by

Lg :W k,2,δ(Cg, u
∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕ J⊕ EJ →

(

⊕

i

Tug(wi)X̂g ⊕ J⊕ EJ

)

/

B

the “same” linear functional, where wi ∈ Cg denote the descents of wi ∈ C0, so that there

is a natural identification Tug(wi)X̂g = Tu0(wi)X̂0. We will show that Lg|kerDg
is still an

isomorphism, and hence there is a direct sum decomposition

W k,2,δ(Cg, u
∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕ J⊕ EJ = kerDg ⊕ kerLg. (5.38)

We will construct Qg with imQg = kerLg, i.e. the direct sum decompositions (5.36) and
(5.38) coincide. We will also define natural “kernel gluing” isomorphisms kerD0

∼
−→ kerDg

which agree with L−1
g
◦ L0.

5.2.8 Bounded right inverses and kernel gluing IV: construction

We now construct the right inverses Qg and the kernel gluing isomorphisms kerD0
∼
−→ kerDg

satisfying the desired properties discussed above.
We first recall the following general construction, which allows one to upgrade an “ap-

proximate right inverse” into a (true) right inverse.

Definition 5.9. Let D : X → Y be a bounded linear map between Banach spaces, and
let T : Y → X be an approximate right inverse, meaning that ‖1−DT‖ < 1. Then
there is a (necessarily unique) associated right inverse Q : Y → X with the same image
imQ = imT , namely Q := T (DT )−1, where DT : Y → Y is invertible by the geometric
series

∑∞
k=0(1−DT )

k. Moreover, we have (trivially) that ‖Q‖ ≤ ‖T‖ (1− ‖1−DT‖)−1.

To define the right inverse Qg, first define an approximate right inverse Tg of Dg as the
following composition of maps in (5.27):

Tg := calib ◦ glue ◦ PT ◦Q0 ◦ PT ◦ id
1,0 ◦ break, (5.39)

where Q0 denotes the fixed right inverse ofD0 defined by the property that imQ0 = kerL0. A
consequence of the estimates (5.32)–(5.34) (expressing the fact that (5.27) almost commutes)
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is that ‖1−DgTg‖ → 0 as g→ 0 (see [Par16, Lemma B.7.6]). Let Qg denote the associated
true right inverse, which is uniformly bounded for g near zero (since all the maps in (5.27) are
uniformly bounded). Note that Lg ◦ calib ◦ glue ◦ PT = L0 by inspection, so imQ0 = kerL0

implies that imQg = imTg ⊆ kerLg.
We define the kernel gluing isomorphism kerD0

∼
−→ kerDg as the composition

(1−QgDg) ◦ calib ◦ glue ◦ PT : kerD0 → kerDg. (5.40)

Note that Lg ◦ (1−QgDg) ◦ calib ◦ glue ◦ PT = L0 by inspection, and hence (5.40) is
injective. Now we have by definition that indD0 = µ(T ′) − #Vs(T

′) − #N + dimEJ and
indDg = µ(T ′

g
) − #Vs(T

′) − #N + dimEJ , where T
′ → T ′

g
denotes the image of g under

the map GT ′//T → ST ′//T . These indices coincide as remarked below Definition 2.42, so
(5.40) is an isomorphism as both D0 and Dg are surjective. Since (5.40) is an isomorphism,
so is Lg|kerDg

, and it thus follows that the inclusion imQg ⊆ kerLg is in fact an equality
imQg = kerLg.

Remark 5.10. It is possible to prove that (5.40) is surjective directly at the cost of proving
a few more estimates (this is similar to [FH93, Proposition 9]). This thus gives an a priori
proof that µ(T ) = µ(T ′) for T ′ → T .

Let us sketch the argument. Let ℓ ∈ kerDg. The a priori estimate of exponential
convergence to a trivial cylinder due to Hofer–Wysocki–Zehnder [HWZ02, Theorems 1.1,
1.2, and 1.3] (restated here as Proposition 2.20) has an easier linear analogue which says
that in any neck, ℓ decays rapidly to a constant vector field tangent to the trivial cylinder;
moreover, this constant vanishes in Reeb necks since πR∂s⊕RRλ

ℓ(q′′e ) = 0. It follows that we
can apply an “ungluing” operation to produce a κ of commensurable norm ‖κ‖ ≍ ‖ℓ‖ with
‖D0κ‖ = o(1) · ‖κ‖ and L0κ = Lgℓ. Now we have ‖ℓ − (calib ◦ glue ◦ PT)(κ)‖ = o(1) · ‖ℓ‖
by explicit calculation, and it follows that the image of (1−Q0D0)κ ∈ kerD0 under (5.40)
is within distance o(1) · ‖ℓ‖ of ℓ. Since this holds for all ℓ ∈ kerDg, it follows that (5.40) is
surjective.

5.3 Gluing map

We now define the gluing map and show that it is a local homeomorphism. This is the
“endgame” of the gluing argument, where we deduce the desired results from the technical
work performed above.

5.3.1 Definition of the gluing map

We first recall (following our sketch in §5.2.7) how our work above implies that F−1
g
(0) is a

manifold near zero and that projection along imQg provides a diffeomorphism between it
and kerDg near zero.

We have fixed a right inverse Qg for Dg = F′
g
(0, ·) with ‖Qg‖ bounded uniformly for g

near zero. Now it follows from (5.24) that Qg is an approximate right inverse to F′
g
over

the ball of some radius c′k,δ > 0 (uniform in g). Hence over this ball of radius c′k,δ > 0, the
operator F′

g
is surjective, i.e. Fg is transverse to zero. By the Banach space implicit function

theorem, it thus follows that F−1
g
(0) is a Cℓ-submanifold (for k ≥ ℓ+ 2) which is transverse

to imQg.
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Let us now show that map kerDg → F−1
g
(0) given by projection along imQg (is well-

defined and) is a diffeomorphism near zero. The key point is that the map 1 − QgFg is a
contraction mapping when restricted to any slice (ξ + imQg) ∩ B(c′k,δ) with ξ sufficiently
small in terms of c′k,δ. This follows from (5.26) and (5.23), which moreover imply that the
contraction constant approaches zero (uniformly in g) as c′k,δ → 0. This gives the desired
result, and moreover shows that the projection along imQg to F−1

g
(0) is given (over the

whole ball B(c′k,δ)) by the limit of the Newton–Picard iteration ξ 7→ ξ −QgFgξ.
We can now define the gluing map, by precomposing the above local diffeomorphisms

kerDg → F−1
g
(0) with the kernel gluing isomorphisms kerD0

∼
−→ kerDg and letting g vary.

In other words, the gluing map

(

GT ′//T × CN × kerD0, (0, 0)
)

→
(

M(T )J , x0

)

(5.41)

sends (g, κ) to the map expug κ
∞
g

: Cg → X̂g, where κ
∞
g
∈ F−1

g
(0) is the unique intersection

point F−1
g
(0)∩ (((1−QgDg)◦ calib◦ glue◦PT)(κ)+ imQg) in B(c′k,δ). The discrete data for

expug ξ : Cg → X̂g is naturally inherited from that for u0 : C0 → X̂0. Since Fg is transverse

to zero at κ∞
g
, it follows that the image of the gluing map is contained in M(T )regJ .

The gluing map evidently commutes with the maps from both sides to ST ′//T×s(T )×EJ\I
(recall that imQg = kerLg projects trivially onto EJ\I by definition).

Let us also note here that the inequality µ(T ′)−#Vs(T
′)−2#N+dimEI ≥ 0 follows from

the fact that D0 is surjective, kerD0 → EJ\I is surjective, and indD0 = µ(T ′)−#Vs(T
′)−

2#N + dimEJ .

5.3.2 Properties of the gluing map

We now show that the gluing map is a local homeomorphism. More precisely, we show that
the gluing map is continuous and that it is a local bijection, for which the a priori estimates
recalled in §2.8 will be crucial. We then appeal to some point set topology to see that the
gluing map is a local homeomorphism (though continuity of the inverse could also be proven
directly).

Lemma 5.11. The gluing map is continuous.

Proof. Recall that κ∞
g

may be described via the Newton–Picard iteration as follows. Namely,
κ∞
g

= limi→∞ κi
g
, where

κi+1
g

= κi
g
−QgFgκ

i
g
, (5.42)

κ0
g
= (calib ◦ glue ◦ PT)(κ). (5.43)

Note that there is no 1−QgDg in the definition of κ0
g
(this is ok since QgDgκ

0
g
∈ imQg).

Now suppose (gi, κi)→ (g, κ) (a convergent net), and let us show that the net expugi (κi)
∞
gi

:

Cgi
→ X̂gi

approaches expug κ
∞
g

: Cg → X̂g in the Gromov topology.
First, we claim that ‖(κi)

∞
gi
− κ∞

gi
‖k,2,δ → 0. By uniform convergence of the Newton–

Picard iteration, it suffices to show that ‖(κi)
n
gi
− κn

gi
‖k,2,δ → 0 for all n. The case n = 0

follows from uniform boundedness of calib ◦ glue ◦ PT. The desired claim then follows by
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induction on n using (5.24). Now the claim implies that ‖(κi)
∞
gi
− κ∞

gi
‖∞ → 0, and thus it

suffices to show that

expugi κ
∞
gi

: Cgi
→ X̂gi

approaches expug κ
∞
g

: Cg → X̂g. (5.44)

Define (κ∞
g
)0
gi

by (as the notation suggests) pregluing κ∞
g

from Cg to Cgi
as follows. In

any neck of Cgi
corresponding to a pair of ends of Cg, we preglue via calib◦glue◦PT as before

(this operation is local to the ends/neck). In any neck of Cgi
corresponding to a neck of

Cg, we simply use parallel transport and a nice diffeomorphism between the two necks (say,
converging to the identity map in the C∞ topology as gi → g). We may assume without
loss of generality that there are no pairs of ends of Cgi

corresponding to a neck of Cg.
Now we claim that

‖Fgi
((κ∞

g
)0
gi
)‖k−1,2,δ → 0. (5.45)

Away from the necks/ends, the 1-form part of Fgi
((κ∞

g
)0
gi
) is nonzero only because of using

Ĵ(gi)t in place of Ĵgt and because of using φgi,ξ
α in place of φg,ξ

α . We have Ĵ(gi)t → Ĵgt and
φgi,ξ
α → φg,ξ

α , so the desired estimate follows since (κ∞
g
)0
gi

= κ∞
g

away from the ends/necks.
Over the Reeb ends of Cgi

, the 1-form part vanishes. Over the Reeb necks of Cgi
corre-

sponding to necks of Cg, the 1-form part approaches zero. Over the Reeb necks of Cgi

corresponding to pairs of ends of Cg, the estimate follows from the exponential decay of κ∞
g

and u0 and the fact that δ < 1 and δ < δγ for all asymptotic Reeb orbits γ. The same applies

to nodal necks, in addition considering the convergence Ĵ(gi)t → Ĵgt. The R
Vs(T ′) part clearly

approaches zero. This proves (5.45).
Now we consider the Newton–Picard iteration starting at (κ∞

g
)0
gi
, with limit (κ∞

g
)∞
gi
∈

F−1
gi
(0). By uniform contraction of the iteration and (5.45), we conclude that ‖(κ∞

g
)0
gi
−

(κ∞
g
)∞
gi
‖k,2,δ → 0. It thus follows that

expugi (κ
∞
g
)∞
gi

: Cgi
→ X̂gi

approaches expug κ
∞
g

: Cg → X̂g. (5.46)

Now we claim that (κ∞
g
)∞
gi

= κ∞
gi
, which is clearly sufficient to conclude the proof.

By construction, we have Lgi
((κ∞

g
)∞
gi
) = Lgi

((κ∞
g
)0
gi
) = Lg(κ

∞
g
) = Lg(κ

0
g
) = L0(κ)

and similarly Lgi
(κ∞

gi
) = Lgi

(κ0
gi
) = L0(κ). Thus (κ∞

g
)∞
gi

and κ∞
gi

differ by an element of
kerLgi

= imQgi
, which is enough.

Lemma 5.12. The gluing map (5.41) is a local bijection. That is, for every sufficiently
small neighborhood U of the basepoint in the domain, there exists an open neighborhood V
of the basepoint in the target such that every v ∈ V has a unique inverse image u ∈ U .

Proof. Let x ∈ M(T )J , and denote the corresponding map by u : C → X̂ . We assume that
x is sufficiently close to x0, and we will show that x has a unique inverse image under the
gluing map (5.41).

Concretely, x close to x0 in the Gromov topology means the following. We may identify C
with (Cβ, jw), for arbitrarily small gluing parameters β ∈ CEint(T ′)×CN and an almost com-
plex structure jw which agrees with j0 except over a compact set (away from the ends/necks)
where it is arbitrarily C∞ close to j0. Furthermore, the map u : (Cβ, jw)→ X̂ is arbitrarily
C0-close to u0 away from the Reeb ends/necks (which by Lemma 2.18 implies arbitrarily C∞
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close, at least away from the nodes of C0 which are resolved in C; the behavior of u in these
neighborhoods is controlled by Lemma 2.19). We will discuss the situation over the Reeb
ends/necks shortly.

Now observe that there are unique points qv,i ∈ C close to qv,i ∈ C0 where u intersects Dv,i

transversally. These points give rise to unique points q′v ∈ C according to the sections chosen
in §5.1.2. Now regarding u(q′v) ∈ X̂ as lying on the “zero section” determines (uniquely) a
gluing parameter g ∈ GT ′//T and an isomorphism X̂ = X̂g. Thus x corresponds to a map

u : (Cβ, jw)→ X̂g.
Now in any Reeb end [0,∞) × S1 ⊆ Cβ or Reeb neck [0, S] × S1 ⊆ Cβ, we apply

[HWZ02, Theorems 1.1, 1.2, and 1.3] (restated here as Proposition 2.20) to see that u decays
exponentially to a trivial cylinder. For unglued edges, we combine this with the fact that
u is C∞-close to u0 over an arbitrarily compact set (which we can choose to go very deep
into the end) to conclude that the tangent space marking of Cβ at {pv,e} induced by the

cylindrical coordinates on X̂g is arbitrarily close to the tangent space marking descended

from C0. The same reasoning implies that the gluing parameters β ∈ CEint(T ′) (for the
glued edges) are given by L−1

e ge + o(1) and θe + o(1) (i.e. are very close to those coming
from g), and we recover the point q′′e ∈ Cβ as the inverse image of expu0|g(q′′e )(ker πR∂s⊕RRλ

).

From these estimates, we conclude that x corresponds to a map u : (Cg, jy) → X̂g for
g ∈ GT ′//T × CN which is arbitrarily C∞-close to ug (including over the ends/necks, with
respect to the cylindrical coordinates) respecting the tangent markings at pv,e and sending
q′′e to expu0|g(q′′e )(ker πR∂s⊕RRλ

). Here g and y can be assumed arbitrarily small, and we use

the fact that (5.10) is a local diffeomorphism uniformly in g ∈ GT ′//T .

The injectivity radius of our fixed exponential map on X̂g is bounded below uniformly,

so x corresponds uniquely to some pair (u = expug ξ : (Cg, jy)→ X̂g, e), where

(ξ, y, e− e0) ∈ W
k,2,δ(Cg, u

∗
g
TX̂g) ξ(qv,i)∈TD̂v,i

πR∂s⊕RRλ
ξ(q′′e )=0

⊕ J⊕ EJ (5.47)

has arbitrarily small norm due to the a priori estimates on u from Lemmas 2.18 and 2.19 and
Proposition 2.20. Now we observed in the gluing construction that for any fixed sufficiently
small g, the gluing map gives a local diffeomorphism between kerD0 and F−1

g
(0), over a

ball of size uniformly bounded below. Thus our map is uniquely in the image of the gluing
map.

Since the target of the gluing map is Hausdorff and the domain locally compact Hausdorff,
it follows from continuity (Lemma 5.11) and bijectivity in a small neighborhood (Lemma
5.12) that the gluing map (5.41) is in fact a local homeomorphism, thus completing the proof
of Theorem 3.31.

5.4 Orientations

We now prove the compatibility of the geometric and analytic maps on orientation lines,
namely that (3.25) commutes. We rely heavily on the gluing construction in §§5.1–5.3.

Proof of Theorem 3.32. The gluing map (5.41) (in the case I = J) allows us to describe the
left vertical “geometric” map in (3.25) (i.e. the map induced by the topological structure of
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M(T )regI ) near the basepoint x0 as follows. Note that we may assume (for convenience) that
N = ∅, since this locus is dense. Recall that there is a canonical identification

okerD0 = o◦T ′ ⊗ (o∨R)
⊗Vs(T ′) ⊗ oEI

. (5.48)

Now consider sufficiently small (g, κ), where g ∈ GT ′//T lies in the top stratum (T ′ → T ).
Now F−1

g
(0) is a submanifold with tangent space kerF′

g
(κ∞

g
, ·), and there is a canonical

identification
okerF′

g(κ
∞
g ,·) = o◦T ⊗ (o∨R)

⊗Vs(T ′) ⊗ oEI
. (5.49)

The gluing map is differentiable with respect to κ since F−1
g
(0) is a submanifold transverse

to imQg. Its derivative is clearly given by the composition of kerD0 → kerDg and the map
kerDg → kerF′

g
(κ∞

g
, ·) given by projecting off imQg. This map kerD0 → kerF′

g
(κ∞

g
, ·) thus

gives the “geometric” map o◦T ′ → o◦T when combined with the isomorphisms above.
Now the right inverse Qg to Dg = F′

g
(0, ·) is an approximate right inverse to F′

g
(ξ, ·) for

all ξ ∈ B(c′k,δ) by (5.24). Hence the kernel kerF′
g
(ξ, ·) forms a vector bundle over B(c′k,δ)

which is canonically oriented by o◦T ⊗ (o∨R)
⊗Vs(T ′) ⊗ oEI

, and the map kerD0 → kerF′
g
(ξ, ·)

makes sense for all such ξ. Thus the geometric map on orientations is also given by the
simpler map at ξ = 0

kerD0
(1−QgDg)◦calib◦glue◦PT
−−−−−−−−−−−−−−→ kerDg (5.50)

combined with the canonical identifications

okerD0 = o◦T ′ ⊗ (o∨R)
⊗Vs(T ′) ⊗ oEI

, (5.51)

okerDg
= o◦T ⊗ (o∨R)

⊗Vs(T ′) ⊗ oEI
. (5.52)

Now this map (5.50) is precisely the sort of kernel pregluing map which defines the “analytic”
map on orientations.

Strictly speaking, the analytic map o◦T ′ → o◦T is defined using a slightly different linearized
operator (no J, EI , or point conditions), but this is only a “finite-dimensional” difference
(note also that J is canonically oriented since it is a complex vector space). It is thus
straightforward to relate them and see that they give rise to the same analytic map on
orientations.
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Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS), 18(11):2627–2689, 2016.
15

[EKP06] Yakov Eliashberg, Sang Seon Kim, and Leonid Polterovich. Geometry of con-
tact transformations and domains: orderability versus squeezing. Geom. Topol.,
10:1635–1747, 2006. 2

[Eli89] Y. Eliashberg. Classification of overtwisted contact structures on 3-manifolds.
Invent. Math., 98(3):623–637, 1989. 12

[Eli98] Yakov Eliashberg. Invariants in contact topology. In Proceedings of the In-
ternational Congress of Mathematicians, Vol. II (Berlin, 1998), number Extra
Vol. II, pages 327–338, 1998. 1, 3, 12

[Eli07] Yakov Eliashberg. Symplectic field theory and its applications. In International
Congress of Mathematicians. Vol. I, pages 217–246. Eur. Math. Soc., Zürich,
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Birkhäuser, Basel, 1999. 2

99



[HWZ02] H. Hofer, K. Wysocki, and E. Zehnder. Finite energy cylinders of small area.
Ergodic Theory Dynam. Systems, 22(5):1451–1486, 2002. 2, 21, 29, 31, 80, 91,
94

[HWZ07] H. Hofer, K. Wysocki, and E. Zehnder. A general Fredholm theory. I. A splicing-
based differential geometry. J. Eur. Math. Soc. (JEMS), 9(4):841–876, 2007.
2

[HWZ09a] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. A general Fredholm theory.
III. Fredholm functors and polyfolds. Geom. Topol., 13(4):2279–2387, 2009. 2

[HWZ09b] Helmut Hofer, Krzysztof Wysocki, and Eduard Zehnder. A general Fredholm
theory. II. Implicit function theorems. Geom. Funct. Anal., 19(1):206–293,
2009. 2

[HWZ10a] H. Hofer, K. Wysocki, and E. Zehnder. Integration theory on the zero sets of
polyfold Fredholm sections. Math. Ann., 346(1):139–198, 2010. 2

[HWZ10b] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. sc-smoothness, retractions
and new models for smooth spaces. Discrete Contin. Dyn. Syst., 28(2):665–788,
2010. 2

[HWZ14a] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. Applications of polyfold
theory I: The polyfolds of Gromov–Witten theory. arXiv:1107.2097v3:i–vi,1–
271, 2014. 2

[HWZ14b] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. Polyfold and Fredholm
Theory I: Basic Theory in M-Polyfolds. arXiv:1407.3185v1:1–246, 2014. 2

[HWZ17] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. Polyfold and Fredholm
Theory. arXiv:1707.08941v1:i–xviii,1–698, 2017. 2

[Ish18] Suguru Ishikawa. Construction of general symplectic field theory.
arXiv:1807.09455v3:1–320, 2018. 2

[Joy12] Dominic Joyce. D-manifolds and d-orbifolds: a theory of derived differential
geometry. Book Manuscript, 2012. 2

[Joy14] Dominic Joyce. An introduction to d-manifolds and derived differential geom-
etry. In Moduli spaces, volume 411 of London Math. Soc. Lecture Note Ser.,
pages 230–281. Cambridge Univ. Press, Cambridge, 2014. 2

[Joy15] Dominic Joyce. A new definition of Kuranishi space. arXiv:1409.6908v3:1–193,
2015. 2

[Joy16] Dominic Joyce. A generalization of manifolds with corners. Adv. Math.,
299:760–862, 2016. 25

[KM15] Chris Kottke and Richard B. Melrose. Generalized blow-up of corners and fiber
products. Trans. Amer. Math. Soc., 367(1):651–705, 2015. 25

100



[LM85] Robert B. Lockhart and Robert C. McOwen. Elliptic differential operators on
noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12(3):409–
447, 1985. 38

[LT98a] Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants
of general symplectic manifolds. In Topics in symplectic 4-manifolds (Irvine,
CA, 1996), First Int. Press Lect. Ser., I, pages 47–83. Int. Press, Cambridge,
MA, 1998. 2

[LT98b] Gang Liu and Gang Tian. Floer homology and Arnold conjecture. J. Differ-
ential Geom., 49(1):1–74, 1998. 2

[LW11] Janko Latschev and Chris Wendl. Algebraic torsion in contact manifolds.
Geom. Funct. Anal., 21(5):1144–1195, 2011. With an appendix by Michael
Hutchings. 13, 15

[McD19] Dusa McDuff. Constructing the virtual fundamental class of a Kuranishi atlas.
Algebr. Geom. Topol., 19(1):151–238, 2019. 2
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