
An algebraic approach to virtual fundamental cycles on
moduli spaces of pseudo-holomorphic curves

John Pardon

8 June 2015

Abstract

We develop techniques for defining and working with virtual fundamental cycles on
moduli spaces of pseudo-holomorphic curves which are not necessarily cut out transver-
sally. Such techniques have the potential for applications as foundations for invariants
in symplectic topology arising from “counting” pseudo-holomorphic curves.

We introduce the notion of an implicit atlas on a moduli space, which is (roughly) a
convenient system of local finite-dimensional reductions. We present a general intrinsic
strategy for constructing a canonical implicit atlas on any moduli space of pseudo-
holomorphic curves. The main technical step in applying this strategy in any particular
setting is to prove appropriate gluing theorems. We require only topological gluing
theorems, that is, smoothness of the transition maps between gluing charts need not
be addressed. Our approach to virtual fundamental cycles is algebraic rather than
geometric (in particular, we do not use perturbation). Sheaf-theoretic tools play an
important role in setting up our functorial algebraic “VFC package”.

We illustrate the methods we introduce by giving definitions of Gromov–Witten
invariants and Hamiltonian Floer homology over Q for general symplectic manifolds.
Our framework generalizes to the S1-equivariant setting, and we use S1-localization to
calculate Hamiltonian Floer homology. The Arnold conjecture (as treated by Floer,
Hofer–Salamon, Ono, Liu–Tian, Ruan, and Fukaya–Ono) is a well-known corollary of
this calculation.
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1 Introduction

In this paper, we develop a collection of tools and techniques for defining and working with
virtual fundamental cycles on compact moduli spaces of pseudo-holomorphic curves (in the
sense of Gromov [Gro85]) which are not necessarily cut out transversally. Such techniques
have a myriad of potential applications in symplectic geometry by providing foundations for
invariants obtained by “counting” pseudo-holomorphic curves:

Symplectic
manifold

=⇒ Moduli space(s) of
pseudo-holomorphic curves

VFC
=⇒ Desired

invariant
(1.0.1)

In this paper, we build a general framework which can potentially be applied to give rigorous
foundations for the wide variety of invariants defined using (1.0.1). We hope that this
framework may also be applicable to moduli spaces of solutions to other nonlinear elliptic
PDEs which give rise to interesting invariants.

When a moduli space is not cut out transversally, its topological structure does not de-
termine its virtual fundamental cycle; rather it must be endowed (canonically) with some
additional extra structure. We introduce the notion of an implicit atlas on a compact Haus-
dorff space, which serves as this extra structure on moduli spaces of pseudo-holomorphic
curves. We use implicit atlases as a layer of abstraction between the two steps in (1.0.1),
making them logically independent.

Our notion of an implicit atlas and our constructions of implicit atlases on moduli spaces
of pseudo-holomorphic curves constitute a reworking of existing ideas, with convenient canon-
icity and functoriality properties. Our construction of virtual fundamental cycles from im-
plicit atlases is more novel (using algebraic rather than geometric methods), and also has
good functoriality properties which are useful in applications. It is noteworthy that this
algebraic VFC setup requires only topological gluing theorems as input.
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The basic idea of using an atlas of charts of the form (1.1.1) on a moduli space to construct
its virtual fundamental cycle has existed since the inception of this problem, see for example
Li–Tian [LT98a], Liu–Tian [LT98b], Fukaya–Ono [FO99], Ruan [Rua99], Lu–Tian [LT07],
Fukaya–Oh–Ohta–Ono [FOOO09a, FOOO09b, FOOO12, FOOO15] (the theory of Kuran-
ishi structures), and McDuff–Wehrheim [MW15, McD15]. The polyfolds project of Hofer–
Wysocki–Zehnder [HWZ07, HWZ09a, HWZ09b, HWZ10a, HWZ10b, HWZ14a, HWZ14b]
gives another method for defining virtual fundamental cycles by describing moduli spaces
via a generalized infinite-dimensional Fredholm setup.

1.1 Implicit atlases

An implicit atlas organizes together a collection of local charts for a compact moduli space
X. A local chart for X is a diagram:

X s−1
α (0) Xα Eα

open closed sα (1.1.1)

where Eα is a finite-dimensional vector space (called the obstruction space), Xα is an auxiliary
moduli space (called the α-thickened1 moduli space), and sα is called the Kuranishi map. For
the purpose of constructing the virtual fundamental cycle of X, such a local chart (1.1.1) is
useful over X ∩ Xreg

α , where Xreg
α ⊆ Xα (called the regular locus) is the locus where Xα is

cut out transversally (and thus, in particular, Xreg
α is a finite-dimensional manifold).

An implicit atlas is an index set A (whose elements are called thickening datums) along
with obstruction spaces Eα (for all α ∈ A) and I-thickened moduli spaces XI (for all finite
subsets I ⊆ A) fitting together globally in a natural generalization of (1.1.1), where the
∅-thickened moduli space X∅ is identified with the original moduli space X. An implicit
atlas also includes the data of open subsets Xreg

I ⊆ XI which are manifolds and are required
to cover all of X. In particular, an implicit atlas carries a parameter d ∈ Z, the virtual
dimension, and we require that dimXreg

I = d+dimEI for all I ⊆ A (where EI :=
⊕

α∈I Eα).
Implicit atlases also allow charts (1.1.1) which incorporate the action of a finite group Γα
(so that such charts exist on spaces X with nontrivial isotropy), though we will introduce
the necessary notation later in the paper.

There is a natural notion of an “implicit atlas with boundary” (or corners) and of the
“product implicit atlas” on a product of spaces equipped with implicit atlases (with bound-
ary/corners). These notions enable us to treat Floer-type homology theories via implicit
atlases.

We use only “topological” implicit atlases in this paper (i.e. we only require that the Xreg
I

are topological manifolds), since the topological structure is sufficient to construct virtual
fundamental cycles. There is, of course, a parallel notion of a smooth implicit atlas, which
we will not need here.

Remark 1.1.1. From a theoretical standpoint, it would be desirable to endow the moduli
space X with the canonical structure of a “derived manifold” (a notion which should be more

1Perhaps a better name would be “α-stabilized moduli space”, though we have decided not to risk
confusing this notion of stabilization (i.e. product with a vector space) and the notion of stabilizing a
Riemann surface (i.e. adding marked points).
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intrinsic than the notion of an implicit atlas on X). A good notion of a “derived smooth
manifold” exists (due to Spivak [Spi10], Borisov–Noel [BN11], and Joyce [Joy14, Joy12]),
and it is reasonable to expect that a parallel topological theory exists as well. By nature, the
theory of derived manifolds uses the language of higher category theory. An implicit atlas
on X may be thought of as giving a “presentation” of X as a derived manifold (just as a
collection of open sets of Rn and gluing data can be used to present an ordinary manifold).

The “atlas” approach which we follow here, while being less intrinsic, has the advantage
of being more concrete and more elementary. We believe that a more intrinsic approach is
unlikely to lead to any simplification in the construction of this extra structure (implicit atlas
or derived manifold structure) on moduli spaces of pseudo-holomorphic curves. However, it
would likely make it easier to work with (and, in particular, calculate) virtual fundamental
cycles on such spaces.

1.2 Construction of implicit atlases

Implicit atlases are designed to encode a system of charts which can be constructed naturally
and intrisically on moduli spaces of pseudo-holomorphic curves in wide generality. Moreover,
the basic ingredients which go into the construction of implicit atlases are all familiar in the
field. We think of our specific examples of constructions of implicit atlases as special cases
of a general strategy which produces on any moduli space of pseudo-holomorphic curves a
canonical implicit atlas. For this general strategy to succeed, there are (essentially) two steps
which require setting-specific arguments.

The first step requiring setting-specific arguments is domain stabilization. For any pseudo-
holomorphic curve u : C →M in X, we must show that there is a smooth codimension two
submanifold (possibly with boundary) D ⊆ M which intersects it transversally such that
adding u−1(D) as added marked points on C makes C stable.2 This is an important ingre-
dient in verifying the covering axiom of an implicit atlas.

The second step requiring setting-specific arguments is formal regularity implies topolog-
ical regularity. For the I-thickened moduli spaces XI , we denote by Xreg

I ⊆ XI the locus
where the relevant linearized operator is surjective. We must show that Xreg

I is open and is a
topological manifold of the correct dimension (we also need a certain topological submersion
condition on how Xreg

I is cut out inside Xreg
J for I ⊆ J). These are the openess and submer-

sion axioms of an implicit atlas. This is the step where we must appeal to serious analytic
results (in particular, this is where gluing of pseudo-holomorphic curves takes place). Note,
though, that we only require topological gluing results (i.e. smoothness of transition maps
between gluing charts need not be addressed). We should also point out that these axioms
are local statements about the spaces Xreg

I , and hence are independent of any auxiliary group
action.

Our general strategy constructs an implicit atlas on X which is canonical (in the sense
that we do not need to make any choices during its construction). This is achieved simply by
defining A to be the set of all possible thickening datums (of which there are uncountably
many), where a thickening datum is a choice of divisor D, an obstruction space E, plus

2One can sometimes get away with a little less if this specific form of domain stabilization does not hold.
We will encounter such a situation when constructing S1-equivariant implicit atlases on moduli spaces of
stable Floer trajectories for S1-invariant Hamiltonians.
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some additional data. Note that it is nontrivial to formulate a notion of “atlas” which allows
this type of “universal” construction. Having such a canonical procedure is very useful in a
number of places, and this aspect of our approach appears to be new.

Our general strategy works well for the construction of S1-equivariant implicit atlases
on the moduli spaces of stable Floer trajectories for S1-invariant Hamiltonians (a key step
towards the Arnold conjecture). The domain stabilization step is harder in the equivariant
setting (we must use a divisor inside M instead of inside M × S1, and we must be satisfied
with not stabilizing Morse-type components of trajectories), but is not difficult. The formal
regularity implies topological regularity step is the same as in the non-equivariant case: the
analysis is independent of the S1-equivariance, and thus is (essentially) identical to that in
the non-equivariant case. In particular, we never need to check that S1 acts smoothly on
anything.

1.3 Construction of virtual fundamental cycles

We develop a “VFC package” for any space X equipped with an implicit atlas A. The tools
we develop are primarily algebraic (chain complexes and sheaves) rather than geometric or
topological. Furthermore, these tools have nice functorial properties which allow them to
be applied essentially independently of how their internals are constructed. As mentioned
earlier, this set of tools does not require a smooth structure on the atlas A.

Let us now discuss the components of the VFC package. The main object we develop
is the virtual cochain complex C•vir(X;A) defined whenever A is finite.3 It comes with a
canonical isomorphism:4

Ȟ•(X)
∼−→ H•vir(X;A) (1.3.1)

(H•vir is the homology of C•vir) and with a canonical map:

Cd+•
vir (X;A)

s∗−→ CdimEA−•(EA, EA \ 0) (1.3.2)

(where EA :=
⊕

α∈AEα and d is the virtual dimension of A). Since HdimEA(EA, EA \0) = Z,

combining (1.3.1) and (1.3.2) yields a map Ȟd(X)→ Z. We define the virtual fundamental
class to be this element [X]vir

A ∈ Ȟd(X)∨; if X is cut out transversally (that is, X = Xreg),
then it agrees with the usual fundamental class of X as a closed manifold. This complex
C•vir generalizes naturally to “implicit atlases with boundary” as well.

We use C•vir for much more than just defining the virtual fundamental class. Since it is a
complex (rather than just a sequence of homology groups), it is sufficiently rich to provide a
useful notion of virtual fundamental cycle (more precisely, the map s∗ (1.3.2) can be thought
of as the chain level virtual fundamental cycle). This enables us to use the VFC package
to treat Floer-type homology theories, which requires something like a “coherent system of
virtual fundamental cycles” over a large system of spaces (a “flow category”) equipped with
implicit atlases.

Let us now explain and motivate the definition of C•vir. First, let us imagine we have a
single chart (1.1.1) which is global (i.e. X = s−1

α (0)) and s−1
α (0) ⊆ Xreg

α . Then we consider

3If A ⊆ A′, then C•vir(X;A) and C•vir(X;A′) are equivalent for the purposes of defining virtual fundamental
cycles, so given an infinite implicit atlas we can just work with any choice of finite subatlas.

4In the present discussion, we ignore issues about orientations.
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the following diagram:

ȞdimXreg
α −dimEα(X)

∼−→ HdimEα(Xreg
α , Xreg

α \X)
(sα)∗−−−→ HdimEα(Eα, Eα \ 0) = Z (1.3.3)

The first isomorphism is Poincaré–Lefschetz duality. The virtual fundamental class is the
resulting element [X]vir ∈ Ȟd(X)∨ (recall d = dimXreg

α −dimEα) which is easily seen to agree
with the class defined via perturbation. Thus in this case, the complex CdimXreg

α −•(X
reg
α , Xreg

α \
X) plays the role of C•vir(X;A).

In general, C•vir(X;A) (which may be thought of as a “global finite-dimensional reduction
up to homotopy”) is built out of the singular chain complexes of theXreg

I (or, more accurately,
of some auxiliary spacesXI,J,A defined from theXreg

I using a deformation to the normal cone).
We glue together these singular chain complexes using an appropriate homotopy colimit (a
generalized sort of mapping cone); this is technically more convenient than gluing together
the spaces themselves. The latter could probably be made to work as well, as long as one is
careful to glue using homotopy colimits5 (one can run into point-set topological issues with
certain natural topological gluings).6

We use the language of sheaves to give an especially efficient construction of the key
isomorphism (1.3.1). In particular, we reduce (1.3.1) to a statement which can be checked
locally on X. In a word, we define a “homotopy K-sheaf” K 7→ C•vir(K;A) on X, and
we show that the stalk cohomology H•vir({p};A) is isomorphic to Z concentrated in degree
zero. The isomorphism (1.3.1) then follows from rather general sheaf-theoretic arguments
(and in fact there is a corresponding map of complexes). It should not be surprising that
sheaves can be used effectively in this setting, since the problem we are facing is precisely to
patch together local homological information (from charts (1.1.1)) into global homological
information.

Moreover, we find in this paper that this sheaf-theoretic formalism continues to play a
key role in the study and application of the complexes C•vir, beyond simply constructing the
fundamental isomorphism (1.3.1). Hence we believe that the sheaf-theoretic formalism is
of more importance than the precise manner of definition of C•vir. In particular, checking
commutativity of certain diagrams of homology groups can often be reduced to checking that
a certain corresponding diagram of sheaves commutes (which is then just a local calculation).
This is a key proof technique in many places where we use the VFC package. This is perhaps
surprising since the virtual fundamental class itself has no local homological characterization
(though see Remark 1.3.3).

Remark 1.3.1. Though our definition of the virtual fundamental cycle does not involve per-
turbation, we do in some sense show that perturbation is a valid way to compute the virtual
fundamental class (in fact, this is an easy corollary of some of its formal properties).

5Here is a baby example of how one may use mapping cones to bypass point-set topological issues. The
long exact sequence of the pair · · · → H•(A) → H•(X) → H•(X,A) → · · · is valid for an arbitrary pair
(X,A) of topological spaces (meaning A ⊆ X has the subspace topology), and relative homology H•(X,A)
is always naturally isomorphic to the reduced homology of the mapping cone (cA t X)/ ∼. On the other
hand, understanding H•(X/A) usually requires some niceness assumptions on (X,A) (to ensure that the
natural map H•(X,A) → H•(X/A,pt) is an isomorphism). On the other hand, if one is content working
with H•(X,A) or with the mapping cone, then such niceness assumptions are unnecessary.

6McDuff–Wehrheim [MW15, Examples 3.1.14 and 3.1.15] give examples of natural topological quotients
which fail to be Hausdorff, fail to be locally compact, or fail to be locally metrizable.
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Remark 1.3.2. In this paper, we only construct virtual fundamental cycles in ordinary ho-
mology, which is thus inadequate for applications of moduli spaces of pseudo-holomorphic
curves involving their fundamental class in smooth (or framed) bordism (e.g. as in Abouzaid
[Abo12a] or Ekholm–Smith [ES16]). However, in discussions with Abouzaid, we realized
that by working on the space level, one can probably upgrade our construction to yield a
virtual fundamental cycle in the (Steenrod) framed bordism group of X, twisted by a certain
“virtual spherical normal bundle”.

Remark 1.3.3. In broad philosophical outline, the strategy we follow to define the virtual
fundamental cycle is the following. The functor U 7→ C•(U rel ∂U) (or Borel–Moore chains
CBM
• (U)) is homotopy sheaf on X, and the virtual fundamental cycle is a global section

thereof. Hence we may define the virtual fundamental cycle by specifying it on a convenient
finite open cover and giving patching data on all higher overlaps (in our case, the particular
cover being X =

⋃
I⊆A ψ∅I((sI |Xreg

I )−1(0)) for finite A). This philosophy is very natural and
could apply quite generally.

Remark 1.3.4. The language of ∞-categories as developed by Lurie [Lur12] seems to be
a natural setting for the VFC package and, more generally, for a good theory of derived
manifolds and their virtual fundamental cycles (indeed, the existing theory of derived smooth
manifolds is by necessity written in the language of higher category theory). We have avoided
∞-categories in this paper for sake of concreteness (though at the cost of needing to use lots
of explicit homotopy colimits). However, we expect that in this more abstract framework, one
could ultimately develop the most flexible calculational tools (computing virtual fundamental
cycles directly from our defintion seems rather difficult, due to the inexplicit nature of the
isomorphism (1.3.1)).

1.4 Example applications

We use the framework developed in this paper to give new VFC foundations for classical
results which rely on virtual moduli cycle techniques. We define Gromov–Witten invari-
ants for general symplectic manifolds (originally due in this generality to Li–Tian [LT98a],
Fukaya–Ono [FO99], and Ruan [Rua99]). We define Hamiltonian Floer homology over Q
for general closed symplectic manifolds, and we use S1-localization methods to calculate
Hamiltonian Floer homology (originally due in this generality to Liu–Tian [LT98b], Fukaya–
Ono [FO99], and Ruan [Rua99]). The Arnold conjecture on Hamiltonian fixed points is a
standard corollary of this calculation.

We hope that the examples we treat here may persuade the reader that it is reasonable
to expect to be able to construct implicit atlases on moduli spaces of pseudo-holomorphic
curves in considerable generality, and hence that our VFC package is applicable to other
curve counting invariants in symplectic topology.
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1.5 How to read this paper

The logical dependence of the sections is roughly as follows:

§B Gluing
for GW

§CGluing
for HF

§3Implicit
atlases

§9Gromov–
Witten

§10
Hamilt.
Floer

§AHomol.
algebra

§4 VFC
package

§5Fund.
class

§6 Stratifications §7Floer-type
homology

§8 S1

localiz.

Solid arrows indicate a strong dependency (logical and conceptual); dashed arrows indi-
cate isolated logical dependence (quoting results as black boxes). Obviously, the choice of
solid/dashed is rather subjective. In the bottom row, we develop the VFC package and
apply it abstractly to spaces equipped with implicit atlases. In the middle row, we con-
struct implicit atlases on various moduli spaces of pseudo-holomorphic curves and define the
desired invariants by applying the abstract results developed in the bottom row. The top
row contains gluing results necessary to prove certain key axioms for the implicit atlases
constructed in the middle row.

We now summarize the contents of each section, from which the reader may decide which
sections to read in detail.
§2 is of an introductory flavor (it does not contain any definitions or results to be used

elsewhere); it aims to develop technical intuition for our approach without getting bogged
down in details. We give a simplified definition of an implicit atlas, and we give some simple
examples. We give some prototypical constructions of implicit atlases in simplified settings.
We define the virtual fundamental class algebraically from some simple implicit atlases. We
also give a simplified outline of how we apply the VFC package to construct Floer-type
homology theories from moduli spaces equipped with implicit atlases.

In §3, we give the definition of an implicit atlas (and its variant with boundary).
In §4, we construct the VFC package. For a space X equipped with a finite implicit

atlas A with boundary, we define and study the virtual cochain complexes C•vir(X;A) and
C•vir(X rel ∂;A). The algebraic and sheaf-theoretic foundations from Appendix A play a key
role.

In §5, we use the VFC package to define the virtual fundamental class. We also derive
some of its basic properties and provide some calculation tools.

In §6, we introduce and study implicit atlases with stratification. We use the VFC
package to obtain an inductive “stratum by stratum” understanding of virtual fundamental
cycles.
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In §7, we use the VFC package to define homology groups from a suitably compatible sys-
tem of implicit atlases on a “flow category”. We also use the results concerning stratifications
from §6.

In §8, we construct an S1-equivariant VFC package and use it prove some S1-localization
results for the virtual fundamental classes of §5 and the homology groups of §7.

In §9, we construct Gromov–Witten invariants by constructing an implicit atlas on the
moduli space of stable pseudo-holomorphic maps and using the results of §5.

In §10, we construct Hamiltonian Floer homology by constructing implicit atlases on the
moduli spaces of stable Floer trajectories and using the results of §7. We also construct
S1-equivariant implicit atlases on the moduli spaces for time-independent Hamiltonians.
Applying the results of §8, we calculate Hamiltonian Floer homology and thus deduce the
Arnold conjecture.

In Appendix A, we review and develop foundational results about sheaves, homotopy
sheaves, Čech cohomology, Poincaré duality, and homotopy colimits.

In Appendix B, we prove the gluing theorem needed in the construction of implicit atlases
on Gromov–Witten moduli spaces in §9.

In Appendix C, we prove the gluing theorem needed in the construction of implicit atlases
on Hamiltonian Floer moduli spaces in §10.
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2 Technical introduction

We now give a more technical introduction to the main ideas of this paper. We feel free
to make simplifying assumptions for the sake of clarity of exposition, though we do aim to
highlight some important technical points. A full treatment is deferred to the body of the
paper, where everything is properly defined.

In §2.1, we familiarize the reader with the notion of an implicit atlas. In §2.2, we give
some prototypical constructions of implicit atlases. In §2.3, we explain how to construct the
virtual fundamental cycle from an implicit atlas in some simple cases. In §2.4, we show how
our methods can be applied to construct Floer-type homology theories. In §2.5, we explain
a rudimentary S1-localization result for virtual fundamental cycles.
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2.1 Implicit atlases

2.1.1 Implicit atlases (proto version)

We now introduce (a simplified version of) implicit atlases and give some intuition for what
they mean geometrically. The impatient reader may also wish to refer to the true definition
an implicit atlas in §3 (Definition 3.1.1). Here we have simplified things by assuming Γα = 1
(“trivial covering groups”), Xreg

I = XI for #I ≥ 1, and Xreg
∅ = ∅.

After the giving the definition (which appears rather complicated at first), we explain it
further with examples.

Definition 2.1.1 (Implicit atlas (proto version)). Let X be a compact Hausdorff space.
A (proto) implicit atlas of dimension d on X is an index set A along with the following
data:

i. (Obstruction spaces) A finite-dimensional R vector space Eα for all α ∈ A (let EI :=⊕
α∈I Eα).

ii. (Thickenings) A Hausdorff space XI for all finite I ⊆ A, and a homeomorphism
X → X∅.

iii. (Kuranishi maps) A function sα : XI → Eα for all α ∈ I ⊆ A (for I ⊆ J , let
sI : XJ → EI denote

⊕
α∈I sα).

iv. (Footprints) An open set UIJ ⊆ XI for all I ⊆ J ⊆ A.
v. (Footprint maps) A function ψIJ : (sJ\I |XJ)−1(0)→ UIJ for all I ⊆ J ⊆ A.

which must satisfy the following “compatibility axioms”:
i. ψIJψJK = ψIK and ψII = id.

ii. sIψIJ = sI .
iii. UIJ1 ∩ UIJ2 = UI,J1∪J2 and UII = XI .
iv. ψ−1

IJ (UIK) = UJK ∩ (sJ\I |XJ)−1(0).
v. (Homeomorphism axiom) ψIJ is a homeomorphism.

and the following “transversality axioms”:
vi. (Submersion axiom) sJ\I : XJ → EJ\I is locally modeled on the projection Rd+dimEJ →

RdimEJ\I over 0 ∈ EJ\I for #I ≥ 1 (in particular, taking I = J implies that XI is a
topological manifold dimension d+ dimEI for #I ≥ 1).

vii. (Covering axiom) X∅ =
⋃

∅6=I⊆A ψ∅I((sI |XI)
−1(0)).

Let us unpack this definition a bit. We have manifolds Xα (meaning XI for I = {α})
indexed by α ∈ A. Each is equipped with a function sα : Xα → Eα and a homeomorphism
ψα : s−1

α (0) → Uα (meaning ψ∅{α} : (sα|Xα)−1(0) → U∅{α}) where X =
⋃
α∈A Uα is an

open cover. Thus so far this is nothing more than a set of charts (the “basic charts”) of a
particular form (1.1.1) covering X and indexed by α ∈ A. If A = {α}, then the implicit
atlas is simply a single global chart (1.1.1), and this is illustrated in Figure 1(a).

Now for every pair of basic charts α, β ∈ A, there is a “overlap chart” Xαβ with footprint
Uα∩Uβ and obstruction space Eα⊕Eβ. Furthermore, (open subsets Uα,αβ and Uβ,αβ of) the
original charts Xα and Xβ are identified (via inclusion maps ψ−1

α,αβ and ψ−1
β,αβ) as the zero

sets of sβ and sα respectively. Note that they are cut out transversally by the submersion
axiom, though they may not intersect each other transversally (they do so at precisely those
points where X is cut out transversally). Such a system of charts in the case A = {α, β} is
illustrated in Figure 1(b).
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(a) A = {α}, d = 1, Eα = R. Illustrated are
X (black) and Xα (red; light/dark according
to the sign of sα).

(b) A = {α, β}, d = 1, Eα = Eβ = R. Illus-
trated are X (black), Xα (red; light/dark ac-
cording to the sign of sα), Xβ (blue; light/dark
according to the sign of sβ), and Xαβ (green
boundary).

Figure 1: Illustrations of implicit atlases.

More generally, we have charts indexed by the lattice of finite subsets of A. The com-
patibility axioms relating UIJ , ψIJ , and sα are all just various aspects of the charts being
suitably compatible with each other. The submersion axiom is the precise property (which
in practice would follow from every XI being cut out transversally for #I ≥ 1) we need in
order to glue together the “local virtual fundamental cycles”. The covering axiom simply
says the charts cover all of X, so we have enough information to recover its global virtual
fundamental cycle.

Remark 2.1.2. The basic charts of a Kuranishi structure are indexed by the points of X.
Hence to define a Kuranishi structure on a space X, one must make a choice for each p ∈ X.
The charts of an implicit atlas are indexed by an abstract set A, and hence we can define
implicit atlases without making any choices (see §2.2).

Remark 2.1.3. Most of the axioms of an implicit atlas are stated without reference to whether
I is empty or nonempty. This contrasts with other approaches, where there is an axiomatic
and notational distinction between the XI , ψIJ , or UIJ depending on whether I is empty or
nonempty. We believe that our uniform treatment makes implicit atlases simpler notationally
and conceptually, and this is a novel aspect of our approach.

Remark 2.1.4. The requirement that XI be a manifold whenever I is nonempty is rather
unnatural (c.f. Remark 2.1.3) and is too strong of an assumption for two different reasons.
First, we do not know how to construct implicit atlases with this property on moduli spaces
of pseudo-holomorphic curves (it is a subtle question of choosing good neighborhoods to
ensure transversality over all XI if #I ≥ 1). Second, with this axiom we cannot form
the “product implicit atlas” (Definition 6.3.1) which is crucial for understanding coherence
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of virtual fundamental cycles between moduli spaces when treating Floer-type homology
theories. Thus in the real definition of an implicit atlas (Definition 3.1.1), there is no such
requirement on XI . Rather, we specify open subsets Xreg

I ⊆ XI for all I ⊆ A (morally, this
is the locus where XI is cut out transversally), and we modify the transversality axioms
appropriately.

Remark 2.1.5. The most natural notion of “equivalence” between two implicit atlases A
and B on a space X seems to be the existence of a chain of inclusions of implicit atlases
A ⊆ C1 ⊇ · · · ⊆ Cn ⊇ B. It is common to speak of “cobordisms” between Kuranishi
structures or Kuranishi atlases; the analogous notion of cobordism between implicit atlases
(say on the same index set A) on a space X is an implicit atlas with boundary on X × [0, 1]
whose restriction to the boundary coincides with the first (resp. second) implicit atlas on
X × {0} (resp. X × {1}).

It is an easy consequence of the VFC machinery that the virtual fundamental class is
invariant under both notions of equivalence.

2.1.2 Implicit atlases on spaces with nontrivial isotropy

We now give a simple construction of a convenient system of charts on any smooth orbifold.
This system of charts is a special case of (and motivates the definition of) an implicit atlas
(with nontrivial covering groups, so as to apply to spaces with nontrivial isotropy).

Fix a smooth orbifold X and let {Xα/Γα = Vα ⊆ X}α∈A be an open cover, where each
Xα is a smooth manifold with a smooth action by a finite group Γα (let us call this the
“covering group”). Then for any finite subset I = {α1, . . . , αn} ⊆ A, there is an “overlap
chart”:

XI := Xα1 ×
X
· · · ×

X
Xαn (2.1.1)

ΓI := Γα1 × · · · × Γαn (2.1.2)

(where (2.1.1) is the “orbifold fiber product”; see Remark 2.1.6 below). It is easy to check
that XI is a smooth manifold with a smooth action by ΓI and that:

XI/ΓI = Vα1 ∩ · · · ∩ Vαn ⊆ X (2.1.3)

As an exercise, the reader may check that this system of charts described above gives an
implicit atlas in the sense of Definition 3.1.1 where every Eα = 0.

Remark 2.1.6 (Orbifold fiber product). Let X,Y,Z be orbifolds, and fix maps of orbifolds
X,Y → Z. Then the orbifold fiber product X ×Z Y is simply the categorical 2-fiber product
in the weak 2-category of orbifolds. It exists whenever X × Y → Z × Z is transverse to the
diagonal Z→ Z× Z (in particular, it exists if at least one of the maps X,Y→ Z is étale as
in the above example of Xα → X).

Thurston [Thu80, Proof of Proposition 13.2.4] gives an explicit hands-on definition of
X ×Z Y in the case X,Y → Z are both étale by working locally on Z and then gluing.
In a more modern perspective (defining orbifolds as certain stacks on the site of smooth
manifolds), we may define the orbifold fiber product by the following universal property:

Hom(S,X×Z Y) := Hom(S,X)×Hom(S,Z) Hom(S,Y) (2.1.4)
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for any smooth manifold S. The right hand side denotes the 2-fiber product in the weak
2-category of groupoids, which admits the explicit description:

G1 ×H G2 :=
{

(g1, g2, θ)
∣∣∣ g1 ∈ G1, g2 ∈ G2, θ :f1(g1)→ f2(g2)

}
(2.1.5)

(with the obvious notion of isomorphism between triples (g1, g2, θ)) for groupoids G1, G2, H
and functors fi : Gi → H.

The orbifold fiber product usually does not coincide with the fiber product of the under-
lying topological spaces X ×Y Z, though there is at least always a map X×Z Y→ X ×Z Y .
The construction (2.1.1) would not work if we used the fiber product of topological spaces.

2.2 Constructions of implicit atlases

2.2.1 Zero set of a smooth section

We now give a simple example of the construction of an implicit atlas. This example is also
universal in the sense that all constructions of implicit atlases in this paper are to be thought
of as generalizations of this construction.

Suppose we have a smooth manifold B, a smooth vector bundle p : E → B, and a
smooth section s : B → E with s−1(0) compact. Let us now construct an implicit atlas A of
dimension d := dimB − dimE on X := s−1(0). We will revisit this example in §5.3, so the
reader may also refer there for more details.

We set A to be the set of all thickening datums where a thickening datum α is a triple
(Vα, Eα, λα) consisting of:

i. An open set Vα ⊆ B.
ii. A finite-dimensional vector space Eα.
iii. A smooth homomorphism of vector bundles λα : Vα × Eα → p−1(Vα).

Now our thickenings are:

XI :=
{

(x, {eα}α∈I) ∈
⋂
α∈I

Vα ×
⊕
α∈I

Eα

∣∣∣ s(x) +
∑
α∈I

λα(x, eα) = 0
}

(2.2.1)

The function sα : XI → Eα is simply projection to the Eα component. The set UIJ ⊆ XI is
the locus where x ∈

⋂
α∈J Vα, and the footprint map ψIJ is simply the natural map forgetting

eα for α ∈ J \ I. It may be a good exercise for the reader to verify the compatibility axioms
in this particular case.

The transversality axioms as we have stated them in Definition 2.1.1 do not hold because
XI might not be cut out transversally for #I ≥ 1. The best way to fix this is to use the real
definition of an implicit atlas (Definition 3.1.1) where we keep track of the locus Xreg

I ⊆ XI

where it is cut out transversally and modify the transversality axioms appropriately (c.f.
Remark 2.1.4).

Remark 2.2.1. The reader may rightfully object that the index set A defined above is not a
set but rather a groupoid (just as there is no “set of all finite sets” or “set of all compact
smooth manifolds”). There are two ways of resolving this issue. The simplest solution is
to add appropriate “rigidifying data” to turn A into a set (e.g. we could add the data of
an isomorphism Eα

∼−→ RdimEα to the definition of a thickening datum). Another (more
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cumbersome, and ultimately unnecessary) solution would be to just check that the notion of
an implicit atlas and the accompanying theory of virtual fundamental cycles remains valid
for A a groupoid instead of a set (see also Remark 3.1.5 for more details).

Remark 2.2.2. The index set A consists of all possible thickening datums. It is thus canonical
in the sense that it does not depend on any auxiliary choice. For the purposes of extracting
the virtual fundamental cycle from an implicit atlas, the only choice we will need to make is
that of a finite subatlas; the independence of this choice is part of the VFC machinery.

Remark 2.2.3. To construct the overlap charts XI , it is crucial that we are able to take the
abstract direct sum of the obstruction spaces Eα. Hence, it is better to think of them as
abstract vector spaces equipped with maps to E over Vα, rather than as trivialized subbundles
of E over Vα (which also imposes the unnecessary restriction that λα be injective), since the
latter category is not closed under direct sum.

To illustrate this distinction further, let us mention a problematic alternative version of
(2.2.1):

XI :=
{
x ∈

⋂
α∈I

Vα

∣∣∣ s(x) ∈
(⊕
α∈I

λα

)
(EI)

}
(2.2.2)

This definition agrees with (2.2.1) if the following map is injective:⊕
α∈I

λα :
⋂
α∈I

Vα ×
⊕
α∈I

Eα → p−1
(⋂
α∈I

Vα

)
(2.2.3)

but in general it can be different, and indeed, if (2.2.3) fails to be injective, the definition
(2.2.2) isn’t particularly useful. Note that this can occur even if we add the requirement
that each λα be injective.

The importance of using the direct sum was independently observed by McDuff–Wehrheim
[MW15], and it is implicit in Fukaya–Oh–Ohta–Ono [FOOO12].

2.2.2 Moduli space of pseudo-holomorphic curves

We now give an example of the construction of an implicit atlas on a moduli space of pseudo-
holomorphic curves. This construction can be fruitfully interpreted as a generalization7 of
the construction from §2.2.1.

Specifically, we construct an implicit atlasA on the moduli space of stable maps M0,0(X,B)
(we fix a symplectic manifold X, a smooth ω-tame almost complex structure J , and a ho-
mology class B ∈ H2(X;Z)). The reader impatient for the full details may also wish to
refer to §9 where we give a full treatment. Here we have simplified things by assuming that
(g, n) = (0, 0), Γα = Srα and Mα = M0,rα (which is a smooth manifold!).

We define A to be the set of all thickening datums where a thickening datum is a 4-tuple
(rα, Dα, Eα, λα) consisting of:

7Moduli spaces of pseudo-holomorphic curves do not fit literally into the setting of §2.2.1 (generalized
appropriately to Banach manifolds/bundles) because of three main issues: gluing (nodal domain curves),
orbifold structure (nontrivial isotropy groups), and varying complex structures on the domain (nondifferen-
tiability of the reparameterization action). The polyfolds project of Hofer–Wysocki–Zehnder aims to setup
an infinite-dimensional Fredholm framework in which moduli spaces of pseudo-holomorphic curves may be
described.
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i. An integer rα > 2; let Γα := Srα .
ii. A smooth compact codimension two submanifold Dα ⊆ X with boundary.
iii. A finite-dimensional R[Srα ]-module Eα.
iv. A Srα-equivariant map λα : Eα → C∞(C0,rα ×X,Ω

0,1

C0,rα/M0,rα
⊗C TX) (where C0,rα →

M0,rα is the universal family over the Deligne–Mumford moduli space) supported away
from the nodes and marked points of the fibers.

Let us remark that the analogue of the open set Vα from §2.2.1 is the set of maps u : C → X
satisfying the conditions appearing in (i) below.

Now our thickening M0,0(X,B)I (any finite I ⊆ A) is defined as the set of:
i. A smooth map u : C → X where C is a nodal curve of genus 0 so that for all
α ∈ I, we have u t Dα (meaning u−1(∂Dα) = ∅ and for all p ∈ u−1(Dα), the
differential (du)p : TpC → Tu(p)X/Tu(p)Dα is surjective and p is not a node of C) with
#u−1(Dα) = rα such that adding these rα intersections as marked points makes C
stable.

ii. Elements eα ∈ Eα for all α ∈ I
iii. Labellings of u−1(Dα) by {1, . . . , rα} for all α ∈ I.

such that:
∂̄u+

∑
α∈I

λα(eα)(φα, u) = 0 (2.2.4)

where φα : C → C0,rα is the unique isomorphism onto a fiber respecting the labeling of
u−1(Dα). There is an action of Γα = Srα on M0,0(X,B)I (for α ∈ I) given by changing the
labelling of u−1(Dα) and by its given action on eα ∈ Eα.

There are obvious projection maps sα : M0,0(X,B)I → Eα and forgetful maps ψIJ :
(sJ\I |XJ)−1(0)→ UIJ , where UIJ ⊆M0,0(X,B)I is the locus of curves satisfying the conidi-
tion in (i) above for all α ∈ J . Thus we have specified the atlas data for A. The compatibility
axioms are rather trivial (as in §2.2.1), though for the homeomorphism axiom requires a bit
of thought.

Now let us discuss the transversality axioms, which have much nontrivial content. To
verify the covering axiom, we need to show domain stabilization, namely that for any J-
holomorphic u : C → X, there is a divisor Dα with u t Dα and so that adding u−1(Dα) to
C as marked points makes C stable. Given domain stabilization, the rest of the proof of the
covering axiom is rather standard (choose (Eα, λα) big enough to cover the cokernel of the
linearized operator D∂̄ at u). The submersion axiom asserts (in particular) that the regular
locus M0,0(X,B)reg

I ⊆M0,0(X,B)I is a topological manifold. Proving the submersion axiom
is not too difficult over the locus where the domain curve C is smooth (it follows immediately
from the implicit function theorem for Banach manifolds), but to show it near a nodal domain
curve amounts to proving a gluing theorem (which we do in Appendix B).

Remark 2.2.4. The thickened moduli spaces M0,0(X,B)I are defined as moduli spaces of so-
lutions to the “I-thickened ∂̄-equation” (2.2.4). With this intrinsic definition, the convenient
overlap properties of the charts (the compatibility axioms) follow rather trivially. The atlas
also clearly does not depend on any choice of Sobolev norms or “gluing profile”.

On this point, it is useful to compare with other approaches, which often take the per-
spective of defining thickened moduli spaces as subsets of some particular Banach manifold
of maps. In this context, achieving good overlap properties seems to be more difficult and
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less conceptual. Another inconvenience of this setting is the lack of differentiability of the
reparameterization action (and large reparameterization groups for bubbles).

Remark 2.2.5. In our approach, the most serious analytic questions are encountered in verify-
ing the openness and submersion axioms (that is, in proving the necessary gluing theorems).
We remark that these only concern the local properties of the thickened moduli spaces, and,
in particular, are separated from the other technical aspects of the construction of the im-
plicit atlas (e.g. the compatibility axioms, the action of the groups ΓI , or the action of a
larger symmetry group on the entire atlas).

Remark 2.2.6. Standard gluing techniques suffice to verify the openness and submersion
axioms for the implicit atlases we construct on moduli spaces of pseudo-holomorphic curves.
In fact, the transition maps between gluing charts are clearly smooth when restricted to each
stratum (i.e. for a fixed topological type of the domain), and this yields a canonical “stratified
smooth structure” on each Xreg

I . If one wanted to obtain a smooth structure on the Xreg
I ,

one would need to construct gluing charts whose transition maps are truly smooth. This
would require a choice of “gluing profile” (on which the resulting smooth structure would
depend) and is slightly more delicate (see Fukaya–Oh–Ohta–Ono [FOOO09b, FOOO12] or
Hofer–Wysocki–Zehnder [HWZ14b]). Such methods might yield smooth implicit atlases (see
Definition 3.1.3).

2.3 Construction of virtual fundamental cycles

Let us now describe concretely some simple cases of our algebraic definition of the virtual
fundamental class of a space X with implicit atlas A. While the cases we treat (one chart and
two charts) are admittedly rather basic, they nevertheless illustrate the main ideas necessary
to deal with arbitrary implicit atlases. We will see that certain chain complexes play a key
role; they will turn out to be the virtual cochain complexes C•vir, which are the central objects
of the “VFC package”.

The reader interested in the details of our treatment in full generality should refer to
§4 (where we construct the VFC package) and §5 (where we define the virtual fundamental
class).

For the purposes of this section, we use implicit atlases in the sense of Definition 2.1.1. We
will ignore issues about orientations (as they can be dealt with rather trivially by introducing
the relevant orientation sheaves/groups).

Here we work over Z; in the main body of the paper we consider any ground ring in
which the orders of all relevant “covering groups” are invertible. It seems plausible that,
with some more work, this could be weakened to assuming only invertibility of #Γx for all
x ∈ X, where Γx denotes the isotropy group of x ∈ X (i.e. the stabilizer of any inverse image
of x under ψ∅,I lying in Xreg

I ).
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Figure 2: The Warsaw circle W ⊆ R2, namely the union of {(x, sin π
x
) : 0 < x < 1} and a

path from (0, 0) to (1, 0).

2.3.1 What “homology group” does the virtual fundamental class live in?

Since X is just a compact Hausdorff space,8 we must be careful about what homology theory
we use to house the virtual fundamental class (Example 2.3.1 below shows that the singular
homology H•(X) of X is insufficient for this purpose).

The dual of Čech cohomology Ȟ•(X)∨ := Hom(Ȟ•(X),Z) is a good candidate (and it
is what we choose to use, though see Remark 5.0.2 for further discussion). For example,
a map of spaces f : X → Y induces a pushforward f∗ : Ȟ•(X)∨ → Ȟ•(Y )∨ (defined as
the dual of pullback f ∗ : Ȟ•(Y ) → Ȟ•(X)). Moreover, for a finite CW-complex Z, we
have Ȟ•(Z) = H•(Z), so Ȟ•(Z)∨ = H•(Z)/tors. It follows that (for many purposes) a
virtual fundamental class [X]vir

A ∈ Ȟd(X)∨ can be used in the same way one would use the
fundamental class [X] ∈ Hd(X) if X were a closed manifold of dimension d.

Example 2.3.1 (Insufficiency of singular homology). Consider the Warsaw circle W ⊆ R2

as illustrated in Figure 2; note that singular H1(W ) = 0. Now R2 \W has two connected
components; let s : R2 → R be positive on one component and negative on the other;
this gives the data of an implicit atlas on W = s−1(0). Using any reasonable definition,
we certainly want [W ]vir ∈ Ȟ1(W )∨ ∼= Z to be a generator, however this is clearly not in
the image of singular homology under the natural map H•(W ) → H•(W )∨ → Ȟ•(W )∨.
Alternatively, the pushforward of [W ]vir to a small annular neighborhood A ⊆ R2 of W
should be a generator of H1(A) ∼= Z (as one can see by perturbing s).

2.3.2 Virtual fundamental class from a single chart

We have a space X, and the implicit atlas A = {α} consists of the following data. We have
a topological manifold Xα (not necessarily compact), a vector space Eα, and a continuous
function sα : Xα → Eα. We also have an identification X = s−1

α (0) (see Figure 1(a)).
We define the virtual fundamental class via the following diagram, which we explain

8The existence of an implicit atlas on X does impose some additional restriction on the topology on X.
For example, if X admits an implicit atlas then it is locally metrizable and hence metrizable by Smirnov’s
theorem (a paracompact Hausdorff locally metrizable space is metrizable).
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below:

Ȟd(X) = HdimEα(Xα, Xα \X)
(sα)∗−−−→ HdimEα(Eα, Eα \ 0)

[Eα]7→1−−−−→ Z (2.3.1)

(recall that dimXα = d+dimEα). Poincaré duality gives a canonical9 identification Ȟ•(X) =
HdimXα−•(Xα, Xα\X), which gives the first equality in (2.3.1) (this is a rather strong version
of Poincaré duality, valid for any compact subset X of a manifold Xα; we will say more about
how to prove it in §2.3.5). We think of the composite of the maps in (2.3.1) as an element
[X]vir

A ∈ Ȟd(X)∨, which we call the virtual fundamental class.
In this setting, one can also define the virtual fundamental class using perturbation (under

the additional assumption that Xα carries a smooth structure). Specifically, one can perturb
sα to s̃α so that it is a submersion over 0 ∈ Eα; we consider s̃−1

α (0) as a “perturbed moduli
space” near X. Using the continuity property of Čech cohomology, one can then make sense
of lims̃α→sα [s̃−1

α (0)] as an element of Ȟd(X)∨.
The algebraic approach is more general (it does not require a smooth structure on Xα),

and it is easy to see that it gives the same answer as the perturbation approach when Xα

has a smooth structure.

Example 2.3.2. Let X = {0}, Xα = Eα = R, and sα(x) = xn (n ≥ 1). The reader may easily
check that with our definition, the virtual fundamental class is 1 if n is odd and 0 if n is
even (as is consistent with the perturbation picture).

Let X = {0}, Xα = Eα = C (considered as an R-vector space), and sα(z) = zn (n ≥ 1).
The reader may check that in this case, the virtual fundamental class is n.

2.3.3 Virtual fundamental class from a single chart (with covering group)

We now describe how the construction from §2.3.2 must be modified in the presence of
nontrivial covering groups (as in §2.1.2). We have not yet introduced implicit atlases with
nontrivial covering groups, so we will simply say explicitly what this means in the present
situation of a single chart (the reader may also refer to Definition 3.1.1).

We have a space X, and the implicit atlas A = {α} consists of the following data. We have
a topological manifold Xα (not necessarily compact), a vector space Eα, and a continuous
function sα : Xα → Eα. We have a finite group Γα acting on Xα and (linearly) on Eα so
that sα is Γα-equivariant. Finally, we have an identification X = s−1

α (0)/Γα. We must now
work over the coefficient ring R = Z[ 1

#Γα
].

To define the virtual fundamental class we consider:

Ȟd(s−1
α (0);R)Γα = HdimEα(Xα, Xα \ s−1

α (0);R)Γα (sα)∗−−−→ HdimEα(Eα, Eα \ 0;R)Γα [Eα]7→1−−−−→ R
(2.3.2)

Now it is a general property of Čech cohomology that Ȟ•(Y ;R)Γ = Ȟ•(Y/Γ;R) for a compact
Hausdorff space Y acted on by a finite group Γ as long as R is a module over Z[ 1

#Γ
]. We

precompose (2.3.2) with the canonical isomorphism Ȟd(X;R) → Ȟd(s−1
α (0);R)Γα given as

1
#Γα

times the pullback. This gives an element [X]vir
A ∈ Ȟd(X;R)∨, which we call the virtual

fundamental class.

9For the moment, we ignore the necessary twist by the orientation sheaf.
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2.3.4 Virtual fundamental class from two charts

Generalizing the approach in §2.3.2 to multiple charts leads immediately to the heart of the
problem of defining virtual fundamental cycles. Namely, we must figure out how to glue
together the information contained in each local chart to define the global virtual fundamen-
tal class. We explain our solution to this problem in the simple case of A = {α, β}, which
nevertheless illustrates most of the ideas necessary to deal with the general case (which in
addition just requires good organization of the combinatorics). Since the problem we are
facing is precisely to glue together local homological information into global homological
information, it should not be surprising that sheaf-theoretic tools and homological algebra
are useful.

Our space is X, and the implicit atlas A = {α, β} amounts to the following data:

sα : Xα → Eα s−1
α (0) = Uα ⊆ X (open subset) (2.3.3)

sβ : Xβ → Eβ s−1
β (0) = Uβ ⊆ X (open subset) (2.3.4)

sα ⊕ sβ : Xαβ → Eα ⊕ Eβ (sα ⊕ sβ)−1(0) = Uαβ = Uα ∩ Uβ ⊆ X (2.3.5)

which fit together as outlined in §2.1.1 (and as illustrated in Figure 1(b)).
We would like to generalize the approach in §2.3.2, specifically equation (2.3.1). For this,

we need a replacement for the group H•(Xα, Xα \X). To construct such a replacement, we
would like to “glue together” C•(Xα, Xα \Uα) and C•(Xβ, Xβ \Uβ) along C•(Xαβ, Xαβ \Uαβ)
(as remarked earlier, it is easier to glue together these complexes rather than glue together the
corresponding spaces). The resulting complex should calculate the Čech cohomology ofX (by
some version of Poincaré duality) and also have a natural map to C•(Eα⊕Eβ, Eα⊕Eβ \ 0).
If we can construct a complex with these two properties, then we can define the virtual
fundamental class just as in (2.3.1). This complex we construct will be called the virtual
cochain complex.

Remark 2.3.3. The complex CdimXα−•(Xα, Xα \ Uα) calculates Ȟ•c (Uα), and the map s∗ :
C•(Xα, Xα \ Uα) → C•(Eα, Eα \ 0) should be thought of as the chain level “local virtual
fundamental cycle” [X]vir ∈ ȞdimXα−dimEα

c (Uα)∨, which we would like to glue together into
the global virtual fundamental cycle.

Remark 2.3.4. Technically speaking, it is very important to have a uniform functorial defini-
tion of the virtual cochain complexes (one which does not require making any extra choices).

As a first try towards gluing the desired complexes together, let us consider using the
mapping cone of the following chain map:

CdimXαβ−•(Xαβ, Xαβ \ Uαβ)
∩[s−1

β (0)]⊕∩[s−1
α (0)]

−−−−−−−−−−−→
CdimXα−•(Xα, Xα \ Uα)

⊕
CdimXβ−•(Xβ, Xβ \ Uβ)

(2.3.6)

where the maps are intersection of chains with the (transversely cut out!) submanifolds
s−1
β (0) and s−1

α (0) of Xαβ. There is the question, though, of how these maps are to be
defined on the chain level. There are various direct ways to define these maps10, however (at

10One could use very fine chains, do a (chain level) cap product with a choice of cochain level Poincaré
dual of the relevant submanifold and then project “orthogonally” onto the submanifold. Alternatively, one
could just use “generic” chains (or perturb the chains) so they are transverse to the submanifold, and then
triangulate the intersection in a suitable way.
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least when attempted by the author) the multitude of “choices” one has to make invariably
leads to a big mess.

As a second try, let us try to glue together the complexes:

CdimXαβ−•(Xα × Eβ, [Xα \ Uα]× Eβ) (2.3.7)

CdimXαβ−•(Eα ×Xβ, Eα × [Xβ \ Uβ]) (2.3.8)

CdimXαβ−•(Xαβ, Xαβ \ Uαβ) (2.3.9)

This should let us let us avoid the cap product maps (since there is no “dimension shift”
between these complexes). Each of these complexes has a canonical map to CdimXαβ−•(Eα⊕
Eβ, Eα⊕Eβ \ 0), but it is not clear how to glue them together in a manner compatible with
this map. In particular, there is no reason for there to exist commuting diagrams:

Uα,αβ × Eβ Xαβ

Eα ⊕ Eβ
sα⊕id sαβ

Eα × Uβ,αβ Xαβ

Eα ⊕ Eβ
id⊕sβ sαβ

(2.3.10)

Moreover, it is technically very inconvenient (functoriality of the construction is a mess) to
have a complex which depends on a choice of maps (2.3.10) (even if this turns out to be a
contractible choice, and thus morally irrelevant).

As a third try (which ends up working nicely), let us consider the following “deformation
to the normal cone”:

Yαβ :=

{
(eα, eβ, t, x) ∈ Eα × Eβ × [0, 1]×Xαβ

∣∣∣∣ sα(x) = t · eα
sβ(x) = (1− t) · eβ

}
(2.3.11)

We think of Yαβ as a family of spaces parameterized by [0, 1] (via the projection Yαβ → [0, 1]).
Observe that if t ∈ (0, 1), then eα, eβ are determined uniquely by x. Therefore, over the open
interval (0, 1), we see that Yαβ is a trivial product space Xαβ × (0, 1). Over the point t = 0,
though, the fiber is Eα×Uβ,αβ, which is the “normal cone” of the submanifold Uβ,αβ ⊆ Xαβ

cut out (transversally!) by the equation sα = 0. Similarly, over the point t = 1, the fiber is
Uα,αβ × Eβ. Also observe that Yαβ is a manifold by the submersion axiom.

Now we consider the mapping cone of the following:

CdimXαβ−•(Uα,αβ × Eβ, Uα,αβ × Eβ \ Uα × 0)
⊕

CdimXαβ−•(Eα × Uβ,αβ, Eα × Uβ,αβ \ 0× Uβ)
→

CdimXαβ−•(Xα × Eβ, Xα × Eβ \ Uα × 0)
⊕

CdimXαβ−•(Yαβ, Yαβ \ 0× [0, 1]× Uαβ)
⊕

CdimXαβ−•(Eα ×Xβ, Eα ×Xβ \ 0× Uβ)
(2.3.12)

The maps are simply pushforward along the maps of spaces (with appropriate signs):

Uα,αβ × Eβ ↪→ Xα × Eβ (2.3.13)

Uα,αβ × Eβ ↪→ Yαβ (isomorphism onto t = 1 fiber) (2.3.14)

Eα × Uβ,αβ ↪→ Yαβ (isomorphism onto t = 0 fiber) (2.3.15)

Eα × Uβ,αβ ↪→ Eα ×Xβ (2.3.16)
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There is also an evident map from (the mapping cone of) (2.3.12) to C•(Eα⊕Eβ, Eα⊕Eβ \0)
(namely pushforward on the three factors on the right hand side and zero on the left hand
side).

Now to complete the definition of the virtual fundamental cycle of X using the mapping
cone of (2.3.12), we need an argument to show that its homology is canonically isomorphic
to the Čech cohomology of X (a sort of Poincaré duality isomorphism). We discuss this next
in §2.3.5.

2.3.5 Homotopy K-sheaves in the theory of virtual fundamental cycles

As we have already mentioned, the central objects we use to understand virtual fundamental
cycles are the virtual cochain complexes C•vir(X;A) (for example, the mapping cone of (2.3.12)
plays the role of the virtual cochain complex in §2.3.4). A crucial ingredient in this approach
is an isomorphism:

H•vir(X;A) = Ȟ•(X) (2.3.17)

In §2.3.2, where we used C•vir(X;A) := CdimXα−•(Xα, Xα \X), this isomorphism was simply
(a strong form of) Poincaré duality.

Let us now discuss our general approach to the isomorphism (2.3.17), which we think of
as a generalized form of Poincaré duality. An efficient approach (in fact, the only approach
known to the author) to constructing this isomorphism is through the language of homotopy
K-sheaves, and so this is the way we present it. We develop the necessary sheaf-theoretic
foundations in Appendix A, so the reader may also wish to refer to that section for more
details.

As an introduction to the language of sheaves and homotopy sheaves, let us first use it
to give a proof of ordinary Poincaré duality (in fact, a strong version for arbitrary compact
subsets of a manifold).11 The following argument appears in full detail in Lemma A.6.4.

Fix a closed manifold M of dimension n. For any compact subset K ⊆ M , let F•(K)
denote the complex Cn−•(M,M \ K). This object F• is a K-presheaf12 of complexes (or
complex of K-presheaves) on M , which just means that we have natural maps F•(K) →
F•(K ′) for K ⊇ K ′, which are suitably compatible with each other. Now F• satisfies the
following key properties:

i. (“F• is a homotopy K-sheaf”) The total complex of the following double complex is
acyclic:

F•(K1 ∪K2)→ F•(K1)⊕ F•(K2)→ F•(K1 ∩K2) (2.3.18)

This is essentially just a restatement of the Mayer–Vietoris exact sequence.
ii. (“F• is pure and H0F• = oM”) The homology of F•({p}) (namely Hn−•(M,M \ p))

is concentrated in degree zero, where it can be canonically identified with the fiber of
oM (the orientation sheaf of M) at p ∈M .

11An easier proof (using the fact that Čech cohomology satisfies the “continuity axiom”) is available if M
has a smooth structure (along the lines of [Par13, pp887–888 Lemmas 3.1 and 3.3]). This approach does not
seem to apply to the more general setting we need to treat here.

12The prefix “K-” indicates sections are given over compact sets instead of open sets. For technical reasons,
it is more convenient to work with K-presheaves rather than presheaves, though at the conceptual level, the
reader may safely ignore the difference.
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(the precise notions of a homotopy K-sheaf and of purity are given in Definitions A.2.5
and A.5.1; in the above statements they have been simplified for sake of exposition). A
formal consequence (Proposition A.5.4) of the fact that F• is a pure homotopy K-sheaf with
H0F• = oM is that there is a canonical isomorphism:

Hn−i(M,M \K) = H iF•(K) = Ȟ i(K; oM) (2.3.19)

Specializing to K = M , we have derived the Poincaré duality isomorphism Hn−i(M) =
Ȟ i(M ; oM).

This argument generalizes as follows to prove the isomorphism (2.3.17). For sake of
concreteness, let us take C•vir(X;A) to be the mapping cone of (2.3.12), though the general
case is not much different. First of all, we observe that there is a natural complex of K-
presheaves F• on X whose complex of global sections is C•vir(X;A). Namely, to get F•(K)
we simply replace every occurence of Uα, Uβ, or Uαβ in (2.3.12) by its intersection with
K. Now F• is a homotopy K-sheaf (extensions of homotopy K-sheaves are homotopy K-
sheaves by Lemma A.2.11, and each of the individual complexes appearing in (2.3.12) gives
a homotopy K-sheaf by Mayer–Vietoris). To prove that F• is pure and to identify its H0, we
can calculate H iF•({p}) using a spectral sequence which degenerates at the E2 term (this
is the argument in Lemma A.8.2). It is this second step where it matters that we glued the
complexes together “correctly”. Since F• is a pure homotopy K-sheaf and we have identified
its H0, this gives the desired isomorphism.

Let us also mention that the fact that the virtual cochain complex C•vir(X;A) is naturally
the complex of global sections of a homotopy K-sheaf on X plays a key role in proving other
crucial properties in addition to (2.3.17).

2.4 Floer-type homology theories

In this section, we introduce the basic ideas needed to apply our methods to construct Hamil-
tonian Floer homology in the setting of non-degenerate periodic orbits and non-transverse
moduli spaces of Floer trajectories. A toy example of the same flavor (which we mention
only for sake of analogy) is the problem of defining Morse homology from a Morse function
with gradient-like vector field which is not necessarily Morse–Smale.

The methods developed thus far (the VFC package and the framework for constructing
implicit atlases) are robust in that they apply to moduli spaces of Floer trajectories without
much modification. The main task is to add a layer of (rather intricate) combinatorics and
algebra to properly organize together the information they yield. Essentially what we must
do is execute the key diagram (1.3.1)–(1.3.2) on the chain level.

We approach the problem in two logically separate steps. In §2.4.1, we describe the
implicit atlases we put on the moduli spaces of Floer trajectories. In §2.4.2, we describe how
to use the VFC package to define Floer-type homology groups from an appropriate abstract
collection of “flow spaces” equipped with implicit atlases.

2.4.1 The system of implicit atlases

We describe the “compatible system of implicit atlases” we put on the moduli spaces of
Floer trajectories relevant for defining Hamiltonian Floer homology. For sake of exposition,
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we will imagine we are in an artificially simplified setting (the reader may refer to §10 for
the full details).

We assume there are just three periodic orbits p ≺ q ≺ r (ordered by action). Hence
there are just three moduli spaces we have to deal with: M(p, q), M(q, r), and M(p, r) (which
are all compact). There is a single concatenation map:

M(p, q)×M(q, r)→M(p, r) (2.4.1)

and it is a homeomorphism onto its image. We describe the construction of implicit atlases
((i)–(iv) below) which are enough to provide a robust notion of “coherent system of virtual
fundamental cycles” with which we can define Floer homology.

The moduli spaces M(p, q) and M(q, r) do not contain any “broken trajectories”. There
is thus a straightforward generalization of the construction in §2.2.2 by which we may de-
fine:

i. An implicit atlas A(p, q) on M(p, q).
ii. An implicit atlas A(q, r) on M(q, r).

Now since M(p, r) contains the codimension one boundary stratum M(p, q) ×M(q, r), we
cannot expect to equip it with an implicit atlas in the sense of Definition 2.1.1 or 3.1.1.
Rather, we would like to equip it with an implicit atlas with boundary. Such an atlas on a
space X is given by the same data as an implicit atlas, except that in addition we specify
closed subsets ∂XI ⊆ XI for all I ⊆ A which are compatible with the ψIJ , and we modify
the transversality axioms to assert that Xreg

I is a manifold with boundary ∂XI ∩ Xreg
I . In

particular, there should already be a natural choice of ∂X ⊆ X, which in the present case
is simply the definition ∂M(p, r) := M(p, q) × M(q, r). The notion of an implicit atlas
with boundary is formulated so that the natural generalization of the construction in §2.2.2
defines:

iii. An implicit atlas with boundary A(p, r) on M(p, r).
For this atlas, the closed subsets ∂XI ⊆ XI are simply the loci where the thickened trajectory
has a break at q.

Of course, to have any reasonable notion of “coherent virtual fundamental cycles” for
the spaces M(·, ·), we need to “relate” the atlases (i), (ii), (iii). It turns out that there is a
natural way to do this “over M(p, q)×M(q, r)” which we now describe.

First, let us observe that (i) and (ii) naturally give rise to an implicit atlas on M(p, q)×
M(q, r). This is a special case of a general observation: implicit atlases A on X and A′ on X ′

induce an implicit atlas A tA′ (disjoint union of index sets) on X ×X ′, simply by defining
(X × X ′)ItI′ := XI × X ′I′ . Hence there is a “product implicit atlas” A(p, q) t A(q, r) on
M(p, q)×M(q, r).

Second, let us observe that (iii) naturally gives rise to an implicit atlas on ∂M(p, r) =
M(p, q) ×M(q, r). This is also a special case of a general observation: an implicit atlas
with boundary on X induces an implicit atlas (with the same index set) on ∂X, simply by
defining (∂X)I := ∂XI . Hence there is a “restriction to the boundary” implicit atlas A(p, r)
on M(p, q)×M(q, r).

Now, a good notion of “compatibility” between two implicit atlases A and B on a space
X is the existence of an implicit atlas on X with index set A t B, whose subatlases A
and B coincide with the given atlases. More importantly, this seems to be the notion
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of compatibility which arises most naturally in practice (in particular, there is usually a
canonical choice for the atlas A tB which does not depend on any “extra choices”). Hence
the final implicit atlas we need is:

iv. An implicit atlas A(p, q)tA(q, r)tA(p, r) on M(p, q)×M(q, r) whose subatlas A(p, q)t
A(q, r) coincides with the “product implicit atlas” above and whose subatlas A(p, r)
coincides with the “restriction to the boundary” above.

This atlas (iv) is constructed essentially using the same ideas from §2.2.2, however a few
remarks are in order about its definition.

The thickened moduli spaces for the atlas (iv) are defined in the usual way, as moduli
spaces of broken Floer trajectories u : C → M × S1 with some intersection conditions
with divisors Dα, satisfying a “thickened ∂̄-equation”. Let us discuss these conditions more
precisely. The broken Floer trajectories in question are trajectories from p to r broken at q,
or, equivalently, a pair of trajectories, one from p to q and one from q to r. Let us denote
the entire broken trajectory as u : Cp,r →M × S1, and let us use Cp,q, Cq,r ⊆ Cp,r to denote
the closed subcurves representing the portion of the trajectory from p to q and from q to r
respectively (so Cp,r = (Cp,q t Cq,r)/ ∼ where ∼ identifies a point on Cp,q with a point on
Cq,r). Then the important points are:

i. For thickening datums α ∈ A(p, q) we require that (u|Cp,q) t Dα, and we label the
intersections with {1, . . . , rα}, inducing a unique map φα : Cp,q → C0,2+rα .

ii. For thickening datums α ∈ A(q, r) we require that (u|Cq,r) t Dα, and we label the
intersections with {1, . . . , rα}, inducing a unique map φα : Cq,r → C0,2+rα .

iii. For thickening datums α ∈ A(p, r) we require that (u|Cp,r) t Dα, and we label the
intersections with {1, . . . , rα}, inducing a unique map φα : Cp,r → C0,2+rα .

iv. The thickened ∂̄-equation we impose is still written in the form (2.2.4), though the
term λα(eα)(φα, u) is defined to be zero outside the domain of φα (namely Cp,q, Cq,r,
or Cp,r, depending on whether α comes from A(p, q), A(q, r) or A(p, r)).

A good exercise in understanding this definition is to check that the subatlases A(p, q) t
A(q, r) and A(p, r) are the “product implicit atlas” and “restriction to the boundary” re-
spectively (this is just a matter of matching up definitions).

Remark 2.4.1. In theory, there is no way to go from a pair of implicit atlases A and B on
a space X to an implicit atlas A t B on X whose subatlases A and B coincide with the
given atlases (and there is no uniqueness for atlases A t B with this property). However in
practice, there is often a natural choice of such an atlas, which moreover is essentially the
only reasonable choice. The atlas (iv) is a good example of this.

The main ideas necessary to define the compatible system of implicit atlases in the general
case are all present above; the only real difference is that there are more moduli spaces and
more atlases to keep track of.

2.4.2 Applying the VFC package

We now explain how to use the VFC package to define homology groups from a system of
moduli spaces (equipped with implicit atlases) as which appear in a Morse-type setup. The
extra complicating factor in this construction (compared with constructing virtual funda-
mental classes) is that we must make “coherent” choices for each moduli space (i.e. choices
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with certain compatibility properties with respect to the maps between moduli spaces). Such
choices give rise to “counts” for the 0-dimensional moduli spaces and thus to a differential.
Thus we must show that such choices always exist and that the resulting homology groups
are independent of this choice.

In our presentation here, we make a number of simplifying assumptions (which we try to
point out when relevant) for sake of exposition. The full details appear in §7.

Let us being by fixing some notation. We fix a finite set P (the “set of generators”)
equipped with partial order ≺ and a grading gr : P → Z. For all pairs p ≺ q in P, we fix
a compact Hausdorff space X(p, q) (the “space of broken trajectories from p to q”). These
spaces X(p, q) are also equipped with “concatenation maps”:

X(p, q)× X(q, r)→ X(p, r) (2.4.2)

which satisfy some natural properties, in particular associativity.
We call such a pair (P,X) (when defined precisely) a flow category. This terminology

is due to Cohen–Jones–Segal [CJS95], who used it to mean something closer to what we
prefer to call a Morse–Smale flow category, namely a flow category in which every X(p, q)
is a manifold with corners of dimension gr(q) − gr(p) − 1 in a manner compatible with the
concatenation maps (2.4.2). The basic example of a flow category is the flow category of a
Morse function: P is the set of critical points, and X(p, q) is the space of (broken) Morse
trajectories from p to q; if the Morse function is Morse–Smale, then this flow category is
Morse–Smale.

Given a Morse–Smale flow category (P,X), one can construct a map d : Z[P] → Z[P]
by counting those X of dimension 0, and one can prove that d2 = 0 by considering those X

of dimension 1. Our goal is to generalize this construction to flow categories equipped with
implicit atlases (meaning the spaces X(p, q) carry suitably compatible implicit atlases with
boundary, with dimension gr(q)− gr(p)− 1). Specifically, let us assume that we have fixed
implicit atlases A(p, q) on X(p, q) and that A(p, q) tA(q, r) = A(p, r) for all p ≺ q ≺ r ∈ P.

Remark 2.4.2. There are many different choices for what one could mean by a “compatible
system of implicit atlases” A(p, q) on the spaces X(p, q). For sake of exposition, we have
chosen here the structure for which it is easiest to apply the VFC package. In the actual
construction in §7, we use the structure which is the easiest to construct in practice (via the
natural generalization of §2.4.1). As a result, various complexes that here coincide are only
canonically quasi-isomorphic in §7. Basically, this means that in §7, we will have to take lots
of homotopy colimits to make certain maps well-defined on the chain level. A systematic use
of ∞-categories of complexes would tame the resulting explosion of notation, at the cost of
relying on that more abstract language/machinery.

We now review what the VFC package gives to us for a flow category (P,X) equipped
with a compatible system of implicit atlases. For a space X equipped with an implicit
atlas with boundary, the VFC package provides virtual cochain complexes C•vir(X rel ∂) and
C•vir(X) (defined using the ideas from §2.3). Moreover, giving ∂X the “restriction to the
boundary” implicit atlas, there is a natural map:

C•−1
vir (∂X)→ C•vir(X rel ∂) (2.4.3)
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whose mapping cone is C•vir(X) (by definition). There are canonical isomorphisms:

H•vir(X)
∼−→ Ȟ•(X; oX) (2.4.4)

H•vir(X rel ∂)
∼−→ Ȟ•(X; oX rel ∂) (2.4.5)

where oX is the “virtual orientation sheaf” of X. There is also a map:

C•vir(X rel ∂)
s∗−→ CdimEA−•(EA, EA \ 0) (2.4.6)

(which, when combined with (2.4.5), can be thought of as pairing against the virtual funda-
mental cycle of X). Now, there are also product maps:

C•vir(X(p, q) rel ∂)⊗ C•vir(X(q, r) rel ∂)→ C•vir([X(p, q)× X(q, r)] rel ∂) (2.4.7)

which, when combined with the concatenation maps (2.4.2) induce maps:

C•vir(X(p, q) rel ∂)⊗ C•vir(X(q, r) rel ∂)→ C•vir(∂X(p, r)) (2.4.8)

From construction, it is clear that the following diagram commutes:

C•vir(X(p, q) rel ∂)⊗ C•vir(X(q, r) rel ∂) C•vir(∂X(p, r))

C•(EA(p,q), EA(p,q) \ 0)⊗ C•(EA(q,r), EA(q,r) \ 0) C•(EA(p,r), EA(p,r) \ 0)

(2.4.8)

s∗⊗s∗ s∗ (2.4.9)

where the bottom map is simply the cartesian product on chains (recall that A(p, r) =
A(p, q) tA(q, r)).

Now, let us describe the construction of a boundary operator d : Z[P] → Z[P] given the
flow category (P,X) and its system of implicit atlases. To define d, we need to choose:13

i. (“Chain level coherent orientations”) Cochains λ(p, q) ∈ C0
vir(X(p, q) rel ∂) satisfying

the following property. Define:

µ(p, r) :=
∑
p≺q≺r

λ(p, q) · λ(q, r) ∈ C0
vir(∂X(p, r)) (2.4.10)

(where we implicitly use (2.4.8) on the right hand side). We require that dλ(p, r) equal
(the image under (2.4.3)) of µ(p, r). Thus (µ(p, r), λ(p, r)) defines a cycle in the map-
ping cone of (2.4.3), and thus a homology class in H0

vir(X(p, r)) = Ȟ0(X(p, r), oX(p,r))
(by (2.4.4)). We require that this homology class coincide with the (given) orientation
on X(p, r).

13That these should be contractible choices is suggested by the Dold–Thom–Almgren theorem [Alm62]
[Gro10, p430].
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ii. (“Thom cocycles”) Cocycles [[EA(p,q)]] ∈ CdimEA(p,q)(EA(p,q), EA(p,q) \ 0) whose pairing
with [EA(p,q)] is 1 and which are compatible in the sense that the following diagram
commutes:

C•(EA(p,q), EA(p,q) \ 0)⊗ C•(EA(q,r), EA(q,r) \ 0) C•(EA(p,r), EA(p,r) \ 0)

Z

[[EA(p,q)]]⊗[[EA(q,r)]]

[[EA(p,r)]]

(2.4.11)

Given such choices, we define the boundary operator d : Z[P] → Z[P] to have “matrix
coefficients” [[EA(p,q)]](s∗λ(p, q)). One can show that d2 = 0 by using dλ(p, q) = µ(p, q) and
the compatibilities (2.4.9) and (2.4.11).

Let us now sketch the proof of the existence of λ and [[E]] as above. We will work by
induction on (p, q); that is, we show that valid λ(p, q) and [[EA(p,q)]] exist given that we have
fixed valid λ(p′, q′) and [[EA(p′,q′)]] for all p � p′ ≺ q′ � q (other than (p′, q′) = (p, q)).

To construct λ(p, q), argue as follows. Notice that µ(p, q) is automatically a cycle (apply
(2.4.10) to expand its boundary and everything cancels). Now from a general statement
about cycles in mapping cones, the existence of λ(p, q) inducing the correct homology class
in H0

vir(X(p, q)) = Ȟ0(X(p, q); oX(p,q)) reduces to showing that the homology class [µ(p, q)] ∈
H0

vir(∂X(p, q)) = Ȟ0(∂X(p, q), o∂X(p,q)) is correct (namely, that it coincides with the image
of the desired class under the coboundary map Ȟ0(X(p, q); oX(p,q))→ Ȟ0(∂X(p, q), o∂X(p,q))).
The key observation is that this can be checked locally since o∂X(p,q) is a sheaf. Over the top
strata of ∂X(p, q) (that is, those trajectories that split only once), the agreement is clear
by the induction hypothesis on λ and the compatibility of the given coherent orientations.
Unfortunately, the top strata may not be dense in ∂X(p, q), so we need to work harder (see
Proposition 6.2.3). In the end, we must use the induction hypothesis for all λ(p′, q′).

To construct [[EA(p,r)]], argue as follows. First, observe that the “homology diagram”
trivially commutes:

H•(EA(p,q), EA(p,q) \ 0)⊗H•(EA(q,r), EA(q,r) \ 0) H•(EA(p,r), EA(p,r) \ 0)

Z

[EA(p,q)]⊗[EA(q,r)] 7→1

[EA(p,r)] 7→1

(2.4.12)

If the horizontal map in (2.4.11) were a cofibration (think “injective”) in a suitable sense,
then the commutativity of (2.4.12) would be sufficient to imply the existence of [[EA(p,r)]].
Unfortunately, it is far from clear that this map is a cofibration; moreover, its failure to
be a cofibration is a genuine obstruction to defining [[EA(p,r)]] inductively. For the correct
inductive construction, we must use “cofibrant replacements” for the system of complexes
C•(EA(p,q), EA(p,q) \ 0) (the details of which we leave for §7).

Finally, we should argue that the homology groups defined via a choice of (λ, [[E]]) are in
fact independent of that choice. For this, we use the usual strategy of constructing a chain
map between (Z[P], d) and (Z[P], d′) for any d and d′ arising from (λ, [[E]]) and (λ′, [[E]]′)
respectively (plus appropriate chain homotopies). To construct such a chain map, we use
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a similar inductive procedure, starting from the base choices (λ, [[E]]) and (λ′, [[E]]′). Note
that for this argument for independence of choice to work, the inductive nature of our
construction is crucial.

2.5 S1-localization

We now explain our strategy for proving S1-localization results for virtual fundamental
cycles. The full details of our treatment appear in §8.

The most basic setting in which our results apply (and are interesting) is that of a free
S1-space X (i.e. a space with a free action of S1) equipped with an S1-equivariant implicit
atlas A. Such an atlas is simply an implicit atlas where all the thickenings XI are equipped
with an action of S1 so that the functions ψIJ are S1-equivariant and the functions sI are
S1-invariant. This last point bears repeating: S1 does not act on the obstruction spaces EI
(or, alternatively, it acts trivially on them).

In the above setup, our S1-localization result states that π∗[X]vir = 0, where π : X →
X/S1 is the quotient map and π∗ : Ȟ•(X)∨ → Ȟ•(X/S1)∨ is the dual of the pullback
π∗ : Ȟ•(X/S1) → Ȟ•(X). Observe that π∗ is an isomorphism for • = 0 (since S1 is
connected), hence this implies that if the virtual dimension d of X is zero, then [X]vir = 0.

One should expect this result to be true if one believes that one can choose a “chain
representative” of [X]vir which is S1-invariant (as the pushforward of such a chain represen-
tative is clearly null-homologous). For instance, in the perturbation approach, this result
would follow if one could construct S1-invariant transverse perturbations. Conversely, one
can interpret our vanishing result π∗[X]vir = 0 as a sense in which our [X]vir is S1-invariant
at the chain level.

Remark 2.5.1. A natural strategy for proving S1-localization results is to consider XI/S
1 as

forming an atlas on X/S1 of virtual dimension one less, and then “pulling back” to X the
virtual fundamental cycle on X/S1 (this is the approach taken by Fukaya–Oh–Ohta–Ono
[FO99, FOOO12]). In the general setting where the S1-action is merely continuous, the
implicit atlas on X does not induce an implicit atlas on X/S1 because of the existence of
free S1-actions on topological manifolds whose quotients are not manifolds14, though we still
consider this “quotient implicit atlas” in spirit. This extra generality is convenient, since it
means we do not need to construct an S1-equivariant gluing map (providing the local slice
necessary to show that the “quotient implicit atlas” exists).

Let us now prove our assertion π∗[X]vir = 0 in the simple case of a single chart (for which
we defined [X]vir in §2.3.2). In this case, the implicit atlas A = {α} consists of a topological
manifold Xα, a function sα : Xα → Eα, and an identification X = s−1

α (0). This atlas being
S1-equivariant means that Xα is equipped with an S1-action for which sα is S1-invariant
and which induces the given action on X. The desired statement follows from the following

14Such an action may be constructed out of any non-manifold X for which X × R is a manfold (namely
the obvious action on X×S1). Many examples of such spaces are known, the first being due to Bing [Bin59];
see also Cannon [Can79].
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diagram, as we explain below:

Ȟd(X/S1) HS1

dimEα−1(Xα, Xα \X)
(sα)∗−−−→ HS1

dimEα−1(Eα, Eα \ 0)

π∗

y yπ!

yπ!

Ȟd(X) HdimEα(Xα, Xα \X)
(sα)∗−−−→ HdimEα(Eα, Eα \ 0)

[Eα] 7→1−−−−→ Z

The map π∗ is pullback under π : X → X/S1. The maps π! are the maps from the Gysin
long exact sequence for an S1-space:

· · · ∩e−→ HS1

•−1(Z)
π!

−→ H•(Z)
π∗−→ HS1

• (Z)
∩e−→ HS1

•−2(Z)
π!

−→ · · · (2.5.1)

The two leftmost horizontal identifications are a form of Poincaré duality (which can be
proven, along with the commutativity of the square, with homotopy K-sheaves as in §2.3.5);
it is at this step where we use the fact that S1 acts freely on X.

Now [X]vir is by definition the composition of the bottom row. Hence π∗[X]vir is the map
from the upper left corner to the bottom right. On the other hand, the rightmost vertical
map π! : HS1

dimEα−1(Eα, Eα \ 0)→ HdimEα(Eα, Eα \ 0) vanishes since S1 acts trivially on Eα.
It follows that π∗[X]vir = 0 as desired.

To generalize this approach to arbitrary implicit atlases, we introduce “S1-equivariant
virtual cochain complexes” which play the role of HS1

dimEα−1(Xα, Xα \ X) above. Morally
speaking, these S1-equivariant virtual cochain complexes play the role of the virtual cochain
complexes of the (non-existent; c.f. Remark 2.5.1) induced implicit atlas on X/S1. To define
the S1-equivariant virtual cochain complexes, we use the same definition as for the ordinary
virtual cochain complexes, except using (shifted) S1-equivariant chains CS1

•−1 in place of
chains C•.

Remark 2.5.2. We do not construct an S1-equivariant virtual fundamental class, nor do we
address S1-localization for actions which are not free or almost free (having finite stabilizer
at every point). However, the machinery we develop could potentially be used for these
purposes, see Remark 8.6.3.

3 Implicit atlases

3.1 Implicit atlases

Definition 3.1.1 (Implicit atlas). Let X be a compact Hausdorff space. An implicit atlas
of dimension d = vdimAX on X is an index set A along with the following data:

i. (Covering groups) A finite group Γα for all α ∈ A (let ΓI :=
∏

α∈I Γα).
ii. (Obstruction spaces) A finitely generated R[Γα]-module Eα for all α ∈ A (let EI :=⊕

α∈I Eα).
iii. (Thickenings) A Hausdorff ΓI-space XI for all finite I ⊆ A, and a homeomorphism

X → X∅.
iv. (Kuranishi maps) A Γα-equivariant function sα : XI → Eα for all α ∈ I ⊆ A (for

I ⊆ J , let sI : XJ → EI denote
⊕

α∈I sα).
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v. (Footprints) A ΓI-invariant open set UIJ ⊆ XI for all I ⊆ J ⊆ A.
vi. (Footprint maps) A ΓJ -equivariant function ψIJ : (sJ\I |XJ)−1(0) → UIJ for all I ⊆

J ⊆ A.
vii. (Regular locus) A ΓI-invariant subset Xreg

I ⊆ XI for all I ⊆ A.
which must satisfy the following “compatibility axioms”:

i. ψIJψJK = ψIK and ψII = id.
ii. sIψIJ = sI .
iii. UIJ1 ∩ UIJ2 = UI,J1∪J2 and UII = XI .
iv. ψ−1

IJ (UIK) = UJK ∩ (sJ\I |XJ)−1(0).15

v. (Homeomorphism axiom) ψIJ induces a homeomorphism (sJ\I |XJ)−1(0)/ΓJ\I → UIJ .
and the following “transversality axioms”:

vi. ψ−1
IJ (Xreg

I ) ⊆ Xreg
J .

vii. ΓJ\I acts freely on ψ−1
IJ (Xreg

I ).
viii. (Openness axiom) Xreg

I ⊆ XI is open.
ix. (Submersion axiom) The map sJ\I : XJ → EJ\I is locally modeled on the projection

Rd+dimEI × RdimEJ\I → RdimEJ\I over ψ−1
IJ (Xreg

I ) ⊆ XJ .
x. (Covering axiom) X∅ =

⋃
I⊆A ψ∅I((sI |Xreg

I )−1(0)).

Remark 3.1.2. The VFC machinery in this paper would go through admitting a slight weak-
ening of the axioms of an implicit atlas. For example, we only ever use the fact that the
openness and submersion axioms hold in a neighborhood of (sI |XI)

−1(0). We will not make
this precise here, however, since the constructions of implicit atlases we know of would not
be made any easier by such a weakening of the axioms.

Definition 3.1.3 (Smooth implicit atlas). A smooth structure on an implicit atlas consists
of a smooth structure on each Xreg

I such that:
i. ΓI acts smoothly on Xreg

I .
ii. sI is smooth over Xreg

I .
iii. sJ\I : XJ → EJ\I is a smooth submersion over ψ−1

IJ (Xreg
I ).

iv. ψIJ is a local diffeomorphism over ψ−1
IJ (Xreg

I ).

Remark 3.1.4. The VFC machinery in this paper applies to implicit atlases (without a smooth
structure), though the notion of a smooth implicit atlas may be useful for other applications
of implicit atlases.

Remark 3.1.5 (Using finite I → A instead of finite I ⊆ A). An implicit atlas consists of data
parameterized by the category of finite subsets of A (objects: finite subsets, morphisms:
inclusions). A direct modification of the definition allows one to instead use the category of
finite sets over A (objects: finite sets I → A, morphisms: injective maps I ↪→ J compatible
with the maps to A). In fact, all constructions of implicit atlases we know of yield implicit
atlases in this generalized sense. We won’t need this generalization in this paper, but let us
point out some reasons why it may be useful to keep in mind.

With the definition as it stands now (using finite subsets of A), we can “pull back” an
implicit atlas along any injection B ↪→ A. If we instead use finite sets over A, then we

15Added in proof: Abouzaid recently pointed out that this axiom is superfluous; it is implied by the other
axioms.
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can pull back an implicit atlas along any map B → A (in fact, we can pull back along any
coproduct preserving functor from finite sets over B to finite sets over A, which amounts to
the specification of a finite set Iβ → A for all β ∈ B). Also, in the category of finite subsets
of A we can only take the disjoint union of subsets which are already disjoint; however in
the category of finite sets over A there exist arbitrary abstract finite disjoint unions. This
allows some extra (though currently unneeded) flexibility in certain constructions, since we
do not need to ensure certain sets are disjoint or that certain maps are injective.

Using the category of sets over A is also the natural perspective to take if we wanted
to allow A to be a groupoid instead of a set (then an object is a finite set I along with a
collection of objects {αi}i∈I of A, and a morphism (I, {αi}i∈I)→ (J, {αj}j∈J) is an injection
j : I ↪→ J along with isomorphisms αi

∼−→ αj(i) in A).

3.2 Implicit atlases with boundary

Definition 3.2.1 (Implicit atlas with boundary). Let X be a compact Hausdorff space
together with a closed subset denoted ∂X ⊆ X. An implicit atlas of dimension d with
boundary on X consists of the same data as an implicit atlas, except that in addition we
specify a ΓI-invariant closed subset ∂XI ⊆ XI for all I ⊆ A, such that ∂X∅ = ∂X. We add
the following “compatibility axiom”:

i. ψ−1
IJ (∂XI) = (sJ\I |∂XJ)−1(0).

and we modify one “transversality axiom”:
ii. (Submersion axiom) We allow an additional local model R≥0×Rd+dimEI−1×RdimEJ\I →

RdimEJ\I , and ∂Xreg
J ⊆ Xreg

J must correspond to the boundary of the local model.

Remark 3.2.2. Just as a manifold is a special case of a manifold with boundary, an implicit
atlas is a special case of an implicit atlas with boundary (namely where ∂XI = ∅ for all I).

Definition 3.2.3 (Restriction of implicit atlas to boundary). Let X be a space with implicit
atlas A of dimension d with boundary. Then this induces an implicit atlas A (the same index
set) of dimension d − 1 on ∂X, simply by setting (∂X)I := ∂XI and restricting the rest of
the data to these subspaces.

4 The VFC package

In this section, we develop the VFC package, which is the algebraic machinery we will apply
in later sections to work with virtual fundamental cycles. The reader should be comfortable
with the material from Appendix A, where we recall and develop the necessary foundational
language of sheaves and homological algebra.

Convention 4.0.1. In this section, we work over a fixed ground ring R, and everything takes
place in the category of R-modules. We restrict to implicit atlases A for which #Γα is
invertible in R for all α ∈ A.

Let us now introduce the formalism of our VFC package.
For any space X equipped with a finite locally orientable implicit atlas A of dimension

d with boundary, we define virtual cochain complexes C•vir(X;A) and C•vir(X rel ∂;A). We
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construct canonical isomorphisms:

H•vir(X;A)
∼−→ Ȟ•(X; oX) (4.0.1)

H•vir(X rel ∂;A)
∼−→ Ȟ•(X; oX rel ∂) (4.0.2)

(H•vir denotes the cohomology of C•vir) for certain virtual orientation sheaves oX and oX rel ∂

on X. There is a canonical map:

Cd+•
vir (X rel ∂;A)

s∗−→ CdimEA−•(EA, EA \ 0; o∨EA)ΓA (4.0.3)

which can be thought of as the (chain level) virtual fundamental cycle.
To study the virtual cochain complexes (in particular, to construct the isomorphisms

(4.0.1)–(4.0.2)), we define complexes of K-presheaves on X:

K 7→ C•vir(K;A) (4.0.4)

K 7→ C•vir(K rel ∂;A) (4.0.5)

whose global sections are the virtual cochain complexes.1617 We show that they are pure
homotopy K-sheaves, and that there are canonical isomorphisms of sheaves on X:

H0
vir(−;A) = oX (4.0.6)

H0
vir(− rel ∂;A) = oX rel ∂ (4.0.7)

The isomorphisms (4.0.1)–(4.0.2) then follow from Proposition A.5.4.
The fact that the virtual cochain complexes are the global sections of pure homotopy

K-sheaves with known H0 will also play a key role in the applications of the VFC package.
Another useful fact we prove here is that the isomorphisms (4.0.1)–(4.0.2) are compatible

with the long exact sequence of the pair (X, ∂X) in Ȟ• and a corresponding long exact
sequence of H•vir.

4.1 Orientations

Recall the notion of the orientation sheaf of a topological manifold (resp. with boundary)
given in Definition A.6.2.

Definition 4.1.1 (Orientation module of a vector space). Let E be a finite-dimensional
vector space over R. We let oE denote the orientation module of E, namely HdimE(E,E \ 0)
(a free R-module of rank 1).18

Definition 4.1.2 (Locally orientable implicit atlas). Let X be a space with implicit atlas
A with boundary. We say that A is locally orientable19 iff for every I ⊆ A and every
x ∈ (sI |Xreg

I )−1(0), the stabilizer (ΓI)x acts trivially on (oXreg
I

)x ⊗ o∨EI (this action is always
by a sign (ΓI)x → {±1}). This notion is independent of the ring R (due to our restriction
that #Γα be invertible in R).

16Note that this is a certain abuse of notation, as A is not an implicit atlas on K $ X.
17Note that the map s∗ (4.0.3) is global; it does not exist on C•vir(K rel ∂;A) for K $ X or on any

C•vir(K;A).
18According to the previous definition, we should really call this (oE)0 (the stalk at 0 ∈ E of the orientation

sheaf of E considered as a manifold), though we do not anticipate this abuse causing any particular confusion.
19This is analogous to the notion of an orbifold being locally orientable.
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Definition 4.1.3 (Virtual orientation sheaf oX of a space with implicit atlas). Let X be a
space with locally orientable implicit atlas A with boundary. Then there exists a sheaf oX,A
on X equipped with ΓI-equivariant isomorphisms ψ∗∅IoX,A

∼−→ oXreg
I
⊗o∨EI over (sI |Xreg

I )−1(0)
for every I ⊆ A, which are compatible with the maps ψIJ . We call oX,A the virtual orientation
sheaf of X (it is unique up to unique isomorphism); it is locally isomorphic to the constant
sheaf R. We write oX for oX,A when the atlas is clear from context. We let oX rel ∂ := j!j

∗oX
where j : X \ ∂X ↪→ X.

4.2 Virtual cochain complexes C•vir(X;A) and C•vir(X rel ∂;A)

Definition 4.2.1 (Deformation to the normal cone). Let X be a space with finite implicit
atlas A with boundary. For I ⊆ J ⊆ A, we define:

XI,J,A :=

(e, t, x) ∈ EA × RA
≥0 ×X

reg
J

∣∣∣∣∣∣
tα = 0 for α ∈ A \ I
sα(x) = tαeα for α ∈ J
ψ{α∈A:tα>0},J(x) ∈ Xreg

{α∈A:tα>0}


The condition ψ{α∈A:tα>0},J(x) ∈ Xreg

{α∈A:tα>0} ensures that we only deform to the normal cone

of those zero sets s−1
J\I′(0) which are cut out transversally (I ′ ⊆ I). Clearly (∂X)I,J,A ⊆ XI,J,A

is the subset where x ∈ ∂Xreg
J (the former being with respect to the restriction of A to ∂X).

There are compatible maps:

XI,J,A × EA′\A → XI′,J ′,A′ for I ⊆ I ′ ⊆ J ′ ⊆ J ⊆ A ⊆ A′ (4.2.1)

given by tA′\A = 0 and x 7→ ψJ ′,J(x). For K ⊆ X, we let XK
I,J,A ⊆ XI,J,A denote the subspace

where e = 0 and x ∈ ψ−1
∅J(K). Note that ΓA acts on XI,J,A (acting on Xreg

J via the projection
ΓA → ΓJ and on EA).

Remark 4.2.2 (Chains and cochains). We use C•(X) (resp. C•(X)) to denote singular sim-
plicial chains (resp. cochains) on a space X, and we use C•(X, Y ) to denote the cokernel of
C•(Y ) ↪→ C•(X) for Y ⊆ X (“relative chains”).

Let us also recall the “Eilenberg–Zilber map” C•(X) ⊗ C•(Y ) → C•(X × Y ) for spaces
X and Y , corresponding to the standard subdivision of ∆n × ∆m into

(
n+m
n

)
copies of

∆n+m. The Eilenberg–Zilber map is associative (in the sense that it gives rise to a unique
map C•(X) ⊗ C•(Y ) ⊗ C•(Z) → C•(X × Y × Z)) and commutative (in the sense that the
following diagram commutes:

C•(X)⊗ C•(Y ) −−−→ C•(X × Y )y y
C•(Y )⊗ C•(X) −−−→ C•(Y ×X)

(4.2.2)

for all X and Y ). We should point out that this commutativity fails for some other common
models of singular chains, for example singular cubical chains (modulo degeneracies).

Remark 4.2.3 (Independence of chain model). The particular choice of singular simplicial
chains is not particularly important. The virtual fundamental classes, etc. resulting from our
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theory should be unchanged by using any other model of singular chains. This independence
would follow immediately (and all issues about finding chain models with good chain level
functoriality properties would go away) if we setup the VFC package using ∞-categories.

Definition 4.2.4 (Fundamental cycles of vector spaces). Let I be a finite subset of an
implicit atlas A. We define:

C•(E; I) := CdimEI+•(EI , EI \ 0; o∨EI )
ΓI (4.2.3)

There is a canonical isomorphism H•(E; I) = R (concentrated in degree zero), and we denote
the canonical generator by [EI ] ∈ H•(E; I).

Definition 4.2.5 (Partial virtual cochain complexes C•vir(−;A)IJ and C•vir(− rel ∂;A)IJ). Let
X be a space with finite implicit atlas A of dimension d with boundary. For any compact
K ⊆ X, we define:

C•vir(K rel ∂;A)IJ := Cd+dimEA−•(XI,J,A, XI,J,A \XK
I,J,A; o∨EA)ΓA (4.2.4)

C•vir(K;A)IJ :=

Cd+dimEA−1−•((∂X)I,J,A, (∂X)I,J,A \ (∂X)K∩∂XI,J,A ; o∨EA)ΓA

↓
Cd+dimEA−•(XI,J,A, XI,J,A \XK

I,J,A; o∨EA)ΓA

 (4.2.5)

It is clear that K 7→ C•vir(K;A)IJ and K 7→ C•vir(K rel ∂;A)IJ are both complexes of K-
presheaves on X.

There are canonical maps:

C•vir(K rel ∂;A)IJ → C•vir(K;A)IJ (4.2.6)

Cd+•
vir (X rel ∂;A)IJ

s∗−→ C−•(E;A) (4.2.7)

C•vir(−;A)IJ → C•vir(−;A)I′,J ′ for I ⊆ I ′ ⊆ J ′ ⊆ J (4.2.8)

((4.2.7) is induced by the projection XI,J,A → EA, and (4.2.8) is induced by (4.2.1) with
A = A′). These are compatible with each other in that certain obvious diagrams commute.

Definition 4.2.6 (Virtual cochain complexes C•vir(−;A) and C•vir(− rel ∂;A)). Let X be a
space with finite implicit atlas A of dimension d with boundary. For any compact K ⊆ X,
we define:

C•vir(K;A) := hocolim
I⊆J⊆A

C•vir(K;A)IJ (4.2.9)

C•vir(K rel ∂;A) := hocolim
I⊆J⊆A

C•vir(K rel ∂;A)IJ (4.2.10)

where hocolimI⊆J⊆A is the homotopy colimit (Definition A.7.2) over 2A with structure maps
given by (#ΓJ\J ′)

−1 times (4.2.8). It is clear that K 7→ C•vir(K;A) and K 7→ C•vir(K rel ∂;A)
are both complexes of K-presheaves on X.

There are canonical maps:

C•vir(K rel ∂;A)→ C•vir(K;A) (4.2.11)

Cd+•
vir (X rel ∂;A)

s∗−→ C−•(E;A) (4.2.12)

(induced by (4.2.6)–(4.2.7)). More precisely, (4.2.12) is given by (4.2.7) on the p = 0 part of
the hocolim and is zero on the rest.
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Definition 4.2.7 (Maps C•vir(−;A) → C•vir(−;A′)). Let X be a space with finite implicit
atlases A ⊆ A′ with boundary. There are canonical maps:

C•vir(−;A)IJ ⊗ C−•(E;A′ \ A)→ C•vir(−;A′)I′,J ′ for I ⊆ I ′ ⊆ J ′ ⊆ J ⊆ A ⊆ A′ (4.2.13)

induced by (4.2.1) (of which (4.2.8) is a special case). These are compatible with each other,
and thus extend to the homotopy colimit over I ⊆ J ⊆ A. Hence we get canonical maps:

C•vir(−;A)⊗ C−•(E;A′ \ A)→ C•vir(−;A′) (4.2.14)

which are compatible with (4.2.11)–(4.2.12).

Note that all of the complexes defined here are free R-modules (this follows from our
assumption that #Γα be invertible in R) and that everything in sight is compatible with
base change ⊗RS for ring homomorphisms R→ S.

4.3 Isomorphisms H•vir(X;A) = Ȟ•(X; oX) (also rel ∂)

Lemma 4.3.1 (C•vir(−;A)IJ are pure homotopy K-sheaves). Let X be a space with finite
locally orientable implicit atlas A with boundary. Then C•vir(−;A)IJ and C•vir(− rel ∂;A)IJ are
pure homotopy K-sheaves on X. Furthermore, there are canonical isomorphisms of sheaves
on X:

H0
vir(−;A)IJ = j!j

∗oX (4.3.1)

H0
vir(− rel ∂;A)IJ = j!j

∗oX rel ∂ (4.3.2)

where j : VI ∩ VJ ↪→ X for VI := ψ∅I((sI |Xreg
I )−1(0)) ⊆ X (an open subset).

Proof. Applying Lemmas A.6.3 and A.2.11, we see that C•vir(−;A)IJ and C•vir(− rel ∂;A)IJ
are both homotopy K-sheaves.

Now let us calculate H•vir(K;A)IJ and H•vir(K rel ∂;A)IJ . It follows from the submersion
axiom that XI,J,A is a topological manifold of dimension vdimAX + dimEA + #I with
boundary (not necessarily second countable or paracompact).20 The boundary ∂(XI,J,A) is
a (not necessarily disjoint) union of two pieces, namely the locus where x ∈ ∂Xreg

J (which is
precisely (∂X)I,J,A) and the locus where tα = 0 for some α ∈ I. It is easy to see that the first
piece (∂X)I,J,A ⊆ ∂(XI,J,A) is a closed tamely embedded codimension zero submanifold with
boundary. Hence we may apply Poincaré–Lefschetz duality in the form of Lemma A.6.4 to
see that:

H•vir(K rel ∂;A)IJ = Ȟ•+#I
c (ψ−1

∅J(K ∩ VI ∩ VJ)× RI
>0, o

⊗I
R ⊗ o∨EJ ⊗ oXreg

J rel ∂)
ΓA (4.3.3)

H•vir(K;A)IJ = Ȟ•+#I
c (ψ−1

∅J(K ∩ VI ∩ VJ)× RI
>0, o

⊗I
R ⊗ o∨EJ ⊗ oXreg

J
)ΓA (4.3.4)

(the orientation sheaf of XI,J,A is given by oXreg
J
⊗ oEA ⊗ o∨EJ ⊗ o⊗IR ). Now we apply the

Künneth formula to conclude that:

H•vir(K rel ∂;A)IJ = Ȟ•c (ψ−1
∅J(K ∩ VI ∩ VJ), o∨EJ ⊗ oXreg

J rel ∂)
ΓA (4.3.5)

H•vir(K;A)IJ = Ȟ•c (ψ−1
∅J(K ∩ VI ∩ VJ), o∨EJ ⊗ oXreg

J
)ΓA (4.3.6)

20In fact, it carries a natural structure of a manifold with corners, which for the present purpose is mostly
irrelevant.
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Since X is locally orientable, we have oXreg
J
⊗ o∨EJ = ψ∗∅JoX , so we can write:

H•vir(K rel ∂;A)IJ = Ȟ•c (ψ−1
∅J(K ∩ VI ∩ VJ), ψ∗∅JoX rel ∂)

ΓA (4.3.7)

H•vir(K;A)IJ = Ȟ•c (ψ−1
∅J(K ∩ VI ∩ VJ), ψ∗∅JoX)ΓA (4.3.8)

Now ΓA acts through the projection ΓA → ΓJ , and ψ∅J : ψ−1
∅J(K ∩ VI ∩ VJ)→ K ∩ VI ∩ VJ

is exactly the quotient by ΓJ . Hence by Lemma A.4.9 we get isomorphisms:

H•vir(K rel ∂;A)IJ = Ȟ•c (K ∩ VI ∩ VJ , oX rel ∂) (4.3.9)

H•vir(K;A)IJ = Ȟ•c (K ∩ VI ∩ VJ , oX) (4.3.10)

Now use Lemma A.4.7 to write this as:

H•vir(K rel ∂;A)IJ = Ȟ•(K, j!j
∗oX rel ∂) (4.3.11)

H•vir(K;A)IJ = Ȟ•(K, j!j
∗oX) (4.3.12)

Thus C•vir(−;A)IJ and C•vir(− rel ∂;A)IJ are both pure, and we manifestly have the desired
isomorphisms (4.3.1)–(4.3.2).

Lemma 4.3.2 (Local description of isomorphisms H0
vir(−;A)II = j!j

∗oX). Let X be a space
with finite locally orientable implicit atlas A of dimension d with boundary. Consider the
following maps of complexes of K-presheaves on X:

C•vir(K;A)II ←

Cd+dimEA−1−•(EA\I × ∂Xreg
I , EA\I × (∂Xreg

I \ ψ
−1
∅I (K)); o∨EA)ΓA

↓
Cd+dimEA−•(EA\I ×X

reg
I , EA\I × (Xreg

I \ ψ
−1
∅I (K)); o∨EA)ΓA


(4.3.13)

C•vir(K rel ∂;A)II ← Cd+dimEA−•(EA\I ×X
reg
I , EA\I × (Xreg

I \ ψ
−1
∅I (K)); o∨EA)ΓA (4.3.14)

(induced by the corresponding maps on spaces). These maps are quasi-isomorphisms, and
the isomorphisms (4.3.1)–(4.3.2) from Lemma 4.3.1 coincide with the Poincaré duality iso-
morphisms for the complexes on the right above.

Proof. Clear from the proof of Lemma 4.3.1.

Proposition 4.3.3 (C•vir(−;A) are pure homotopy K-sheaves). Let X be a space with finite
locally orientable implicit atlas A with boundary. Then C•vir(−;A) and C•vir(− rel ∂;A) are
pure homotopy K-sheaves on X. Furthermore, there are canonical isomorphisms of sheaves
on X:

H0
vir(−;A) = oX (4.3.15)

H0
vir(− rel ∂;A) = oX rel ∂ (4.3.16)

Proof. This is a special case of Lemma A.8.2; we just need to make sure all of the hypotheses
are satisfied. The open cover in question is VI := ψ∅I((sI |Xreg

I )−1(0)); it follows from the
axioms of an implicit atlas that VI ∩ VK ⊆ VJ for I ⊆ J ⊆ K and VI ∩ VI′ ⊆ VI∪I′ for all
I, I ′. Now we just need to check that the system of isomorphisms from Lemma 4.3.1 are
compatible with the maps of the homotopy diagram. These being maps of sheaves, it suffices
to check compatibility locally (on stalks) and thus is a straightforward calculation (this is
where the extra normalization factor of (#ΓJ\J ′)

−1 in Definition 4.2.6 is important).

38



Theorem 4.3.4 (Calculation of H•vir). Let X be a space with finite locally orientable implicit
atlas A with boundary. Then there are canonical isomorphisms:

H•vir(X;A) = Ȟ•(X; oX) (4.3.17)

H•vir(X rel ∂;A) = Ȟ•(X; oX rel ∂) (4.3.18)

Proof. By Proposition A.5.4, this is a consequence of Proposition 4.3.3.

4.4 Long exact sequence for the pair (X, ∂X)

In this subsection, we compare two long exact sequences for the pair (X, ∂X), namely the
one in Čech cohomology and one coming from the virtual cochain complexes.

It follows from the definition that C•vir(K;A)IJ is the mapping cone of the obvious map
C•−1

vir (K ∩∂X;A)IJ → C•vir(K rel ∂;A)IJ . Since homotopy colimit commutes with the forma-
tion of mapping cones, we see that the same is true dropping the IJ subscript. Hence there
are natural maps:

· · · → C•−1
vir (K ∩ ∂X;A)→ C•vir(K rel ∂;A)→ C•vir(K;A)→ · · · (4.4.1)

and they induce a long exact sequence on cohomology.
Similarly, there is a sequence of sheaves on X which is exact on stalks:

0→ oX rel ∂ → oX → i∗o∂X → 0 (4.4.2)

(where i : ∂X ↪→ X). This induces a long exact sequence on Čech cohomology (Lemma
A.4.20). Note that Ȟ•(X; i∗o∂X) = Ȟ•(∂X; o∂X) (Lemma A.4.8).

Remark 4.4.1. To be slightly pedantic about orientations, it would be more precise to say
that C•vir(−;A) = [C•vir(−∩∂X;A)⊗oR → C•vir(− rel ∂;A)], where we identify oR canonically
with the orientation line of the normal bundle of ∂Xreg

I ⊆ Xreg
I . Also, note that we should

either say that the last map in (4.4.2) is odd or that it is really oX → i∗o∂X ⊗ oR (and is
even).

Proposition 4.4.2 (Compatibility of long exact sequences of the pair (X, ∂X)). The fol-
lowing diagram commutes:

H•vir(X rel ∂;A) H•vir(X;A) H•vir(∂X;A) H•+1
vir (X rel ∂;A)

Ȟ•(X; oX rel ∂) Ȟ•(X; oX) Ȟ•(∂X; o∂X) Ȟ•+1(X; oX rel ∂)

(4.4.1)

Thm 4.3.4

(4.4.1)

Thm 4.3.4

(4.4.1)

Thm 4.3.4 Thm 4.3.4

(4.4.2) (4.4.2) (4.4.2)

(4.4.3)

Proof. By the definition of the vertical identifications, the commutativity of the first two
squares of (4.4.3) reduces to the commutativity of the diagram of sheaves:

H0
vir(− rel ∂;A) H0

vir(−;A) H0
vir(−;A)

oX rel ∂ oX i∗o∂X

(4.4.1)

Prop 4.3.3

(4.4.1)

Prop 4.3.3 Prop 4.3.3

(4.4.2) (4.4.2)

(4.4.4)
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It suffices to check commutativity on stalks, and to do this, we can work with the complexes
on the right in Lemma 4.3.2, for which the commutativity is clear.

In fact, the commutativity of the last square of (4.4.3) is also a consequence of the
commutativity of (4.4.4). To see this, consider the following diagram:

H•vir(∂X;A) H•[C•+1
vir (X rel ∂;A)→ C•vir(X;A)] H•+1

vir (X rel ∂;A)

Ȟ•(∂X;H0
vir(−;A)) Ȟ•(X; [H0

vir(− rel ∂;A)[1]→ H0
vir(−;A)]) Ȟ•+1(X,H0

vir(− rel ∂;A))

Ȟ•(∂X; o∂X) Ȟ•(X; [oX rel ∂[1]→ oX ]) Ȟ•+1(X, oX rel ∂)

Prop A.5.4

∼

Prop A.5.4 Prop A.5.4

∼

∼

∼ ∼

∼

The middle vertical arrow is defined because of the commutativity of the left square in (4.4.4).
The top left horizontal arrow is a quasi-isomorphism, and thus every left horizontal arrow is
a quasi-isomorphism. The bottom left square is commutative because of the commutativity
of the right square in (4.4.4); the other squares are trivially commutative. Reversing the left
horizontal arrows, we see that the outermost square commutes, and this is exactly the last
square in (4.4.3).

5 Virtual fundamental classes

In this section, we use the technical results of §4 to define the virtual fundamental class of a
space with implicit atlas and derive some of its properties. We also show how these properties
can be used to calculate the virtual fundamental class in some special situations (calculation
directly from the definition seems prohibitively complicated in all but the simplest of cases).
The properties we prove here are sufficient for some rudimentary purposes, and we think
they at least demonstrate that the virtual fundamental class we have defined is the “right”
one.

For more sophisticated applications than those considered in this paper, one would cer-
tainly like to have more properties than those proven here. For example, one would very
much like to prove the expected formula for [X ×M Y ]vir in terms of [X]vir and [Y ]vir (given
some natural “fiber product implicit atlas” on X×M Y , where X, Y are spaces with implicit
atlases and M is a manifold).

Convention 5.0.1. In this section, we work over a fixed ground ring R, and everything takes
place in the category of R-modules. We restrict to implicit atlases A for which #Γα is
invertible in R for all α ∈ A.

Remark 5.0.2 (Comparison of homology theories). There are (at least) three natural “ho-
mology groups” which one can assign to a compact Hausdorff space X:

i. Dual of Čech cohomology Ȟ•(X)∨ (∨ denotes dual, i.e. Hom(−, R)).
ii. Čech homology Ȟ•(X) (the inverse limit of the homology of nerves of finite covers).
iii. Steenrod–Sitnikov homology H•(X) (the homology of the homotopy/derived inverse

limit of nerves of finite covers; see §A.9).
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These are successively more refined, in the sense that there are natural maps:

H•(X)→ Ȟ•(X)→ Ȟ•(X)∨ (5.0.1)

If X is homeomorphic to a finite CW-complex, then there are natural isomorphisms:

H•(X) = H•(X) Ȟ•(X) = H•(X) Ȟ•(X)∨ = H•(X)∨ (5.0.2)

It follows that a virtual fundamental class in any of these groups can be used for all the
applications we are aware of. On the other hand, there are some potential advantages to
working with the more refined homology groups:

i. H• and Ȟ• retain torsion information.
ii. H• and Ȟ• have a natural “extension of scalars” map for any map of rings R→ S.
iii. H• has the expected long exact sequence for pairs of spaces.

We first define the virtual fundamental class as an element of Ȟ•(X)∨ (with appropriate
twisted coefficients) and derive some properties. At the end, we indicate how to define a
canonical lift to H•(X) by working at the level of the derived category.

5.1 Definition

Definition 5.1.1 (Virtual fundamental class [X]vir). Let X be a space with locally orientable
implicit atlas A of dimension d with boundary. Let B ⊆ A be a finite subatlas (which exists
by compactness). We consider the composite:

Ȟd+•(X; oX rel ∂)
Thm 4.3.4

= Hd+•
vir (X rel ∂;B)

(4.2.12)−−−−→ H−•(E;B)
[EB ] 7→1−−−−→ R (5.1.1)

We thus get a map Ȟd(X; oX rel ∂) → R. Now suppose B ⊆ B′ are two finite subatlases.
Then the following diagram commutes (it suffices to check commutativity on stalks, and
to do this, we can work with the complexes on the right in Lemma 4.3.2, for which the
commutativity is clear):

oX rel ∂ H0
vir(− rel ∂;B)

oX rel ∂ H0
vir(− rel ∂;B′)

Thm 4.3.4

×[EB′\B ](4.2.14)

Thm 4.3.4

(5.1.2)

Hence the following diagram commutes (the first square following from (5.1.2), the rest being
clear):

Ȟd+•(X; oX rel ∂) Hd+•
vir (X rel ∂;B) H−•(E;B) R

Ȟd+•(X; oX rel ∂) Hd+•
vir (X rel ∂;B′) H−•(E;B′) R

Thm 4.3.4 (4.2.12)

×[EB′\B ](4.2.14)

[EB ]7→1

×[EB′\B ]

Thm 4.3.4 (4.2.12) [EB′ ]7→1

(5.1.3)

This shows that the maps Ȟd(X; oX rel ∂)→ R induced by B and B′ coincide. Since any two
B1, B2 ⊆ A are contained in a third B1 ∪B2 ⊆ A, we see that the resulting element:

[X]vir
A ∈ Ȟd(X; oX rel ∂)

∨ (5.1.4)

is independent of B. We write [X]vir for [X]vir
A when the atlas is clear from context.
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5.2 Properties

Lemma 5.2.1 (Passing to a subatlas preserves [X]vir). Let X be a space with locally ori-
entable implicit atlas A with boundary. If B ⊆ A is any subatlas, then [X]vir

A = [X]vir
B .

Proof. This follows immediately from the definition.

Lemma 5.2.2 (Shrinking the charts preserves [X]vir). Let X be a space with locally orientable
implicit atlas A with boundary. Let A′ be obtained from A by using instead some open subsets
U ′IJ ⊆ UIJ , X ′I ⊆ XI , X

reg′
I ⊆ Xreg

I , and restricting ψIJ , sI to these subsets, so that A′ is
also an implicit atlas. Then [X]vir

A = [X]vir
A′ .

Proof. We may assume that A is finite. Certainly there is a map C•vir(X rel ∂;A′) →
C•vir(X rel ∂;A) which respects the map (4.2.12). Hence it suffices to show that the following
diagram commutes:

H•vir(X rel ∂;A′) Ȟ•(X; oX rel ∂)

H•vir(X rel ∂;A) Ȟ•(X; oX rel ∂)

Thm 4.3.4

Thm 4.3.4

(5.2.1)

where the left vertical arrow is induced by the obvious pushforward on chains. By definition
of the isomorphisms above, it suffices to check commutativity of the corresponding diagram
of sheaves with • = 0. This can be checked locally, where it is clear.

Lemma 5.2.3 ([X t Y ]vir = [X]vir ⊕ [Y ]vir). Let X and Y be spaces equipped with locally
orientable implicit atlases with boundary, on the same index set A and of the same virtual
dimension. Let us also denote by A the resulting implicit atlas on X t Y (let (X t Y )I :=
XI t YI). Then A on X t Y is locally orientable with oXtY = (iX)∗oX ⊕ (iY )∗oY , and
[X t Y ]vir = [X]vir ⊕ [Y ]vir ∈ Ȟ•(X t Y ; oXtY rel ∂)

∨ = Ȟ•(X; oX rel ∂)
∨ ⊕ Ȟ•(Y ; oY rel ∂)

∨.

Proof. We may assume that A is finite. There is a natural isomorphism:

C•vir(X t Y rel ∂;A) = C•vir(X rel ∂;A)⊕ C•vir(Y rel ∂;A) (5.2.2)

compatible with the map to C−•(E;A). Thus it suffices to show that the following square of
isomorphisms commutes:

H•vir(X t Y rel ∂;A) Ȟ•(X t Y ; oXtY rel ∂)

H•vir(X rel ∂;A)⊕H•vir(Y rel ∂;A) Ȟ•(X; oX rel ∂)⊕ Ȟ•(Y ; oY rel ∂)

Thm 4.3.4

Thm 4.3.4

(5.2.3)

By definition of the horizontal maps, it suffices to check the commutativity of the corre-
sponding diagram of sheaves on X t Y , which is clear.

Lemma 5.2.4 (∂[X]vir = [∂X]vir). Let X be a space with locally orientable implicit at-
las A with boundary. Then the dual connecting homomorphism δ∨ : Ȟ•(X; oX rel ∂)

∨ →
Ȟ•−1(∂X; o∂X)∨ sends [X]vir to [∂X]vir.
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Proof. We may assume that A is finite. The map C•vir(∂X;A)→ C•+1
vir (X rel ∂;A) in (4.4.1)

commutes with the maps from both of these groups to Cd−•(E;A). Hence the result follows
from the commutativity of the last square in Proposition 4.4.2.

Lemma 5.2.5 ((∂X → X)∗[∂X]vir = 0). Let X be a space with locally orientable implicit
atlas with boundary. Then the pushforward map Ȟ•vir(∂X; o∂X)∨ → Ȟ•(X; oX)∨ annihilates
[∂X]vir.

Proof. The composition Ȟ•+1(X; oX rel ∂)
∨ → Ȟ•(∂X; o∂X)∨ → Ȟ•(X; oX)∨ is zero, and

[∂X]vir is in the image of the first map by Lemma 5.2.4.

Lemma 5.2.6 (If X = Xreg then [X]vir = [X]). Let X be a space with locally orientable
implicit atlas A with boundary. If Xreg = X (so in particular, X is a compact topological
manifold with boundary of dimension d = vdimAX), then [X]vir

A is the usual fundamental
class of X.

Proof. We may replace A with the finite subatlas ∅ ⊆ A. Now in this case, we have:

C•vir(K rel ∂;∅) = C•vir(K rel ∂;∅)∅∅ = Cd−•(X∅,∅,∅, X∅,∅,∅ \XK
∅,∅,∅) = Cd−•(X,X \K)

(5.2.4)
It follows that the identification Ȟ•(X; oX rel ∂) = H•vir(X rel ∂;∅) = Hd−•(X) is simply the
usual Poincaré duality isomorphism, and the map H−•(X) → H−•(E;∅) → R is the usual
augmentation on H0. Hence the composition Ȟ•(X; oX rel ∂)→ R is pairing against the usual
fundamental class of X.

Remark 5.2.7 (Calculating [X]vir using perturbation). The properties from this section can
be used to calculate the virtual fundamental class in the following sense. Let us suppose
we are given an “explicit” implicit atlas A on a space X. We may always (for convenience)
replace A by a subatlas and/or shrink the charts of A and the virtual fundamental class is
preserved (Lemmas 5.2.1 and 5.2.2). Now suppose we can extend A to an implicit atlas with
boundary on a space Y with ∂Y = X∪X ′ where X ′ = (X ′)reg (if A is a smooth implicit atlas,
then such an extension is obtained if one can “coherently perturb” the Kuranishi maps sα
so they become transverse to zero). Then X ′ is a closed smooth manifold, and [X ′]vir = [X ′]
is the naive fundamental class (Lemma 5.2.6). Now Y is a cobordism between X and X ′, so
we have [X]vir = [X ′] as homology classes in Y (Lemmas 5.2.3 and 5.2.5). This allows us to
understand the pushforward of [X]vir under any map f : X → Z which extends continuously
to Y . We do not claim such perturbations always exist; an affirmative answer is provided in
very similar, though not identical, contexts by Fukaya–Ono [FO99], Fukaya–Oh–Ohta–Ono
[FOOO09b, FOOO12] and McDuff–Wehrheim [MW15].

5.3 Manifold with obstruction bundle

A natural “test case” (beyond Lemma 5.2.6 and Remark 5.2.7) for our definition of the
virtual fundamental class is that of the natural implicit atlas on a “manifold with obstruction
bundle” (the expected answer being the Poincaré dual of the Euler class). More generally,
there is a natural implicit atlas on the zero set of a section of a vector bundle over a manifold

43



(the “manifold with obstruction bundle” case is when the section is identically zero), and
again the expected answer is a type of Euler class.

In this section, we show that our definition of the virtual fundamental class indeed agrees
with this expected answer. To prove this, we use only the properties of the virtual funda-
mental class from §5.2.

Definition 5.3.1 (Implicit atlas on the zero set of a smooth section). Let B be a smooth
manifold with boundary, let p : E → B be a smooth vector bundle, and let s : B → E be a
smooth section with s−1(0) compact. We define an implicit atlas of dimension dimB−dimE
with boundary on X := s−1(0) as follows. The index set A consists of all triples (Vα, Eα, λα)
(called thickening datums) where:

i. Vα ⊆ B is an open subset.
ii. Eα is a finite-dimensional vector space.
iii. λα : Eα × Vα → p−1(Vα) is a smooth homomorphism of vector bundles.

The thickened spaces are defined as follows:

XI :=
{

(x, {eα}α∈I) ∈
⋂
α∈I

Vα ×
⊕
α∈I

Eα

∣∣∣ s(x) +
∑
α∈I

λα(x, eα) = 0
}

(5.3.1)

The Kuranishi map sα : XI → Eα is the obvious projection map, the footprint UIJ is the
locus where x ∈ Vα for all α ∈ J , and the footprint maps ψIJ : (sJ\I |XJ)−1(0) → UIJ are
the obvious forgetful maps. The compatibility axioms are an easy exercise.

The regular locus Xreg
I ⊆ XI is the locus where XI is “cut out transversally”; more

precisely, (x, {eα}α∈I) ∈ XI is in Xreg
I iff the following map is surjective:(

ds+
∑
α∈I

dλα(·, eα)
)
⊕
⊕
α∈I

λα(x, ·) : TxB ⊕
⊕
α∈I

Eα → Ex (5.3.2)

The transversality axioms are an easy exercise. Thus A is indeed an implicit atlas on X.
Since everything here is in the smooth category, A is in fact a smooth implicit atlas.

Definition 5.3.2 (Euler class). Let B be a space equipped with a vector bundle p : E → B
of rank k. This induces a canonical locally constant sheaf oE on B whose stalk at b ∈ B is
oEb . Let τE ∈ Hk(E,E \ 0; p∗oE) denote the Thom class of E (characterized uniquely by the
property that its restriction to any local trivialization Rn × U → U is the pullback of the
tautological class in Hn(Rn,Rn \ 0; oRn)).

The Euler class e(E) ∈ Hk(B; oE) is s∗τE where s : B → E is any section. Any
two sections are homotopic, so e(E) is well-defined. For any section s : B → E with
s−1(0) compact, the Euler class with compact support ec(E, s) ∈ Hk

c (B; oE) is s∗τE. If s0

and s1 are homotopic through a section s̃ : B × [0, 1] → E with compact support, then
ec(E, s0) = ec(E, s1). The natural map Hk

c (B; oE) → Hk(B; oE) sends the Euler class with
compact support to the Euler class.

Remark 5.3.3. The Euler class with compact support can be nonzero even for the trivial
vector bundle.
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Proposition 5.3.4. Let B be a smooth manifold, let p : E → B be a smooth vector bundle,
and let s : B → E be a smooth section with s−1(0) compact. Consider the implicit atlas A
on X := s−1(0) from Definition 5.3.1. Then there is a canonical isomorphism of sheaves
oX = oB ⊗ o∨E on X (in particular, A is locally orientable), and the image of [X]vir in
HdimB−dimE(B; oB ⊗ o∨E)∨ equals ec(E, s) ∩ [B].

Note that Ȟ•(X; oX) = lim−→X⊆U H
•(U ; oB ⊗ o∨E) (direct limit over open neighborhoods

U ⊆ B of X), by the continuity axiom of Čech cohomology. The proposition applies equally
well with U in place of B, and thus determines [X]vir ∈ Ȟ•(X; oX)∨ uniquely (note the use
of either Lemma 5.2.1 or 5.2.2).

Proof. The statement about orientation sheaves is a straightforward calculation which we
omit.

Choose some smooth family of sections s̃ : B × [0, 1] → E with s̃−1(0) compact, so that
s̃(·, 0) = s and s1 := s̃(·, 1) is transverse to the zero section.

Now B × [0, 1] is a smooth manifold with boundary, so let Ã be the implicit atlas on
X̃ := s̃−1(0) from Definition 5.3.1. Similarly, let A′ be the implicit atlas on X ′ := (s′)−1(0).

Now we have two implicit atlases on X, namely A and (the restriction to the boundary
of) Ã. On the other hand, we can exhibit A as a subatlas of Ã by the map on thickening
datums sending Vα to Vα × [0, 1] and λα to its obvious extension. Hence they induce the
same virtual fundamental class (Lemma 5.2.1), so we may just write [X]vir (dropping the
subscript indicating which atlas we use). The same reasoning applies to X ′.

Now ∂X̃ = X tX ′, so we have [X]vir = [X ′]vir as homology classes on X̃ (Lemmas 5.2.3
and 5.2.5). Hence we have:

[X]vir = [X ′]vir (5.3.3)

as elements of HdimB−dimE(B; oB ⊗ o∨E)∨.
We know X ′ = (X ′)reg (it is cut out transversally), so X ′ is a closed smooth manifold

and [X ′]vir = [X ′] (Lemma 5.2.6). But now [X ′] = ec(E, s) ∩ [B] by elementary Poincaré
duality.

Remark 5.3.5. Proposition 5.3.4 in its present form is useless in practice, because the implicit
atlases which arise in interesting examples are not literally isomorphic to the one given in
Definition 5.3.1. One could, though, hope to show that they are equivalent (c.f. Remark
2.1.5) and then apply Proposition 5.3.4.

5.4 Lift to Steenrod homology

We now define a virtual fundamental class in Steenrod homology H•(X, ∂X; o∨X) refining the
class in Ȟ•(X; oX rel ∂)

∨ constructed in §5.1. To do this, it suffices to lift our earlier reasoning
at the level of homology groups to the level of objects in the derived category. We will be
using the notation and results from §A.9.

Remark 5.4.1. The natural map H•(X, ∂X; o∨X)→ Ȟ•(X; oX rel ∂)
∨ is an isomorphism if the

base ring R is a field (this follows from Lemma A.9.12), but for R = Z the kernel can be
substantial (in particular, it contains all torsion).
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Definition 5.4.2 (Virtual fundamental class in Steenrod homology). Let X be a space
with localy orientable implicit atlas A of dimension d with boundary. Let B ⊆ A be a finite
subatlas. By Propositions 4.3.3 and A.5.4, there is a canonical isomorphism Č•(X; oX rel ∂) =
C•vir(X rel ∂;B) in D(R) (observe that the isomorphisms in the proof of Proposition A.5.4
all come from canonical quasi-isomorphisms on the chain level). There is also a canonical
isomorphism C−•(E;B) = R in D(R). Since C•vir(X rel ∂;B) is free and bounded above, we
have:

HomR(C•vir(X rel ∂;B), C−•(E;B)) = RHomD(R)(Č
•(X; oX rel ∂), R) (5.4.1)

Thus the map s∗ : Cd+•
vir (X rel ∂;B)→ C−•(E;B) gives rise to an element:

[X]vir
A := [s∗] ∈ HomD(R)(Č

•(X; oX rel ∂), R[−d])
Lem A.9.12

= Hd(X, ∂X; o∨X) (5.4.2)

The commutativity of (5.1.2) implies that this element is independent of the chosen finite
subatlas B ⊆ A.

By definition, this fundamental class (5.4.2) projects to the fundamental class of Def-
inition 5.1.1 under the map H•(X, ∂X; o∨X) → Ȟ•(X; oX rel ∂)

∨. By chasing the various
isomorphisms involved in its definition, it can be checked that [X]vir ∈ Hd(X, ∂X; o∨X) is
preserved under extension of scalars.

The statements and proofs of Lemmas 5.2.1–5.2.6 and Proposition 5.3.4 generalize read-
ily to the case of [X]vir ∈ Hd(X, ∂X; o∨X). Note that (the generalization of) Proposition
5.3.4 does not determine [X]vir ∈ Hd(X, ∂X; o∨X) uniquely since the map from the Steenrod
homology of X to the inverse limit of the homology of its neighborhoods is not necessarily an
isomorphism (see [Mil95, p87, Theorem 4]). However, it does at least determine the image
of [X]vir under any map from X to a finite CW-complex, since any such map extends to
some neighborhood of X.

6 Stratifications

In this section, we introduce implicit atlases with cell-like stratification. Roughly speaking,
an implicit atlas with cell-like stratification is an implicit atlas on a stratified space, along
with suitably compatible stratifications on each of the thickenings. We show how to apply
the VFC package in this setting to obtain a “stratum by stratum” understanding of virtual
fundamental cycles. We also define the product implicit atlas, a natural implicit atlas on
X × Y induced from implicit atlases on X and Y .

Convention 6.0.1. In this section, we work over a fixed ground ring R, and everything takes
place in the category of R-modules. We restrict to implicit atlases A for which #Γα is
invertible in R for all α ∈ A.

6.1 Implicit atlas with cell-like stratification

Definition 6.1.1 (Stratification). Let X be a topological space and let S be a poset. A
stratification of X by S is a lower semicontinuous function X → S. We let X≤s (resp. Xs,
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X≥s) denote the inverse image of S≤s (resp. {s}, S≥s); lower semicontinuity of X → S means
by definition that every X≥s is open.

For a pair of spaces (X, ∂X), a stratification (X, ∂X)→ (S, ∂S) shall mean a stratification
X → S along with a downward closed (i.e. closed under taking smaller elements) subset
∂S ⊆ S such that X∂S = ∂X (note that this implies automatically that ∂X ⊆ X is closed).

Definition 6.1.2 (Cell-like stratification). Let (M,∂M) be a topological manifold with
boundary and stratification by (S, ∂S), and fix a map dim : S → Z. This stratification is
called cell-like iff each pair (M≤s,M<s) is a topological manifold with boundary of dimension
dim s.

If (M,∂M) → (S, ∂S) is cell-like, then so is ∂M → ∂S (with empty boundary) and
(M≤s,M<s)→ (S≤s, S<s).

Example 6.1.3. Let T be a simplicial complex, and suppose that its geometric realization
M := |T | is a topological manifold with boundary (then ∂M necessarily corresponds to a
subcomplex ∂T ⊆ T ). Let (S, ∂S) := (F(T ),F(∂T )) be the face poset of T (resp. ∂T ). Then
the stratification (M,∂M)→ (S, ∂S) is cell-like (note that T need not be a PL manifold).

Example 6.1.4. The natural stratification Rk
≥0 × Rn−k → {(0,∞) > {0}}k is cell-like. The

natural stratification Rk
≥0×Rn−k → Z given by (n minus) the number of zeros in the first k

coordinates is not cell-like for k ≥ 2.

Lemma 6.1.5 (Some local properties of cell-like stratifications). Let (M,∂M)→ (S, ∂S) be
cell-like. Then:

i. If s ≺ t then M s ⊆ ∂M≤t.
ii. If M s 6= ∅, then dim s ≤ dimM .

iii. If dim s = dimM , then M s ⊆M is open.
iv. If dim s = dimM − 1, s ∈ ∂S, and M s 6= ∅, then #S>s = 1.
v. If dim s = dimM − 1, s /∈ ∂S, and M s 6= ∅, then #S>s = 2, and these M≤t give

collars on either side of M s ⊆M (so in particular M s ⊆M is locally flat).

Proof. Since s ≺ t, we have M s ⊆M<t = ∂M≤t, giving (i).
Recall Brouwer’s “invariance of domain”, which implies that if a subset X ⊆ Rn is (in

the subspace topology) locally homeomorphic to Rm, then m ≤ n, with equality iff X is
open. This immediately gives (ii), (iii).

We prove (iv). Fix p ∈ M s. A neighborhood of p is covered by strata � s, so since
M s ⊆M is not open, there exists a stratum t � s. Now M s ⊆ ∂M≤t is open by (iii) (applied
to M<t → S<t). A doubling argument (and invariance of domain) near p ∈ ∂M shows that
M s ∪M t contains a neighborhood of p. Since we have exhausted a neighborhood of p ∈M s,
it follows using (i) that there is no other stratum � s.

We prove (v). Fix p ∈ M s. A neighborhood of p is covered by strata � s, so since
M s ⊆ M is not open, there exists a stratum t � s. Now M s ⊆ ∂M≤t is open by (iii),
as is M t ⊆ M . This gives a collar on one side of M s ⊆ M . This still does not fill out a
neighborhood of p, so there exists t′ 6= t with t′ � s, giving a collar on the other side of
M s ⊆M . Now by invariance of domain, we have thus exhausted a neighborhood of p ∈M s

inside M , and hence it follows using (i) that there are no more strata � s other than t, t′.
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Definition 6.1.6 (Implicit atlas with cell-like stratification). Let (X, ∂X) be a pair of com-
pact Hausdorff spaces equipped with a stratification (X, ∂X)→ (S, ∂S) (S finite) along with
a map dim : S→ Z. Also fix “orientation data”:

i. For every s ∈ S, an orientation line os (i.e. a free Z/2-graded Z-module of rank one).
ii. For codim(s � t) = 1, an odd “coboundary” map os → ot.

An implicit atlas of dimension d with boundary and cell-like stratification on (X, ∂X) →
(S, ∂S) consists of the same data as an implicit atlas with boundary, except that in addition
we specify a ΓI-invariant stratification (XI , ∂XI)→ (S, ∂S) for all I ⊆ A, whose restriction
to X∅ is the given stratification. We add the following “compatibiltiy axiom”:

i. The restriction of the stratification on XJ to (sJ\I |XJ)−1(0) coincides with the pullback
of the stratification on XI via ψIJ .

and we modify one “transversality axiom”:
ii. (Submersion axiom) In the local model Rd+dimEI × RdimEJ\I → RdimEJ\I (or (R≥0 ×

Rd+dimEI−1)×RdimEJ\I → RdimEJ\I ), we require the stratification on the domain to be
pulled back from a cell-like stratification on the first factor (for s 7→ dim s + dimEI).

We also specify isomorphisms of sheaves o(Xreg
I )≤s ⊗ os

∼−→ oXreg
I

over (Xreg
I )≤s which are

compatible with ψIJ and such that the following diagram commutes:

o(Xreg
I )≤s ⊗ os oXreg

I

o(Xreg
I )≤t ⊗ ot oXreg

I

(6.1.1)

for codim(s � t) = 1 (the left vertical map is the tensor product of the coboundary map
os → ot and the inverse of the boundary map o(Xreg

I )≤t → o(Xreg
I )≤s). In other words, we

identify os with the orientation line of the normal bundle of (Xreg
I )≤s ⊆ Xreg

I , so that the
coboundary maps os → ot coincide with the geometric coboundary maps on normal bundles.

Given an implicit atlas with boundary and cell-like stratification A on (X, ∂X)→ (S, ∂S),
we may obtain by restriction to the corresponding strata an implicit atlas with cell-like
stratification on ∂X → ∂S (empty boundary, tensor every orientation line with oR) and an
implicit atlas with boundary and cell-like stratification on (X≤s, X<s) → (S≤s, S<s) (tensor
every orientation line with o∨s ).

Remark 6.1.7. There should be a slightly more general setting for the results of this sec-
tion (and their proofs), which takes as input a weakened version of Definition 6.1.2. For
example, it is probably enough to require that in a neighborhood of any p ∈M , the closure
of any (local) component of M s is a manifold with boundary whose interior is this local
component (this is satisfied by both stratifications in Example 6.1.4); basically this allows
“non-embedded faces”.

6.2 Stratified virtual cochain complexes

In this section, we apply the VFC package to obtain a “stratum by stratum” understanding
of virtual fundamental cycles on a space with implicit atlas with cell-like stratification. To
do this, we build a complex out of the virtual cochain complexes associated to each stratum
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and then study the properties of this larger complex. This construction can be viewed
as a generalization of the definition of C•vir(X;A) as the mapping cone [C•vir(∂X;A) →
C•vir(X rel ∂;A)], and the main result here can be viewed as a generalization of Lemma 4.4.2.

Example 6.2.1. As a first step towards understanding the main construction of this section,
let us first describe a similar construction in a more familiar setting. Let M be a topological
manifold with cell-like stratification by S. Define:

C•(M ; S) :=
⊕
s∈S

C•−(dimM−dim s)(M
≤s; oM ⊗ o∨M≤s) (6.2.1)

equipped with the differential given by the sum over codim(s � t) = 1 of the pushforwards
C•(M

≤s) → C•(M
≤t) (covered by the dual of the boundary map oM≤t → oM≤s) plus the

internal differential. This differential squares to zero by Lemma 6.1.5 (the square of the
differential is a sum over codim(s � t) = 2 of maps C•(M

≤s)→ C•(M
≤t), each of which can

be seen to vanish by applying Lemma 6.1.5(v) to M<t → S<t). Now there is a natural map:

C•(M ; S)→ C•(M) (6.2.2)⊕
s∈S

γs 7→
∑
s∈S

dim s=dimM

γs (6.2.3)

(it follows from Lemma 6.1.5 that this is a chain map) which we claim is a quasi-isomorphism.
To see that (6.2.2) is a quasi-isomorphism, observe that it is the map on global sections

of a corresponding map of complexes of K-presheaves C•(M,M \K; S)→ C•(M,M \K) on
the one-point compactification M+ of M . Both are homotopy K-sheaves by Lemma A.6.3.
Thus by Corollary A.4.19, it suffices to show that the map C•(M,M \ p; S)→ C•(M,M \ p)
is a quasi-isomorphism for every p ∈ M . This holds by the following local argument. Note
that H•(M,M \ p; S) is isomorphic to Z (to see this, consider the filtration by dim s), so it
suffices to construct a cycle in C•(M,M \ p; S) representing a generator of Z and show that
its image in H•(M,M \p) = Z is a generator. Such a cycle may be constructed by induction
on S (starting from the stratum containing p and going up), and its image in H•(M,M \ p)
generates since its degree at p coincides with its degree at any nearby point in an open
stratum, which is one by construction. A similar argument appears in Barraud–Cornea
[BC07, p670, Lemma 2.2].

Thus we can think of C•(M ; S) as a model for chains on M (the reader should make sure
they understand what this means geometrically).

Definition 6.2.2 (Stratified virtual cochain complexes C•vir(−, S;A)). Let (X, ∂X)→ (S, ∂S)
be equipped with a finite implicit atlas with boundary and cell-like stratification A. For any
compact K ⊆ X, we define:

C•vir(K, S;A) :=
⊕
s∈S

C•vir(K ∩X≤s rel ∂;A)⊗ os (6.2.4)

(on the right, A refers to the restriction of the atlas to X≤s) equipped with the differential
given by the sum over codim(s � t) = 1 of the pushforwards:

C•vir(K ∩X≤s rel ∂;A)→ C•+1
vir (K ∩X≤t rel ∂;A) (6.2.5)
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tensored with the specified coboundary map os → ot (plus the internal differential). The
fact that this differential squares to zero follows from Lemma 6.1.5 and the compatibility of
the coboundary maps os → ot with the geometric boundary maps o(Xreg

I )≤t → o(Xreg
I )≤s .

There is a natural map:

C•vir(K, S;A)
∼−→ C•(K;A) (6.2.6)

{γs}s∈S 7→
( ∑

s∈∂S
dim s=d−1

γs,
∑
s∈S

dim s=d

γs

)
(6.2.7)

Note that for dim s = d, the identification o(Xreg
I )≤s ⊗ os = oXreg

I
gives a (locally constant,

but possibly not constant) isomorphism os = Z over (Xreg
I )≤s (and similarly for s ∈ ∂S with

dim s = d−1, see also Remark 4.4.1) which is used implicitly in (6.2.7). This is a chain map
by Lemma 6.1.5.

Proposition 6.2.3 (C•vir(−, S;A) → C•vir(−;A) is a quasi-isomorphism). Let (X, ∂X) →
(S, ∂S) be equipped with a finite locally orientable implicit atlas with boundary and cell-like
stratification A. Then (6.2.6) is a quasi-isomorphism, and the following diagram of sheaves
on X commutes:

H0
vir(−, S;A) H0

vir(−;A) oX

H0
vir(− ∩X≤s, S≤s;A)⊗ os H0

vir(− ∩X≤s;A)⊗ os oX≤s ⊗ os

H0
vir(− ∩X≤s rel ∂;A)⊗ os oX≤s rel ∂ ⊗ os

(6.2.6) Prop 4.3.3

(6.2.6) Prop 4.3.3

Prop 4.3.3

Note that C•vir(K ∩X≤s rel ∂;A)→ C•vir(K ∩X≤s, S≤s;A) is an isomorphism for K ⊆ Xs.

Proof. Filter C•vir(−, S;A) by dim s; the associated graded of this filtration is the direct sum
of C•vir(− ∩ X≤s rel ∂;A). Each these is a homotopy K-sheaf on X (pushforward from X≤s

to X preserves homotopy K-sheaves by Definition A.3.4), and hence C•vir(−, S;A) is also a
homotopy K-sheaf (Lemma A.2.11).

Now the map (6.2.6) is a map of homotopy K-sheaves, so to check that it is a quasi-
isomorphism, it suffices to check it is a quasi-isomorphism on stalks (Corollary A.4.19). For
this, we may use the argument from Example 6.2.1 (adapted to the case with boundary) along
with Lemma 4.3.2. Moreover, this local construction also gives us the desired commutativity
of the diagram of sheaves on X.

6.3 Product implicit atlas

Definition 6.3.1 (Product implicit atlas). Let X1 and X2 be spaces with implicit atlases
A1 and A2 respectively. The product implicit atlas A1 t A2 on X1 × X2 is defined by
setting (X1 × X2)I1tI2 := (X1)I1 × (X2)I2 and (X1 × Y2)reg

I1tI2 := (X1)reg
I1
× (X2)reg

I2
, with
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the rest of the data extended in the obvious manner. Of course, this extends naturally to
the setting of implicit atlases with boundary and cell-like stratification (given X1 and X2

stratified by S1 and S2 respectively, their product X1 × X2 is stratified by S1 × S2, with
∂(S1 × S2) := (∂S1 × S2) ∪ (S1 × ∂S2)).

Definition 6.3.2. Let X1 and X2 be spaces with finite implicit atlases A1 and A2; equip
X1 ×X2 with the product implicit atlas A1 t A2. Let us define a canonical map:

C•vir(X1 rel ∂;A1)⊗ C•vir(X2 rel ∂;A2)→ C•vir(X1 ×X2 rel ∂;A1 t A2) (6.3.1)

which is compatible with the maps (4.2.12) and (4.2.14) and is associative.
There are isomorphisms (X1)I1,J1,A1 × (X2)I2,J2,A2 → (X1×X2)I1tI2,J1tJ2,A1tA2 which are

compatible with the maps (4.2.1). This induces maps:

C•vir(X1 rel ∂;A1)I1,J1⊗C•vir(X2 rel ∂;A2)I2,J2 → C•vir(X1×X2 rel ∂;A1tA2)I1tI2,J1tJ2 (6.3.2)

These maps are compatible with the maps (4.2.13) (note that this compatibility uses the
commutativity of (4.2.2)). It follows using Definition A.7.5 that they induce the desired map
(6.3.1).

Note also that (6.3.1) extends to a collection of maps:

C•vir(K1 rel ∂;A1)⊗ C•vir(K2 rel ∂;A2)→ C•vir(K1 ×K2 rel ∂;A1 t A2) (6.3.3)

for compact K1 ⊆ X1 and K2 ⊆ X2, which are compatible with restriction, thus inducing a
map of sheaves p∗1oX1 ⊗ p∗2oX2 → oX1×X2 . It can be checked that this is the tautological such
map by checking locally (i.e. for K1 and K2 single points) using Lemma 4.3.2.

7 Floer-type homology theories

In this section, we define Floer-type homology groups from a collection of “flow spaces”
(equipped with appropriately compatible implicit atlases) as which arise in a Morse-type
setup. The necessary VFC machinery has already been setup in §4 and §6. The main task
in this section is to correctly organize everything together algebraically.

Convention 7.0.1. In this section, we work over a fixed ground ring R, and everything takes
place in the category of R-modules unless stated otherwise. We restrict to implicit atlases
A for which #Γα is invertible in R for all α ∈ A.

The main object of study is a flow category diagram X/Z• where Z• is a semisimplicial
set. Roughly speaking, this consists of a set of generators Pz for every vertex z ∈ Z0, along
with a collection of spaces X(σ, p, q), which are to be thought of as the spaces of flows from
p ∈ Pz0 to q ∈ Pzn over σ ∈ Zn spanning vertices z0, . . . , zn. Given a flow category diagram
X/Z•, our goal is to construct:

i. For every σ ∈ Z0, a boundary map R[Pz0 ]→ R[Pz0 ].
ii. For every σ ∈ Z1, a chain map R[Pz0 ]→ R[Pz1 ].

iii. For every σ ∈ Z2, a chain homotopy between the two maps R[Pz0 ]→ R[Pz2 ].
iv. For every σ ∈ Z3, . . .
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We will refer to such data as a diagram H : Z• → Ndg(ChR) (see Definition 7.6.5 for a precise
formulation).

Indeed, when the flow spaces X(σ, p, q) are compact oriented manifolds with corners of
dimension gr(q)−gr(p) + dimσ−1 in a compatible manner (that is, X/Z• is a Morse–Smale
flow category diagram), one may obtain such a diagram H by counting the 0-dimensional
flow spaces (one may see that the maps satisfy the required identities by considering the
boundary of the 1-dimensional flow spaces).

Our goal is to generalize this construction to the setting where the spaces X are equipped
with appropriately compatible implicit atlases. In this generalization, the diagram H : Z• →
Ndg(ChR) is not determined uniquely. Rather, its construction depends on making a certain
set of “coherent choices” (of virtual fundamental cycles) for the spaces X. Hence, the main
steps we must take are: formulating precisely what “coherent choices” mean, proving such
choices always exist, and proving that the diagram is (in a suitable sense) independent of
the choices. Let us now comment briefly on the latter two steps.

Given a flow category diagram X/Z• with an implicit atlas, we encode the “space” of
coherent choices via a map π : Z̃• → Z•. Namely, π : Z̃• → Z• is defined by the property
that giving a section s : Z• → Z̃• of π is the same as making coherent choices over all of
Z•. Now, the statement that coherent choices give rise to a diagram H : Z• → Ndg(ChR)

translates into a canonical diagram H̃ : Z̃• → Ndg(ChR) (defined essentially by the property
that the set of coherent choices over Z• corresponding to a section s : Z• → Z̃• gives rise to
the diagram H := H̃ ◦ s). Thus, we have constructed:

Z̃•
H̃−−−→ Ndg(ChR)

π

y
Z•

(7.0.1)

Now, the key result we prove is that π : Z̃• → Z• is a trivial Kan fibration (think: “is
a bundle with contractible fibers”). From this, we obtain (mostly formally) that coherent
choices exist and that the resulting diagram is (up to quasi-isomorphism) independent of the
choice (both are incarnations of the fact that “the space of sections of a trivial Kan fibration
is contractible”).

Remark 7.0.2 (Restricting to the 2-skeleton of Z•). If one is satisfied with working in the
homotopy category (i.e. constructing a diagram Z• → H0(ChR)), then one needs only the
2-skeleton of Z•. On the other hand, there is little simplification to be gained by using
2-truncated semisimplicial sets instead of semisimplicial sets. Moreover, the “higher homo-
topies” which are kept track of in Ndg(ChR) are known to contain interesting information
in certain settings (for example, they can be used to obstruct isotopies between symplectic
embeddings, as in Floer–Hofer–Wysocki [FHW94]).

7.1 Sets of generators, triples (σ, p, q), and F-modules

Definition 7.1.1 (Simplicial set and semisimplicial set). Let ∆ be the category of finite
nonempty totally ordered sets with morphisms weakly order-preserving maps. Let ∆inj be
the subcategory of injective morphisms. A simplicial set Z• is a functor Z : ∆op → Set,
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and a semisimplicial set Z• is a functor Z : ∆op
inj → Set. In both cases, we write Zn for

Z({0, . . . , n}). For σ ∈ Zn and 0 ≤ j0 < · · · < jm ≤ n, we denote by σ|[j0 . . . jm] the image
of σ under the map Zn → Zm induced by the map {0, . . . ,m} → {0, . . . , n} given by i 7→ ji
(σ|[j0 . . . jm] is called a facet of σ); if m = 0 we also write σ(j) for σ|[j].

Definition 7.1.2 (Set of generators). Let Z be a set. A set of generators P/Z is a collection
of sets {Pz}z∈Z , each equipped with a grading gr : Pz → Z and an “action” a : Pz → R.
Given a set of generators P/Z and a map f : Y → Z, we can form the pullback set of
generators f ∗P/Y defined by (f ∗P)y := Pf(y).

Definition 7.1.3 (Triples (σ, p, q)). Let Z• be a semisimplicial set, and let P/Z0 be a set of
generators. The notation (σ, p, q) always means a triple where σ ∈ Zn is an n-simplex and
(p, q) ∈ Pσ(0)×Pσ(n), where either dim σ > 0 or a(p) < a(q). We say that (σ′, p′, q′) ≺ (σ, p, q)
(“strictly precedes”) iff one of the two conditions holds:

i. σ′ $ σ (i.e. σ′ is a facet of positive codimension of σ).
ii. σ′ = σ and a(p) ≤ a(p′) and a(q′) ≤ a(q) with at least one inequality being strict.

It is easy to see that ≺ is a partial order.

Definition 7.1.4 (F-module). Let Z• be a semisimplicial set, and let P/Z0 be a set of
generators. Let C⊗ be a monoidal category with an initial object 0 ∈ C such that X ⊗ 0 =
0 = 0⊗X for all X ∈ C.

An F(P/Z•)-module W (often abbreviated “F-module”) in C is a collection of objects
W = {W(σ, p, q) ∈ C}(σ,p,q) equipped with:

Product maps : W(σ|[0 . . . k], p, q)⊗W(σ|[k . . . n], q, r)→W(σ, p, r) for 0 ≤ k ≤ n
(7.1.1)

Face maps : W(σ|[0 . . . k̂ . . . n], p, q)→W(σ, p, q) for 0 < k < n
(7.1.2)

which are compatible in a sense we will now describe. Note that for both (7.1.1) and (7.1.2),
the triples indexing the domain strictly precede the triple indexing the target (because we
always restrict to triples (σ, p, q) with dimσ > 0 or a(p) < a(q)).

Now given any σ ∈ Z• spanning vertices 0, . . . , n and a choice of:

0 = j0 < · · · < j` = n (7.1.3)

0 = a0 ≤ · · · ≤ am = ` (7.1.4)

pi ∈ Pσ(jai )
for 0 ≤ i ≤ m (7.1.5)

we can apply the product map m− 1 times and the face map n− ` times in some order to
obtain a map:

W(σ|[ja0 . . . ja1 ], p0, p1)⊗ · · · ⊗W(σ|[jam−1 . . . jam ], pm−1, pm)→W(σ, p0, pm) (7.1.6)

We say that the product/face maps are compatible iff this map is independent of the order
in which they are applied (this reduces to three basic commutation identities).

Given an F(P/Z•)-module W and a map f : Y• → Z•, we can form the pullback f ∗W
which is an F(f ∗P/Y•)-module defined by (f ∗W)(σ, p, q) := W(f(σ), p, q).

The categories C relevant for this paper are:
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i. The category of spaces with the product monoidal structure (“F-module space”).
ii. The category of posets with the product monoidal structure (“F-module poset”).
iii. The category of chain complexes with the tensor product monoidal structure (“F-

module complex”).
All are in fact symmetric monoidal (noting that the relevant symmetric monoidal structure
on complexes is the super tensor product).

Example 7.1.5. Let Z• be any semisimplicial set, and let us take as set of generators P := Z0

(i.e. a single generator over every vertex of Z•). We define an F(P/Z•)-module space W by
W(σ, p, q) := F(σ), where F is the space of broken Morse trajectories from Definition 10.1.4.
The reader may easily verify that this forms an F-module space, with product/face maps
given by (10.1.3)–(10.1.4).

Definition 7.1.6 (Support of an F-module). Let W be an F-module. We define the sup-
port of W, denoted suppW, as the smallest collection of triples containing those for which
W(σ, p, q) 6= 0 that is closed under product/face operations (meaning that if the triples on
the left side of (7.1.1) or (7.1.2) are in the set, then so is the triple on the right). Equivalently,
(σ, p, q) ∈ suppW iff there is some choice of (7.1.3)–(7.1.5) for which p0 = p and pm = q and
for which every factor on the left hand side of (7.1.6) is 6= 0.

Definition 7.1.7 (Strata of an F-module). Let W be an F-module. We let SW(σ, p, q) denote
the set of choices of (7.1.3)–(7.1.5) for which p0 = p and pm = q and for which every factor on
the left hand side of (7.1.6) is in suppW. We equip SW(σ, p, q) with the partial order induced
by formally applying product/face maps. The reader may easily convince themselves that
SW is itself an F-module poset.

There is an order-reversing map codim : SW(σ, p, q) → Z≥0 defined by codim s := (m −
1) + (n− `) for s ∈ SW(σ, p, q). We let stop ∈ SW(σ, p, q) denote the unique maximal element
(the only element s with codim s = 0; it is given by ` = n and m = 1).

For s ∈ SW(σ, p, q), we let W(σ, p, q, s) denote the left hand side of (7.1.6). The following
boundary inclusion map:

colim
s∈∂SW(σ,p,q)

W(σ, p, q, s)→W(σ, p, q) (7.1.7)

(where ∂SW(σ, p, q) denotes SW(σ, p, q) \ stop) will play an important role.

7.2 Flow category diagrams and their implicit atlases

Definition 7.2.1 (Flow category diagram). Let Z• be a semisimplicial set. A flow category
diagram X/Z• (read “X over Z•”) is:

i. A set of generators P/Z0.
ii. An F-module space X where each X(σ, p, q) is compact Hausdorff and each SX(σ, p, q)

is finite.
iii. A stratification of each X(σ, p, q) by SX(σ, p, q) which is compatible with the prod-

uct/face maps and so that X(σ, p, q, s)→ X(σ, p, q) is a homeomorphism onto X(σ, p, q)≤s.
with the following finiteness properties:

iv. For all σ, p, and M <∞, we have #{q : X(σ, p, q) 6= ∅ and a(q) < a(p) +M} <∞.
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v. For all σ, we have inf{a(q)− a(p) : X(σ, p, q) 6= ∅} > −∞.
Let H be a group. An H-equivariant flow category diagram is a flow category diagram along
with:

vi. A free action of H on P.
vii. An action of H on X (meaning compatible maps h : X(σ, p, q)→ X(σ, hp, hq)).
viii. Homomorphisms gr : H → Z and a : H → R such that gr(hp) = gr(h) + gr(p) and

a(hp) = a(h) + a(p) for all h ∈ H and p ∈ P.
Given an H-equivariant flow category diagram X/Z• and a map f : Y• → Z•, we can form
the pullback H-equivariant flow category diagram f ∗X/Y•.

Remark 7.2.2 (Morse–Smale flow category diagram). A Morse–Smale flow category diagram
is one in which each X(σ, p, q) is a (compact) topological manifold with corners of dimen-
sion gr(q) − gr(p) + dimσ − 1 (the corner structure being induced by the stratification by
SX(σ, p, q)).

Remark 7.2.3 (∞-category FlowCat). Let FlowCat be the semisimplicial set which represents
the functor Z• 7→ {Flow category diagrams over Z•}. The reader familiar with∞-categories
may wish to think of FlowCat as an ∞-category of flow categories (though only in a vague
sense, since we have not given it the structure of a simplicial set, nor have we verified the weak
Kan condition). All of the constructions in this section involving flow category diagrams over
a semisimplicial set Z• are compatible with pullback, and thus can be equivalently thought
of as “universal” constructions over FlowCatIA (which represents the functor of flow category
diagrams equipped with implicit atlases).

Definition 7.2.4 (Implicit atlas on flow category diagram). Let X/Z• be a flow category
diagram. An implicit atlas A on X/Z• consists of the following data. We give index sets
Ā(σ, p, q), and we define:21

A(σ, p, q)≥s :=
∐

0≤i0<···<im≤n
(p′,q′)∈Pσ(i0)×Pσ(im)

∃t∈SX(σ,p,q)≥s containing ([i0...im],p′,q′)

Ā(σ|[i0 . . . im], p′, q′) (7.2.1)

We explain the notation: recall that SX(σ, p, q) parameterizes the “possible left hand sides”
of (7.1.6); the coproduct is over all ([i0 . . . im], p′, q′) which appear as a factor in some t ∈
SX(σ, p, q) with s � t.

For all (σ, p, q) and s ∈ SX(σ, p, q), we give an implicit atlas with boundary with cell-
like stratification A(σ, p, q)≥s on X(σ, p, q)≤s (stratified by SX(σ, p, q)≤s, of virtual dimension
gr(q)−gr(p)+dimσ−1−codim s), for which the stratification conforms to the following local
model. Given s′ � s, letG = G(s′, s) denote the set of possible product/face operations which
may be applied to s′ for which the result is still � s. There is a tautological isomorphism of
posets 2G → SX(σ, p, q)s

′≤·≤s sending a given set of product/face operations to the result of
applying them to s′. Now the local model for the stratification on (regular thickened moduli
spaces of) X(σ, p, q)≤s near a point of type s′ is given by RG

≥0×RN , stratified in the obvious

way by SX(σ, p, q)s
′≤·≤s. Clearly this stratification is cell-like. Moreover, the normal bundle

21Warning: a particular set Ā(σ′, p′, q′) may appear many times on the right hand side.
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to the s′ stratum is canonically identified with o
⊗G(s′,s)
R , and the implicit atlas should use this

as the orientation data.
In addition, we give compatible identifications between these atlases as follows:
i. Let s � t ∈ SX(σ, p, q). Then by definition:

A(σ, p, q)≥t ⊆ A(σ, p, q)≥s

Both are implicit atlases on X(σ, p, q)≤s (the former by restriction to this substratum of
X(σ, p, q)≤t), and we identify the former with the subatlas of the latter corresponding
to this tautological inclusion of index sets.

ii. Let s ∈ SX(σ|[0 . . . k̂ . . . n], p, q) ⊆ SX(σ, p, q). Then by definition:

A(σ|[0 . . . k̂ . . . n], p, q)≥s ⊆ A(σ, p, q)≥s

Both are implicit atlases on:

X(σ|[0 . . . k̂ . . . n], p, q)≤s = X(σ, p, q)≤s

and we identify the former with the subatlas of the latter corresponding to this tau-
tological inclusion of index sets.

iii. Let s1× s2 ∈ SX(σ|[0 . . . k], p, q)× SX(σ|[k . . . n], q, r) ⊆ SX(σ, p, r). Then by definition:

A(σ|[0 . . . k], p, q)≥s1 tA(σ|[k . . . n], q, r)≥s2 ⊆ A(σ, p, r)≥(s1×s2)

Both are implicit atlases on:

X(σ|[0 . . . k], p, q)≤s1 × X(σ|[k . . . n], q, r)≤s2 = X(σ, p, r)≤(s1×s2)

and we identify the former with the subatlas of the latter corresponding to this tau-
tological inclusion of index sets.

An implicit atlas on an H-equivariant flow category X/Z• is an implicit atlas along with a
lift of the action of H to the implicit atlas structure.

Given an implicit atlas A on X/Z• and a map f : Y• → Z•, we can form the pullback
implicit atlas f ∗A on f ∗X/Y•.

Remark 7.2.5. The above definition has been formulated to reflect the collection of atlases
which is the simplest to construct, yet still sufficient to define Floer-type homology groups.

Definition 7.2.6 (Coherent orientations). Let X/Z• be a flow category diagram with locally
orientable implicit atlas A. A set of coherent orientations ω is a choice of global sections
ω(σ, p, q) ∈ Ȟ0(X(σ, p, q); oX(σ,p,q)) with the following property. Note that covering each of
the product/face maps:

X(σ|[0 . . . k], p, q)× X(σ|[k . . . n], q, r)→ ∂X(σ, p, r) (7.2.2)

X(σ|[0 . . . k̂ . . . n], p, q)→ ∂X(σ, p, q) (7.2.3)

is an isomorphism of orientation sheaves. We require that ω transform in the following way
under this isomorphism:

ω(σ|[0 . . . k], p, q)× ω(σ|[k . . . n], q, r) = (−1)k+gr(p)dω(σ, p, r) (7.2.4)

−ω(σ|[0 . . . k̂ . . . n], p, q) = (−1)k+gr(p)dω(σ, p, q) (7.2.5)
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where dω ∈ Ȟ0(∂X; o∂X) is the boundary orientation induced by ω. Each of the following:

ω(σ|[0 . . . k], p, p′)× ω(σ|[k . . . `], p′, p′′)× ω(σ|[` . . . n], p′′, q) (7.2.6)

ω(σ|[0 . . . k̂ . . . `], p, p′)× ω(σ|[` . . . n], p′, q) (7.2.7)

ω(σ|[0 . . . k], p, p′)× ω(σ|[k . . . ˆ̀. . . n], p′, q) (7.2.8)

ω(σ|[0 . . . k̂ . . . ˆ̀. . . n], p, q) (7.2.9)

can be expressed in terms of ω(σ, p, q) in two different ways using (7.2.4)–(7.2.5). One
can easily check that with the choice of signs in (7.2.4)–(7.2.5), these two expressions
coincide for each of (7.2.6)–(7.2.9) (the Koszul rule of signs applies to calculating the
boundary of a product of orientations, which means that this coherence condition involves
vdimX(σ|[0 . . . k], p, p′) for both (7.2.6) and (7.2.8)).

Coherent orientations on an H-equivariant flow category diagram with implicit atlas are
coherent orientations which are invariant under the action of H.

Given coherent orientations ω on X/Z• and a map f : Y• → Z•, we can form the pullback
coherent orientations f ∗ω on f ∗X/Y•.

Remark 7.2.7. One can obtain alternative sign conventions in (7.2.4)–(7.2.5) by “twisting”
ω(σ, p, q). For example, multiplying ω(σ, p, q) by (−1) flips the sign of (7.2.4), multiplying by
(−1)dimσ flips the sign of (7.2.5), and multiplying by (−1)gr(p) or (−1)gr(q) multiplies (7.2.4)
by (−1)gr(q).

7.3 Augmented virtual cochain complexes

We would like to endow C•vir(X(σ, p, q) rel ∂) with the structure of an F-module complex.
More precisely, we would like to construct product/face maps:

C•vir(X(σ|[0 . . . k], p, q) rel ∂)⊗ C•vir(X(σ|[k . . . n], q, r) rel ∂)→ C•vir(∂X(σ, p, r)) (7.3.1)

C•vir(X(σ|[0 . . . k̂ . . . n], p, q) rel ∂)→ C•vir(∂X(σ, p, q)) (7.3.2)

(induced by the corresponding product/face maps of the spaces X(σ, p, q)). However, to
obtain maps (7.3.1)–(7.3.2) defined on the chain level, we must replace the virtual cochain
complexes with certain augmented virtual cochain complexes (which are canonically quasi-
isomorphic to their “non-augmented” counterparts).

In this subsection, we build the augmented virtual cochain complexes (using a homotopy
colimit construction) and then we define the F-module structure on them. We also define
the analogue of the map s∗ for the augmented virtual cochain complexes. We remark that
the proliferation of homotopy colimits could probably be abated (and, indeed, this entire
subsection eliminated) at the expense of using more abstract language (specifically, working
in a symmetric monoidal ∞-category of complexes).

Definition 7.3.1 (Augmented virtual cochain complexes C•vir(−;A)+). Let X/Z• be a flow
category diagram with implicit atlas A, where every Ā(σ, p, q) is finite and we have fixed
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fundamental cycles [Eα] ∈ C•(E;α) for all α ∈ Ā(σ, p, q). We define the following complexes:

C•vir(X rel ∂;A)+(σ, p, q) := hocolim
s�t∈SX(σ,p,q)

C•−codim s
vir (X(σ, p, q)≤s rel ∂;A(σ, p, q)≥t) (7.3.3)

C•−1
vir (∂X;A)+(σ, p, q) := hocolim

s�t∈SX(σ,p,q)

{
C•−1

vir (∂X(σ, p, q);A(σ, p, q)≥t) s = t = stop

C•−codim s
vir (X(σ, p, q)≤s rel ∂;A(σ, p, q)≥t) otherwise

(7.3.4)

The structure maps of the homotopy diagrams come from the obvious pushforward maps (for
increasing s) and the maps (4.2.14) using the fixed fundamental cycles [Eα] (for decreasing
t). These are compatible because of the commutativity of (4.2.2).

Next, let us observe that we have a natural commutative diagram:

C•−1
vir (∂X(σ, p, q);A(σ, p, q)≥s

top
) C•−1

vir (∂X;A)+(σ, p, q)

C•vir(X(σ, p, q) rel ∂;A(σ, p, q)≥s
top

) C•vir(X rel ∂;A)+(σ, p, q)

∼

∼

(7.3.5)

The horizontal maps (inclusions of the s = t = stop subcomplexes) are quasi-isomorphisms
by Lemma A.7.3 (which morally says that stop ∈ SX(σ, p, q) acts as a final object in the
homotopy colimits (7.3.3)–(7.3.4)) which applies because each of the structure maps from
(s, t) to (s, t′) is a quasi-isomorphism.

Note that by definition, the support of C•vir(X rel ∂;A)+ and of C•vir(∂X;A)+ are contained
in the support of X.

Definition 7.3.2 (Product/face maps for C•vir(−;A)+). Let X/Z• be a flow category diagram
with implicit atlas A, where every Ā(σ, p, q) is finite and we have fixed fundamental cycles
[Eα]. Let us now define face and product maps for C•vir(X rel ∂;A)+. These will be of
degree 1 and will be equipped with a canonical factorization through C•−1

vir (∂X;A)+ →
C•vir(X rel ∂;A)+. In other words, we really are going to construct maps:

C•vir(X rel ∂;A)+(σ|[0 . . . k], p, q)⊗ C•vir(X rel ∂;A)+(σ|[k . . . n], q, r)→ C•vir(∂X;A)+(σ, p, r)
(7.3.6)

C•vir(X rel ∂;A)+(σ|[0 . . . k̂ . . . n], p, q)→ C•vir(∂X;A)+(σ, p, q)
(7.3.7)

We construct (7.3.7). The corresponding face map for SX is covered by a corresponding
morphism of the homotopy diagrams (7.3.3)–(7.3.4) (namely (4.2.14) using the fixed funda-
mental cycle [EA(σ,p,q)≥t\A(σ|[0,...,k̂,...,n],p,q)≥t ]). This gives rise to a corresponding map (7.3.7)
on homotopy colimits.

We construct (7.3.6). We construct a morphism of homotopy diagrams (7.3.3)–(7.3.4)
covering the corresponding product map for SX. Using the product operation on homotopy
diagrams (Definition A.7.5), it suffices to construct compatible maps:

C•vir(X(σ|[0, . . . , k], p, q)≤s1 rel ∂;A(σ|[0, . . . , k], p, q)≥t1)⊗
C•vir(X(σ|[k, . . . , n], q, r)≤s2 rel ∂;A(σ|[k, . . . , n], q, r)≥t2)

→ C•vir(X(σ, p, q)≤s1×s2 rel ∂;A(σ, p, q)≥t1×t2) (7.3.8)
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for s1 � t1 ∈ S(σ|[0, . . . , k], p, q) and s2 � t2 ∈ S(σ|[k, . . . , n], q, r). By definition, the subatlas
A(σ|[0, . . . , k], p, q)≥t1 tA(σ|[k, . . . , n], q, r)≥t2 ⊆ A(σ, p, q)≥t1×t2 is the product implicit atlas
on X(σ, p, q)≤s1×s2 = X(σ|[0, . . . , k], p, q)≤s1 × X(σ|[k, . . . , n], q, r)≤s2 . Thus the desired map
is constructed in Definition 6.3.2.

Definition 7.3.3 (Complexes C•(E;A)+). Let X/Z• be a flow category diagram with im-
plicit atlas A, where every Ā(σ, p, q) is finite and we have fixed fundamental cycles [Eα]. We
define:

C•(E;A)+(σ, p, q) := hocolim
s�t∈SX(σ,p,q)

C•(E;A≥t(σ, p, q)) (7.3.9)

where the maps in the homotopy diagram are ×[EA(σ,p,q,t′)\A(σ,p,q,t)]. We equip C•(E;A)+

with product/face maps just as in Definition 7.3.2. Now there are natural maps:

C
vdimX(σ,p,q)+•
vir (X rel ∂;A)+(σ, p, q)

s∗−→ C−•(E;A)+(σ, p, q) (7.3.10)

(induced by (4.2.12)), which are maps of F-modules (that is, they respect the product/face
maps).

Note that by definition, the support of C•(E;A)+ is contained in the support of X.

7.4 Cofibrant F-module complexes

We introduce the notion of an F-module complex being cofibrant, and we introduce a cofibrant
replacement functor Q for F-module complexes. The machinery we set up is used only for
technical reasons in Definition 7.5.3 so that the proof of Proposition 7.5.5 works correctly.

Recall that an injection of modules with projective cokernel automatically splits.

Definition 7.4.1 (Cofibrations of complexes). We say a complex is cofibrant iff it is pro-
jective (as a module). We say a map of complexes is a cofibration iff it is injective and its
cokernel is cofibrant; we use the arrow � to indicate that a map is a cofibration. It is easy
to check that a composition of cofibrations is again a cofibration.

Definition 7.4.2 (Cofibrant F-module complex). Let W• be an F-module complex. We say
that W• is cofibrant iff for all (σ, p, q):

i. W•(σ, p, q) is cofibrant.
ii. The map:

colim
s∈∂SW(σ,p,q)

W•(σ, p, q, s)�W•(σ, p, q) (7.4.1)

is a cofibration.

Lemma 7.4.3. Let W• be a cofibrant F-module complex. Then the map:

colim
s∈SW(σ,p,q)

s≺s0

W(σ, p, q, s)�W(σ, p, q, s0) (7.4.2)

a cofibration for all s0 ∈ S(σ, p, q).
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Proof. Write s0 in the form (7.1.3)–(7.1.5). Then we have:

SW(σ, p, q)≤s0 = SW(σ|[ja0 . . . ja1 ], p0, p1)× · · · × SW(σ|[jam−1 . . . jam ], pm−1, pm) (7.4.3)

Now we consider the m-cubical diagram:

m⊗
i=1

[
colim

s∈∂SW(σ|[jai−1 ...jai ],pi−1,pi)
W•(σ|[jai−1

. . . jai ], pi−1, pi, s)�W•(σ|[jai−1
. . . jai ], pi−1, pi)

]
(7.4.4)

Now (7.4.2) is simply the map to the maximal vertex of the m-cube from the colimit over
the m-cube minus the maximal vertex. This is a cofibration for any cubical diagram of the
form

⊗m
i=1[Ai � Bi] where each Ai � Bi is a cofibration. To see this, write Bi = Ai ⊕ Pi

where Pi is projective, and then the map is obviously injective with cokernel
⊗m

i=1 Pi. A
tensor product of projective modules is projective, as can be seen using either the tensor-
hom adjunction or the fact that a module is projective iff it is a direct summand of a free
module.

Lemma 7.4.4. Let W• be a cofibrant F-module complex. Let S ⊆ T ⊆ SW(σ, p, q) be finite
downward closed subsets. Then the map:

colim
s∈S

W•(σ, p, q, s)� colim
s∈T

W•(σ, p, q, s) (7.4.5)

is a cofibration. In particular, colims∈T W•(σ, p, q, s) is projective (take S = ∅ above).

Proof. Let us abbreviate As := W•(σ, p, q, s).
We proceed by induction on the cardinality of T, the case T = ∅ being clear. Using the

fact that a composition of cofibrations is again a cofibration, it suffices to consider the case
(S,T) = (S \ s0, S) where s0 ∈ S is a maximal element. Now colims∈SAs is the colimit of the
following diagram:

As0

colim
s∈S
s≺s0

As

colim
s∈S\s0

As

(7.4.6)

where the top arrow is a cofibration by Lemma 7.4.3 and the bottom arrow is a cofibration
by the induction hypothesis. It follows that colims∈S\s0 As → colims∈SAs is injective, with
cokernel isomorphic to the cokernel of the top map above. Hence it is a cofibration as
needed.

Definition 7.4.5 (Cofibrant replacement functor Q). Let W• be an F-module complex.
Suppose that W• satisfies the following properties:

i. Each W•(σ, p, q) is cofibrant.
ii. Each SW(σ, p, q) is finite.

In this case, we define (functorially) an F-module complex QW• (called the cofibrant replace-
ment) with the following properties:
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i. QW• is cofibrant.
ii. suppQW• = suppW•.

iii. There is a (functorial) surjective quasi-isomorphism QW•
∼
� W• (compatible with

product/face maps).
We define QW•(σ, p, q) and the product/face maps with target (σ, p, q) by induction on the
set of triples (σ, p, q), equipped with the partial order �W in which (σ′, p′, q′) �W (σ, p, q) iff
(σ′, p′, q′) appears as a “factor” of some element of SW(σ, p, q). This partial order is well-
founded (i.e. there is no strictly decreasing infinite sequence) since each SW(σ, p, q) is finite,
and thus it is valid for induction. The inductive step for (σ, p, q) works as follows. By the
induction hypothesis, we have defined QW•(σ, p, q, s) for all s ∈ ∂SW(σ, p, q). Hence it suffices
to construct (functorially) QW•(σ, p, q) fitting into the following commutative diagram:

colim
s∈∂SW(σ,p,q)

QW•(σ, p, q, s) ?∃QW•(σ, p, q)

colim
s∈∂SW(σ,p,q)

W•(σ, p, q, s) W•(σ, p, q)

product/face

∼

product/face

(7.4.7)

Now we define QW•(σ, p, q) to be the mapping cylinder of the diagonal composition. Since
the domain and codomain of this map are both cofibrant (for the domain, use Lemma
7.4.4, which applies since SW(σ, p, q) has been assumed to be finite), it follows that the
top map is a cofibration and that QW•(σ, p, q) is cofibrant. The product/face maps with
target QW•(σ, p, q) are defined using the top horizontal map; they are compatible since by
construction they factor through the colimit in the upper left corner.

Certainly suppQW• ⊇ suppW•. Conversely, suppose QW•(σ, p, q) is nonzero. Then
either W•(σ, p, q) 6= 0 (so (σ, p, q) ∈ suppW•), or QW•(σ, p, q, s) 6= 0 for some s ∈ ∂S(σ, p, q)
(so by induction, the triples comprising s are in suppW•, and hence so is (σ, p, q)).

Lemma 7.4.6. Let {Ck
•}nk=1 be cofibrant complexes over Z such that HiC

k
• = 0 for i < 0.

Then Hi(
⊗n

k=1C
k
• ) = 0 for i < 0.

Proof. Since the tensor product of projective modules is projective, we may use induction
to reduce to the case k = 2.

Thus, we have two cofibrant complexes A• and B• with HiA• = HiB• = 0 for i < 0 and
we would like to conclude that Hi(A• ⊗ B•) = 0 for i < 0. This follows from the Künneth
theorem, specifically in the form of [Osb00, p301, Theorem 9.16] or [Rot09, p679, Theorem
10.81] (both of which apply because ToriZ(·, ·) = 0 for i > 1).22

Lemma 7.4.7. Let W• be a cofibrant F-module complex over Z such that HiW• = 0 for
i < 0. Then for any finite downward closed subset S ⊆ SW(σ, p, q), the map:

Hi

⊕
s∈S

W•(σ, p, q, s)� Hi colim
s∈S

W•(σ, p, q, s) (7.4.8)

is surjective for i ≤ 0. Moreover, both sides vanish for i < 0.

22If we were assuming A• and B• to be bounded below, then we could apply the Künneth spectral
sequence

⊕
i+j=q Torp(HiA•, HjB•) ⇒ Hp+q(A• ⊗ B•) (see [Rot09, p686, Theorem 10.90]) to reach the

desired conclusion without any assumptions on the ground ring.

61



Proof. Let us abbreviate As := W•(σ, p, q, s). Since As is a tensor product of various
W•(σ

′, p′, q′), it follows (using Lemma 7.4.6) that HiAs for i < 0, so the left hand side
of (7.4.8) vanishes for i < 0. Hence it remains just to show that (7.4.8) is surjective for
i ≤ 0.

We proceed by induction on the cardinality of S, the case S = ∅ being clear. Let s0 ∈ S

be any maximal element. Now colims∈SAs is the colimit of (7.4.6); it follows that we have
the following exact sequence:

0→ colim
s∈S
s≺s0

As → As0 ⊕ colim
s∈S\s0

As → colim
s∈S

As → 0 (7.4.9)

By the induction hypothesis, it suffices to show that the second map above is surjective
on Hi for i ≤ 0. By the long exact sequence induced by (7.4.9), it suffices to show that
Hi colim s∈S

s≺s0
As = 0 for i < 0. Now this follows from the induction hypothesis.

Lemma 7.4.8 (Lifting cycles along a fibration). Let Ã• � A• be surjective. Fix a cycle
a ∈ A0 and a homology class ã ∈ H0Ã•, whose images in H0A• coincide. Then there exists
a cycle ã ∈ Ã0 which maps to a and which represents ã.

Proof. Pick any cycle ã′ ∈ Ã0 representing ã. Then ã′− a ∈ A0 is a boundary db, and lifting
b ∈ A−1 to b̃ ∈ Ã−1, we let ã := ã′ − db̃.

Lemma 7.4.9 (Representing homology classes in mapping cones). Fix f : A• → B• and
ω ∈ H0[A• → B•−1]. Let a ∈ A0 be a cycle representing δω ∈ H0(A•). Then there exists
b ∈ B−1 with db = f(a) such that a⊕ b represents ω.

Proof. This is a special case of Lemma 7.4.8 for the surjection [A• → B•−1]� A•.

Lemma 7.4.10 (Universal coefficient theorem). Let A• be a cofibrant complex over Z. Then
there is a natural short exact sequence:

0→ Ext1(Hi−1A•,Z)→ H i Hom(A•,Z)→ Hom(HiA•,Z)→ 0 (7.4.10)

Proof. Well-known.

Lemma 7.4.11 (Extending cocycles along a cofibration). Suppose we have the following
commuting diagrams (solid arrows) of complexes over Z and their homology (where Z is
concentrated in degree zero):

A• Ã•

Z

H•=⇒
H•A• H•Ã•

Z

(7.4.11)

where A• and Ã• are cofibrant and H−1A• = 0. Then there exists a dashed arrow compatible
with the rest of the diagram.
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Proof. By Lemma 7.4.10, we have:

H0 Hom(A•,Z)
∼−→ Hom(H0A•,Z) (7.4.12)

H0 Hom(Ã•,Z)� Hom(H0Ã•,Z) (7.4.13)

Let f : A0 → Z denote the vertical map in the first diagram. Using the surjectivity of
(7.4.13), there exists a cocycle f̃ : Ã0 → Z giving the desired map on homology. Denote by
i : A•� Ã• the inclusion. Now by the commutativity of the second diagram, the difference
f − f̃ i acts as zero on H0A•. Since (7.4.12) is an isomorphism, this difference is thus a
coboundary δg for some g : A−1 → Z. Now extend g to g̃ : Ã−1 → Z (using the fact that
A−1 � Ã−1 splits) and let the dotted arrow be f̃ + δg̃.

7.5 Resolution Z̃• → Z•

We now introduce the space π : Z̃• → Z• (depending on a flow category diagram X/Z•
equipped with an implicit atlas and coherent orientations) which one may think of as param-
eterizing coherent choices of virtual fundamental cycles over all of the flow spaces X(σ, p, q).

The main result is that π : Z̃• → Z• is a trivial Kan fibration.

Definition 7.5.1 (System of chains). Let W• be an F-module complex with each SW(σ, p, q)
finite. A system of chains λ ∈ W• (of degree d(σ, p, q)) is a collection of elements λσ,p,q ∈
Wd(σ,p,q)(σ, p, q) satisfying dλσ,p,q = µσ,p,q where:

µσ,p,r :=
n∑
k=0

∑
q∈Pσ(k)

(−1)k+gr(p)λσ|[0...k],p,q · λσ|[k...n],q,r −
n−1∑
k=1

(−1)k+gr(p)λσ|[0...k̂...n],p,r ∈W•(σ, p, r)

(7.5.1)
(using the product/face maps on the right hand side). Note that this sum is finite since
SW(σ, p, q) is finite. Also, note that the triples on the right hand side all strictly precede
the triple on the left hand side. We also require that the parity (in the sense of Convention
A.0.3) of λσ,p,q equals gr(q) − gr(p) + dimσ − 1 ∈ Z/2. This ensures (via the Koszul rule
of signs) that expanding dµσ,p,q using the identity dλσ,p,q = µσ,p,q yields zero (the signs work
out correctly as a consequence of the discussion surrounding (7.2.6)–(7.2.9)). In practice the
degrees d(σ, p, q) are chosen so that µσ,p,q (as defined by (7.5.1)) is formally homogeneous of
the same degree as dλσ,p,q.

Remark 7.5.2. There is a natural bijection between systems of chains λ ∈ W• and maps of
F-modules R[SW]→W•, where R[SW](σ, p, q) is the free R-module on SW(σ, p, q) with differ-
ential ds :=

∑
codim(s′�s)=1 s

′ (with appropriate signs) and equipped with the obvious prod-

uct/face maps coming from the F-module structure on SW (more intrinsically, R[SW](σ, p, q)
is the direct sum over s ∈ SW(σ, p, q) of the orientation lines from Definition 7.2.4). This
perspective is relevant for the key step of the proof of Proposition 7.5.5 below.

Definition 7.5.3 (Resolution π : Z̃• → Z•). Let X/Z• be an H-equivariant flow category
diagram with implicit atlas A and coherent orientations ω. We construct a resolution π :
Z̃• → Z• (which depends on X, A, ω) as follows. A simplex ∆n → Z̃• consists of the following
data:
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i. A map f : ∆n → Z• (where ∆n is the semisimplicial n-simplex).
ii. An H-invariant subatlas B ⊆ f ∗A (meaning choices of B̄(σ, p, q) ⊆ Ā(f(σ), p, q))

where each B̄(σ, p, q) is finite.
iii. An H-invariant collection of fundamental cycles [Eα] ∈ C•(E;α) for all α ∈ B̄.
iv. An H-invariant system of chains λ ∈ C•vir(f

∗X rel ∂;B)+ (degree 0 and supported
inside suppX) with the following property. Note that (µ, λ) is a cycle in the map-
ping cone [C•vir(∂f

∗X;B)+ → C•vir(f
∗X rel ∂;B)+], whose homology is identified with

Ȟ•(f ∗X; of∗X). We require that the homology class of (µ, λ) equal f ∗ω ∈ Ȟ0(f ∗X; of∗X).
v. An H-invariant system of chains λ̃ for QC•(E;B)+ (degree gr(q)− gr(p) + dimσ − 1

and supported inside suppX) whose image in C•(E;B)+ coincides with s∗λ (recall
(7.3.10)).

vi. An H-invariant map of F-modules [[E]] : QC•(E;B)+
Z → Z which sends the fundamen-

tal class to 1. The left hand side QC•(E;B)+
Z is defined over Z, and the right hand

side is the F-module which for every (σ, p, q) is Z concentrated in degree zero (with
the product/face maps being multiplication/identity respectively).

Remark 7.5.4 (Resolution commutes with pullback). Let X/Z• be an H-equivariant flow
category diagram with implicit atlas A and coherent orientations ω. Let f : Y• → Z• be
a map, and consider f ∗X/Y• with implicit atlas f ∗A and coherent orientations f ∗ω. Then
there is a canonical fiber diagram relating the resolutions:

Ỹ• −−−→ Z̃•y y
Y• −−−→ Z•

(7.5.2)

Proposition 7.5.5 (π : Z̃• → Z• is a trivial Kan fibration). The map π : Z̃• → Z• has the
right lifting property with respect to the boundary inclusions ∂∆n ↪→ ∆n for all n ≥ 0 (where
∆n is the semisimplicial n-simplex). In other words, given any commuting diagram of solid
arrows below:

∂∆n Z̃•

∆n Z•

(7.5.3)

there exists a dashed arrow making the diagram commute.

Proof. It is equivalent to show that given any f : ∆n → Z• along with data (ii)–(vi) over
∂∆n, the data can be extended over ∆n. For ease of notation, let us rename (f ∗X, f ∗A, f ∗ω)
as (X,A, ω).

We construct (ii)–(vi) via H-equivariant induction on the set of triples (σ, p, q), equipped
with the partial order �X in which (σ′, p′, q′) �X (σ, p, q) iff (σ′, p′, q′) appears as a “factor”
of some element of SX(σ, p, q). This partial order is well-founded (i.e. there is no strictly
decreasing infinite sequence) since each SX(σ, p, q) is finite, and thus it is valid for induction.
The induction works H-equivariantly since the action of H on P is free, and (σ, p, q) and
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(σ, hp, hq) are always incomparable for h ∈ H (so we may henceforth ignore the action of
H). The inductive step is as follows.

Choosing B(σ, p, q). We must choose a finite B̄(σ, p, q) ⊆ Ā(σ, p, q) so that the cor-
responding subatlas of A(σ, p, q)≥s

top
= Ā(σ, p, q) on X(σ, p, q) satisfies the covering axiom

(and thus is an implicit atlas). This is possible by compactness.
Choosing [Eα]. Trivial.
Choosing [[E]]σ,p,q : QC•(E;B)+

Z (σ, p, q)→ Z. We need to construct [[E]]σ,p,q fitting into
the following diagram:

colim
s∈∂SX(σ,p,q)

QC•(E;B)+
Z (σ, p, q, s) QC•(E;B)+

Z (σ, p, q)

Z

H• colim
s∈∂SX(σ,p,q)

QC•(E;B)+
Z (σ, p, q, s) H•QC•(E;B)+

Z (σ, p, q)

Z

product/face

[[E]]

?∃ [[E]]σ,p,q

product/face

[[E]]

[E]7→1

(7.5.4)

Since QC•(E;B)+
Z is cofibrant, it follows that the top horizontal map is a cofibration between

cofibrant complexes (this uses Lemma 7.4.4). Now Lemma 7.4.7 tells us that the direct sum
of H0QC•(E;B)+

Z (σ, p, q, s) surjects onto H0 on the left, and this makes it easy to check that
the second diagram commutes. Lemma 7.4.7 also tells us that H−1 on the left vanishes.
Hence we may apply Lemma 7.4.11 to conclude the existence of a suitable [[E]]σ,p,q.

Choosing λσ,p,q (the key step). According to Lemma 7.4.9, we may choose a λσ,p,q with
the required property iff the homology class of µσ,p,q ∈ H•vir(∂X;B)+(σ, p, q) coincides with
dω(σ, p, q) ∈ Ȟ0(∂X(σ, p, q); o∂X(σ,p,q)). Let us now prove this desired statement [µσ,p,q] =
dω(σ, p, q). Let us fix r0 ∈ ∂SX(σ, p, q) and verify equality over X(σ, p, q)r0 (this is clearly
enough).

We consider the following diagram:

µσ,p,q ∈ C•vir(∂X;B)+(σ, p, q) (7.5.5)

↑⊕
r∈∂SX(σ,p,q)

µσ,p,q,r ∈
⊕

r∈∂SX(σ,p,q)

hocolim
s≺t∈SX(σ,p,q)≤r

C•vir(X(σ, p, q)≤s rel ∂;B(σ, p, q)≥t) (7.5.6)

↓⊕
r∈∂SX(σ,p,q)≤r0

µσ,p,q,r ∈
⊕

r∈∂SX(σ,p,q)≤r0

hocolim
s≺t∈SX(σ,p,q)≤r

C•vir(X(σ, p, q)≤s rel ∂;B(σ, p, q)≥t) (7.5.7)

↑
µσ,p,q,r0 ∈ hocolim

s≺t∈SX(σ,p,q)≤r0

C•vir(X(σ, p, q)≤s rel ∂;B(σ, p, q)≥t) (7.5.8)

The differentials in (7.5.6)–(7.5.7) are given by the sum over codim(r � r′) = 1 of the obvious
pushforward maps (plus the internal differentials of each hocolim). The first vertical map is
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the sum over codim r = 0 (i.e. over maximal elements of ∂SX(σ, p, q)); clearly this is a chain
map. The remaining vertical maps are clear. The easiest way to keep track of signs in the
present discussion is to use the orientation lines associated to elements of SX(σ, p, q), as in
Definition 6.2.2, though we will supress them from the notation. Note that there is a natural
diagram of complexes of K-presheaves on ∂X(σ, p, q) whose diagram of global sections is
(7.5.5)–(7.5.8). We will see below that these complexes of K-presheaves are in fact pure
homotopy K-sheaves and that the induced diagram of sheaves (obtained by taking H0) is
given by the tautological maps:

o∂X(σ,p,q) ← o∂X(σ,p,q) → oX(σ,p,q)≤r0 ← oX(σ,p,q)≤r0 rel ∂ (7.5.9)

First, though, let us argue that this claim implies the desired result. The cycle µσ,p,q ∈
(7.5.5) lifts to a cycle

⊕
r∈∂SX(σ,p,q) µσ,p,q,r ∈ (7.5.6), where µσ,p,q,r is obtained by applying

the product/face maps to the tensor product of the various λ’s corresponding to the factors
on the left hand side of (7.1.6) corresponding to r (this is a cycle by (7.5.1)). Obviously⊕

r∈∂SX(σ,p,q) µσ,p,q,r ∈ (7.5.6) maps to
⊕

r∈∂SX(σ,p,q)≤r0 µσ,p,q,r ∈ (7.5.7). On sections over

K ⊆ X(σ, p, q)r0 , the last vertical map is an isomorphism, and (the restriction to K of)⊕
r∈∂SX(σ,p,q)≤r0 µσ,p,q,r ∈ (7.5.7) lifts to (the restriction to K of) µσ,p,q,r0 ∈ (7.5.8). Finally,

observe that over any K ⊆ X(σ, p, q)r0 , the homology class of µσ,p,q,r0 ∈ (7.5.8) coincides with
the restriction of dω(σ, p, q) to the r0 stratum (this follows from the induction hypothesis,
using the fact that the orientations are coherent and the observation at the end of Definition
6.3.2). Clearly this implies that µσ,p,q coincides with dω(σ, p, q) in homology over X(σ, p, q)r0 .

Thus it remains only to show that (7.5.5)–(7.5.8) are pure homotopy K-sheaves and
that the induced maps on H0 coincide with the tautological maps on orientation sheaves
(7.5.9). Note that by Proposition 6.2.3, the following closely related diagram satisfies all
of the desired properties (i.e. is a diagram of pure homotopy K-sheaves inducing (7.5.9) on
H0):

C•vir(∂X(σ, p, q);B(σ, p, q)≥s
top

) (7.5.10)

↑⊕
r∈∂SX(σ,p,q)

C•vir(X(σ, p, q)≤r rel ∂;B(σ, p, q)≥s
top

) (7.5.11)

↓⊕
r∈∂SX(σ,p,q)≤r0

C•vir(X(σ, p, q)≤r rel ∂;B(σ, p, q)≥s
top

) (7.5.12)

↑
C•vir(X(σ, p, q)≤r0 rel ∂;B(σ, p, q)≥s

top

) (7.5.13)

Hence it is enough to relate this diagram to (7.5.5)–(7.5.8) via quasi-isomorphisms. The
diagram obtained from (7.5.5)–(7.5.8) by replacing every occurence of B(σ, p, q)≥t with
B(σ, p, q)≥s

top
maps quasi-isomorphically to (7.5.5)–(7.5.8) (by pairing with the fixed funda-

mental cycles), and it also maps quasi-isomorphically to the diagram above (use the obvious
pushforwards on the p = 0 level of the homotopy colimits, and zero for p > 0), thus giving
the desired result.
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Choosing λ̃σ,p,q. We must find λ̃σ,p,q lifting s∗λσ,p,q and satisfying dλ̃σ,p,q = µ̃σ,p,q. Now
we know that µ̃σ,p,q is a cycle (see Definition 7.5.1); furthermore its image in C•(E;B)+

is s∗µσ,p,q = d(s∗λσ,p,q) which is null-homologous. Since QW•
∼
� W• is always a quasi-

isomorphism, it follows that µ̃σ,p,q is null-homologous. Hence there exists λ̃′σ,p,q with dλ̃′σ,p,q =

µ̃σ,p,q; now we must modify λ̃′σ,p,q so that it lifts s∗λσ,p,q. The difference of s∗λσ,p,q and the

image of λ̃′σ,p,q is a cycle in C•(E;B)+. It can be lifted to a cycle in QC•(E;B)+ using Lemma

7.4.8 (again using that QW•
∼
�W• is a quasi-isomorphism), which is enough.

7.6 Categories of complexes

We review various categories of complexes over graded rings. We use these categories as
targets for the Floer-type homology groups we construct.

Definition 7.6.1 (Complexes over graded rings). Let S be a graded ring. A differential
graded S-module is a graded module A• over S along with a map d : A• → A•+1 satisfying
d2 = 0.

Definition 7.6.2 (Category ChS). Let S be a graded ring. We let ChS denote the category
whose objects are differential graded S-modules and whose morphisms are chain maps.

Definition 7.6.3 (Category H0(ChS)). Let S be a graded ring. We let H0(ChS) denote the
category whose objects are objects of ChS and whose morphisms are chain maps modulo
chain homotopy.

Definition 7.6.4 (∞-category Ndg(ChS)). Let S be a graded ring. We let Ndg(ChS) denote
the differential graded nerve of ChS (see Lurie [Lur14, Construction 1.3.1.6] or Definition
7.6.5 below).

Let us now discuss the relationship between these three categories and in particular
explain the definition of Ndg(ChS) in concrete terms. Despite appearances, the reader need
not be familiar with ∞-categories to understand Ndg(ChS).

Recall that if C is a category and X• is a simplicial set, a diagram X• → C is a map
of simplicial sets X• → N•C where N•C denotes the nerve23 of C. Concretely, a diagram
F : X• → C is the data of:

i. For every vertex v ∈ X0, an object Av ∈ C.
ii. For every edge e ∈ X1 from v0 to v1, a morphism fe : Av0 → Av1 in C.

such that:
iii. For every degenerate edge e ∈ X1 over vertex a v, we have fe = idAv .
iv. For every face in X2 spanning edges e01, e12, e02, we have fe12 ◦ fe01 = fe02 .

We often speak of a diagram X• → C where X• is only a semisimplicial set, in which case
we ignore condition (iii).

It should now be clear what we mean by a diagram X• → ChS or X• → H0(ChS) if X•
is a (semi)simplicial set. Let us now say what we mean by a diagram X• → Ndg(ChS). Such
a diagram is similar to a diagram X• → ChS, except that we only require condition (iv) to
hold “up to coherent higher homotopy”.

23An n-simplex ∆n → N•C is a diagram A0
f01−−→ A1

f12−−→ · · · fn−1,n−−−−→ An in C. Strictly speaking, N•C is
not a simplicial set unless C is small.

67



Definition 7.6.5 (Diagram X• → Ndg(ChS) [Lur14, Construction 1.3.1.6]). Let S be a
graded ring and let X• be a simplicial set. A diagram X• → Ndg(ChS) consists of:24

i. For every v ∈ X0, a graded S-module A•v.
ii. For every σ ∈ Xn spanning v0, . . . , vn ∈ X0, a map fσ : Av0 → Avn of degree 1 − n,

such that:
n∑
k=0

(−1)kfσ|[k...n] ◦ fσ|[0...k] =
n−1∑
k=1

(−1)kfσ|[0...k̂...n] (7.6.1)

and if σ is degenerate, then:

fσ =

{
id dimσ = 1

0 otherwise
(7.6.2)

If X• is only a semisimplicial set, then we ignore (7.6.2).

Let us now explain this definition by examining what (7.6.1) says for low-dimensional
simplices σ : ∆n → X• (following [Lur14, Example 1.3.1.8]).

i. Let n = 0. Then f0 : A•0 → A•0 has degree 1, and (7.6.1) asserts that f0 ◦ f0 = 0. Thus
(A0, f0) is a chain complex.

ii. Let n = 1. Then f01 : A•0 → A•1 has degree 0, and (7.6.1) asserts that f01◦f0−f1◦f01 =
0. Thus f01 : (A•0, f0) → (A•1, f1) is a chain map. For a degenerate 1-simplex, (7.6.2)
asserts that f01 : (A•0, f0)→ (A•1, f1) is the identity map.

iii. Let n = 2. Then f012 : A•0 → A•2 has degree −1, and (7.6.1) asserts that f012f0 −
f12f01 + f2f012 = −f02. Thus f012 is a chain homotopy between f02, f12f01 : A•0 → A•2.

We can now relate Ndg(ChS) to the more familiar categories ChS and H0(ChS) by introducing
natural forgetful functors:

ChS → Ndg(ChS)→ H0(ChS) (7.6.3)

which should be clear given the above interpretation of diagrams to Ndg(ChS). More precisely,
a diagram X• → ChS gives rise to a diagram X• → Ndg(ChS) where the higher homotopies
{fσ}dimσ≥2 are all zero. A diagram X• → Ndg(ChS) gives rise to a diagram X• → H0(ChS)
which forgets about the choice of higher homotopies {fσ}dimσ≥2, remembering only the ex-
istence of {fσ}dimσ=2 satisfying (7.6.1).

7.7 Definition

We now define the Floer-type homology groups of an H-equivariant flow category diagram
X/Z• with implicit atlas and coherent orientations. More precisely, given such data we
construct a diagram H(X) : Z• → H0(ChR[[H]]).

We first define a diagram H̃(X) : Z̃• → Ndg(ChR[[H]]) (this is straightforward from the

definition of Z̃•). Schematically:

Z̃•
H̃(X)−−−→ Ndg(ChR[[H]])

π

y
Z•

(7.7.1)

24For the reader familiar with ∞-categories: the notion of a diagram X• → Ndg(ChS) suffices to define
Ndg(ChS) by Yoneda’s Lemma.
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We then use Proposition 7.5.5 (that π : Z̃• → Z• is a trivial Kan fibration) to show that

H̃(X) descends uniquely to a diagram H(X) : Z• → H0(ChR[[H]]).
For the descent argument, we need to assume that Z• is a simplicial set. The main

nontrivial step is to show that H̃(X) sends certain lifts of degenerate edges in Z• to Z̃• to
the identity map in H0(ChR[[H]]).

Remark 7.7.1. There should also be a (more refined) descent with target Ndg(ChR[[H]]) (c.f.
Remark 7.0.2), though we have decided to omit this for sake of brevity (the correct uniqueness
statement is more complicated to state).

Definition 7.7.2 (Novikov rings). Let T be a set equipped with a “grading” gr : T → Z
and an “action” a : T → R. We let R[[T ]] denote the graded R-module consisting of formal
sums

∑
t∈T ct · t with ct ∈ R, satisfying the following two finiteness conditions:

i. #{n ∈ Z : ∃t such that ct 6= 0 and gr(t) = n} <∞.
ii. #{t ∈ T : ct 6= 0 and a(t) < M} <∞ for all M <∞.

In other words, R[[T ]] is the graded completion of R[T ] with respect to the non-archimedean
a-adic norm |t|a := e−a(t). If T is a group and gr, a are group homomorphisms, then R[[T ]]
is a graded ring.

Definition 7.7.3 ((Co)homology groups H̃(X) : Z̃• → Ndg(ChR[[H]])). Let X/Z• be an H-
equivariant flow category diagram with implicit atlas A and coherent orientations ω. We
define a diagram:

H̃(X)A,ω : Z̃• → Ndg(ChR[[H]]) (7.7.2)

We will write H̃(X) for H̃(X)A,ω when the atlas and orientations are clear from context.
To a vertex of Z̃•, we associate R[[Pz]] where z is the corresponding vertex in Z•. This

is clearly a graded R[[H]]-module.
Now for a simplex σ ∈ Z̃n, we aim to define the map fσ : R[[Pσ(0)]] → R[[Pσ(n)]] by the

formula:
fσ(p) :=

∑
q∈Pσ(n)

([[E]]σ,p,q ⊗ idR)(λ̃σ,p,q) · q (7.7.3)

Let us now argue that (7.7.3) makes sense and that the resulting maps fσ satisfy (7.6.1).
First, observe that since λ̃σ,p,q is of degree gr(q) − gr(p) + dimσ − 1 and [[E]]σ,p,q has

degree 0, all terms on the right hand side of (7.7.3) are of degree gr(p) + 1−dimσ. Now, we
have λ̃σ,p,q = 0 if X(σ, p, q) = ∅. Hence finiteness condition Definition 7.2.1(iv) implies that
(7.7.3) converges in the a-adic topology, and hence defines an R-linear map fσ : R[Pσ(0)]→
R[[Pσ(0)]]. Finiteness condition (v) implies that there exists M < ∞ such that |fσ(p)|a ≤
M |p|a. Thus fσ extends uniquely to a continuous (in fact, bounded) R-linear map fσ :

R[[Pσ(0)]]→ R[[Pσ(0)]]. Clearly fσ is R[[H]]-linear since [[E]] and λ̃ are both H-invariant.
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Now it remains to verify that the fσ defined by (7.7.3) satisfy (7.6.1). To see this, write:

0 = (−1)gr(p) · [[E]]σ,p,r(dλ̃σ,p,r)

= (−1)gr(p) · [[E]]σ,p,r(µ̃σ,p,r)

= [[E]]σ,p,r

 n∑
k=0

∑
q∈Pσ(k)

(−1)kλ̃σ|[0...k],p,q · λ̃σ|[k...n],q,r −
n−1∑
k=1

(−1)kλ̃σ|[0...k̂...n],p,r


=

n∑
k=0

∑
q∈Pσ(k)

(−1)k[[E]]σ|[0...k],p,q(λ̃σ|[0...k],p,q) · [[E]]σ|[k...n],q,r(λ̃σ|[k...n],q,r)

−
n−1∑
k=1

(−1)k[[E]]σ|[0...k̂...n],p,r(λ̃σ|[0...k̂...n],p,r)

= coefficient of r in
n∑
k=0

(−1)kfσ|[k...n](fσ|[0...k](p))−
n−1∑
k=1

(−1)kfσ|[0...k̂...n](p)

The first equality follows because [[E]]σ,p,r is a chain map, the second equality follows from
the definition of a system of chains, the third equality is (7.5.1), the fourth equality follows
from the fact that [[E]] is compatible with the product/face maps, and the fifth equality
follows from the definition of fσ (7.7.3).

Proposition 7.7.4 (Degenerate edges in Z̃• give the identity map up to homotopy). Let
Z• = ∗ be the semisimplicial set with a single simplex σi in dimension i for all i ≥ 0 (i.e.
the simplicial 0-simplex). Let X/Z• be an H-equivariant flow category diagram with implicit
atlas and coherent orientations. Suppose that:

i. X(σ1, p, p) = X(σ1, p, p)reg is a single point and ω(σ1, p, p) = 1, for all p.
ii. X(σ0, p, q) = ∅ =⇒ X(σi, p, q) = ∅ for all i and all p 6= q.

Then for any σ ∈ Z̃1 whose two vertices coincide, the associated map in H̃(X) is homotopic
to the identity map.

Proof. Let d : R[[P]] → R[[P]] denote the boundary operator associated to the vertex of σ,
and let 1− ε : R[[P]]→ R[[P]] denote the chain map associated to σ. We must show that ε
is chain homotopic to the zero map. Since Z̃• → Z• is a trivial Kan fibration (Proposition
7.5.5), there exists a 2-simplex in Z̃• all of whose edges are σ. Associated to this 2-simplex
is a chain homotopy h : R[[P]]→ R[[P]] between (1− ε) and (1− ε) ◦ (1− ε); in other words:

ε = dh+ hd+ ε2 (7.7.4)

Now we claim that the only nonzero “matrix coefficients” cp,q of d, ε, h are those for
which X(σ0, p, q) 6= ∅. By definition, fσ can have nonzero matrix coefficients cp,q only for
X(σ, p, q) 6= ∅. Hence hypothesis (ii) gives the desired claim as long as p 6= q. For the
diagonal matrix coefficients cp,p, we argue separately as follows. By degree considerations,
only ε can have nonzero cp,p. It thus suffices to show that the matrix coefficient cp,p =
[[E]]σ1,p,p(λ̃σ1,p,p) of fσ1 = 1 − ε equals 1. Note that no product/face maps have target

(σ1, p, p), so λσ1,p,p is a cycle representing ω(σ1, p, p) = 1. Hence λ̃σ1,p,p is a cycle representing

[E], and so [[E]]σ1,p,p(λ̃σ,p,p) = 1 as needed. Hence the claim is valid. From the claim, we
make the following two observations:
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i. We have |d(p)|a , |ε(p)|a , |h(p)|a ≤ |p|a.
ii. For all M < ∞ and p ∈ P, there exists N < ∞ such that any length N composition

of d, ε, h applied to p has a-adic norm ≤ e−M .
(the second observation also uses Definition 7.2.1(iv)).

Now iterating the identity ε = dh+ hd+ ε2, we are led to the following infinite series:25

ε =
∞∑
n=1

1

n

(
2n− 2

n− 1

)
(hd+ dh)n (7.7.5)

which by observations (i)–(ii) converges in the a-adic topology when applied to any el-
ement of R[[P]]. Now we have (hd + dh)n =

∑n
k=0(dh)k(hd)n−k = Hnd + dHn where

Hn =
∑n

k=1 h(dh)k−1(hd)n−k. This gives the desired chain homotopy between ε and zero
(again using observations (i)–(ii) to justify convergence of infinite sums).

Lemma 7.7.5 (Criterion for descent along a trivial Kan fibration). Let π : Z̃• → Z• be a

trivial Kan fibration of semisimplicial sets, and let H̃ : Z̃• → C be a diagram in some category
C. A descent of H̃ to Z• is a diagram H : Z• → C along with an isomorphism H̃→ H ◦ π:

Z̃• C

Z•

H̃

π
H

(7.7.6)

Suppose that:
i. Z• is a simplicial set.

ii. For any edge σ1 in Z̃• whose endpoints coincide and which projects to a degenerate
edge in Z•, the associated map in C is the identity map.

Then a descent exists and is unique up to unique isomorphism.

Proof. The proof below shows that we may define H := H̃ ◦ s for any section s : Z• → Z̃•.
Defining H over 0-simplices. Fix some 0-simplex v of Z•. For every lift ṽ, we have

an object H̃(ṽ). Furthermore, for every lift ẽ of the degenerate 1-simplex e over v, we get a

map H̃(ṽ1)
H̃(ẽ)−−→ H̃(ṽ2), which is the identity map if ṽ1 = ṽ2. Finally, for every lift f̃ of the

degenerate 2-simplex f over v, the following diagram commutes:

H̃(ṽ2)

H̃(ṽ1) H̃(ṽ3)

H̃(ẽ23)H̃(ẽ12)

H̃(ẽ13)

(7.7.7)

where ẽ12, ẽ23, ẽ13 are the edges of f̃ . Using that Z̃• → Z• is a trivial Kan fibration to
conclude that we can always find lifts with specified boundary conditions, it follows that all
H̃(ṽ) are canonically isomorphic. Thus there exists a unique choice for H(v).

25The coefficients 1
n

(
2n−2
n−1

)
are integers (Catalan numbers Cn−1), so writing this expression does not make

any implicit assumptions on the ring R.
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Defining H over 1-simplices. Fix some 1-simplex e of Z• with vertices v1, v2. If ẽ is

any lift of e, then we get a map H(v1) = H̃(ṽ1)
H̃(ẽ)−−→ H̃(ṽ2) = H(v2). Furthermore, this

map H(v1) → H(v2) is seen to be independent of the choice of lift ẽ by lifting degenerate
2-simplices over e. Thus there exists a unique choice for H(e).

Defining H over n-simplices for n ≥ 2. We just need to check that the following
diagram commutes for all 2-simplices f in Z•:

H(v2)

H(v1) H(v3)

H(e23)H(e12)

H(e13)

(7.7.8)

where e12, e23, e13 are the edges of f . This follows from lifting f and the commutativity of
(7.7.7).

Definition 7.7.6 ((Co)homology groups H(X) : Z• → H0(ChR[[H]])). Let Z• be a simplicial
set. Let X/Z• be an H-equivariant flow category diagram with implicit atlas A and coherent
orientations ω. Suppose that for any vertex σ0 of Z•, we have:

i. X(σ1, p, p) = X(σ1, p, p)reg is a single point and ω(σ1, p, p) = 1, for all p.
ii. X(σ0, p, q) = ∅ =⇒ X(σi, p, q) = ∅ for all i and p 6= q

(where σi denotes the completely degenerate i-simplex over σ0). We have:

Z̃• H0(ChR[[H]])

Z•

H̃(X)

π (7.7.9)

(abusing notation and use H̃(X) : Z̃• → H0(ChR[[H]]) to denote the composition of H̃(X)
with the forgetful functor Ndg → H0). The hypotheses of Lemma 7.7.5 are satisfied by
Propositions 7.5.5 and 7.7.4, and hence we get a canonical descent:

H(X)A,ω : Z• → H0(ChR[[H]]) (7.7.10)

We will write H(X) for H(X)A,ω when the atlas and orientations are clear from context.

7.8 Properties

Lemma 7.8.1 (Passing to a subatlas preserves H(X)). Let Z•, X/Z•, A, and ω be as in
Definition 7.7.6. If B ⊆ A is any subatlas, then there is a canonical isomorphism H(X)A =
H(X)B.

Proof. Indeed, we have Z̃B
• ⊆ Z̃A

• compatibly with H̃(X).

Lemma 7.8.2 (Shrinking the charts preserves H(X)). Let Z•, X/Z•, A, and ω be as in
Definition 7.7.6. Let A′ be obtained from A by using instead some open subsets U ′IJ ⊆ UIJ ,
X ′I ⊆ XI , X

reg′
I ⊆ Xreg

I , and restricting ψIJ , sI to these subsets, so that A′ is also an implicit
atlas. Then there is a canonical isomorphism H(X)A = H(X)A′.
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Proof. There is a natural map Z̃A′
• → Z̃A

• for which the pullback of H̃(X)A is canonically

isomorphic to H̃(X)A′ . This is enough.

Lemma 7.8.3 (Universal coefficients). Let Z•, X/Z•, A, and ω be as in Definition 7.7.6.
Let R→ S a homomorphism of base rings. Then there is a canonical isomorphism H(X)S =
H(X)R ⊗R[[H]] S[[H]] (denoting ⊗R[[H]]S[[H]] : H0(ChR[[H]])→ H0(ChS[[H]])).

Proof. There is a natural base change map b : Z̃R
• → Z̃S

• and a canonical isomorphism

H̃(X)S ◦ b = H̃(X)R ⊗R[[H]] S[[H]]. Now the result follows since H̃(X)S ◦ b and H̃(X)S have
the same descent to Z•.

Proposition 7.8.4 (If X = Xreg, then H(X) is given by counting 0-dimensional flow spaces).
Let Z•, X/Z•, A, and ω be as in Definition 7.7.6. Suppose that X(σ, p, q) = X(σ, p, q)reg for
all (σ, p, q) (so, in particular, X/Z• is Morse–Smale in the sense of Remark 7.2.2).

Define a diagram H′(X) : Z• → Ndg(ChR[[H]]) as follows. The graded R[[H]]-module

associated to a vertex z of Z̃• is R[[Pz]]. For a simplex σ ∈ Z̃n, we define the map fσ :
R[[Pσ(0)]]→ R[[Pσ(n)]] by the formula:

fσ(p) :=
∑

q∈Pσ(n)

gr(q)−gr(p)=1−dimσ

〈ω(σ, p, q), [X(σ, p, q)]〉 · q (7.8.1)

It is easy to verify that the maps fσ are well-defined and satisfy (7.6.1).
Now there is a canonical isomorphism H(X) = H′(X) (where on the right hand side we

implicitly compose with the forgetful functor Ndg → H0).

Proof. We will show an equality of “matrix coefficients”:

([[E]]σ,p,q ⊗ idR)(λ̃σ,p,q) = 〈ω(σ, p, q), [X(σ, p, q)]〉 (7.8.2)

for (σ, p, q) ∈ Z̃• with vdimX(σ, p, q) = 0. Thus comparing (7.7.3) and (7.8.1), it follows

that the two diagrams Z̃• → Ndg(ChR[[H]]) in question, namely H̃(X) and H′(X) ◦π, coincide.

The desired isomorphism thus follows from the definition of H(X) as the descent of H̃(X).
To prove (7.8.2), argue as follows. Since X(σ, p, q) = X(σ, p, q)reg, we know that if

vdimX(σ, p, q) < 0 then X(σ, p, q) = ∅ and hence λσ,p,q = 0 and λ̃σ,p,q = 0. Now when
vdimX(σ, p, q) = 0, we see that µσ,p,q = 0 and µ̃σ,p,q = 0 (because all of the terms defining
them involve a triple with negative dimension), so λσ,p,q and λ̃σ,p,q are cycles. Since the ho-
mology class of λσ,p,q coincides with ω(σ, p, q), the left hand side of (7.8.2) coincides with the
evaluation of ω(σ, p, q) on [X(σ, p, q)]vir ∈ Ȟ0(X(σ, p, q); oX(σ,p,q))

∨. Now we are done since
[X(σ, p, q)]vir = [X(σ, p, q)] by Lemma 5.2.6.

8 S1-localization

In this section, we prove vanishing results for virtual fundamental cycles on almost free26

S1-spaces equipped with an S1-equivariant implicit atlas.

26An “almost free” action is one for which the stabilizer group of every point is finite.
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Convention 8.0.1. In this section, we work over a fixed ground ring R, and everything takes
place in the category of R-modules. We restrict to implicit atlases A for which #Γα is
invertible in R for all α ∈ A. We restrict to S1-equivariant implicit atlases for which #(S1)p
is invertible in R for all p ∈ X∅.

For this purpose, we introduce the S1-equivariant virtual cochain complexes C•S1,vir, which
enjoys properties similar to those of C•vir. There are canonical “comparison maps”:

C•S1,vir(X;A)→ C•vir(X;A) (8.0.1)

C•S1,vir(X rel ∂;A)→ C•vir(X rel ∂;A) (8.0.2)

and a canonical commutative diagram:

Cd+•
S1,vir(X rel ∂;A)

s∗−−−→ CS1

dimEA−•−1(EA, EA \ 0; o∨EA)ΓAy yπ!

Cd+•
vir (X rel ∂;A)

s∗−−−→ CdimEA−•(EA, EA \ 0; o∨EA)ΓA

(8.0.3)

(S1 acting trivially on EA). Furthermore, if X is an almost free S1-space and A is locally
S1-orientable, then there are canonical isomorphisms:

H•S1,vir(X;A) = Ȟ•(X/S1; π∗oX) (8.0.4)

H•S1,vir(X rel ∂;A) = Ȟ•(X/S1; π∗oX rel ∂) (8.0.5)

The construction of C•S1,vir and the proof of these properties are the main technical ingredients

for the S1-localization statements we prove.
To prove the desired vanishing results, we consider using C•S1,vir in place of C•vir to define

virtual fundamental cycles. The properties and compatibilities above then show that the
desired statements follow essentially from the vanishing (on homology) of the right vertical
map in (8.0.3). This basic strategy works easily to give the desired vanishing results for the
virtual fundamental classes from §5. We also apply this strategy to prove results for the
Floer-type homology groups from §7 in the presence of an S1-action on the flow spaces (to
the effect that flow spaces on which the action is almost free may be ignored).

We do not construct an S1-equivariant virtual fundamental cycle, though the machinery
we set up is a step in this direction (see Remark 8.6.3).

8.1 Background on S1-equivariant homology

Definition 8.1.1 (Gysin sequence). Let π : E → B be a principal S1-bundle. Analysis of
the associated Serre spectral sequence gives the following Gysin long exact sequence:

· · · ∩e−→ H•−1(B)
π!

−→ H•(E)
π∗−→ H•(B)

∩e−→ H•−2(B)
π!

−→ · · · (8.1.1)

The ∩e map is cap product with the Euler class e(E) ∈ H2(B). To see this, observe that
the sequence (8.1.1) coincides with the long exact sequence of the pair for (the mapping

cone of) π : E → B, and that there is a natural isomorphism H•+2(B,E)
∩τ−→ H•(B) where
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τ = τ(E) ∈ H2(B,E) is the Thom class (e.g. as argued in [Hat02, p444] for the corresponding
sequence in cohomology).

For any S1-space X. there is a principal S1-bundle π : X × ES1 → (X × ES1)/S1, and
thus a long exact sequence:

· · · ∩e−→ HS1

•−1(X)
π!

−→ H•(X)
π∗−→ HS1

• (X)
∩e−→ HS1

•−2(X)
π!

−→ · · · (8.1.2)

for e(X) ∈ H2
S1(X). The same reasoning applies for pairs of spaces, so the same exact

sequence exists for relative homology as well.

Lemma 8.1.2. Let X be a trivial S1-space. Then the π! map in the Gysin sequence vanishes,
turning it into a short exact sequence:

0→ H•(X)
π∗−→ HS1

• (X)
∩e−→ HS1

•−2(X)→ 0 (8.1.3)

The same statement applies to relative homology of trivial S1-spaces.

Proof. The composition H•(X) → H•(X × BS1) → H•(X) is the identity map, and so the
first map is injective. On the other hand, this map is precisely π∗ : H•(X)→ HS1

• (X) since
the S1-action is trivial, so π∗ is injective which is sufficient. The same argument applies in
the relative setting as well.

Lemma 8.1.3. Let X be a locally compact Hausdorff S1-space which is almost free at p ∈ X,
and suppose that the order of the stabilizer #(S1)p is invertible in the ground ring R. Then
there exists an S1-invariant neighborhood S1p ⊆ K ⊆ X so that the Euler class e(K) ∈
H2
S1(K) vanishes.

Proof. Apply the Tietze extension theorem to the identity map S1p→ S1p to obtain an S1-
invariant neighborhood K of S1p and a retraction r : K → S1p. By averaging and passing to
a smaller neighborhood, we may assume without loss of generality that r is S1-equivariant.
Now by the naturality of the Euler class, we have e(K) = r∗e(S1p). Thus it suffices to
show that e(S1p) ∈ H2

S1(S1p) vanishes. Now we have H2
S1(S1p) = H2

(S1)p
(p) = H2((S1)p),

where the latter is the group cohomology of the finite stabilizer group (S1)p. It is a standard
fact that the group cohomology of a finite group is annihilated by the order of the group.
Hence our assumption that #(S1)p is invertible in R guarantees that this cohomology group
vanishes.

Lemma 8.1.4. Let M be a topological S1-manifold of dimension d which is almost free near
p ∈ M . Suppose that #(S1)p is invertible in the ground ring R. Then there is a canonical
isomorphism:

HS1

• (M,M \ S1p) =

{
H1(S1p; oM) • = d− 1

0 • 6= d− 1
(8.1.4)

(note also that H1(S1p; oM) = H0(S1p; oM ⊗ o∨S1p)).
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Proof. By Poincaré duality, we have canonical isomorphisms:

H•(M,M \ S1p) =


H0(S1p; oM) • = d

H1(S1p; oM) • = d− 1

0 otherwise

(8.1.5)

By excision and Lemma 8.1.3, the Gysin sequence reduces to a short exact sequence:

0→ HS1

•−1(M,M \ S1p)
π!

−→ H•(M,M \ S1p)
π∗−→ HS1

• (M,M \ S1p)→ 0 (8.1.6)

Combining this with (8.1.5), we see that HS1

• (M,M \ S1p) = 0 for • 6= d − 1, and that the
following are both isomorphisms:

Hd−1(M,M \ S1p)
π∗−→ HS1

d−1(M,M \ S1p)
π!

−→ Hd(M,M \ S1p) (8.1.7)

which yields the desired result.

8.2 S1-equivariant implicit atlases

Definition 8.2.1 (S1-equivariant implicit atlas). Let X be an S1-space. An S1-equivariant
implicit atlas A on X is an implicit atlas A along with an action of S1 on each thickening
XI (commuting with the ΓI-action) such that each map ψIJ is S1-equivariant, each function
sα is S1-invariant, and each subset Xreg

I is S1-invariant.
Similarly, we define an S1-equivariant implicit atlas with boundary and/or stratification

by in addition requiring that the boundary loci ∂XI and/or stratifications XI → S be S1-
invariant.

Note that in the above definition, S1 does not act on any of the obstruction spaces Eα
(or, alternatively, it acts trivially on them).

8.3 S1-equivariant orientations

We begin with the trivial observation that if X is equipped with a locally orientable S1-
equivariant implicit atlas A, then the S1-action on X lifts canonically to the orientation
sheaf oX .

Definition 8.3.1 (Locally S1-orientable implicit atlas). Let X be an S1-space with S1-
equivariant implicit atlas with boundary. We say that A is locally S1-orientable iff it is
locally orientable and for all p ∈ X, the stabilizer (S1)p acts trivially on (oX)p (this action
is always by a sign (S1)p → {±1}). This notion is independent of the ring R (due to our
restriction that #(S1)p be invertible in R).

It is easy to see that if A is locally S1-orientable, then π∗oX is locally isomorphic to the
constant sheaf R (where π : X → X/S1).

Remark 8.3.2. If A is locally orientable and oX has a global section, then A is automatically
locally S1-orientable (S1 is connected, so the section must be S1-invariant, hence the claim).
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8.4 S1-equivariant virtual cochain complexes C•S1,vir(X;A) and C•S1,vir(X rel ∂;A)

To define the S1-equivariant virtual cochain complexes, we must first fix a model CS1

• of
S1-equivariant chains to work with.

Remark 8.4.1. If we used the language of∞-categories, there would be no need to construct
models of chains with good (chain level) functoriality properties (c.f. Remark 4.2.3).

We begin by stating the (chain level) properties we would like our model CS1

• to satisfy.
We want a functor CS1

• from spaces to chain complexes of free Z-modules (and then we can
tensor up to any base ring R); we also demand that CS1

• (A) → CS1

• (X) be injective for
A ⊆ X (and then we define relative chains CS1

• (X,A) as the cokernel). Now we need there
to be functorial maps:

CS1

• (X)
π!

−→ C•+1(X) (8.4.1)

CS1

• (X)⊗ C•(Y )→ CS1

• (X × Y ) (8.4.2)

realizing (respectively) the Gysin map and the obvious product map. The map (8.4.2) must
be compatible with the Eilenberg–Zilber map on C• in that the two ways of building up the
following map coincide:

CS1

• (X)⊗ C•(Y )⊗ C•(Z)→ CS1

• (X × Y × Z) (8.4.3)

Moreover, (8.4.1) and (8.4.2) must be compatible in that the following diagram commutes:

CS1

• (X)⊗ C•(Y ) −−−→ CS1

• (X × Y )y y
C•+1(X)⊗ C•(Y ) −−−→ C•+1(X × Y )

(8.4.4)

To define CS1

• with the aforementioned properties, let us recall the construction of the
Serre spectral sequence due to Dress [Dre67]. For a Serre fibration π : E → B, we consider
diagrams of the form:

∆p ×∆q −−−→ Ey yπ
∆p −−−→ B

(8.4.5)

Let Cp,q(π : E → B) denote the free abelian group generated by such diagrams. Then the
direct sum of all of these C•,•(π : E → B) is a double complex (differentials corresponding
to the two pieces of boundary ∂∆p × ∆q and ∆p × ∂∆q). We let C•(π : E → B) denote
the corresponding total complex. There is a natural map C•(π : E → B) → C•(E), where
we subdivide ∆p ×∆q in the usual way. By considering the spectral sequence associated to
the filtration by q, Dress showed that this map is a quasi-isomorphism. Dress also showed
that the spectral sequence associated to the filtration by p is the Serre spectral sequence; in
particular, the E2

p,q term is Hp(B,Hq(F )).
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To define CS1

• , fix once and for all an ES1. Then for any space X, the map π : X×ES1 →
(X × ES1)/S1 is a principal S1-bundle, so a fortiori it is a Serre fibration. We define:

CS1

•−1(X) :=
{
γ ∈ C•(π : X × ES1 → (X × ES1)/S1)

∣∣∣
γ, dγ have no component with q-degree < 1

}
(8.4.6)

The inclusion CS1

•−1(X) ↪→ C•(π : X × ES1 → (X × ES1)/S1) is compatible with the p-
grading on each. Let us consider the associated morphism of spectral sequences (induced
by the p-filtration). The latter has E2

p,q term HS1

p (X,Hq(S
1)) by Dress. It follows from

the definition (8.4.6) that the E2
p,q term of the former is the same in degrees q ≥ 1 and

zero otherwise. Since Hq(S
1) is nonzero only for q ≤ 1, it follows that the former spectral

sequence has no further differentials, and we conclude that the homology of CS1

• (X) is indeed
HS1

• (X) as needed.
Now let us define the maps (8.4.1) and (8.4.2) and verify the required properties. The

map (8.4.1) is obtained by the standard subdivision of ∆p × ∆q into simplices along with
the projection map X × ES1 → X. The map (8.4.2) is defined as follows. Given maps
∆p ×∆q → X × ES1 and ∆p′ → Y , we obtain a map ∆p′ ×∆p ×∆q → Y ×X × ES1 and
we subdivide ∆p′ ×∆p. The required properties are then straightforward to verify.

Definition 8.4.2 (S1-equivariant virtual cochain complexes C•S1,vir(−;A) (and IJ)). Let

X be an S1-space with finite S1-equivariant implicit atlas with boundary A. For any S1-
invariant compact K ⊆ X, we define:

C•S1,vir(K;A)IJ C•S1,vir(K rel ∂;A)IJ (8.4.7)

C•S1,vir(K;A) C•S1,vir(K rel ∂;A) (8.4.8)

as in Definitions 4.2.5–4.2.6, except using CS1

•−1 in place of C• in (4.2.4)–(4.2.5). It is clear
that (8.4.7)–(8.4.8) are complexes of K-presheaves on X/S1 (replace K with π−1(K), where
π : X → X/S1). The Gysin map (8.4.1) induces “comparison maps”:

C•S1,vir(−;A)(IJ) → C•vir(−;A)(IJ) (8.4.9)

for all flavors (8.4.7)–(8.4.8)
Analogously with (4.2.6)–(4.2.8) and (4.2.11)–(4.2.12), there are natural maps (compat-

ible with (8.4.9)):

C•S1,vir(K rel ∂;A)IJ → C•S1,vir(K;A)IJ (8.4.10)

Cd+•
S1,vir(X rel ∂;A)IJ

s∗−→ CS1

−•−1(E;A) (8.4.11)

C•S1,vir(−;A)IJ → C•S1,vir(−;A)I′,J ′ (8.4.12)

C•S1,vir(K rel ∂;A)→ C•S1,vir(K;A) (8.4.13)

Cd+•
S1,vir(X rel ∂;A)

s∗−→ CS1

−•−1(E;A) (8.4.14)

Analogously with (4.2.13)–(4.2.14), there are natural maps (compatible with (8.4.9)):

C•S1,vir(−;A)IJ ⊗ C−•(E;A′ \ A)→ C•S1,vir(−;A′)I′,J ′ (8.4.15)

C•S1,vir(−;A)⊗ C−•(E;A′ \ A)→ C•S1,vir(−;A′) (8.4.16)
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8.5 Isomorphisms H•S1,vir(X;A) = Ȟ•(X/S1; π∗oX) (also rel ∂)

Lemma 8.5.1 (C•S1,vir(−;A)IJ are pure homotopy K-sheaves). Let X be an almost free S1-

space with finite locally S1-orientable S1-equivariant implicit atlas with boundary A. Then
C•S1,vir(−;A)IJ and C•S1,vir(− rel ∂;A)IJ are pure homotopy K-sheaves on X/S1. Furthermore,

there are canonical isomorphisms of sheaves on X/S1:

H0
S1,vir(−;A)IJ = π∗j!j

∗oX (8.5.1)

H0
S1,vir(− rel ∂;A)IJ = π∗j!j

∗oX rel ∂ (8.5.2)

where j : VI ∩ VJ ↪→ X for VI := ψ∅I((sI |Xreg
I )−1(0)) ⊆ X and π : X → X/S1.

Proof. As in the proof of Lemma 4.3.1, we use Lemmas A.6.3 and A.2.11 to see that
C•S1,vir(−;A)IJ and C•S1,vir(− rel ∂;A)IJ are homotopy K-sheaves. More precisely, in the

present context we need the statement of Lemma A.6.3 for CS1

• in place of C•. The proof of
this lemma applies equally well to CS1

• , noting that since CS1

• is a model of S1-equivariant
chains, it in particular satisfies Mayer–Vietoris in that following (total complex) is acyclic:

CS1

• (U ∩ U ′)→ CS1

• (U)⊕ CS1

• (U ′)→ CS1

• (U ∪ U ′) (8.5.3)

Now let us show purity. By Lemma A.5.5, it suffices to show that the restrictions of
C•S1,vir(−;A)IJ and C•S1,vir(− rel ∂;A)IJ to (VI ∩VJ)/S1 and to X/S1 \ (VI ∩VJ)/S1 are pure.
The latter restriction is trivially pure, since both complexes are simply zero for K∩VI∩VJ =
∅. Hence it suffices to show that the restrictions of both complexes to (VI ∩VJ)/S1 are pure.

We consider the comparison maps:

H•S1,vir(K;A)IJ → H•vir(K;A)IJ (8.5.4)

H•S1,vir(K rel ∂;A)IJ → H•vir(K rel ∂;A)IJ (8.5.5)

These are Gysin maps π!, and hence by the Gysin sequence, their kernels coincide (respec-
tively) with the images of:

H•−2
S1,vir(K;A)IJ

∩e−→ H•S1,vir(K;A)IJ (8.5.6)

H•−2
S1,vir(K rel ∂;A)IJ

∩e−→ H•S1,vir(K rel ∂;A)IJ (8.5.7)

where e is (the pullback of) e ∈ H2
S1(Xreg

J /ΓJ). Pick any p ∈ VJ ⊆ X. By Lemma 8.1.3,
this e vanishes when restricted to small S1-invariant compact neighborhoods of S1p ⊆ VJ =
(sJ |Xreg

J )−1(0)/ΓJ ⊆ Xreg
J /ΓJ . It follows that (8.5.6)–(8.5.7) vanish for small S1-invariant

compact neighborhoods K of S1p ⊆ VJ . Hence (8.5.4)–(8.5.5) are injective for such K. Now,
using this injectivity and the fact that C•vir(−;A)IJ and C•vir(− rel ∂;A)IJ are pure homotopy
K-sheaves (Lemma 4.3.1), it follows that C•S1,vir(−;A)IJ and C•S1,vir(− rel ∂;A)IJ are pure on

VJ/S
1, and hence on all of X/S1.

It remains to identify H0
S1,vir(−;A)IJ and H0

S1,vir(− rel ∂;A)IJ . Consider the comparison
maps:

H0
S1,vir(−;A)IJ → π∗H

0
vir(−;A)IJ (8.5.8)

H0
S1,vir(− rel ∂;A)IJ → π∗H

0
vir(− rel ∂;A)IJ (8.5.9)
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which are maps of sheaves on X/S1. It suffices (by Lemma 4.3.1) to show that these are
isomorphisms (which we will check on stalks, i.e. for K = S1p). Now this is just a calcula-
tion, similar to that in the proof of Lemma 4.3.1, except using an S1-equivariant version of
Poincaré–Lefschetz duality based on Lemma 8.1.4 in place of Lemma A.6.4 (and it is in this
calculation where we use the local S1-orientability of A).

Proposition 8.5.2 (C•S1,vir(−;A) are pure homotopy K-sheaves). Let X be an almost free

S1-space with finite locally S1-orientable S1-equivariant implicit atlas with boundary A. Then
C•S1,vir(−;A) and C•S1,vir(− rel ∂;A) are pure homotopy K-sheaves on X/S1. Furthermore,

there are canonical isomorphisms of sheaves on X/S1:

H0
S1,vir(−;A) = π∗oX (8.5.10)

H0
S1,vir(− rel ∂;A) = π∗oX rel ∂ (8.5.11)

where π : X → X/S1.

Proof. This is exactly analogous to Proposition 4.3.3 and has the same proof (using Lemma
8.5.1 in place of Lemma 4.3.1).

Theorem 8.5.3 (Calculation of H•S1,vir). Let X be an almost free S1-space with finite lo-

cally S1-orientable S1-equivariant implicit atlas with boundary A. Then there are canonical
isomorphisms fitting (as the top horizontal maps) into commutative diagrams:

H•S1,vir(X;A)
∼−−−→ Ȟ•(X/S1, π∗oX)

(8.4.9)

y π∗

y
H•vir(X;A)

Thm 4.3.4−−−−−−→ Ȟ•(X, oX)

H•S1,vir(X rel ∂;A)
∼−−−→ Ȟ•(X/S1, π∗oX rel ∂)

(8.4.9)

y π∗

y
H•vir(X rel ∂;A)

Thm 4.3.4−−−−−−→ Ȟ•(X, oX rel ∂)

Proof. Consider the following diagram:

H•S1,vir(X;A) H•vir(X;A)

Ȟ•(X/S1;C•S1,vir(−;A)) Ȟ•(X/S1, π∗C
•
vir(−;A)) Ȟ•(X;C•vir(−;A))

Ȟ•(X/S1; τ≥0C
•
S1,vir(−;A)) Ȟ•(X/S1, π∗τ≥0C

•
vir(−;A)) Ȟ•(X; τ≥0C

•
vir(−;A))

Ȟ•(X/S1;H0
S1,vir(−;A)) Ȟ•(X/S1, π∗H

0
vir(−;A)) Ȟ•(X;H0

vir(−;A))

Ȟ•(X/S1; π∗oX) Ȟ•(X/S1, π∗oX) Ȟ•(X; oX)

∼

(8.4.9)

∼

(8.4.9)

∼

π∗

∼ ∼

(8.4.9) π∗

∼

(8.4.9)

∼

π∗

∼

∼

∼

π∗

where the vertical isomorphisms are by Propositions 8.5.2 and 4.3.3 (see also (A.5.3)).
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Now each small square of this diagram above commutes (only the bottom left requires
an argument; one shows that the corresponding diagram of sheaves commutes by checking it
locally, where it is just a calculation). Now the first square in Theorem 8.5.3 is the same as
the big square above, which commutes by a diagram chase (for which one should be careful
of the fact that one of the vertical arrows is not an isomorphism).

An identical argument applies to the second square in Theorem 8.5.3.

8.6 Localization for virtual fundamental classes

Theorem 8.6.1 (S1-localization for [X]vir). Let X be an almost free S1-space with locally
S1-orientable S1-equivariant implicit atlas with boundary A. Then π∗[X]vir = 0, where π∗ =
(π∗)∨ : Ȟ•(X; oX rel ∂)

∨ → Ȟ•(X/S1; π∗oX rel ∂)
∨.

Proof. We may assume that A is finite. Now by Theorem 8.5.3, we have a commutative
diagram:

Ȟd+•(X/S1; π∗oX rel ∂) Hd+•
S1,vir(X rel ∂;A) HS1

−•−1(E;A)

Ȟd+•(X; oX rel ∂) Hd+•
vir (X rel ∂;A) H−•(E;A) R

π∗

Thm 8.5.3

(8.4.9)

(8.4.14)

π!

Thm 4.3.4 (4.2.12) [EA]7→1

By definition, [X]vir is the total composition of the bottom row for • = 0. Now the desired
statement follows since the rightmost vertical map is zero (by Lemma 8.1.2, because S1 acts
trivially on EA).

Corollary 8.6.2. Let X be an almost free S1-space with locally S1-orientable S1-equivariant
implicit atlas with boundary A of dimension 0. Then [X]vir = 0.

Proof. This follows from Theorem 8.6.1 since π∗ : Ȟ0(X/S1; π∗oX rel ∂) → Ȟ0(X; oX rel ∂) is
an isomorphism (since S1 is connected and A is locally S1-orientable).

Remark 8.6.3. We expect that the machinery of this section can be used to define an S1-

equivariant virtual fundamental cycle [X]S
1,vir ∈ Ȟd−1(X/S1; π∗oX rel ∂)

∨ (π!)
∨

−−−→ Ȟd(X; oX rel ∂)
∨

lifting [X]vir, via the diagram:

Ȟd+•(X; oX rel ∂) Hd+•
vir (X rel ∂;A) H−•(E;A) R

Ȟd+•−1(X/S1; π∗oX rel ∂) Hd+•−1
S1,vir (X rel ∂;A) HS1

−•(E;A) R

π!

Thm 4.3.4 (4.2.12)

π∗

[EA] 7→1

Thm 8.5.3 (8.4.14) [EA] 7→1

where the second vertical map is induced by pushforward π∗ on chains. Note that we would
need to show that the first square commutes. This would provide another proof of Theorem
8.6.1. This should also be applicable without any restriction on the S1-action on X (provided
we use S1-equivariant (co)homology in the appropriate places).
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8.7 Localization for homology

To prove the desired localization result for Floer-type homology groups, the chain models
used in §8.4 are inadequate. Specifically, the fact that we need to consider product maps
X(p, q) × X(q, r) → X(p, r) between flow spaces with an S1-action means that we need a
corresponding map CS1

• (X)× CS1

• (Y )→ CS1

•+1(X × Y ) on S1-equivariant chains. To obtain
such a map, we will end up using a different models of chains for every (σ, p, q). We first
introduce the models of chains we will use, we then describe how to use these chain models
for the constructions of §7, and finally we prove the localization result for homology groups.

Remark 8.7.1. If we used the language of∞-categories, there would be no need to construct
models of chains with good (chain level) functoriality properties (c.f. Remark 4.2.3).

8.7.1 MF-sets and S1-MF-sets

Definition 8.7.2. A PL manifold with cells (M, S) is a compact connected nonempty ori-
entable PL-manifold with boundary M with stratification by a finite poset S (see Definition
6.1.1) such that:

i. M≤s is a connected nonempty orientable PL-submanifold with boundary.
ii. (M≤s)◦ = M s.
iii. S has a unique maximal element.

For every s ∈ S, there corresponds a face (M≤s, S≤s), which is also a PL manifold with cells.

Definition 8.7.3. An MF-set is a set Y along with:
i. For every i ∈ Y, a PL manifold with cells (Mi, Si).

ii. (Face identifications). For every i ∈ Y and every s ∈ Si, an index j ∈ Y and
an isomorphism (M≤s

i , S≤si )
∼−→ (Mj, Sj). These indices and isomorphisms must be

(strictly) transitive in the following obvious sense. If s ∈ S is maximal, then j = i and
(Mi, Si) = (M≤s

i , S≤si )
∼−→ (Mj, Sj) = (Mi, Si) is the identity map. If s′ � s is a nested

pair of faces with identifications (M≤s
i , S≤si )

∼−→ (Mj, Sj) and (M≤s′
i , S≤s

′

i )
∼−→ (Mj′ , Sj′),

and the s′ face of (Mj, Sj) is identified (M≤s′
j , S≤s

′

j )
∼−→ (Mk, Sk), then k = j′ and the

two identifications of (M≤s′
i , S≤s

′

i ) with (Mk, Sk) = (Mj′ , Sj′) are the same.
A morphism of MF-sets f : Y → Y′ is a map of sets covered by isomorphisms (Mi, Si) →
(Mf(i), Sf(i)), compatible with the face identifications for Y and Y′ in the obvious way.

The category of MF-sets has a natural symmetric monoidal structure: given MF-sets
{Mi}i∈Y and {M ′

j}j∈Y′ , their product is defined to be {Mi ×M ′
j}(i,j)∈Y×Y′ , which is again an

MF-set.
For an MF-set Y, let CY

• (X) denote the complex freely generated27 by maps Mi → X (for
i ∈ Y), with differential given by the obvious sum over all codimension one faces. Note that
there is a natural map:

CY
• (X)⊗ CY′

• (X ′)→ CY×Y′
• (X ×X ′) (8.7.1)

Remark 8.7.4. It would perhaps be more natural to work with MF-sets in the DIFF category,
although in that case it is not clear precisely what sort of stratifications and corner structure
one should allow so that the proof of Lemma 8.7.7 goes through.

27A given map Mi → X contributes a copy of the orientation module of Mi, which is isomorphic to Z but
not canonically so.
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Example 8.7.5. The collection of standard simplices {∆n}n≥0 equipped with their standard
simplicial stratifications and the standard identifications of the faces of ∆n with the various
∆i, forms an MF-set.

Definition 8.7.6. An MF-set Y is called saturated iff for every PL manifold with cells (M, S)
along with, for every s ∈ S of positive codimension, an index j ∈ Y and an isomorphism
(Mj, Sj)

∼−→ (M≤s, S≤s), such that these indices and isomorphisms are (strictly) transitive in
the obvious sense, there exists i ∈ Y and an isomorphism (Mi, Si)

∼−→ (M, S) respecting these
given face identifications.

Every MF-set Y embeds into a saturated MF-set Y∞, which may be constructed (non-
canonically) as follows. We define a sequence of inclusions Y = Y−1 ↪→ Y0 ↪→ Y1 ↪→ · · · , and
we let Y∞ := lim−→Yn. To define Yn, we consider all PL manifolds with cells of dimension n with
face identifications to elements of Yn−1 as in Definition 8.7.6. The collection of isomorphism
classes of such data (manifold along with face identifications) forms a set, so we may choose
(non-canonically) a set Zn parameterizing all of them. We then set Yn := Yn−1 tZn. Now it
is easy to check that Y∞ is saturated.

Lemma 8.7.7. Let Y be a saturated MF-set. Then there is a canonical isomorphism between
singular homology H•(X) and HY

• (X) (the homology of CY
• (X)).

Proof. Since Y is saturated, there exists a morphism of MF-sets {∆n}n≥0 → {Mi}i∈Y (where

{∆n}n≥0 is as in Example 8.7.5). Since C•(X) = C
{∆n}n≥0
• (X) by definition, we obtain a

chain map C•(X)→ CY
• (X). The resulting map:

H•(X)→ HY
• (X) (8.7.2)

is independent of the choice of morphism {∆n}n≥0 → {Mi}i∈Y, as can be seen as fol-
lows. There is an MF-set {∆n}n≥0 t {∆n × [0, 1]}n≥0 t {∆n}n≥0 where each {∆n}n≥0 is
as in Example 8.7.5, where ∆n × [0, 1] is given the product stratification ([0, 1] stratified by
{{0}, {1}, (0, 1)}), and ∆n×{0} (resp. ∆n×{1}) is identified with the first (resp. second) copy
of ∆n. Since Y is saturated, it follows that for any pair of morphisms {∆n}n≥0 → {Mi}i∈Y
there is a morphism {∆n}n≥0 t {∆n × [0, 1]}n≥0 t {∆n}n≥0 → {Mi}i∈Y whose restriction to
the two copies of {∆n}n≥0 are the two given morphisms. From this data one easily con-
structs a chain homotopy between the two maps C•(X)→ CY

• (X). Hence the map (8.7.2) is
canonical.

Now let us show that (8.7.2) is an isomorphism. Fix a map {∆n}n≥0 → {Mi}i∈Y. Fix
triangulations Ti of Mi for which each M≤s

i is a union of simplices, which are compatible with
the face identifications, and which restrict to the tautological triangulation of {∆n}n≥0. Such
triangulations may be constructed by induction. By triangulation, we mean a triangulation
in which each simplex is equipped with a total order on its set of vertices, compatible with its
faces (i.e. a semisimplicial set rather than a simplicial complex). Such triangluations induce
a map of complexes CY

• (X) → C•(X), and the composition C•(X) → CY
• (X) → C•(X) is

clearly the identity map. It suffices to show that the other composition is chain homotopic
to the identity map.

Now let us define a new MF-set in terms of the map {∆n}n≥0 → {Mi}i∈Y and the
triangulations Ti. Note that the stratification of Mi by the face poset F(Ti) of Ti refines the
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stratification by Si; in other words we have maps Mi → F(Ti)→ Si. The objects of the new
MF-set are {Mi}i∈Y t {Mi × [0, 1]}i∈Y, where Mi × [0, 1] is stratified by the following strata:

M s
i × {0} s ∈ Si (8.7.3)

M s
i × (0, 1) s ∈ Si (8.7.4)

M t
i × {1} t ∈ F(Ti) (8.7.5)

Thus the poset of strata of Mi× [0, 1] is SitSitF(Ti). For the face identifications, Mi×{0}
is identified tautologically with Mi, and each of the closed strata M≤t

i × {1} (t ∈ F(Ti)) is
identified with the corresponding ∆n (considered as an object of {Mi}i∈Y via the inclusion
{∆n}n≥0 → {Mi}i∈Y).

Now we have a chain of inclusions {∆n}n≥0 ↪→ {Mi}i∈Y ↪→ {Mi}i∈Yt{Mi×[0, 1]}i∈Y. Since
Y is saturated, there in fact exists a map backwards {Mi}i∈Y t {Mi × [0, 1]}i∈Y → {Mi}i∈Y
(acting identically on {Mi}i∈Y). Using this map, we obtain a chain map CY

• (X)→ CY
•+1(X)

(precompose chains with the projection Mi × [0, 1] → Mi). This map is a chain homotopy
between the identity map and the composition CY

• (X) → C•(X) → CY
• (X), so we are

done.

Equip S1 with its standard PL structure, for which the group operations are PL.

Definition 8.7.8. An S1-MF-set is an MF-set Y along with a principal S1-bundle (ES1)Y →
(BS1)Y where (BS1)Y (and hence also (ES1)Y) is an increasing union of compact polyhedra
(we do not require (ES1)Y to be contractible), and for every i ∈ Y, a pullback diagram:

Mi (ES1)Y

Ni (BS1)Y

(8.7.6)

with PL maps where Ni (and hence also Mi) is a PL manifold, and where the stratification
on Mi is pulled back from Ni, such that these diagrams are compatible with the face identi-
fications. A map of S1-MF-sets Y → Y′ is said to be injective iff it is injective as a map of
sets and the map (ES1)Y → (ES1)Y′ is injective.

There is a forgetful functor from S1-MF-sets to MF-sets, where we remember Mi (of
course, there is another natural forgetful functor remembering Ni, though we will never use
it). When speaking of a morphism Y→ Y′ where Y is an S1-MF-set and Y′ is an MF-set, we
implicitly apply the forgetful functor to Y.

The category of S1-MF-sets has a natural symmetric monoidal structure: given S1-MF-
sets {Mi}i∈Y and {M ′

j}j∈Y′ , we may define their product {Mi ×M ′
j}(i,j)∈Y×Y′ , which is again

an S1-MF-set, via the diagonal S1-action on Mi ×M ′
j and (ES1)Y×Y′ := (ES1)Y × (ES1)Y′

with the diagonal action. The forgetful functor from S1-MF-sets to MF-sets is clearly a
symmetric monoidal functor. It also makes sense to take the product of an S1-MF-set and
an MF-set.
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For an S1-MF-set Y, let CS1,Y
• (X) (for X an S1-space) denote the complex generated by

commuting diagrams of S1-equivariant maps:

Mi X × (ES1)Y (ES1)Y

Ni (X × (ES1)Y)/S1 (BS1)Y

(8.7.7)

(i ∈ Y), where the outer square coincides with (8.7.6), with differential given by the obvious
sum over all codimension one faces. A generator (8.7.7) resides in degree dimNi. Note that
there are natural compatible maps:

CS
1,Y
• (X ′)→ CY

•+1(X) (8.7.8)

CY
• (X)⊗ CS

1,Y′

• (X ′)→ CS1,Y×Y′
• (X ×X ′) (8.7.9)

CS1,Y
• (X)⊗ CS

1,Y′

• (X ′)→ CS1,Y×Y′
•+1 (X ×X ′) (8.7.10)

Definition 8.7.9. An S1-MF-set Y is called saturated iff (ES1)Y is contractible and every
pullback diagram:

M (ES1)Y

N (BS1)Y

(8.7.11)

where N (and thus M) is a PL manifold with cells, along with strictly transitive identifi-
cations of the faces of positive codimension with elements of Y (as in Definition 8.7.8), is
isomorphic to some i ∈ Y.

Note that the notions of saturation for MF-sets and S1-MF-sets are different: an S1-MF-
set is never saturated as an MF-set.

Every S1-MF-set Y embeds into a saturated S1-MF-set Y∞, which may be constructed
(again, non-canonically) by first embedding (ES1)Y into something contractible, and then
proceeding as in the case of MF-sets.

Lemma 8.7.10. Let Y be a saturated S1-MF-set. Then there is a canonical isomorphism
between S1-equivariant singular homology HS1

• (X) and HS1,Y
• (X) (the homology of CS1,Y

• (X)).
Furthermore, the natural map CS1,Y

• (X) → CY′
•+1(X) induces the Gysin map on homology,

for Y′ a saturated MF-set.

Proof. All S1-MF-sets in this proof will share the same (ES1)Y → (BS1)Y, so we will omit
the subscript Y from the notation.

Let {∆n}n≥0,f :∆n→BS1 denote the S1-MF-set indexed by pairs (n, f) consisting of an
integer n ≥ 0 and a PL map f : ∆n → BS1, where the stratifications and face identifications

are as in Example 8.7.5. Now the complex C
S1,{∆n}n≥0,f :∆n→BS1

• (X) is freely generated by
maps ∆n → (X × ES1)/S1 whose composition with the projection (X × ES1)/S1 → BS1
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is PL. A straightforward approximation argument shows that the inclusion of this complex
into the complex generated by all maps ∆n → (X×ES1)/S1 is a quasi-isomorphism. Hence
there is a canonical isomorphism:

H
S1,{∆n}n≥0,f :∆n→BS1

• (X)
∼−→ H•((X × ES1)/S1) = HS1

• (X) (8.7.12)

As in the proof of Lemma 8.7.7 there exists a morphism of S1-MF-sets {∆n}n≥0,f :∆n→BS1 →
Y since Y is saturated. This induces a chain map C

S1,{∆n}n≥0,f :∆n→BS1

• (X)→ CS1,Y
• (X), which

as before induces a canonical map on homology:

H
S1,{∆n}n≥0,f :∆n→BS1

• (X)→ HS1,Y
• (X) (8.7.13)

which is independent of the choice of morphism {∆n}n≥0,f :∆n→BS1 → Y. It suffices to show
that this map is an isomorphism.

Fix a map {∆n}n≥0,f :∆n→BS1 → Y, which we observe is necessarily injective. Fix tri-
angulations Ti of Mi as in the proof of Lemma 8.7.7. Such triangulations induce a map of

complexes CS1,Y
• (X)→ C

S1,{∆n}n≥0,f :∆n→BS1

• (X). The composition C
S1,{∆n}n≥0,f :∆n→BS1

• (X)→
CS1,Y
• (X)→ C

S1,{∆n}n≥0,f :∆n→BS1

• (X) is clearly the identity map. It thus suffices to show that
the reverse composition is chain homotopic to the identity.

As in the proof of Lemma 8.7.7, we construct a new S1-MF-set, namely {Mi}i∈Yt{Mi×
[0, 1]}i∈Y, from the inclusion {∆n}n≥0,f :∆n→BS1 ↪→ {Mi}i∈Y and the triangulations Ti. There
are inclusions {∆n}n≥0,f :∆n→BS1 ↪→ {Mi}i∈Y ↪→ {Mi}i∈Yt{Mi× [0, 1]}i∈Y. The desired chain
homotopy may then be constructed as in the proof of Lemma 8.7.7.

The fact that the induced map HS1

• (X) → H•+1(X) is the Gysin map is left to the
reader.

8.7.2 F-modules valued in MF-sets and S1-MF-sets

Plugging the category of MF-sets into Definition 7.1.4, we may talk about F-modules valued
in MF-sets. In other words, an F-module MF-set is a collection of MF-sets Y(σ, p, q) along
with product/face maps:

Y(σ|[0 . . . k̂ . . . n], p, q)→ Y(σ, p, q) (8.7.14)

Y(σ|[0 . . . k], p, q)× Y(σ|[k . . . n], q, r)→ Y(σ, p, r) (8.7.15)

which are compatible in the sense of Definition 7.1.4. Similarly, we may talk about F-modules
of S1-MF-sets. We may also talk about morphisms from F-module S1-MF-sets to F-module
MF-sets using the forgetful functor described earlier.

Proposition 8.7.11. Let X/Z• be a flow category diagram. There exists an F-module of
MF-sets Y and an F-module of S1-MF-sets YS1 (both supported inside suppX) along with
a morphism YS1 → Y, satisfying the following property. For all (σ, p, q) ∈ suppX, both
Y(σ, p, q) and YS1(σ, p, q) are saturated, and the tautologous maps:

colim
s∈∂SX(σ,p,q)

Y(σ, p, q, s) ↪→ Y(σ, p, q) (8.7.16)

colim
s∈∂SX(σ,p,q)

YS1(σ, p, q, s) ↪→ YS1(σ, p, q) (8.7.17)
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are injective (and the colimits on the left exist). Moreover, such YS1 → Y may be constructed
by induction on (σ, p, q), partially ordered by �X (�X is well-founded, see Definition 7.4.5 or
the proof of Proposition 7.5.5).

Note the similarity of (8.7.16)–(8.7.17) with Definition 7.4.2. One should think of these
conditions as being: “Y and YS1 are both cofibrant”.

Proof. It suffices to perform the inductive step for a given (σ, p, q). First, we show that the
colimits (8.7.16)–(8.7.17) exist, essentially by rewriting the proofs of Lemmas 7.4.3 and 7.4.4
in the present context. We actually show the more general statement that the colimits:

colim
t∈T

Y(σ, p, q, t) colim
t∈T

YS1(σ, p, q, t) (8.7.18)

exist for any T ⊆ ∂SX(σ, p, q) which is downward closed. We show this by induction on the
cardinality of T. If T = ∅, existence is trivial. For T nonempty, let t0 ∈ T be any maximal
element, and observe that (8.7.18) can be written as the colimit of the diagram:

Y(σ, p, q, t0)

colim
t∈T
t≺t0

Y(σ, p, q, t)

colim
t∈T\t0

Y(σ, p, q, t)

(8.7.19)

Let us show that the top arrow is injective. Write t0 in the form (7.1.3)–(7.1.5). Then we
have:

SX(σ, p, q)≤t0 = SX(σ|[ja0 . . . ja1 ], p0, p1)× · · · × SX(σ|[jam−1 . . . jam ], pm−1, pm) (8.7.20)

Now we consider the m-cubical diagram:

m∏
i=1

[
colim

s∈∂SX(σ|[jai−1 ...jai ],pi−1,pi)
Y(σ|[jai−1

. . . jai ], pi−1, pi, s) ↪→ Y(σ|[jai−1
. . . jai ], pi−1, pi)

]
(8.7.21)

Now the top arrow of (8.7.19) is simply the map to the maximal vertex of this m-cube from
the colimit over the m-cube minus the maximal vertex (this is where we use the fact that T is
downward closed). This is injective for any cubical diagram of the form

∏m
i=1[Ai ↪→ Bi] where

each Ai ↪→ Bi is injective. Now that the top arrow in (8.7.19) is injective, the existence of
the colimit is clear (first take the colimit of underlying sets and then the rest of the structure
extends in an obvious way), and hence the colimit in (8.7.18) exists. This reasoning applies
equally well to YS1 (including (ES1)Y → (BS1)Y).

Now that we have shown that the colimits on the left hand side of (8.7.16)–(8.7.17) exist,
it remains to define Y(σ, p, q) and YS1(σ, p, q).

We observed earlier that any S1-MF-set injects into a saturated S1-MF-set. Let YS1(σ, p, q)
be any saturated S1-MF-set with an injection (8.7.17). Note that with this definition, the
product/face maps with target YS1(σ, p, q) are obvious, as is their compatibility.
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To define Y(σ, p, q), consider the following diagram:

colim
s∈∂SX(σ,p,q)

Y(σ, p, q, s)

colim
s∈∂SX(σ,p,q)

YS1(σ, p, q, s) YS1(σ, p, q)

(8.7.22)

The lower colimit is in the category of S1-MF-sets. It is clear from the inductive proof of its
existence that this particular colimit commutes with the forgetful functor to MF-sets. Hence
we may equally well think of this colimit as taking place in the category of MF-sets, and with
this perspective the definition of the vertical map is clear. Now since the horizontal map is
injective, the colimit of this diagram (in the category of MF-sets) clearly exists (first take the
colimit in sets and then the rest of the structure is obvious). We pick any saturated MF-set
into which the colimit of (8.7.22) embeds, and we call this saturated MF-set Y(σ, p, q). Via
the embedding of the upper colimit into Y(σ, p, q), it is tautological that the face/product
maps with target Y(σ, p, q) exist and are compatible. The map YS1(σ, p, q) → Y(σ, p, q) is
similarly tautological, as is the fact that it is compatible with the product/face maps.

8.7.3 Augmented virtual cochain complexes from F-module MF-sets and S1-
MF-sets

We now describe a modified version of the complexes from Definitions 7.3.1 and 7.3.3 and
their S1-equivariant versions using a choice of YS1 → Y as in Proposition 8.7.11.

Let us give alternative definitions the complexes:

C•vir(X rel ∂;A)+(σ, p, q) C•vir(∂X;A)+(σ, p, q) C•(E;A)+(σ, p, q) (8.7.23)

The “fixed fundamental cycles” [Eα] ∈ C•(E;α) still live in ordinary singular simplicial
chains. Now (8.7.23) are defined in terms of the (relative) singular chains on certain spaces;
the modification we make is just to use a different model of singular chains (depending on
(σ, p, q)) which we now describe. Our model of chains on a space X is generated by the set
of maps:

Mi ×
∏

α∈
∐

Ā(σ′,p′,q′)

∆iα → X (8.7.24)

where i ∈ Y(σ, p, q), iα ∈ Z≥0 (all but finitely many must be zero), and
∐

Ā(σ′, p′, q′) stands
for: ∐

0≤i0<···<im≤n
(p′,q′)∈Pσ(i0)×Pσ(im)

∃t∈SX(σ,p,q) containing ([i0...im],p′,q′)

Ā(σ|[i0 . . . im], p′, q′) (8.7.25)

(this is very similar to (7.2.1)). We define relative chains as usual: C•(X;Y ) := C•(X)/C•(Y )
for Y ⊆ X. It is a straightforward (though tedious) exercise to verify that with this definition
of singular chains, the structure maps for the homotopy colimits used to construct (8.7.23)
are all well-defined and appropriately compatible. We define the product ×[Eα] via the
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Eilenberg–Zilber subdivision of ∆p×∆q (as in Remark 4.2.2) at the index α. It may also be
verified in a similar manner that the product/face maps for (8.7.23) as defined in Definitions
7.3.2 and 7.3.3 make sense and are compatible given this model of chains. For these maps,
we use the product/face maps of Y along with Eilenberg–Zilber (separately at each index α).

We also define S1-equivariant versions of (8.7.23):

C•S1,vir(X rel ∂;A)+(σ, p, q) C•S1,vir(∂X;A)+(σ, p, q) CS1

• (E;A)+(σ, p, q) (8.7.26)

using C•S1,vir in place of C•vir (and CS1

• in place of C•). The fixed fundamental cycles [Eα] again
live in ordinary singular simplicial chains. We use the following as our model for (relative)
S1-equivariant chains (for C•S1,vir). Our model of S1-equivariant chains on an S1-space X is

generated by the set of commuting diagrams of S1-equivariant maps:

Mi ×
∏

α∈
∐

Ā(σ′,p′,q′) ∆iα X × (ES1)YS1 (σ,p,q)

Mi (ES1)YS1 (σ,p,q)

(8.7.27)

where i ∈ YS1(σ, p, q), the vertical maps are the projections, the bottom horizontal map is
the given structure map, and

∐
Ā(σ′, p′, q′) is as before. It is then a straightforward (though

tedious) exercise to verify that with this definition of S1-equivariant chains, the complexes
(8.7.26) are well-defined, have well-defined product/face maps, and that the obvious forgetful
maps to their non-equivariant versions (8.7.23) are well-defined and compatible with the
product/face maps.

Now it remains only to show that our models of chains and S1-equivariant chains de-
scribed above do actually calculate singular homology and S1-equivariant singular homol-
ogy.28 Note that once we do this, we can use our alternative definitions of (8.7.23) and
(8.7.26) in place of the originals in all the arguments of §7.

We show that our model of chains (generated by diagrams (8.7.24)) calculates singular
homology as follows. Let us abbreviate Y = Y(σ, p, q). Our complex generated by maps
(8.7.24) is in fact a double complex with bigrading p =

∑
α iα and q = dimMi. Now

let us consider the associated spectral sequence. We calculate the E1
p,q term as follows. By

definition E1
p,q is simply the homology of the complex with only the differentials decreasing q.

Clearly this breaks up as a direct sum over tuples {iα ∈ Z≥0}. For a given tuple {iα ∈ Z≥0},
we must calculate the homology of the complex:⊕

i∈Y
Mi×

∏
α ∆iα→X

Z (8.7.28)

We claim that this is the same as the homology of the complex:⊕
i∈Y

Mi→X

Z (8.7.29)

28Technically speaking, we must also show that the pushforward maps, product maps, and Gysin maps
have the expected action on homology, though this verification is safely left to the reader.
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There is a clearly a map (8.7.29)→ (8.7.28) (precompose with the projection Mi×
∏

α ∆iα →
Mi), and picking a point x ∈

∏
α ∆iα gives a map in the opposite direction. The composi-

tion (8.7.29) → (8.7.28) → (8.7.29) is clearly the identity. The other composition is chain
homotopic to the identity by the following argument. Since Y is saturated, we can choose a
map I : Y → Y and isomorphisms (MI(i), SI(i))

∼−→ (Mi × [0, 1], Si × S) compatible with the
face identifications, where ([0, 1], S) is the PL manifold [0, 1] with strata {{0}, {1}, (0, 1)},
and Mi × {0}, Mi × {1} have the obvious face identifications with Mi (construct I and
the isomorphisms by induction on dimension). Using this coherent choice of “cylinder ob-
jects”, it is easy to define a chain homotopy between the identity map and the composition
(8.7.28) → (8.7.29) → (8.7.28) (using the fact that

∏
α ∆iα is contractible). It follows that

the canonical map (8.7.29)→ (8.7.28) is a quasi-isomorphism. By Lemma 8.7.7, the complex
(8.7.29) calculates singular homology. Hence we conclude that the E1 term is:

E1
p,q =

⊕
∑
α iα=p

Hq(X) (8.7.30)

The differentials on the E1 page are easy to understand (essentially we have Hq(X) tensored
with the restricted tensor product

⊗
αC•(pt)). We conclude that:

E2
p,q =

{
Hq(X) p = 0

0 p 6= 0
(8.7.31)

Hence there are no further differentials and we are done.
We now use a similar argument to show that our model of S1-equivariant chains calcu-

lates S1-equivariant singular homology. Let us abbreviate YS1 = YS1(σ, p, q). Our complex
generated by maps (8.7.27) is a double complex as before, and we consider the associated
spectral sequence. As before, E1

p,q splits up as a direct sum over tuples {iα ∈ Z≥0}. For a
given tuple {iα ∈ Z≥0}, the corresponding direct summand is the homology of the complex:⊕

i∈YS1

Mi×
∏
α ∆iα → X×(ES1)Y

S1

↓ ↓
Mi → (ES1)Y

S1

Z (8.7.32)

As in the non-equivariant case, this is canonically quasi-isomorphic to:⊕
i∈YS1

Mi → X×(ES1)Y
S1

↓ ↓
Mi → (ES1)Y

S1

Z (8.7.33)

Thus by Lemma 8.7.10 the E1 term is:

E1
p,q =

⊕
∑
α iα=p

HS1

q (X) (8.7.34)
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The differentials on the E1 page are as before, and thus:

E2
p,q =

{
HS1

q (X) p = 0

0 p 6= 0
(8.7.35)

so we are done.

8.7.4 Floer-type homology groups from F-module MF-sets and S1-MF-sets

We now give a new definition of Floer-type homology groups identical to Definition 7.7.6
except using the chain models from §8.7.3. Precisely, we define a new resolution Z̃• → Z•
by including the data29 of F-module (S1-)MF-sets YS1 → Y over ∆n for f ∗X satisfying the
conclusion of Proposition 8.7.11. Now Proposition 8.7.11 implies that this new resolution
is still a trivial Kan fibration, and thus the rest of the construction of Floer-type homology
groups in §7 applies as written.

Remark 8.7.12. These Floer-type homology groups are a priori different from the ones con-
structed in §7. However, they share all the same properties, and we certainly expect them
to be canonically isomorphic (c.f. Remark 4.2.3). We won’t pursue this here, though, since
it is not necessary for our intended application.

8.7.5 Localization

The following localization result concerns the Floer-type homology groups from §8.7.4.

Theorem 8.7.13 (S1-localization for H(X)). Let X/Z• be an H-equivariant flow category
diagram with implicit atlas A and coherent orientations ω, satisfying the hypotheses of
Definition 7.7.6. Suppose that S1 acts compatibly on this entire structure (S1-actions on
X(σ, p, q) and S1-equivariant implicit atlases, so that all the relevant structure maps are
S1-equivariant).

Fix partitions (into disjoint closed subsets):

X(σ, p, q) = X(σ, p, q)0 t X(σ, p, q)1 (8.7.36)

where S1 acts almost freely on X(σ, p, q)1, and suppose that the product/face maps specialize
to maps:

X(σ|[0 . . . k], p, q)0 × X(σ|[k . . . n], q, r)0 → X(σ, p, r)0 (8.7.37)

X(σ|[0 . . . k], p, q)0 × X(σ|[k . . . n], q, r)1 → X(σ, p, r)1 (8.7.38)

X(σ|[0 . . . k], p, q)1 × X(σ|[k . . . n], q, r)0 → X(σ, p, r)1 (8.7.39)

X(σ|[0 . . . k], p, q)1 × X(σ|[k . . . n], q, r)1 → X(σ, p, r)1 (8.7.40)

X(σ|[0 . . . k̂ . . . n], p, q)0 → X(σ, p, q)0 (8.7.41)

X(σ|[0 . . . k̂ . . . n], p, q)1 → X(σ, p, q)1 (8.7.42)

29For the reader concerned with set-theoretic issues: so that the collection of all possible choices of this
data forms a set, one may add “rigidifying data” to the definition of an (S1-)MF-set, e.g. require Y to be
countable, equip Y with an injection into ω1 (the first uncountable ordinal), and equip each Mi and (ES1)Y
with an embedding into R∞ (note that this rigidifying data is not required to be compatible in any way with
the rest of the structure, and thus it does not affect any of our previous arguments).
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Assume in addition that for any vertex σ0 ∈ Z•, we have X(σ0, p, q)0 = ∅ =⇒ X(σi, p, q)0 =
∅ for all i and p 6= q.

Then there is a canonical isomorphism H(X)A = H(X0)A, where X0 is the H-equivariant
flow category diagram with product/face maps given by (8.7.37) and (8.7.41), equipped with
the implicit atlas obtained by removing X1 from every thickening.

Proof. Part I. We begin by reducing to a situation in which the partition (8.7.36) is extended
to every thickened moduli space, so that the product/face maps on thickened moduli spaces
also take the form (8.7.37)–(8.7.42). Precisely, consider a new implicit atlas Ã (on the same
index set A) in which the thickened moduli spaces are:

X(σ, p, q)≤s
Ĩ

:= [X(σ, p, q)≤sI \ X(σ, p, q)1] t [X(σ, p, q)≤sI \ X(σ, p, q)0] (8.7.43)

Now these thickened moduli spaces are by definition equipped with a partition X(σ, p, q)≤s
Ĩ

=

(X(σ, p, q)≤s
Ĩ

)0t (X(σ, p, q)≤s
Ĩ

)1 (namely the partition (8.7.43)), and the natural product/face

maps for the implicit atlas Ã take the form (8.7.37)–(8.7.42).
The thickened moduli spaces of Ã are equipped with natural maps to those of A (com-

patibile with the product/face maps); these maps are not open embeddings, but nevertheless
the proof of Lemma 7.8.2 applies to give a canonical isomorphism H(X)A = H(X)Ã. Thus it

suffices to produce an isomorphism H(X)Ã = H(X0)Ã0 , where Ã0 is the implicit atlas on X0

with thickened moduli spaces (X(σ, p, q)≤s
Ĩ

)0. From now on, we will work exclusively with

the atlas Ã, which we now rather abusively rename as A.
Part II. We will define an isomorphism H(X)A = H(X0)A0 , where A0 is the implicit atlas

on X0 with thickened moduli spaces (X(σ, p, q)≤sI )0.
Note that since we have coherent orientations ω and S1 is connected, it follows that all the

flow spaces are locally S1-orientable (see Remark 8.3.2), so we may use the S1-localization
machinery freely.

Let Z̃• → Z• denote the resolution (as in §8.7.4) associated to X/Z• with the implicit
atlas A, and let Z̃0

• → Z• denote the resolution associated to X0/Z• with the implicit atlas
A0.

We will construct a diagram of the following shape:

Z̃• Z̃a
• Z̃b

• Z̃c
• Z̃0

•

Z•

(8.7.44)

and natural diagrams H̃, H̃a, H̃b, H̃c, H̃0 from Z̃•, Z̃
a
• , Z̃

b
•, Z̃

c
•, Z̃

0
• to Ndg(ChR[[H]]) (respectively).

We will also construct natural isomorphisms relating these and their pullbacks under the
horizontal maps in (8.7.44). Finally, we will show that each of the vertical maps (8.7.44)
satisfies the conclusions of Propositions 7.5.5 and 7.7.4. The desired result follows easily
from these statements; let us now start on the proof.
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We may consider A(σ, p, q) as a system of implicit atlases on X(σ, p, q)0 and on X(σ, p, q)1

separately. Now consider the following maps (where the complexes on the left are defined
analogously to those on the right as in §8.7.3):

C•vir(∂X
0,A)+ ⊕ C•S1,vir(∂X

1,A)+ → C•vir(∂X;A)+ (8.7.45)

C•vir(X
0 rel ∂,A)+ ⊕ C•S1,vir(X

1 rel ∂,A)+ → C•vir(X rel ∂;A)+ (8.7.46)

We give C•vir(X
0 rel ∂,A)+ ⊕ C•S1,vir(X

1 rel ∂,A)+ the structure of an F-module with prod-
uct/face maps:

C•vir(X
0 rel ∂;A)+(· · · )⊗ C•vir(X

0 rel ∂;A)+(· · · )→ C•vir(∂X
0;A)+(· · · ) (8.7.47)

C•vir(X
0 rel ∂;A)+(· · · )⊗ C•S1,vir(X

1 rel ∂;A)+(· · · )→ C•S1,vir(∂X
1;A)+(· · · ) (8.7.48)

C•S1,vir(X
1 rel ∂;A)+(· · · )⊗ C•vir(X

0 rel ∂;A)+(· · · )→ C•S1,vir(∂X
1;A)+(· · · ) (8.7.49)

C•S1,vir(X
1 rel ∂;A)+(· · · )⊗ C•S1,vir(X

1 rel ∂;A)+(· · · )→ C•S1,vir(∂X
1;A)+(· · · ) (8.7.50)

C•vir(X
0 rel ∂;A)+(· · · )→ C•vir(∂X

0;A)+(· · · ) (8.7.51)

C•S1,vir(X
1 rel ∂;A)+(· · · )→ C•S1,vir(∂X

1;A)+(· · · ) (8.7.52)

just as in Definition 7.3.2 (and using the chain models from §8.7.3). These are compatible
with (8.7.45)–(8.7.46) and (7.3.6)–(7.3.7).

Next, we consider C•(E;A)+ ⊕ CS1

•−1(E;A)+ (as in §8.7.3). Now, there are two natural
maps:

C•(E;A)+ ⊕ CS1

•−1(E;A)+ C•(E;A)+
id⊕π!

id⊕0
(8.7.53)

We give C•(E;A)+ ⊕ CS1

•−1(E;A)+ the structure of an F-module with product/face maps of
the shape (8.7.47)–(8.7.52) just as in Definition 7.3.3. Then both maps (8.7.53) are maps of
F-modules. There is also a pushforward map:

CvdimX+•
vir (X0 rel ∂,A)+ ⊕ CvdimX+•

S1,vir (X1 rel ∂,A)+ → C−•(E;A)+ ⊕ CS1

−•−1(E;A)+

which is a map of F-modules.
Now let us define Z̃a

• , Z̃
b
•, and Z̃c

•. We modify the definition of Z̃• → Z• (i.e. Definition
7.5.3 as amended in §8.7.4) as follows. For Z̃a

• = Z̃c
• we replace Definition 7.5.3(iv,v) with

(i,ii) below, and for Z̃b
• we replace Definition 7.5.3(iv,v,vi) with (i,ii,iii) below.

i. An H-invariant system of chains:

λ = λ0 ⊕ λ1 ∈ C•vir(X
0 rel ∂,B)+ ⊕ C•S1,vir(X

1 rel ∂,B)+

(degree 0 and supported inside suppX) with the following property. Note that (µ, λ)
is a cycle in the mapping cone:

C•vir(∂f
∗X0;B)+

⊕
C•S1,vir(∂f

∗X1;B)+
−→

C•vir(f
∗X0 rel ∂;B)+

⊕
C•S1,vir(f

∗X1 rel ∂;B)+

whose homology is identified with Ȟ•(f ∗X0; of∗X0)⊕ Ȟ•((f ∗X1)/S1; π∗of∗X1), which in
degree zero simply equals Ȟ0(f ∗X; of∗X). We require that the homology class of (µ, λ)
equal f ∗ω ∈ Ȟ0(f ∗X; of∗X).
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ii. An H-invariant system of chains λ̃ for Q[C•(E;A)+ ⊕ CS1

•−1(E;A)+] (degree gr(q) −
gr(p)+dimσ−1 and supported inside suppX) whose image in C•(E;A)+⊕CS1

•−1(E;A)+

coincides with the image of λ.
iii. An H-invariant map of F-modules [[E]] : Q[C•(E;A)+

Z ⊕ CS1

•−1(E;A)+
Z ] → Z which

sends the fundamental class in H•(E;A)+
Z to 1 and is zero on HS1

•−1(E;A)+
Z .

The maps Z̃• ← Z̃a
• → Z̃b

• ← Z̃c
• → Z̃0

• are defined as follows:

Z̃• Z̃a
• Z̃b

• Z̃c
• Z̃0

•

λ λ λ λ0

λ̃ λ̃ λ̃ λ̃0

[[E]] [[E]] [[E]]

(8.7.46) λ=λ0⊕λ1

Q[id⊕π!] Q[id⊕0]

◦Q[id⊕π!] ◦Q[id⊕0]

(8.7.54)

Note that Lemma 8.1.2 shows that the map Z̃a → Z̃b above produces an [[E]] satisfying (iii).

Now H̃, H̃a, H̃b, H̃c, H̃0 are defined via the matrix coefficients cσ,p,q defined as follows:

for H̃: cσ,p,q := ([[E]]σ,p,q ⊗ idR)(λ̃σ,p,q)

for H̃a: cσ,p,q := ([[E]]σ,p,q ⊗ idR)(id⊕π!)(λ̃σ,p,q)

for H̃b: cσ,p,q := ([[E]]σ,p,q ⊗ idR)(λ̃σ,p,q)

for H̃c: cσ,p,q := ([[E]]σ,p,q ⊗ idR)(id⊕0)(λ̃σ,p,q)

for H̃0: cσ,p,q := ([[E]]σ,p,q ⊗ idR)(λ̃σ,p,q)

These matrix coefficients give rise to diagrams in Ndg(ChR[[H]]) since [[E]] is a map of F-
modules. The isomorphisms between these diagrams and their pullbacks under the maps
(8.7.54) are evident.

It now remains to show that each of the maps Z̃a
• , Z̃

b
•, Z̃

c
• → Z̃• satisfies the conclusions

of Propositions 7.5.5 and 7.7.4. The proof of Proposition 7.5.5 applies to Z̃a
• , Z̃

b
•, Z̃

c
• → Z̃•

as written (for Z̃b
•, the extension of [[E]] step uses the fact that H•(E;A) ⊕ HS1

•−1(E;A) is
concentrated in degrees ≥ 0 so that Lemma 7.4.7 still applies). The proof of Proposition 7.7.4
also applies to Z̃a

• , Z̃
b
•, Z̃

c
• → Z̃• as written. Now the uniqueness of descent from Lemma 7.7.5

shows that there are canonical isomorphisms of the descents H = Ha = Hb = Hc = H0.

9 Gromov–Witten invariants

In this section, we define Gromov–Witten invariants for a general smooth closed symplectic
manifold (X,ω) (which we now fix). This has been treated in the literature by Li–Tian
[LT98a], Fukaya–Ono [FO99], and Ruan [Rua99].

More specifically, the main subject of this section is the construction of an implicit atlas

on the moduli space of stable J-holomorphic maps M
β

g,n(X); the same method also yields an

implicit atlas on M
β

g,n(X, J[0,1]) (the moduli space associated to a family of J parameterized

by [0, 1]). Hence the virtual fundamental class [M
β

g,n(X)]vir (Definition 5.1.1) is defined, and
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the properties derived in §5 show that its image in H•(Mg,n×Xn) is independent of J . The
necessary gluing results (which we isolate in Proposition 9.2.6) are proved in Appendix B.

It would be interesting to use implicit atlases to prove that the invariants defined here
satisfy the Kontsevich–Manin axioms [KM94], as proved in Fukaya–Ono [FO99] for their
definition (to do this, one would need to show additional properties of the virtual fundamental
class, e.g. as suggested in §5).

9.1 Moduli space M
β

g,n(X)

Let us now fix a smooth almost complex structure J on X which is tamed by ω.

Definition 9.1.1 (Nodal curve of type (g, n)). A nodal curve of type (g, n) is a compact nodal
Riemann surface C of arithmetic genus g along with an injective function l : {1, . . . , n} → C
(the “n marked points”) whose image is disjoint from the nodes of C. An isomorphism
(C, l) → (C ′, l′) of curves of type (g, n) is an isomorphism of Riemann surfaces ι : C → C ′

such that l′ = ι ◦ l. We usually omit l from the notation. Such a curve is called stable iff its
automorphism group is finite.

We denote by Mg,n the Deligne–Mumford moduli space of stable nodal curves of type
(g, n), and we denote by Cg,n →Mg,n the universal family (which coincides with the “forget
the last marked point and stabilize” map Mg,n+1 → Mg,n). The moduli space Mg,n is a
compact complex analytic orbifold.

Definition 9.1.2 (J-holomorphic map). A J-holomorphic map of type (g, n) is a pair (C, u)
where C is a nodal curve of type (g, n) and u : C → X is smooth and satisfies ∂̄u = 0.
An isomorphism (C, u) → (C ′, u′) of J-holomorphic maps of type (g, n) is an isomorphism
ι : C → C ′ of curves of type (g, n) such that u = u′ ◦ ι. We say a J-holomorphic map is
stable iff its automorphism group (i.e. group of self-isomorphisms) is finite.

Definition 9.1.3 (Moduli space of stable maps; introduced by Kontsevich [Kon95]). Let

β ∈ H2(X,Z). We define M
β

g,n(X) as the set of stable J-holomorphic maps of type (g, n) for

which u∗[C] = β. We equip M
β

g,n(X) with the Gromov topology, which is well-known to be
compact Hausdorff.

For completeness, let us recall the definition of the Gromov topology on M
β

g,n(X). A
neighborhood base30 at a pair (C, u) may be obtained as follows. We choose some additional
`marked points on C so that it has no automorphisms fixing these points, and we consider the
graph Γu ⊆ X × Cg,n+` where Cg,n+` →Mg,n+` denotes the universal curve. A neighborhood
base at (C, u) is obtained taking all J-holomorphic maps from curves in Mg,n+` whose graph
is close to Γu in the Hausdorff topology (and forgetting the ` extra marked points). Choosing
different `′ marked points yields an equivalent neighborhood base.

30A neighborhood of a point x in a topological space X is a subset N ⊆ X such that x ∈ N◦ (the interior).
A neighborhood base at a point x ∈ X is a collection of neighborhoods {Nα} of x such that for every open
U ⊆ X containing x, there exists some Nα ⊆ U . A neighborhood base is necessarily nonempty and filtered,
i.e. for all α, β, there exists γ with Nγ ⊆ Nα∩Nβ . Conversely, given a set X and for every x ∈ X a nonempty
filtered collection of subsets {Nx

α} each containing x, there is a unique topology on X such that {Nx
α} is a

neighborhood base at x for all x ∈ X.
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9.2 Implicit atlas on M
β

g,n(X)

We define an implicit atlas AGW on M
β

g,n(X), proceeding in several steps. Note that the
space on which we will define an implicit atlas is no longer denoted X, and this leads to a
few (evident) notational differences from the earlier sections where we considered implicit
atlases abstractly.

Definition 9.2.1 (Index set AGW). A (Gromov–Witten) thickening datum α is a 6-tuple
(Dα, rα,Γα,Mα, Eα, λα) where:

i. Dα → X is a compact smooth embedded codimension two submanifold with boundary.
ii. rα ≥ 0 is an integer such that 2g + n+ rα > 2.
iii. Γα is a finite group.
iv. Mα is a smooth Γα-manifold31 equipped with an isomorphism of orbifolds between

Mα/Γα and an open subset of Mg,n+rα/Srα (let Cα → Mα be the pullback32 of the
universal family; the action of Γα on Mα lifts canonically to Cα by the universal
property of the pullback).

v. Eα is a finitely generated R[Γα]-module.
vi. λα : Eα → C∞(Cα×X,Ω0,1

Cα/Mα
⊗CTX) is a Γα-equivariant linear map supported away

from the nodes and marked points of the fibers of Cα →Mα.
Let AGW denote the set33 of all thickening datums.

Definition 9.2.2 (Transversality of smooth maps). Let u : C → X be a smooth map from
a nodal curve of type (g, n), and let D ⊆ X be a smooth codimension two submanifold with
boundary. We say u is transverse to D (written u t D) iff u−1(∂D) = 0 and ∀ p ∈ u−1(D),
the derivative du : TpC → Tu(p)X/Tu(p)D is surjective and p is neither a node nor a marked
point of C.

Definition 9.2.3 (I-thickened J-holomorphic map). Let I ⊆ AGW be a finite subset.
An I-thickened J-holomorphic map of type (g, n) is a quadruple (C, u, {φα}α∈I , {eα}α∈I)
where:

i. C is a nodal curve of type (g, n).
ii. u : C → X is a smooth map such that u t Dα with exactly rα intersections for all
α ∈ I.

iii. φα : C → Cα an isomorphism between C (with rα extra marked points u−1(Dα)) and
some fiber of Cα →Mα.

iv. eα ∈ Eα.
v. The following I-thickened ∂̄-equation is satisfied:

∂̄u+
∑
α∈I

λα(eα)(φα, u) = 0 (9.2.1)

31Note that we do not assume Γα acts effectively on Mα. Indeed, M1,1 and M2,0 are ineffective orbifolds,
so we must allow ineffective actions if we want Mα/Γα to be isomorphic to an open subset of one of these
spaces.

32Pullback here means the orbifold fiber product (see Remark 2.1.6). Note that the fibers of Cα → Mα

are nodal curves of type (g, n+ rα) (not quotiented by their automorphism group).
33The reader concerned with set theoretic issues may wish to add “rigidifying data” to the definition of a

thickening datum as in Remark 2.2.1.
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This equation takes place in C∞(C̃,Ω0,1

C̃
⊗C u

∗TX). Certainly ∂̄u is a smooth section

of Ω0,1

C̃
⊗C u

∗TX over C̃. To interpret λα(eα)(φα, u) as such a section, consider the
following composition:

C
(φα,u)−−−→ Cα ×X

λ(eα)−−−→ Ω0,1

Cα/Mα
⊗C TX (9.2.2)

This sends a point p ∈ C to an element of (Ω0,1

Cα/Mα
)φα(p) ⊗ Tu(p)X, which we identify

via φα with (Ω0,1
C ⊗C u

∗TX)p. This is what we mean by λα(eα)(φα, u).
An isomorphism ι : (C, u, {φα}α∈I , {eα}α∈I) → (C ′, u′, {φ′α}α∈I , {e′α}α∈I) between two I-
thickened J-holomorphic maps of type (g, n) is an isomorphism ι : C → C ′ of curves of
(g, n)-type such that u = u′ ◦ ι, φα = φ′α ◦ ι, and eα = e′α. We say an I-thickened J-
holomorphic map is stable iff its automorphism group (i.e. group of self-isomorphisms) is
finite.

Definition 9.2.4 (Atlas data for AGW on M
β

g,n(X)). We define M
β

g,n(X)I as the set of isomor-
phism classes of stable I-thickened J-holomorphic maps of type (g, n) such that u∗[C] = β.

Equip M
β

g,n(X)I with the Gromov topology34 for (u, φα) and with the obvious topology for

eα. It is clear by definition that M
β

g,n(X) = M
β

g,n(X)∅.

There is an evident action ΓI on M
β

g,n(X)I , namely {gα}α∈I · (u, {φα}α∈I , {eα}α∈I) =
(u, {gα · φα}α∈I , {gα · eα}α∈I) which works since λα(eα)(φα, u) = λα(gα · eα)(gα · φα, u) by
Γα-equivariance.

There are evident maps sα : M
β

g,n(X)I → Eα simply picking out eα.

For I ⊆ J ⊆ AGW, there is an obvious forgetful map ψIJ : (sJ\I |M
β

g,n(X)J)−1(0) →
M

β

g,n(X)I . Let UIJ ⊆ M
β

g,n(X)I consist of those elements such that u t Dα with exactly
rα intersections for all α ∈ J \ I and such that adding these extra marked points makes C
isomorphic to a fiber of Cα → Mα. It’s not too hard to see that this is an open set (using
elliptic regularity).

The compatibility axioms are all immediate, though let us justify the homeomorphism

axiom. First, we claim that the map (sJ\I |M
β

g,n(X)J)−1(0)/ΓJ\I → UIJ ⊆M
β

g,n(X)I induced
by ψIJ is a bijection. This is more or less clear: fixing an element of UIJ , an inverse image
must have eα = 0 for α ∈ J \ I, and by definition of UIJ , there exists a suitable φα which
is clearly unique up to the action of Γα for α ∈ J \ I. That the topologies coincide can be
checked directly from their definition.

Definition 9.2.5 (Regular locus for AGW on M
β

g,n(X)). We define M
β

g,n(X)reg
I ⊆M

β

g,n(X)I .

Let (C, u0, {φα}α∈I , {eα}α∈I) ∈ M
β

g,n(X)I . Roughly speaking, this point is contained in

M
β

g,n(X)reg
I iff it has trivial automorphism group and the “vertical” (i.e. from a fixed domain

curve) linearized version of the I-thickened ∂̄-equation (9.2.1) is surjective. Let us now make
this precise.

34When I 6= ∅, this topology is easy to define: it is simply given by using the Hausdorff distance on the
image C ⊆ X ×

∏
α∈I Cα.
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Consider the smooth Banach manifold W k,p(C,X) for some large integer k and some p ∈
(1,∞). Note that the condition u t Dα with exactly rα intersections making C isomorphic
to a fiber of Cα/Mα (for all α ∈ I) forms an open subset of W k,p(C,X) containing u0.
Furthermore, there is a unique continuous choice of:

C ×W k,p(C,X)→ Cα (9.2.3)

over C times a neighborhood of u0 which extends φα on C × {u0} (this holds because
Mα → Mg,n+rα/Srα is an étale map of orbifolds). One can also check that this map (9.2.3)
is highly differentiable (this depends on k being large).

Now we consider the smooth Banach bundle whose fiber over (u, {eα}α∈I) ∈ W k,p(C,X)×
EI is W k−1,p(C̃,Ω0,1

C̃
⊗Cu

∗TX) (where C̃ is the normalization of C). Now the left hand side of
(9.2.1) (using (9.2.3) in place of φα) is a highly differentiable section of this bundle. We say

that (C, u0, {φα}α∈I , {eα}α∈I) ∈M
β

g,n(X)reg
I iff the following two conditions hold:

i. This section is transverse to the zero section at (u0, eα).
ii. The automorphism group of (C, u0, {φα}α∈I , {eα}α∈I) is trivial.

It is an easy exercise in elliptic regularity to show that the first condition is independent of
the choice of (k, p) (as long as k is sufficiently large so that the condition makes sense).

Let:
vdimM

β

g,n(X) := dimMg,n + (1− g) dimX + 2〈c1(X), β〉 (9.2.4)

Let us now verify the transversality axioms. Freeness of the action of ΓJ\I on ψ−1
IJ (Xreg

I )
follows from the fact that points in Xreg

I have trivial automorphism group. The openness
and submersion axioms follow from the following result, whose proof is given in Appendix
B.

Proposition 9.2.6 (Formal regularity implies topological regularity). For all I ⊆ J ⊆ AGW,
we have:

i. M
β

g,n(X)reg
I ⊆M

β

g,n(X)I is an open subset.

ii. The map sJ\I : M
β

g,n(X)J → EJ\I is locally modeled on the projection:

RvdimM
β
g,n(X)+dimEI × RdimEJ\I → RdimEJ\I (9.2.5)

over ψ−1
IJ (M

β

g,n(X)reg
I )) ⊆M

β

g,n(X)J .
iii. There is a canonical identification of the orientation local system o

M
β
g,n(X)reg

I

with oEI

(by the standard reduction to the canonical orientation of a complex linear Fredholm
operator as in McDuff–Salamon [MS94, MS04]).

Near points of M
β

g,n(X)reg
I with smooth domain curve, the proposition follows from stan-

dard techniques (implicit function theorem, elliptic regularity, and an index theorem). The
real content of the proposition is that it holds near points with nodal domain curve.

Finally, let us verify the covering axiom.

Lemma 9.2.7. Let f : Nn → Mm be a smooth map of smooth manifolds with n ≤ m.
Then for every p ∈ N with dfp injective and every neighborhood U of f(p), there exists a
codimension n smooth submanifold with boundary D ⊆ M contained in U such that f t D
and f−1(D) contains a point arbitrarily close to p.
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Proof. After possibly shrinking U , choose a local projection π : U → TpN . Then let D be
π−1 of a regular value of π ◦ f (which exists by Sard’s theorem).

Lemma 9.2.8 (Domain stabilization for stable J-holomorphic maps). Let u : C → X be
a stable J-holomorphic map. Then there exists a smooth codimension two submanifold with
boundary D ⊆ X such that u t D and adding u−1(D) to C as extra marked points makes C
stable.

Proof. Let us observe that if C0 ⊆ C is any unstable irreducible component, we must have
u : C0 → X is nonconstant. Hence since u is J-holomorphic, it follows that there is a point
on C0 (which is not a node or marked point) where du is injective. It follows using Lemma
9.2.7 that there exists D ⊆ X such that u t D and adding u−1(D) to C as marked points
makes C stable.

Lemma 9.2.9 (Covering axiom for AGW on M
β

g,n(X)). We have:

M
β

g,n(X) =
⋃

I⊆AGW

ψ∅I((sI |M
β

g,n(X)reg
I )−1(0)) (9.2.6)

Proof. Fix a point in M
β

g,n(X) (that is, a curve u : C → X). We will construct α ∈ AGW so

that this point is contained in ψ∅{α}((sα|M
β

g,n(X)reg
{α})

−1(0)).
First, pick Dα ⊆ X satisfying the conclusion of Lemma 9.2.8.
Now let rα = #u−1(Dα). Adding u−1(Dα) as extra marked points to C gives a point

in Mg,n+rα/Srα , and we pick some local orbifold chart Mα/Γα → Mg,n+rα/Srα covering this
point.

Now let us consider the linearized ∂̄ operator:

D∂̄(u, ·) : C∞(C, u∗TX)→ C∞(C̃,Ω0,1

C̃
⊗C u

∗TX) (9.2.7)

(C̃ being the normalization of C) where C∞(C, u∗TX) ⊆ C∞(C̃, u∗TX) is the subspace of
functions descending continuously to C. If (k, p) ∈ Z≥1 × (1,∞) with kp > 2, then we get a
corresponding D∂̄(u, ·) map W k,p → W k−1,p (the restriction on (k, p) comes from the need
to define W k,p(C, u∗TX) ⊆ W k,p(C̃, u∗TX)). This operator is Fredholm; in particular its
cokernel is finite-dimensional.

Suppose we have a finite-dimensional vector space E0 equipped with a linear map:

λ̃0 : E0 → C∞(C̃,Ω0,1

C̃
⊗C u

∗TX) (9.2.8)

supported away from (the inverse image in C̃ of) the nodes and marked points of C. Then
the following conditions are equivalent (exercise using elliptic regularity):

i. (9.2.8) is surjective onto the cokernel of D∂̄(u, ·) : C∞ → C∞.
ii. (9.2.8) is surjective onto the cokernel of D∂̄(u, ·) : W k,p → W k−1,p for some (k, p).
iii. (9.2.8) is surjective onto the cokernel of D∂̄(u, ·) : W k,p → W k−1,p for all (k, p).

There exists such a pair E0 and λ̃0 satisfying these conditions since we may choose k = 1 and
p > 2 and then remember that C∞ functions supported away from the nodes and marked
points are dense in W 0,p = Lp.
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Now pick any isomorphism to a fiber φα : C → Cα and extend λ̃0 to a map λ0 : E0 →
C∞(Cα×X,Ω0,1

Cα/Mα
⊗CTX) supported away from the nodes and marked points of the fibers.

Define Eα = E0[Γ] and define λα : Eα → C∞(Cα×X,Ω0,1

Cα/Mα
⊗C TX) by Γα-linear extension

from λ0. It is now clear by definition that u : C → X is covered by M
β

g,n(X)reg
{α}, where

α ∈ AGW is the element just constructed.

We have now shown the following.

Theorem 9.2.10. AGW is an implicit atlas on M
β

g,n(X).

9.3 Definition of Gromov–Witten invariants

Definition 9.3.1 (Gromov–Witten invariants). Fix nonnegative integers g and n with 2g+
n > 2, and fix β ∈ H2(X;Z). By Proposition 9.2.6, the virtual orientation sheaf induced by
AGW is canonically trivialized. Thus the implicit atlas AGW induces a virtual fundamental

class [M
β

g,n(X)]vir ∈ Ȟ•(Mβ

g,n(X);Q)∨. We define the Gromov–Witten invariant :

GWβ
g,n(X) ∈ H•(Mg,n ×Xn;Q) (9.3.1)

as the pushforward of [M
β

g,n(X)]vir under the tautological map M
β

g,n(X)→Mg,n×Xn. This
is well-defined by the next lemma.

Lemma 9.3.2. GWβ
g,n(X) ∈ H•(Mg,n ×Xn) is independent of the choice of J .

Proof. Let J0 and J1 be any two smooth ω-tame almost complex structures on X. We denote

by M
β

g,n(X, J0) and M
β

g,n(X, J1) the corresponding moduli spaces of stable maps (denoted

earlier by simply M
β

g,n(X) when we considered just a fixed J).
There exists a smooth path of ω-tame almost complex structures J[0,1] = {Jt}t∈[0,1] con-

necting J0 and J1. Let us consider the corresponding “parameterized” moduli space of

stable maps M
β

g,n(X, J[0,1]). The construction from §9.2 gives an implicit atlas with bound-

ary AGW on M
β

g,n(X, J[0,1]) whose restriction to ∂M
β

g,n(X, J[0,1]) := M
β

g,n(X, J0)tMβ

g,n(X, J1)
agrees with AGW on these spaces. Hence it follows using Lemmas 5.2.3 and 5.2.5 that

[M
β

g,n(X, J0)]vir = [M
β

g,n(X, J1)]vir in Ȟ•(M
β

g,n(X, J[0,1]))
∨, which is enough.

10 Hamiltonian Floer homology

In this section, we define Hamiltonian Floer homology for a general closed symplectic man-
ifold M (which we now fix). We also calculate Hamiltonian Floer homology using the S1-
localization idea of Floer, and we derive the Arnold conjecture from this calculation. These
results (in this generality) are originally due to Liu–Tian [LT98b], Fukaya–Ono [FO99], and
Ruan [Rua99]. For a general introduction to Hamiltonian Floer homology, the reader may
consult Salamon [Sal99] (we assume some familiarity with the basic theory).

The main content of this section is the construction of implicit atlases on the relevant
spaces of stable pseudo-holomorphic cylinders. Once we do this, the definition from §7 gives
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the desired homology groups. We also construct S1-equivariant implicit atlases on the moduli
spaces for time-independent Hamiltonians. This allows us to use the S1-localization results
of §8 to show that Hamiltonian Floer homology coincides with Morse homology (a standard
corollary of which is the Arnold conjecture). The necessary gluing results are stated in
Propositions 10.3.3 and 10.6.2 and are proved in Appendix C.

It would be interesting to define this isomorphism as in Piunikhin–Salamon–Schwarz
[PSS96] using their moduli spaces of “spiked disks” (this route avoids the use of S1-localization).

10.1 Preliminaries

Definition 10.1.1 (Abelian cover of free loop space). Let L0M denote the space of null-

homotopic smooth maps S1 → M , and let L̃0M denote the space of such loops together

with a homology class of bounding 2-disk. Then L̃0M → L0M is a π-cover where π =
im(π2(M)→ H2(M ;Z)).35

Definition 10.1.2 (Hamiltonian flows). For a smooth function H : M × S1 → R, let
XH : M×S1 → TM denote the Hamiltonian vector field induced by H, and let φH : M →M
denote the time 1 flow map of XH . A periodic orbit of H is a smooth function γ : S1 → M
satisfying γ′(t) = XH(t)(γ(t)). Let C∞(M ×S1)reg ⊆ C∞(M ×S1) denote those functions H
for which φH has non-degenerate fixed points.

Definition 10.1.3 (Simplicial sets of H and J). Define the simplicial set H•(M) where
Hn(M) is the set of smooth functions H : ∆n → C∞(M × S1) which are constant near the
vertices and send the vertices to C∞(M × S1)reg. Define the simplicial set J•(M) where
Jn(M) is the set of smooth functions J : ∆n → J(M) which are constant near the vertices
(J(M) is the space of smooth almost complex structures tamed by ω) and which send the
vertices to almost complex structures which are ω-compatible.

It is easy to see that H•(M) and J•(M) are both contractible Kan complexes. A semisim-
plicial set Z• is a contractible Kan complex iff every map ∂∆n → Z• can be extended to a
map ∆n → Z• for all n ≥ 0 (where ∆n is the semisimplicial n-simplex).

Let JH•(M) = J•(M)×H•(M), which of course is also a contractible Kan complex.

Definition 10.1.4 (Standard Morse function on ∆n). For this definition, let us view the
n-simplex ∆n as:

∆n = {x ∈ [0, 1]n+1 : 0 = x0 ≤ · · · ≤ xn ≤ 1} (10.1.1)

The ith vertex of ∆n is given by xn−i = 0 and xn−i+1 = 1. We now consider the Morse
function on ∆n given by f(x) :=

∑n
i=1 cosπxi. Its gradient:

∇f(x) =
n∑
i=1

π sin(πxi)
∂

∂xi
(10.1.2)

is tangent to the boundary of ∆n, and its critical points are precisely the vertices of ∆n,
the index at vertex i being n − i. Note also that for any facet inclusion ∆k ↪→ ∆n, the
pushforward of ∇f is again ∇f .

35We could just as easily work on the smaller cover corresponding to the image of ω ⊕ c1(M) : π2(M)→
R⊕ Z. The corresponding equivalence relation is that f1, f2 : D2 →M with f1|S1 = f2|S1 are equivalent iff
ω and c1(M) both vanish on “f1 − f2”∈ π2(M).
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Let us consider the space F(∆n) of broken Morse flow lines from vertex 0 (index n) to
vertex n (index 0). This space is homeomorphic to a cube [0, 1]n−1, the factors [0, 1] being
naturally indexed by the “middle vertices” 1, . . . , n − 1 of ∆n. A flow line is broken at a
vertex i ∈ {1, . . . , n− 1} iff the corresponding coordinate in [0, 1]n−1 equals 1. Note that for
any simplex σ there are canonical compatible product/face maps:

F(σ|[0 . . . k])× F(σ|[k . . . n])→ F(σ) (10.1.3)

F(σ|[0 . . . k̂ . . . n])→ F(σ) (10.1.4)

See also §C.13.1 for more details. Adams [Ada56] considered spaces of paths on ∆n with the
same key properties (though it is important that our flow lines are smooth, whereas Adams’
are not).

10.2 Moduli space of Floer trajectories

Let us now define the flow category diagram (Definition 7.2.1) which gives rise to Hamiltonian
Floer homology.

Definition 10.2.1. For H ∈ C∞(M×S1)reg, let PH ⊆ L̃0M denote the set of null-homotopic
periodic orbits equipped with a homology class of bounding 2-disk.

In the following definition, the reader may prefer to focus on the cases n = 0 (Floer
trajectories relevant for the differential), n = 1 (Floer trajectories relevant for the continua-
tion maps), and n = 2 (Floer trajectories relevant for the homotopies between continuation
maps).

Definition 10.2.2 (Floer trajectory). Let σ ∈ Jn(M)×Hn(M) be an n-simplex; we denote
by Hσ : ∆n ×M × S1 → R and Jσ : ∆n → J(M) the corresponding smooth families. Let
p ∈ PH0 and q ∈ PHn be periodic orbits, where Hi = Hσ(i ∈ ∆n, ·, ·) is the Hamiltonian
associated to the ith vertex of ∆n. A Floer trajectory of type (σ, p, q) is a triple (C, `, u)
where:

i. C is a nodal curve of type (0, 2). Let us call the two marked points x−, x+ ∈ C, and
let k = k(C) be the number of vertices (irreducible components of C) on the unique
path from x− to x+ in the dual graph of C.

ii. ` :
∐k

i=1 R→ ∆n is a broken Morse flow line from vertex 0 to vertex n (for the Morse
function in Definition 10.1.4). Let 0 = v0 ≤ · · · ≤ vk = n be the corresponding
sequence of vertices. We allow ` to contain constant flow lines, i.e. we allow vi = vi+1.

iii. u : C → M × S1 ×
∐k

i=1 R is a smooth building of type (σ, p, q), by which we mean
the following. Let C◦ be C punctured at {x−, x+} and at the nodes corresponding to
the edges in the unique path in the dual graph of C from x− to x+. The connected
components {C◦1 , . . . , C◦k} are naturally ordered (x− on the 1st component and x+ on
the kth component). There must be periodic orbits {γ0, . . . , γk} where γi ∈ PHvi with
γ0 = p and γk = q. Then the negative (resp. positive) end of C◦i must be asymptotic
to (γi−1(t), t) (resp. (γi(t), t)) (with multiplicity one). We also require that u have
“finite energy”. In addition, u|C◦i must be in the correct homology class: the element
of π2(M) obtained by gluing together u|C◦i (resolving any nodes of C◦i ) with the given
disks bounding γi and γi−1 must vanish in homology.

102



iv. u is pseudo-holomorphic with respect to the almost complex structure on M × S1 ×∐k
i=1 R defined as follows. Use coordinates (t, s) ∈ S1 ×

∐k
i=1 R. Fix the standard

almost complex structure on S1×
∐k

i=1 R, namely JS1×
∐k
i=1 R( ∂

∂s
) = ∂

∂t
. Also fix the (s-

dependent) almost complex structure Jσ(`(s)) onM . We let A : T [S1×
∐k

i=1 R]→ TM
be defined by A( ∂

∂s
) = XHσ(`(s),t,·) and extended anti-holomorphically. Now we use the

following almost complex structure on M × S1 ×
∐k

i=1 R:

J =

(
Jσ(`(s)) A

0 JS1×
∐k
i=1 R

)
(10.2.1)

Note that the projection M × S1 ×
∐k

i=1 R→ S1 ×
∐k

i=1 R is holomorphic.
An isomorphism ι : (C, `, u)→ (C ′, `′, u′) of Floer trajectories is an isomorphism ι1 : C → C ′

of curves of type (0, 2) and an isomorphism ι2 :
∐k

i=1 R→
∐k

i=1 R (acting by translation on
each factor and respecting the ordering of the terms; note that the existence of ι1 implies
that k(C) = k(C ′)) such that u = (idM×S1 ×ι−1

2 ) ◦ u′ ◦ ι1 and ` = `′ ◦ ι2. We say a Floer
trajectory is stable iff its automorphism group (i.e. group of self-isomorphisms) is finite.

Definition 10.2.3. We define a π-equivariant flow category diagram M/JH•(M) as fol-
lows.

i. For a vertex (J,H) ∈ J0(M)×H0(M), we let P(J,H) = PH .
ii. The grading gr : P → Z is the usual Conley–Zehnder index, and gr : π → Z is given

by gr(h) = 2〈c1(TM), h〉.
iii. The action a : P → R is the usual symplectic action, and a : π → R is given by

a(h) = 〈ω, h〉.
iv. We let M(σ, p, q) be the set of stable Floer trajectories of type (σ, p, q), equipped with

the Gromov topology. It is well-known that M(σ, p, q) is compact Hausdorff. The
finiteness conditions required on M(σ, p, q) also follow from Gromov compactness.
The product/face maps on M(σ, p, q) are evident.

v. The action of π on everything is clear.

10.3 Implicit atlas

Let us now define an implicit atlas on the flow category diagram M/JH•(M) (recall Definition
7.2.4). This construction follows the same outline as the construction of an implicit atlas on
the moduli space of stable maps in §9.2 (the main difference being that here there is more
notation to keep track of). Note that the flow category diagram on which we will define
an implicit atlas is no longer denoted X/Z•, and this leads to a few (evident) notational
differences from §7 where we considered implicit atlases on flow category diagrams abstractly.

Definition 10.3.1 (Index set AHF(∆n)). A (Hamiltonian Floer) thickening datum α on the
simplex ∆n is a quadruple (Dα, rα, Eα, λα) where:

i. Dα ⊆ M × S1 × ∆n is a compact smooth submanifold with corners locally modeled
on RN

≥0 × RN ′ ⊆ RN
≥0 × RN ′+2 or RN+1

≥0 × RN ′ ⊆ RN
≥0 × RN ′+3. Let us denote by

∂essDα ⊆ ∂Dα the closure of ∂Dα \ [M×S1×∂∆n] (which is precisely the set of points
with local model of the second type).
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ii. rα ≥ 1 is an integer; let Γα = Srα .
iii. Eα is a finitely generated R[Srα ]-module.
iv. λα : Eα → C∞(C0,2+rα ×M,Ω0,1

C0,2+rα/M0,2+rα
⊗R TM) is an Srα-equivariant linear map

supported away from the nodes and marked points of the fibers of C0,2+rα →M0,2+rα

(the universal family).
Let AHF(∆n) denote the set of all thickening datums on ∆n.

We define a π-equivariant implicit atlas A on the flow category diagram M/JH•(M) as
follows. We set Ā(σ, p, q) := AHF(σ). Let us now define the implicit atlas on M(σ, p, q)≤s

with index set A(σ, p, q)≥s (built from Ā(σ, p, q) as in (7.2.1)).

Definition 10.3.2 (Atlas data for A(σ, p, q)≥s on M(σ, p, q)≤s). For I ⊆ A(σ, p, q)≥s, an
I-thickened Floer trajectory of type (σ, p, q)≤s is a 5-tuple (C, `, u, {φα}α∈I , {eα}α∈I) where:

i. C is a nodal curve of type (0, 2).
ii. ` :

∐k
i=1 R→ ∆n is a broken flow line from vertex 0 to vertex n.

iii. u : C →M ×S1×
∐k

i=1 R is a smooth building of type (σ, p, q) (in the sense of Defini-
tion 10.2.2(iii)), with combinatorial type of u belonging to SM(σ, p, q)≤s. Recall that by
definition (see (7.2.1)), A(σ, p, q)≥s is a disjoint union of various Ā(σ|[i0 . . . in], p′, q′) :=
AHF(σ|[i0 . . . in]). Hence any given α ∈ I comes from one of these, say Ā(σ|[iα0 . . . iαn], p′α, q

′
α).

Let Cα ⊆ C denote the union of irreducible components corresponding to this triple,
which exists because the combinatorial type of u belongs to SM(σ, p, q)≤s (this Cα is a
key notion for the present construction of an implicit atlas).

iv. For all α ∈ I, we must have u|Cα t Dα with exactly rα intersections. By u|Cα t
Dα, we mean that under the map (idM×S1 ×`) ◦ u : Cα → M × S1 × ∆σ|[i0...im], we
have36 Cα ∩ ∂essDα = ∅ and for every point p ∈ Cα mapping to Dα, the derivative
d((idM×S1 ×`) ◦ u) : TpC → Tu(p)[M × S1 × ∆σ|[i0...im]]/Tu(p)Dα is surjective and p is
not a node or marked point of C.

v. φα : Cα → C0,2+rα is an isomorphism with a fiber (where Cα is considered to have two
marked points x−, x+ corresponding to p′α, q

′
α plus the rα marked points (u|Cα)−1(Dα)).

vi. eα ∈ Eα.
vii. The following I-thickened ∂̄-equation is satisfied:

∂̄u+
∑
α∈I

λα(eα)(φα, u) = 0 (10.3.1)

where we use the almost complex structure on M × S1 ×
∐k

i=1 R defined in (10.2.1).
The term λα(eα)(φα, u) only makes sense over Cα; we interpret it as zero over the rest
of C. Note that for (10.3.1), we project λα onto Ω0,1

C0,2+rβ
/M0,2+rβ

⊗C TMJσ(`(s)).

An isomorphism between two I-thickened Floer trajectories (C, `, u, {eα}, {φα}) and (C ′, `′, u′, {e′α}, {φ′α})
is an isomorphism ι1 : C → C ′ of curves of type (0, 2) and an isomorphism ι2 :

∐k
i=1 R →∐k

i=1 R (acting by translation on each factor and respecting the ordering of the terms; note
that the existence of ι1 implies that k(C) = k(C ′)) such that u = (idM×S1 ×ι−1

2 ) ◦ u′ ◦ ι1,

36The closure of the image Cα is precisely the image of Cα union the asymptotic periodic orbits.

104



` = `′ ◦ ι2, φα = φ′α ◦ ι1, and eα = e′α for all α ∈ I. We say an I-thickened Floer trajectory
is stable iff its automorphism group (i.e. group of self-isomorphisms) is finite.

Let M(σ, p, q)≤sI denote the set of stable I-thickened Floer trajectories of type (σ, p, q)≤s,
and equip it with the Gromov topology. The actions of ΓI on the thickened moduli spaces,
the functions sI , the projections ψIJ , and the sets UIJ are all defined as in Definition 9.2.4
from the Gromov–Witten setting.

The stratification of M(σ, p, q)≤sI by SM(σ, p, q)≤s is evident.

The compatibility axioms for A(σ, p, q)≥s on M(σ, p, q)≤s are all immediate; the homeo-
morphism axiom can again be verified directly as in the Gromov–Witten setting.

The regular loci for A(σ, p, q)≥s on M(σ, p, q)≤s are defined following Definition 9.2.5,
meaning that a 5-tuple (C, `, u, {φα}α∈I , {eα}α∈I) is regular iff it has trival automorphism
group and the linearized operator (fixing C and varying u, `, and {eα}α∈I) is surjective (see
§C.1.6 for more details). Let vdimM(σ, p, q)≤s := gr(q)− gr(p) + dimσ − 1− codim s.

Let us now discuss the (nontrivial) transversality axioms for A(σ, p, q)≥s on M(σ, p, q)≤s.
The openness and submersion axioms follow from the following result, whose proof is given
in Appendix C.

Proposition 10.3.3 (Formal regularity implies topological regularity). For all I ⊆ J ⊆
A(σ, p, q)≥s, we have:

i. (M(σ, p, q)≤sI )reg ⊆M(σ, p, q)≤sI is an open subset.
ii. The map sJ\I : M(σ, p, q)≤sJ → EJ\I over the locus ψ−1

IJ ((M(σ, p, q)≤sI )reg) ⊆M(σ, p, q)≤sJ
is locally modeled on the projection:

RvdimM(σ,p,q)≤s+dimEI × RdimEJ\I → RdimEJ\I (10.3.2)

over the top stratum s ∈ SM(σ, p, q)≤s. More generally, the local model (compatible with
stratifications) is given by replacing the first factor on the left by Rn

≥0 × Rn′ stratified
appropriately by SM(σ, p, q).

iii. There exist π-invariant coherent trivializations of the local systems o
(M(σ,p,q)≤s

I )reg ⊗o∨EI
(in the sense of Definition 7.2.6).

Finally, to verify the covering axiom, we use the general strategy from Lemma 9.2.9 in
the Gromov–Witten case. To apply this in the present setting, we just need the following
stabilization lemma to take the place of Lemma 9.2.8.

Lemma 10.3.4 (Domain stabilization for stable Floer trajectories). Let ` :
∐k

i=1 R → ∆n

and u : C →M ×S1×
∐k

i=1 R be a point in M(σ, p, q). Then there exists D ⊆M ×S1×∆n

as in Definition 10.3.1(i) such that C t D in the sense of Definition 10.3.2(iv) and so that
adding the intersections to C as extra marked points makes C stable.

Proof. As in the proof of Lemma 9.2.8, we use (an appropriate variant for manifolds with
corners of) Lemma 9.2.7 (which we may also use to avoid the periodic orbits in question). It
thus suffices to show that for any unstable component C0 of C, there exists a point p ∈ C0

where d((idM×S1 ×`)◦u) : TC0 → TM ×TS1×T∆n injective. To find such a point, we split
into two cases.
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First, suppose u : C0 → S1 × R is constant. Then u : C0 → M is a (nonconstant!)
J-holomorphic sphere, and thus has a point of injectivity of du.

Second, suppose u : C0 → S1 × R is not constant. Then u : C0 → S1 × R is an
isomorphism; let us use (t, s) ∈ S1 × R as coordinates on C0. Now ∂u

∂t
∈ TM × TS1 has

nonzero coordinate in the TS1 component (everywhere), and ∂u
∂s
∈ TM × TS1 has zero

coordinate in the TS1 coordinate (everywhere). Hence if du is everywhere noninjective,
we find that ∂u

∂s
= 0 ∈ TM × TS1 everywhere. It follows that u : C0 → M × S1 is

independent of the R coordinate, and thus is simply a trivial cylinder mapping onto a
periodic orbit. Now the stability condition (the automorphism group being finite) implies
that the corresponding (piece of a) flow line ` : R → ∆n is nontrivial. It follows that we
have the desired injectivity.

Theorem 10.3.5. A is a π-equivariant implicit atlas on M/JH•(M).

Proof. We have shown above that each individual A(σ, p, q)≥s is an implicit atlas on M(σ, p, q)≤s.
The required compatibility isomorphisms between these implicit atlases follow directly from
the definition.

10.4 Definition of Hamiltonian Floer homology

Definition 10.4.1 (Hamiltonian Floer homology). We have a π-equivariant flow category di-
agram M/JH•(M) equipped with an implicit atlas A. Moreover, Proposition 10.3.3 gives co-
herent orientations ω. Hence according to Definition 7.7.6, we get a diagram FH : JH•(M)→
H0(ChQ[[π]]) (the hypotheses of Definition 7.7.6 can be easily verified). Since JH•(M) is a
contractible Kan complex, this is really just a single object FH•(M) ∈ H0(ChQ[[π]]) which
we call the Hamiltonian Floer homology of M .

Remark 10.4.2. The ring Q[[π]] is the graded completion of Q[π], see Definition 7.7.2.

10.5 S1-invariant Hamiltonians

To calculate the Hamiltonian Floer homology FH•(M) as defined above, we consider the
case when H is a (time-indepedent) Morse function on M .

Fix a smooth almost complex structure J on M compatible with ω. This induces a metric
on M , so there is a notion of gradient flow line for smooth functions on M .

Let H : M → R be a Morse function for which the time 1 Hamiltonian flow map of H
has non-degerate fixed points, all of which are critical points of H (for example, H = ε ·H0 is
such a function for any Morse function H0 : M → R and sufficiently small ε > 0). Consider
the inclusion ∗ ↪→ JH•(M) (where ∗ is the simplicial 0-simplex, i.e. the simplicial set with a
single n-simplex for all n) defined by mapping everything to the constant families of almost
complex structures and Hamiltonians given by J and H. We will restrict attention to the
(pullback) flow category diagram M/∗. With our assumptions on H, the set of generators
is P = crit(H)× π canonically, and the grading on P is given by the Morse index on crit(H)
plus gr : π → Z.

Now there is a canonical S1-action on the spaces of stable Floer trajectories in M/∗
(postcompose u with a rotation of S1) which is compatible with the product/face maps (this
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action exists since H is independent of the S1-coordinate). It follows that M
S1

/∗ is also a
flow category diagram (defined using the fixed locus M(σ, p, q)S

1 ⊆M(σ, p, q)).

Definition 10.5.1 (Morse trajectory). Let σ ∈ ∗ be the n-simplex, and let p, q ∈ P =
crit(H)× π. A Morse trajectory of type (σ, p, q) is a triple (k, `, u) where:

i. k ≥ 1 is a positive integer.
ii. ` :

∐k
i=1 R→ ∆n is a broken Morse flow line from vertex 0 to vertex n (for the Morse

function in Definition 10.1.4). Let 0 = v0 ≤ · · · ≤ vk = n be the corresponding
sequence of vertices. We allow ` to contain constant flow lines, i.e. we allow vi = vi+1.

iii. u :
∐k

i=1 R→M is a broken Morse flow line from p to q for the function H. We allow
u to contain constant flow lines.

iv. The π-components of p and q agree.
An isomorphism ι : (k, `, u) → (k′, `′, u′) of Morse trajectories is an isomorphism ι :∐k

i=1 R →
∐k′

i=1 R (acting by translation on each factor and respecting the ordering of the
terms; we require k = k′) such that u = u′ ◦ ι and ` = `′ ◦ ι. We say a Morse trajectory is
stable iff its automorphism group (i.e. group of self-isomorphisms) is finite.

Let Mmorse(σ, p, q) denote the space of stable Morse trajectories.

Proposition 10.5.2 (Formal regularity implies topological regularity). Suppose H is Morse–
Smale. Then with the stratification by k, the spaces Mmorse(σ, p, q) are compact topological
manifolds with corners.

For the case of the zero simplex σ = σ0, this is proved by Wehrheim [Weh12]. In fact,
the general case also follows from [Weh12] since Mmorse(σ, p, q) is the space of broken Morse
flow lines on M ×∆n from p× 0 to q×n for the Morse function H + f (and f is defined and
smooth on a neighborhood of ∆n ⊆ Rn). Alternatively, one may restrict to H which have
a particular normal form near each critical point in which case this result holds by more
elementary arguments (see also [Weh12]).

Lemma 10.5.3. There is canonical homeomorphism M(σ, p, q)S
1

= Mmorse(σ, p, q).

Proof. Suppose a stable Floer trajectory (C, `, u) is S1-invariant. Then each of the compo-
nents {C◦1 , . . . , C◦k} must be smooth (no nodes) and hence isomorphic to S1 × R. Using the

holomorphic projection M ×S1×
∐k

i=1 R→ S1×
∐k

i=1 R, we get holomorphic identifications
C◦i = S1 × R. Since (C, `, u) is S1-invariant, the function u : C◦i →M must be independent
of the S1-coordinate, and hence (examining the ∂̄-equation) is simply a Morse flow line of
H. Running this argument in reverse, we also see that every stable Morse trajectory gives
rise to a stable Floer trajectory which is S1-invariant.

We will also need the following deeper fact (and henceforth we assume that H is defined
as in Lemma 10.5.4):

Lemma 10.5.4. Fix a Morse function H0 : M → R whose gradient flow is Morse–Smale
and suppose H = ε ·H0 with ε > 0 sufficiently small. Then M(σ, p, q)S

1 ⊆M(σ, p, q) is open
and cut out transversally (meaning M(σ, p, q)S

1 ⊆ M(σ, p, q)reg). Hence we have a partition
into disjoint closed subsets:

M(σ, p, q) = M(σ, p, q)S
1 t [M(σ, p, q) \M(σ, p, q)S

1

] (10.5.1)
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Proof. Salamon–Zehnder [SZ92, p1342, Theorem 7.3(1)] show that M(σ0, p, q)S
1 ⊆M(σ0, p, q)reg

for the 0-simplex σ0 and sufficiently small ε > 0. Since we only consider constant families of
J and H, the linearized operators for the higher σi can be written in terms of the linearized
operators for σ0, and it follows that M(σ, p, q)S

1 ⊆M(σ, p, q)reg for all σ.
Now we have Mmorse(σ, p, q) = M(σ, p, q)S

1 ⊆ M(σ, p, q)reg. It remains to show that this
is an open inclusion. This can likely be seen by following closely the gluing argument used
to prove Propositions 10.3.3 and 10.5.2, however we can argue directly as follows. Both
Mmorse(σ, p, q) and M(σ, p, q)reg are topological manifolds with corners, and the stratification
for the former is the pullback of the stratification for the latter. Their dimensions are dictated
by the Morse index and the Conley–Zehnder index respectively, which in this case coincide.
Hence we are done by Lemma 10.5.5 below.

Lemma 10.5.5. Let M be a topological manifold with corners and K ⊆M a closed subset.
Suppose that the restriction of the corner stratification on M induces a topological manifold
with corners structure on K of the same dimension. Then K ⊆M is open.

Proof. The question is local on M , so we may assume that M = Rn×Rm
≥0. Let K̃ ⊆ Rn×Rm

be obtained by reflecting K across the last m coordinate hyperplanes. The hypotheses then
imply that K̃ is a manifold of dimension n + m. Now we have K̃ ⊆ Rn+m is open by
Brouwer’s “invariance of domain”. This is enough.

10.6 S1-equivariant implicit atlas

We constructed in §10.3 an implicit atlas A on M/JH•(M), and thus in particular on M/∗.
In this subsection, we modify this construction to define another implicit atlas BS1

on M/∗,
one which is S1-equivariant in the sense that the S1-action on M(σ, p, q) extends canonically
to all the thickenings M(σ, p, q)≤sI in BS1

. The key technical step is to perform domain
stabilization with S1-invariant divisors (Lemma 10.6.4).

Let us first motivate the definition of BS1
by describing a “first attempt” at defining

an S1-equivariant implicit atlas on M/∗. We consider the subatlas AS1 ⊆ A consisting of
those thickening datums α for which Dα is S1-invariant. Now there is clearly a canonical
S1-action on the thickenings M(σ, p, q)≤sI (postcomposition of u with a rotation of S1) for
I ⊆ AS1

(σ, p, q)≥s.37 Now AS1 ⊆ A forms an implicit atlas if and only if it satisfies the
covering axiom. However, the covering axiom for AS1

fails: we cannot stabilize the domains

of Morse flow lines (points of M
S1

) using S1-invariant divisors Dα (more generally, we cannot
stabilize the domain of any broken trajectory containing a Morse flow line).

To fix this issue, we first modify the definition of A to allow Morse components of Floer
trajectories which do not get stabilized.

Definition 10.6.1 (Implicit atlas B on M/∗). We define an implicit atlas B on M/∗ as
follows. On the level of index sets, we define B := A. However, we modify the definition of
an I-thickened Floer trajectory as follows. We require that when Cα is considered with the
rα extra marked points (u|Cα)−1(Dα), the only unstable components are mapped by u to
Morse flow lines; let Cα → Cst

α be the map contracting all such unstable components. Now
instead of φα : Cα → C0,2+rα , we use φα : Cst

α → C0,2+rα .

37Note that we do not need to put any restrictions on λα.
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The rest of the atlas data is defined analogously with that of A without any serious
difference. Note, however, that to verify that the locus UIJ ⊆ XI is open, we must appeal
to Lemma 10.5.4.

Note that the thickened moduli spaces for A are open subsets of those for B, so the
covering axiom for A implies the covering axiom for B. Now to verify that B is an implicit
atlas, everything is the same as for A except for the openness and submersion axioms, which
follow from the following result (identical to Proposition 10.3.3), whose proof is given in
Appendix C.

Proposition 10.6.2 (Formal regularity implies topological regularity). For all I ⊆ J ⊆
B(σ, p, q)≥s, we have:

i. (M(σ, p, q)≤sI )reg ⊆M(σ, p, q)≤sI is an open subset.
ii. The map sJ\I : M(σ, p, q)≤sJ → EJ\I over the locus ψ−1

IJ ((M(σ, p, q)≤sI )reg) ⊆M(σ, p, q)≤sJ
is locally modeled on the projection:

RvdimM(σ,p,q)≤s+dimEI × RdimEJ\I → RdimEJ\I (10.6.1)

over the top stratum s ∈ SM(σ, p, q)≤s. More generally, the local model (compatible with
stratifications) is given by replacing the first factor on the left by Rn

≥0 × Rn′ stratified
appropriately by SM(σ, p, q).

iii. There exist π-invariant coherent trivializations of the local systems o
(M(σ,p,q)≤s

I )reg ⊗o∨EI
(in the sense of Definition 7.2.6), agreeing by restriction with those for A, and coincid-
ing with the usual orientations from Morse theory on Mmorse(σ, p, q) = M(σ, p, q)S

1 ⊆
M(σ, p, q)reg.

Thus B is an implicit atlas on M/∗.

Definition 10.6.3 (S1-equivariant implicit atlas BS1
on M/∗). Let BS1 ⊆ B consist of those

thickening datums α for which Dα is S1-invariant. There is a canonical S1-action on the
thickenings M(σ, p, q)≤sI (postcomposition of u with a rotation of S1) for I ⊆ BS1

(σ, p, q)≥s,
and this S1-action is compatible with the rest of the structure.

To verify that BS1 ⊆ B is an implicit atlas, we just need to verify the covering axiom. We
follow the usual proof of the covering axiom as in Lemma 9.2.9 and use the fact that Morse
components are already cut out transversally (Lemma 10.5.4). To complete the proof, we just
need Lemma 10.6.4 below, which says that for any stable Floer trajectory, we can stabilize
the domain using S1-invariant divisors (except, of course, for any irreducible components
mapping to Morse flow lines).

Lemma 10.6.4 (S1-equivariant domain stabilization for stable Floer trajectories of M/∗).
Let ` :

∐k
i=1 R→ ∆n and u : C →M×S1×

∐k
i=1 R be a point in M(σ, p, q). Then there exists

D ⊆M × S1 ×∆n as in Definition 10.3.1(i) which is S1-invariant with C t D in the sense
of Definition 10.3.2(iv) and so that adding these intersections to C as extra marked points
makes C stable, except for irreducible components S1×R ⊆ C on which u is independent of
the S1-coordinate (“Morse flow lines”).
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Proof. Instead of finding an S1-invariant D ⊆M × S1×∆n, we find a D ⊆M ×∆n (which
is clearly equivalent) and we ignore the S1 factor in the codomain of u. As in Lemma 10.3.4,
it suffices to show that for any unstable component C0 ⊆ C, either C0 is a Morse flow line
or there exists a point (other than a node) where d((idM ×`) ◦ u) : TC0 → TM × T∆n is
injective.

If the projection C0 → S1 × R is constant, then u : C0 → M is a (nonconstant!) J-
holomorphic sphere and we are done as in Lemma 10.3.4. Hence it suffices to treat the case
when u : C0 → S1 ×R is not constant. Thus u : C0 → S1 ×R is an isomorphism, so we can
use (t, s) ∈ S1 × R as coordinates on C0. Now we split into two cases.

First, suppose ` : R → ∆n is not constant. If u : C0 → M is independent of the S1

coordinate, then it is a Morse flow line, and we do not need to stabilize. Otherwise, there
is a point where ∂u

∂t
6= 0, and since ` : R → ∆n has nonvanishing derivative everywhere, it

follows that du is injective at this point.
Second, suppose ` : R→ ∆n is constant. Then our map u : C0 →M satisfies:

∂u

∂t
+ J ◦ ∂u

∂s
= ∇H (10.6.2)

Certainly u : C0 →M is not constant; otherwise it would be unstable (infinite automorphism
group). Thus du is nonzero somewhere. If du has rank two somewhere, then we are done.
Thus let us suppose that this is not the case and show that u|C0 is independent of the t
coordinate (and thus is a Morse flow line). Thus there exists some open set U ⊆ C0 = S1×R
where du has rank 1. Inside U , we have ker du ⊆ TC0 = T (S1 × R) is an (integrable!) 1-
dimensional distribution, so U is equipped with a 1-dimensional foliation and u is constant
on the leaves. Thus we have (locally) a factorization u : S1 × R r−→ (−ε, ε) w−→ M , the leaves
of the foliation being given by r−1(δ) for δ ∈ (−ε, ε). Now (10.6.2) becomes:(∂r

∂t
+
∂r

∂s
· J
)
· w′(r(s, t)) = (∇H)(w(r(s, t))) (10.6.3)

Since du has rank 1, we know that w′(r(s, t)) 6= 0. Hence the value of r(s, t) determines the
value of its derivative uniquely, i.e. dr is constant along the leaves r−1(δ) of the foliation. It
follows that the foliation is (locally) linear(!) and that we can follow any leaf infinitely in
both directions and it never exits U (since dr = 0 outside U). Now if any leaf had nonzero
slope, it would force u : C0 →M to be constant, a contradiction. Thus all leaves have slope
zero; in other words u is independent of the S1-coordinate over U = S1 × U ′. But now we
see that U ′ = R, since if U ′ had boundary, it would imply that we have a Morse flow line
reaching a critical point in finite time. Thus u is (globally) a Morse flow line.

10.7 Calculation of Hamiltonian Floer homology and the Arnold
conjecture

Arnold conjectured that the minimal number of fixed points of a non-degenerate Hamiltonian
symplectomorphism M →M enjoys a lower bound similar to the minimal number of critical
points of a Morse function on M (known as the Morse number of M). It remains an open
problem to obtain a sharp bound on the minimal number of symplectic fixed points, though
much progress has been made.
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Arnold’s conjecture was proved for surfaces by Eliashberg [Eli79] and for tori by Conley–
Zehnder [CZ83]. The existence of at least one fixed point was shown by Gromov [Gro85,
p331, 2.3B′4] under the assumption ω|π2(M) = 0.

A major breakthrough was made by Floer [Flo89], who introduced Hamiltonian Floer
homology and showed (under some assumptions) that it is isomorphic to singular homology.
Floer’s work provides a lower bound on the number of symplectic fixed points of the type
predicted by Arnold. Indeed, if Hamiltonian Floer homology can be defined and shown to be
isomorphic to singular homology, then we get a lower bound towards the Arnold conjecture
of the form:

min

{
rkD•

∣∣∣∣ (D•, d)
a free differential graded Λ-module
homotopy equivalent to C•(M ; Λ)

}
(10.7.1)

where Λ is the Novikov ring:

Λ := Z[im(π2(M)
ω⊕2c1(M)−−−−−−→ R⊕ Z)]∧ (10.7.2)

completed with respect to ω and graded by 2c1 (note that if the grading on Λ is nontrivial,
a “differential graded Λ-module” is not the same as a “complex of Λ-modules”). One can
also adjoin π1(M) to the coefficient ring (as in Fukaya [Fuk97] or Abouzaid [Abo12b]) to
obtain a sharper lower bound in (10.7.1), and furthermore the methods of Sullivan [Sul02]
allow one (at least in many cases) to replace “homotopy equivalent” in (10.7.1) with “simple
homotopy equivalent”. Note that for Λ = Z[π1(M)] and “simple homotopy equivalent”
in place of “homotopy equivalent”, the lower bound (10.7.1) is precisely the stable Morse
number of M (see Damian [Dam02, p424, Corollary 2.6]).

Floer’s original work [Flo89] covered the case of monotone symplectic manifolds (i.e.
ω = λc1 on π2(M) for some λ > 0), and the work of Hofer–Salamon [HS95] and Ono [Ono95]
extended this to semi-positive symplectic manifolds (i.e. there do not exist classes A ∈ π2(M)
with ω(A) > 0 and 3− n ≤ c1(A) < 0). The case of general symplectic manifolds is due to
Liu–Tian [LT98b], Fukaya–Ono [FO99], and Ruan [Rua99], using virtual techniques (which
require rational coefficients) to resolve lack of transversality. We reprove their results below
using the VFC machinery developed in this paper.

In the following result, we use the definition of Floer-type homology groups from §8.7.4.

Theorem 10.7.1. FH•(M) is isomorphic to H•(M ;Z)⊗Q[[π]] as modules over Q[[π]].

Proof. We use the setup of §10.5–10.6.
The homology groups associated to the flow category diagram M/∗ and the implicit atlas

A are by definition FH•(M). Now, as we observed previously, the thickened moduli spaces
of A are open subsets of those of B, so by Lemma 7.8.2, FH•(M) may also be defined using
the implicit atlas B on M/∗. Now BS1 ⊆ B is a subatlas, so by Lemma 7.8.1 it may also be
used to define FH•(M).

Thus let us restrict attention to the atlas BS1
on M/∗. Recall that by Lemma 10.5.4,

there is a partition into closed subsets:

M(σ, p, q) = M(σ, p, q)S
1 t [M(σ, p, q) \M(σ, p, q)S

1

] (10.7.3)

Now we apply S1-localization to BS1
on M/∗ in the form of Theorem 8.7.13, which applies

since S1 acts with finite stabilizers on M(σ, p, q) \M(σ, p, q)S
1

and our coefficient group is
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Q. It follows that FH•(M) may be defined using the flow category diagram M
S1

/∗ with the

implicit atlas obtained from BS1
by removing M \MS1

from every thickening.

All the flow spaces of M
S1

/∗ are cut out transversally by Lemma 10.5.4, so by Proposition

7.8.4, the homology groups of M
S1

/∗ can be defined by simply counting the 0-dimensional

flow spaces according to the orientations ω. Now M
S1

coincides with the Morse flow category
diagram Mmorse/∗ of H by Lemma 10.5.3 (with the same orientations by Proposition 10.6.2),
and this gives the desired isomorphism.

Remark 10.7.2. One expects to be able show that the isomorphism in Theorem 10.7.1 is
canonical by considering continuation maps and chain homotopies associated to families of
Morse functions.

Corollary 10.7.3 (Arnold conjecture). Let H : M × S1 → R be a smooth function whose
time 1 Hamiltonian flow φH : M → M has non-degenerate fixed points. Then # FixφH ≥
dimH•(M ;Q) (in fact, we may replace FixφH with those fixed points whose associated peri-
odic orbit is null-homotopic in M).

Proof. Pick any ω-compatible almost complex structure J and consider the vertex (J,H) ∈
JH•(M). Over this vertex, pick any complex FC•(M) which calculates FH•(M). Then
FC•(M) is a free Q[[π]]-module of rank:

rkQ[[π]] FC•(M) ≤ # FixφH (10.7.4)

(its rank equals the number of null-homotopic periodic orbits). By Theorem 10.7.1, the
homology FH•(M) is free of rank:

rkQ[[π]] FH•(M) = dimH•(M ;Q) (10.7.5)

Now by definition, there is a Q[[π]]-linear boundary map d : FC•(M)→ FC•+1(M) and by
definition rkQ[[π]] FH•(M) = ker d/ im d. Now apply Lemma 10.8.1 to conclude that:

rkQ[[π]] FH•(M) ≤ rkQ[[π]] FC•(M) (10.7.6)

Thus we are done.

10.8 A little commutative algebra

Lemma 10.8.1. Let M be a free module over a commutative ring R, and let d : M → M
satisfy d2 = 0. If H = ker d/ im d is free, then rkH ≤ rkM .

Proof. Since H is free, it is projective, so the surjection ker d � H has a section H ↪→
ker d ⊆M . Hence there is an injection H ↪→M . Now use Lemma 10.8.2.

Lemma 10.8.2. Let φ : R⊕A ↪→ R⊕B be an inclusion of free modules over a commutative
ring R. Then A ≤ B.
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Proof. This is a standard yet tricky exercise. We recall one of the (many) standard proofs.
The map φ is described by some matrix of A × B elements of R. Certainly the kernel

of this matrix remains zero over the subring of R generated by its entries. Thus we may
assume without loss of generality that R is a finitely generated Z-algebra. Now localize at a
prime ideal p ⊂ R of height zero. Localization is exact, so again φ remains injective. Thus
we may assume without loss of generality that R is a local Noetherian ring of dimension
zero, and thus R is an Artin local ring [AM69, p90, Theorem 8.5]. Since R is Artinian,
all finitely generated modules have finite length [AM69, pp76–77, Propositions 6.5 and 6.8],
and hence there is a length homomorphism K0(R)→ Z [AM69, p77, Proposition 6.9] (which
is clearly an isomorphism since R is local). It thus follows from the short exact sequence

0→ R⊕A
φ−→ R⊕B → cokerφ→ 0 that A ≤ B.

A Homological algebra

In this appendix, we collect some useful facts concerning sheaves, homotopy sheaves, and
their Čech cohomology. We assume the reader is familiar with most elementary aspects of
sheaves. Many of the results in this appendix are also elementary, though for completeness
we give most proofs as we do not know of a good reference.

In §A.1, we recall presheaves and sheaves. In §A.2, we introduce homotopy sheaves.
In §A.3, we list standard pushforward and pullback operations on (homotopy) sheaves. In
§A.4, we introduce and prove basic properties of Čech cohomology. In §A.5, we introduce
the central notion of a pure homotopy sheaf. In §A.6, we prove a version of Poincaré–
Lefschetz duality using pure homotopy sheaves. In §A.7, we introduce a certain relevant
type of homotopy colimit. In §A.8, we prove an easy lemma about homotopy colimits of
pure homotopy sheaves. In §A.9, we review the definition of Steenrod homology.

Convention A.0.1. In this appendix, by space we mean locally compact Hausdorff space.

Convention A.0.2. By a complex C• we mean a Z-graded object
⊕

i∈ZC
i (in some abelian

category) along with a degree 1 endomorphism d with d2 = 0. The homology of a complex

C• is denoted H•C• (defined by H iC• := ker(Ci d−→ Ci+1)/ im(Ci−1 d−→ Ci)). A complex
is called acyclic iff its homology vanishes. A map of complexes f : A• → B• is a called a
quasi-isomorphism iff it induces an isomorphism on homology. We will often use the fact
that a map of complexes is a quasi-isomorphism iff its mapping cone is acyclic.

The shift of a complex C•[n] is defined by (C•[n])i := Ci+n. We use the truncation
functors defined by:

(τ≥iC
•)j :=


Cj j > i

coker(Ci−1 d−→ Ci) j = i

0 j < i

(τ≤iC
•)j :=


0 j > i

ker(Ci d−→ Ci+1) j = i

Cj j < i

Given a sequence of maps of complexes A•0 → · · · → A•n such that adjacent maps compose to
zero, we denote by [A•0 → · · · → A•−nn ] the associated total complex of this double complex.

For example, f : A• → B• denotes a map, and [A•
f−→ B•−1] denotes its mapping cone.
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Convention A.0.3. We fix sign conventions by making everything Z/2-graded and always
using the super tensor product ⊗ (namely, where the isomorphism A ⊗ B

∼−→ B ⊗ A is
given by a ⊗ b 7→ (−1)|a||b|b ⊗ a and where (f ⊗ g)(a ⊗ b) := (−1)|g||a|f(a) ⊗ g(b)). We
fix Hom(A,B) ⊗ A → B as given by f ⊗ a 7→ f(a). Complexes are (Z,Z/2)-bigraded;
differentials are always odd and chain maps are always even. Note that the Z/2-grading of
a complex is often, but not always, the reduction modulo 2 of the Z-grading.

Convention A.0.4. Direct limits and inverse limits always take place over directed sets.

A.1 Presheaves and sheaves

Definition A.1.1 (Presheaf and K-presheaf38). Let X be a space. A presheaf (resp. K-
presheaf ) on X is a contravariant functor from the category of open (resp. compact) sets
of X to the category of abelian groups. A morphism of presheaves is simply a natural
transformation of functors. The category of presheaves (resp. K-presheaves) is denoted
PrshvX (resp. PrshvKX).

Definition A.1.2 (Stalk). For a presheaf F, let Fp := lim−→p∈U F(U), and for a K-presheaf F

let Fp := F({p}). In both cases we say Fp is the stalk of F at p.

Definition A.1.3 (Sheaf). A sheaf is a presheaf F satisfying the following condition:

0→ F
(⋃
α∈A

Uα

)
→
∏
α∈A

F(Uα)→
∏
α,β∈A

F(Uα ∩ Uβ) is exact ∀ {Uα ⊆ X}α∈A (Sh)

The category of sheaves on a space X is denoted ShvX (a full subcategory of PrshvX,
meaning a morphism between sheaves is the same as a morphism of the corresponding
presheaves).

Definition A.1.4 (K-sheaf). A K-sheaf is a K-presheaf F satisfying the following three
conditions:39

F(∅) = 0 (ShK1)

0→ F(K1 ∪K2)→ F(K1)⊕ F(K2)→ F(K1 ∩K2) is exact ∀ K1, K2 ⊆ X (ShK2)

lim−→
K⊆U
U open

F(U)→ F(K) is an isomorphism ∀ K ⊆ X (ShK3)

The category of K-sheaves on a space X is denoted ShvKX (a full subcategory of PrshvKX).

Remark A.1.5. It is always the case that K =
⋂

K⊆U
U open

U for compact K ⊆ X.

Definition A.1.6. We define functors:

PrshvKX PrshvX
α∗

α∗
(A.1.1)

38Terminology “K-” following Lurie [Lur12, Definition 7.3.4.1].
39A similar set of axioms appears in Lurie [Lur12, Definition 7.3.4.1].
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by the formulas:

(α∗F)(K) := lim−→
K⊆U
U open

F(U) (A.1.2)

(α∗F)(U) := lim←−
K⊆U

K compact

F(K) (A.1.3)

It is easy to see that there is an adjunction HomPrshvKX(α∗F,G) = HomPrshvX(F, α∗G) (giving
an element of either Hom-set is the same as giving a compatible system of maps F(U)→ G(K)
for pairs K ⊆ U).

Lemma A.1.7. Let K1, . . . , Kn ⊆ X be compact. Then {U1 ∩ · · · ∩ Un}open Ui⊇Ki forms a
cofinal system of neighborhoods of K1 ∩ · · · ∩Kn.

Proof. We may assume without loss of generality that X is compact. By induction, it suffices
to treat the case n = 2. The rest is an exercise (use the fact that a compact Hausdorff space
is normal).

Lemma A.1.8. We have:

ShvKX ShvX
α∗

α∗
(A.1.4)

and this is an equivalence of categories.40

Proof. Suppose F is a sheaf, and let us verify α∗F is a K-sheaf. Axiom (ShK1) is clear (take
A = ∅ in (Sh)). Axiom (ShK2) follows from (Sh) and Lemma A.1.7 since direct limits are
exact. Axiom (ShK3) is clear from the definition also.

Suppose F is a K-sheaf, and let us verify that α∗F is a sheaf. Let us first observe that
(by induction using (ShK1) and (ShK2)) if {Kα ⊆ X}α∈A is any collection of compact sets,
all but finitely many of which are empty, then the following is exact:

0→ F
(⋃
α∈A

Kα

)
→
∏
α∈A

F(Kα)→
∏
α,β∈A

F(Kα ∩Kβ) (A.1.5)

Let us now verify axiom (Sh) for α∗F for open sets {Uα ⊆ X}α∈A. Certainly (Sh) is the
inverse limit of (A.1.5) over all collections of compact subsets {Kα ⊆ Uα}α∈A for which
Kα = ∅ except for finitely many α ∈ A. This is sufficient since inverse limit is left exact.

Now to see that the adjoint pair α∗ a α∗ is actually an equivalence of categories, it suffices
to show that the natural morphisms F → α∗α

∗F and α∗α∗G→ G are isomorphisms. In other
words, we must show that following natural maps are isomorphisms:

F(U)→ lim←−
K⊆U

K compact

lim−→
K⊆U ′
U ′ open

F(U ′) (A.1.6)

lim−→
K⊆U
U open

lim←−
K′⊆U

K′ compact

G(K ′)→ G(K) (A.1.7)

40A similar result appears in Lurie [Lur12, Corollary 7.3.4.10].
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The right hand side of (A.1.6) can be thought of as the inverse limit of F(U ′) over all open
U ′ ⊆ U with U ′ ⊆ U and U ′ compact. It is easy to see that the map from F(U) to this
inverse limit is an isomorphism if F is a sheaf. The left hand side of (A.1.7) can be identified
with the left hand side of (ShK3), and thus the map to G(K) is an isomorphism if F is a
K-sheaf.

Convention A.1.9. In view of the canonical equivalence of categories ShvX = ShvKX from
Lemma A.1.8, we use the single word “sheaf” for an object of either category.

Lemma A.1.10. Let {Kα}α∈A be a filtered directed system of compact subsets of X (i.e. for
all α, β ∈ A there exists γ ∈ A with Kγ ⊆ Kα ∩Kβ). Then for any F satisfying (ShK3), the
following is an isomorphism:

lim−→
α∈A

F(Kα)→ F
(⋂
α∈A

Kα

)
(A.1.8)

Proof. Write K :=
⋂
α∈AKα. Now consider the diagram:

lim−→
α∈A

lim−→
Kα⊆U
U open

F(U) lim−→
∃α∈A:Kα⊆U

U open

F(U) lim−→
K⊆U
U open

F(U)

lim−→
α∈A

F(Kα) F(K)

(A.1.9)

The vertical maps are both isomorphisms by (ShK3). The first horizontal map is an iso-
morphism since {Kα}α∈A is filtered. It thus remains to show that if K ⊆ U and U is open,
then there exists α ∈ A such that Kα ⊆ U . Since K ⊆ U , we have (X \ U) ∩ K = ∅,
so
⋂
α∈A(X \ U) ∩ Kα = ∅. This is a filtered directed system of compact sets, and so the

intersection being empty implies that one of the terms (X \ U) ∩Kα is empty, so Kα ⊆ U
as desired.

A.2 Homotopy sheaves

Convention A.2.1. Let F• be a complex of (K-)presheaves. The notions from Convention
A.0.2 are applied “objectwise”, that is, to each complex F•(U) (resp. F •(K)) individually.
For example, the homology H iF• is again a (K-)presheaf, and a map of (K-)presheaves
f : F• → G• is a quasi-isomorphism iff it induces an isomorphism of (K-)presheaves H iF• →
H iG• for all i. The homology (K-)presheaves H iF• should not be confused with the various
flavors of Čech (hyper)cohomology Ȟ i(X;F•) we introduce in §A.4.

Definition A.2.2 (Homotopy sheaf). A homotopy sheaf is a complex of presheaves F•

satisfying the following condition:[
F•
(⋃
α∈A

Uα

)
→
∏
α∈A

F•−1(Uα)→
∏
α,β∈A

F•−2(Uα ∩ Uβ)→ · · ·
]

is acyclic ∀ {Uα ⊆ X}α∈A (hSh)
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The category of homotopy sheaves on a space X is denoted hShvX (morphisms are mor-
phisms of complexes of presheaves).

Remark A.2.3. The definition above is given for illustrative purposes only. It is probably
only a good definition for F• which is bounded below, and it would perhaps be better to
impose (hSh) for all hypercovers of open subsets U ⊆ X.

Example A.2.4. A sheaf F is flasque iff all restriction maps F(U)→ F(U ′) are surjective. It
is easy to see that any bounded below complex of flasque sheaves F• is a homotopy sheaf.
For example, let F•(U) := C•(U) be the presheaf of singular cochain complexes. Then the
sheafification of F• is a complex of flasque sheaves, and thus is a homotopy sheaf. One
can show (using barycentric subdivision) that the map from F• to its sheafification is a
quasi-isomorphism, and hence F• is a homotopy sheaf as well.

Definition A.2.5 (Homotopy K-sheaf). A homotopy K-sheaf is a complex of K-presheaves
F• satisfying the following three conditions:

F•(∅) is acyclic (hShK1)[
F•(K1 ∪K2)→ F•−1(K1)⊕ F•−1(K2)→ F•−2(K1 ∩K2)

]
is acyclic ∀ K1, K2 ⊆ X (hShK2)

lim−→
K⊆U
U open

F•(U)→ F•(K) is a quasi-isomorphism ∀ K ⊆ X
(hShK3)

The category of homotopy K-sheaves on a space X is denoted hShvKX (morphisms are
morphisms of complexes of K-presheaves).

Remark A.2.6. Note that (hShK2) gives rise to a “Mayer–Vietoris” long exact sequence in
cohomology.

Example A.2.7. A K-sheaf F is soft iff all restriction maps F(K)→ F(K ′) are surjective. It
is easy to see that any complex of soft K-sheaves F• is a homotopy K-sheaf.

Remark A.2.8. In analogy with Definition A.1.6, we expect there are functors:

hShvKX hShvX
Rα∗

α∗
(A.2.1)

where α∗ is the direct limit (A.1.2) and Rα∗ is the homotopy (or derived) version R lim←− of the
inverse limit (A.1.3) (the naive inverse limit functor α∗ is the “wrong” functor since inverse
limit is not exact).

In analogy with Lemma A.1.8, it seems likely41 that there is an adjunction α∗ a Rα∗
which is an equivalence (in the sense of model categories or ∞-categories), though perhaps
only after restricting to the (possibly better-behaved) subcategory of homotopy (K-)sheaves
which are bounded below.

Remark A.2.9. Guided by the needs of the rest of the paper, we proceed to focus on homotopy
K-sheaves rather than on homotopy sheaves.

Lemma A.2.10. Properties (hShK1)–(hShK3) are preserved by quasi-isomorphisms.

41A similar result appears in Lurie [Lur12, Corollary 7.3.4.10].
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Proof. For (hShK1) and (hShK3) this is trivial. For (hShK2), suppose F•
∼−→ G• is a quasi-

isomorphism. Now the sequence (hShK2) applied to the mapping cone [F• → G•−1] is
certainly acyclic (since it has a finite filtration whose associated graded is acyclic). Thus
(hShK2) holds for F• iff it holds for G•.

Lemma A.2.11 (Extensions of homotopy K-sheaves are homotopy K-sheaves). Let F• be a
complex of K-presheaves. If F• has a finite filtration whose associated graded is a homotopy
K-sheaf, then F• is a homotopy K-sheaf.

Proof. This follows from the fact that if a complex C• has a finite filtration whose associated
graded is acyclic then C• is itself acyclic.

Lemma A.2.12 (Lowest nonzero homology K-presheaf of a homotopy K-sheaf is a K-sheaf).
If F• is a homotopy K-sheaf and H−1F• = 0, then H0F• is a K-sheaf.

Proof. Properties (ShK1) and (ShK3) follow directly from (hShK1) and (hShK3). To show
(ShK2) for H0F•, use the long exact sequence induced by (hShK2) and the vanishing of
H−1F•(K1 ∩K2).

Lemma A.2.13. Let {Kα}α∈A be a filtered directed system of compact subsets of X (i.e. for
all α, β ∈ A there exists γ ∈ A with Kγ ⊆ Kα ∩Kβ). Then for any F• satisfying (hShK3),
the following is a quasi-isomorphism:

lim−→
α∈A

F•(Kα)→ F•
(⋂
α∈A

Kα

)
(A.2.2)

Proof. Same as for Lemma A.1.10.

A.3 Pushforward, exceptional pushforward, and pullback

Definition A.3.1 (Pushforward of (K-)presheaves). Let f : X → Y be a map of spaces.
We define functors:

i. f∗ : PrshvX → Prshv Y by (f∗F)(U) := F(f−1(U)).
ii. f∗ : PrshvKX → PrshvK Y by (f∗F)(K) := F(f−1(K)) (if f is proper).

(the action of f∗ on morphism spaces is obvious).

Lemma A.3.2. Let f : X → Y be proper. Then {f−1(U)}K⊆U is a cofinal system of
neighborhoods of f−1(K) for any compact K ⊆ X.

Proof. Exercise (use the fact that a compact Hausdorff space is normal).

Lemma A.3.3. f∗ preserves (Sh), (hSh), (ShK1)–(ShK3), and (hShK1)–(hShK3).

Proof. These are trivial except for (ShK3) and (hShK3), which use Lemma A.3.2.

Definition A.3.4 (Pushforward of (K-)sheaves and homotopy K-sheaves). Let f : X → Y
be a map of spaces. By Lemma A.3.3, Definition A.3.1 gives rise to functors:

i. f∗ : ShvX → Shv Y .
ii. f∗ : hShvX → hShv Y .
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iii. f∗ : ShvKX → ShvK Y (if f is proper).
iv. f∗ : hShvKX → hShvK Y (if f is proper).

(the action on morphism spaces is induced from the f∗ at the level of (complexes of)
(K-)presheaves).

It is easy to see that f∗ commutes with the equivalence ShvX = ShvKX (if f is proper).

Definition A.3.5 (Pullback and exceptional pushforward of sheaves). Let f : X → Y be a
map of spaces. We define:

i. f ∗ : Shv Y → ShvX the standard sheaf pullback (namely f ∗F is the sheafification of
the presheaf U 7→ lim−→f(U)⊆V F(V )).

ii. f! : ShvX → Shv Y by (f!F)(U) ⊆ (f∗F)(U) being the subspace of sections which
vanish in a neighborhood of Y \X (if f is the inclusion of an open set).

Definition A.3.6 (Pullback of homotopy K-sheaves). Let f : X → Y be an injective map
of spaces. We define:

i. f ∗ : hShvK Y → hShvKX by (f ∗F•)(K) := F•(f(K)).
We check the properties: (hShK1) is clear, and (hShK2) follows since f is injective. For
(hShK3), use Remark A.1.5, the injectivity of f , and Lemma A.2.13.

A.4 Čech cohomology

We introduce various flavors of Čech (hyper)cohomology relevant to our situation.

Remark A.4.1. A refinement of a cover {Uα}α∈A is a cover {Uβ}β∈B along with a map f :
B → A such that Uβ ⊆ Uf(α). Refinements are the morphisms used in the directed systems
used to define (all flavors of) Čech cohomology. Different refinements {Uα}α∈A → {Uβ}β∈B
induce different maps on Čech complexes, but they all agree after passing to cohomology
(more precisely, the “space” of such refinements is contractible or empty). In particular, it
follows that the directed systems used in defining Čech cohomology are filtered.

Remark A.4.2. The empty covering is a final object in the category of coverings of ∅, so we
always have Ȟ•(∅;−) = 0.

A.4.1 . . . of sheaves

Definition A.4.3 (Ȟ• and Ȟ•c of sheaves). Let F be a sheaf on a space X. We define the
Čech cohomology:

Ȟ•(X;F) := lim−→
X=

⋃
α∈A Uα

open cover

H•
[⊕
p≥0

∏
S⊆A
|S|=p+1

F
(⋂
α∈S

Uα

)
[−p]

]
(A.4.1)

with the standard Čech differential.42 For any compact K ⊆ X, define Ȟ•K(X;F) (Čech
cohomology with supports in K) via (A.4.1) except replacing every instance of F(U) with
ker[F(U) → F(U \ K)]. We let Ȟ•c (X;F) := lim−→K⊆X Ȟ

•
K(X;F) (Čech cohomology with

compact supports).

42Technically speaking, so that the signs in the differential can be defined canonically, we should really
tensor each term of the direct product with (Zo1⊕Zo2)/(o1+o2) ∼= Z where o1, o2 denote the two orientations
of the p-simplex on vertex set S.
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Lemma A.4.4 (Ȟ• on a compact space needs only finite open covers). If X is compact,
then the natural map Ȟ•fin(X;F)→ Ȟ•(X;F) is an isomorphism, where the left hand side is
defined as in (A.4.1) except using only finite open covers.

Proof. Since X is compact, it follows that finite open covers are cofinal (every open cover
has a finite refinement).

Lemma A.4.5 (Ȟ•c = Ȟ• on compact space). If X is compact, then the natural map
Ȟ•c (X;F)→ Ȟ•(X;F) is an isomorphism.

Proof. Trivial.

Definition A.4.6 (Pullback on Ȟ• and Ȟ•c ). Let f : X → Y be a map of spaces. An open
cover of Y pulls back to give an open cover of X, and this gives an identification of the Čech
complex for the cover of Y with coefficients in f∗F with the Čech complex for the cover of
X with coefficients in F. Hence we get natural maps:

i. f ∗ : Ȟ•(Y ; f∗F)→ Ȟ•(X;F) for F ∈ ShvX.
ii. f ∗ : Ȟ•c (Y ; f∗F)→ Ȟ•c (X;F) for F ∈ ShvX (if f is proper).

Lemma A.4.7 (Ȟ•c commutes with f!). Let f : X ↪→ Y be the inclusion of an open subset.
Then there is a natural isomorphism f! : Ȟ•c (X;F)→ Ȟ•c (Y ; f!F).

Proof. For K ⊆ X, there are natural maps:

Ȟ•K(Y ; f!F) Ȟ•K(X;F)
f∗

f!

(A.4.2)

(for f ∗: pull back the open cover) (for f!: add Y \K to the open cover and extend by zero).
It is easy to see that f! and f ∗ are inverses. The desired map f! : Ȟ•c (X;F)→ Ȟ•c (Y ; f!F) is
defined as the composition:

lim−→
K⊆X

Ȟ•K(X;F)
(A.4.2)

= lim−→
K⊆X

Ȟ•K(Y ; f!F)→ lim−→
K⊆Y

Ȟ•K(Y ; f!F) (A.4.3)

We must show that the second map is an isomorphism; to see this, it suffices to show that
the following is an isomorphism for all K ⊆ Y :

lim−→
K′⊆X∩K

Ȟ•K′(Y ; f!F)→ Ȟ•K(Y ; f!F) (A.4.4)

We claim that for any Čech cochain β for f!F with supports inK subordinate to an open cover
of Y , there is a refinement on which the restriction of β has supports in some K ′ ⊆ X ∩K.
It follows from the claim (using a cofinality argument) that (A.4.4) is an isomorphism. To
prove the claim, argue as follows.

First, choose a refinement for which only finitely many open sets U1, . . . , Un intersect K
and for which the remaining open sets cover Y \K. Pick open sets Vi ⊆ Ui which cover K
and for which Vi is compact and Vi ⊆ Ui (this is always possible).
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Now β is a finite collection {βI ∈ (f!F)(
⋂
i∈I Ui)}∅6=I⊆{1,...,n}. We have:

supp
(
βI |
⋂
i∈I

Vi

)
⊆ supp βI ∩

⋂
i∈I

Vi (A.4.5)

Since supp βI ⊆
⋂
i∈I Ui is (relatively) closed and

⋂
i∈I Vi ⊆

⋂
i∈I Ui is compact, it follows

that the right hand side is compact. Also, we have supp βI ⊆ X (by definition of f!F). Hence
the right hand side of (A.4.5) is a compact subset of X. It follows that the restriction of β
to the refinement obtained by replacing Ui with Vi for i = 1, . . . , n has support in a compact
subset of X.

Lemma A.4.8 (f ∗ is an isomorphism if f has finite fibers). Let f : X → Y be proper with
finite fibers. Then f ∗ : Ȟ•(Y ; f∗F)→ Ȟ•(X;F) is an isomorphism, as is f ∗ : Ȟ•c (Y ; f∗F)→
Ȟ•c (X;F).

Proof. Given an open cover containing U = U1 t · · · t Un (finite disjoint union), we get a
refinement by replacing U with {U1, . . . , Un}. A partition of an open cover is a refinement
obtained by doing such a replacement on some (possibly infinitely many) open sets of the
cover. Note that a partition induces an isomorphism on Čech cochains since F is a sheaf.

We claim that partitions of pullbacks of open covers of Y form a cofinal system of open
covers of X. This is clear using Lemma A.3.2 and the fact that f has finite fibers. It follows
from this cofinality that f ∗ is an isomorphism.

Lemma A.4.9 (Ȟ• and Ȟ•c commute with finite quotients). Let X be a space and let
π : X → X/Γ be the quotient map under a finite group action. Let F be any sheaf of
Z[ 1

#Γ
]-modules on X/Γ. Then the following maps are all isomorphisms:

Ȟ•(X/Γ;F)→ Ȟ•(X/Γ; (π∗π
∗F)Γ)→ Ȟ•(X/Γ; π∗π

∗F)Γ → Ȟ•(X; π∗F)Γ

Ȟ•c (X/Γ;F)→ Ȟ•c (X/Γ; (π∗π
∗F)Γ)→ Ȟ•c (X/Γ; π∗π

∗F)Γ → Ȟ•c (X; π∗F)Γ

(here we note that by functoriality, π∗F is Γ-equivariant, and thus Γ acts on π∗π
∗F).

Proof. Isomorphism one: the natural map F → (π∗π
∗)Γ is in fact an isomorphism of sheaves

(check on stalks). Isomorphism two: obvious since taking Γ-invariants is exact on Z[ 1
#Γ

]-
modules. Isomorphism three: use Lemma A.4.8, which applies since π is automatically
proper.

A.4.2 . . . of complexes of K-presheaves

Definition A.4.10 (Ȟ• of complexes of K-presheaves). Let F• be a complex of K-presheaves
on a compact space X. We define:

Ȟ•(X;F•) := lim−→
X=

⋃n
i=1Ki

finite compact cover

H•
[⊕
p≥0

⊕
1≤i0<···<ip≤n

F•−p
( p⋂
j=0

Kij

)]
(A.4.6)

with the standard Čech differential (plus the internal differential of F•). We also define
Ȟ•(X;F) for any K-presheaf F by viewing it as a complex concentrated in degree zero.
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Lemma A.4.11 (Two definitions of Ȟ• on ShvX = ShvKX agree). Let F be a sheaf on a
compact space X. Then there is a natural isomorphism Ȟ•(X;F)→ Ȟ•(X;α∗F) (α∗F is a
K-sheaf; c.f. Definition A.1.6).

Proof. Let us denote by Ȟ•(X;F; {Uα}α∈A) (resp. Ȟ•(X;α∗F; {Ki}ni=1)) the argument of the
direct limit (A.4.1) (resp. (A.4.6)).

Since X is compact, every open cover has a finite compact refinement. This gives a map
Ȟ•(X;F)→ Ȟ•(X;α∗F). To show that this map is an isomorphism, it suffices to show that
for any fixed finite compact cover {Ki}ni=1, the following is an isomorphism:

lim−→
X=

⋃
α∈A Uα

open cover refined by {Ki}ni=1

Ȟ•(X;F; {Uα}α∈A)→ Ȟ•(X;α∗F; {Ki}ni=1) (A.4.7)

By a cofinality argument, we can change the directed system on the left side to be open
covers {Ui}ni=1 with Ui ⊇ Ki. Hence it suffices to show that the following is an isomorphism:

lim−→
{Ui⊇Ki}ni=1

Ȟ•(X;F; {Ui}ni=1)→ Ȟ•(X;α∗F; {Ki}ni=1) (A.4.8)

This is clear from the definition of α∗ and from Lemma A.1.7.

Lemma A.4.12 (Ȟ• preserves quasi-isomorphisms). If F• → G• is a quasi-isomorphism
of complexes of K-presheaves, then the induced map Ȟ•(X;F•) → Ȟ•(X,G•) is an isomor-
phism.

Proof. There is clearly a long exact sequence:

· · · → Ȟ•−1(X;G•)→ Ȟ•(X; [F• → G•−1])→ Ȟ•(X;F•)→ Ȟ•(X;G•)→ · · · (A.4.9)

Hence it suffices to show that if F• is acyclic then Ȟ•(X;F•) = 0. This is true because then
each Čech complex has a finite filtration whose associated graded is acyclic.

Lemma A.4.13 (Hypercohomology spectral sequence). Let F• be a bounded below com-
plex of K-presheaves. Then there is a convergent spectral sequence Ep,q

1 = Ȟq(X;Fp) ⇒
Ȟp+q(X;F•).

Proof. This is just the spectral sequence of the Čech double complex.

Proposition A.4.14 (A homotopy K-sheaf calculates its own Ȟ•). If F• satisfies (hShK1)
and (hShK2), then the canonical map H•F•(X)→ Ȟ•(X;F•) is an isomorphism.

Proof. We prove that F•(X) → Č•(X;F•;K1, . . . , Kn) (the right hand side denotes Čech
complex for the finite compact cover X = K1∪· · ·∪Kn) is a quasi-isomorphism by induction
on n. The base case n = 1 is obvious since Č•(X;F•;X) = F•(X) by definition. For the
inductive step, it suffices to show that the natural map Č•(X;F•;K1 ∪K2, K3, . . . , Kn) →
Č•(X;F•;K1, K2, K3, . . . , Kn) is a quasi-isomorphism. We will show that the mapping cone
is acyclic; to see this, let us filter it according to how many of the K3, . . . , Kn are chosen
among i0, . . . , ip. This is a finite filtration, so it suffices to show that the associated graded is
acyclic. The associated graded is a direct sum of complexes of the form [F•(K)→ F•−1(K)]
(which is obviously acyclic) and [F•(K ∩ (K1 ∪ K2)) → F•−1(K ∩ K1) ⊕ F•−1(K ∩ K2) →
F•−2(K ∩K1 ∩K2)] (which is acyclic by (hShK2)).

The above argument works when X 6= ∅; if X = ∅, use (hShK1).
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Lemma A.4.15 (A K-sheaf calculates its own Ȟ0). If F satisfies (ShK1) and (ShK2), then
the canonical map F(X)→ Ȟ0(X;F) is an isomorphism.

Proof. Use induction as in the proof of Proposition A.4.14.

Lemma A.4.16 (Ȟ• is determined by stalks I). Let F satisfy (ShK3). If the stalks of F

vanish, then Ȟ•(X;F) = 0.

Proof. It suffices to show that for all α ∈ F(K), there exists a finite compact cover X =⋃n
i=1Ki such that F(K) →

⊕n
i=1 F(K ∩ Ki) annihilates α. We consider the commutative

diagram:
lim−→K⊆U F(U) −−−→

∏
p∈K lim−→p∈U F(U)y y

F(K) −−−→
∏

p∈K Fp

(A.4.10)

where the vertical maps are both isomorphisms. Now the vanishing of Fp and a compactness
argument shows that there are finitely many open sets Ui ⊆ X covering K such that α
vanishes in F(K ∩ Ui) for all i. Thus the compact cover X = (X \

⋃n
i=1 Ui) ∪ U1 ∪ · · · ∪ Un

has the desired properties.

Lemma A.4.17 (Ȟ• is determined by stalks II). Let F• satisfy (hShK3) and H iF• = 0 for
i << 0. If F• has acyclic stalks, then Ȟ•(X;F•) = 0.

Proof. We show that for all i, the map Ȟ•(X;F•)→ Ȟ•(X; τ≥iF
•) is an isomorphism (this

is sufficient since Ȟj(X; τ≥iF
•) = 0 for j < i). We proceed by induction on i.

Since H iF• = 0 for i << 0, we have that F• → τ≥iF
• is a quasi-isomorphism, so

Ȟ•(X;F•)→ Ȟ•(X; τ≥iF
•) is an isomorphism for i << 0 (Lemma A.4.12). Thus we have the

base case of the induction. For the inductive step, it suffices to show that Ȟ•(X;H i−1F•) = 0.
This follows from Lemma A.4.16.

Proposition A.4.18 (Ȟ• is determined by stalks III). Let F•,G• satisfy (hShK3) and
H iF• = H iG• = 0 for i << 0. If F• → G• induces a quasi-isomorphism on stalks, then
it induces an isomorphism Ȟ•(X;F•)→ Ȟ•(X;G•).

Proof. Recall the long exact sequence (A.4.9) and apply Lemma A.4.17 to the mapping cone
[F• → G•−1].

Corollary A.4.19 (A map of homotopy K-sheaves being a quasi-isomorphism can be
checked on stalks). Let F• → G• be a map of homotopy K-sheaves which satisfy H iF• =
H iG• = 0 for i << 0. Then F• → G• is a quasi-isomorphism iff F•p → G•p is a quasi-
isomorphism for all p ∈ X.

Proof. For any K ⊆ X, we have a commutative diagram:

H•F•(K)
∼−−−→ Ȟ•(K;F•)y y

H•G•(K)
∼−−−→ Ȟ•(K;G•)

(A.4.11)

The rows are isomorphisms by Proposition A.4.14. If F•p → G•p is a quasi-isomorphism, then
the right vertical map is a quasi-isomorphism by Proposition A.4.18.
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Lemma A.4.20 (Long exact sequence for Ȟ•). Let F,G,H satisfy (ShK3). If 0 → F →
G→ H→ 0 is exact on stalks, then it induces a long exact sequence on Ȟ•.

Proof. By Lemma A.4.17, we have Ȟ•(X; [F → G[−1] → H[−2]]) = 0. Now inspection
of the hypercohomology spectral sequence (Lemma A.4.13) gives the desired long exact
sequence.

Definition A.4.21 (Pullback on Ȟ•). Let f : X → Y be a map of compact spaces. A
finite compact cover of Y pulls back to give a finite compact cover of X, and this gives an
identification of the Čech complex for the cover of Y with coefficients in f∗F

• with the Čech
complex for the cover of X with coefficients in F•. Hence we get a natural map:

i. f ∗ : Ȟ•(Y ; f∗F
•)→ Ȟ•(X;F•) for Fi ∈ PrshvKX.

A.5 Pure homotopy K-sheaves

By Proposition A.4.14, a homotopy K-sheaf can be thought of as a resolution (that is, its
global sections computes the cohomology of some complex of sheaves). In this section, we
introduce the notion of a pure homotopy K-sheaf, which may be thought of as a resolution
of a sheaf (as opposed to a complex of sheaves). More specifically, a pure homotopy K-sheaf
F• “is” a resolution of H0F• (which by Lemma A.5.3 is always a sheaf).

Definition A.5.1. We say that a homotopy K-sheaf F• on X is pure iff:
i. (Stalk cohomology) H iF•p = 0 for i 6= 0 and all p ∈ X.

ii. (Weak vanishing) H iF• = 0 for i << 0 locally on X (meaning that for all p ∈ X,
there exists an open set U ⊆ X containing p and an integer N > −∞ such that
H iF•(K) = 0 for all K ⊆ U and i ≤ N).

Remark A.5.2. It would be nice to know whether the stalk cohomology condition implies
the weak vanishing condition in general (it would be much easier to check purity).

Lemma A.5.3. Let F• be a pure homotopy K-sheaf. Then:
i. (Strong vanishing) H iF• = 0 for i < 0.

ii. H0F• is a K-sheaf.

Proof. By Lemma A.2.12, strong vanishing implies that H0F• is a K-sheaf. Now let us
prove strong vanishing. By restricting to a compact subset, it suffices to treat the case when
the underlying space is compact. Now from (hShK2), compactness, and weak vanishing, it
follows that H iF• = 0 for i << 0. Now let us prove strong vanishing by induction on i < 0
(we have just proven the base case). For the inductive step, observe that H iF• is a sheaf
by the induction hypothesis (H i−1F• = 0) and Lemma A.2.12, and thus H iF•p = 0 =⇒
H iF• = 0.

Proposition A.5.4 (Ȟ• of a pure homotopy K-sheaf). Let F• be a pure homotopy K-sheaf.
Then there is a canonical isomorphism:

H•F•(X) = Ȟ•(X;H0F•) (A.5.1)

More generally, let [F•0 → F•−1
1 → · · · → F•−nn ] be a complex of K-presheaves where each F•i

is a pure homotopy K-sheaf. Then there is a canonical isomorphism:

H•[F•0(X)→ · · · → F•−nn (X)] = Ȟ•(X; [H0F•0 → · · · → (H0F•n)[−n]]) (A.5.2)
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Proof. The isomorphism (A.5.2) is defined as the composition of the following isomorphisms:

H•[F•0(X)→ · · · → F•−nn (X)]
↓

Ȟ•(X; [F•0 → · · · → F•−nn ])
↓

Ȟ•(X; [τ≥0F
•
0 → · · · → τ≥nF

•−n
n ])

↑
Ȟ•(X; [H0F•0 → · · · → HnF•−nn ])

(A.5.3)

The maps are isomorphisms for the following reasons. Map one: [F•0 → · · · → F•−nn ] is a
homotopy K-sheaf (Lemma A.2.11), and a homotopy K-sheaf calculates its own Ȟ• (Proposi-
tion A.4.14). Map two: the map of coefficient K-presheaves is a quasi-isomorphism (Lemma
A.5.3) and thus induces an isomorphism on Ȟ• (Lemma A.4.12). Map three: the map of
coefficient K-presheaves is a quasi-isomorphism on stalks (by purity), and thus induces an
isomorphism on Ȟ• (Proposition A.4.18).

Lemma A.5.5 (Checking purity on a cover). Let F• be a homotopy K-sheaf. Write X =
U ∪ Z with U open and Z closed, and suppose that i∗F• and j∗F• are both pure (i : Z ↪→ X
and j : U ↪→ X). Then F• is pure.

Proof. It suffices to show the weak vanishing property for F•. Let α ∈ H iF•(K) be arbitrary
with i < 0. By Remark A.1.5 and Lemma A.2.13, the following is a quasi-isomorphism:

lim−→
Z⊆V
V open

F•(K ∩ V )→ F•(K ∩ Z) (A.5.4)

Since H iF•(K∩Z) = 0 by strong vanishing for i∗F•, we see that the image of α in H iF•(K∩
V ) vanishes for some open V ⊇ Z. Now applying (hShK2) to K = (K ∩ V ) ∪ (K \ V ), we
see that the vanishing of the image of α in H iF•(K ∩ V ) implies that α “comes from” the
cohomology of [F•(K \ V )→ F•−1(K ∩ V ∩ (K \ V ))]. On the other hand, this latter group
vanishes in degrees i < 0 by strong vanishing for j∗F•. Thus α = 0, so we have even shown
strong vanishing for F•.

A.6 Poincaré–Lefschetz duality

We prove a version of Poincaré duality for arbitrary closed subsets of a topological manifold.
This proof is a good illustration of the tools we have developed concerning pure homotopy
K-sheaves (which arise naturally in the proof).

We observed in Example A.2.4 that U 7→ C•(U) is a homotopy sheaf on any space (and
it should be thought of as a resolution of the constant sheaf). To prove Poincaré duality for
a topological manifold M of dimension n, we will show that K 7→ CdimM−•(M,M \K) is a
pure homotopy K-sheaf and calculate its H0 as oM (in other words, it should be thought of
as a resolution of the orientation sheaf of M).

Convention A.6.1. Throughout this paper, we make no second countability or paracompact-
ness assumptions on manifolds (topological or smooth).
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Definition A.6.2 (Orientation sheaf of manifold). Let M be a topological manifold. We let
oM denote the orientation sheaf 43 of M (the corresponding K-sheaf is defined by oM(K) :=
HdimM(M,M\K)); it is locally isomorphic to the constant sheaf Z (and following Convention
A.0.3, it has parity dimM ∈ Z/2). Now let M be a topological manifold with boundary,
and define orientation sheaves on M :

oM := j∗oM\∂M (A.6.1)

oM rel ∂ := j!oM\∂M (A.6.2)

where j : M \ ∂M ↪→ M . Then oM is locally isomorphic to the constant sheaf Z, and there
is a sequence of sheaves which is exact on stalks:

0→ oM rel ∂ → oM → i∗o∂M → 0 (A.6.3)

where i : ∂M ↪→ M , and the second map comes from the boundary map in the long exact
sequence of the pair (M,∂M).

Lemma A.6.3 (Homotopy K-sheaf axioms for singular chains). Let X be a topological space.
Then we have:

i. C•(X,X) is acyclic.
ii. Let A,B ⊆ X be closed. Then the complex:[

C•(X,X \ (A ∪B))→ C•+1(X,X \ A)⊕ C•+1(X,X \B)→ C•+2(X,X \ (A ∩B))
]

is acyclic.
iii. Let K =

⋂
α∈AKα where {Kα}α∈A is a family of closed subsets of X which is filtered

in the sense that for all α1, α2 ∈ A, there exists β ∈ A with Kβ ⊆ Kα1 ∩Kα2. Then
lim−→α∈AC•(X,X \Kα)→ C•(X,X \K) is a quasi-isomorphism.

Proof. Statement (i) is obvious.
Statement (ii) can be deduced from Mayer–Vietoris using a form of the nine lemma as

we now explain. Let us write U := X \A and V := X \B. Now consider the following total
complex:

C•(U ∩ V ) −−−→ C•+1(U)⊕ C•+1(V ) −−−→ C•+2(U ∪ V )y y y
C•+1(X) −−−→ C•+2(X)⊕ C•+2(X) −−−→ C•+3(X)y y y

C•+2(X,U ∩ V ) −−−→ C•+3(X,U)⊕ C•+3(X, V ) −−−→ C•+4(X,U ∪ V )

(A.6.4)

The columns are acyclic (by definition of relative chains), and hence the total complex is
acyclic as well. The first row is acyclic by Mayer–Vietoris, and the second row is obviously
acyclic. Thus the third row is acyclic, as needed.

Statement (iii) is true because the map is in fact an isomorphism on the chain level. It
is clearly surjective; to show injectivity we must show that a singular chain on X which
is disjoint from K is in fact disjoint from Kα for some α ∈ A. This follows because the
standard n-simplex is compact.

43Note that the fundamental class lies in homology twisted by o∨M .
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Lemma A.6.4 (Poincaré–Lefschetz duality). Let M be a topological manifold of dimen-
sion n with boundary. Let i : X ↪→ M be a closed subset. Let N ⊆ ∂M (closed) be a
tamely embedded codimension zero submanifold with boundary.44 Then there is a canonical
isomorphism:

H•[Cn−1−•(N,N \X)→ Cn−•(M,M \X)] = Ȟ•c (X; i∗j!j
∗oM) (A.6.5)

where j : M◦ ∪ N◦ ↪→ M . In particular, specializing to N = ∅, there is a canonical
isomorphism:

Hn−•(M,M \X) = Ȟ•c (X; i∗oM rel ∂M) (A.6.6)

Proof. Let X+ be the one-point compactification of X. Define a complex of K-presheaves
F• on X+:

F•(K) := [Cn−1−•(N,N \K)→ Cn−•(M,M \K)] (A.6.7)

(where on the right hand side by K we really mean K ∩X). Applying Lemmas A.6.3 and
A.2.11, we see that F• is a homotopy K-sheaf.

We claim that F• is a pure homotopy K-sheaf. Certainly the homology of F• is bounded
below, because the singular chain complex of a topological manifold has homology bounded
above and F• is built out of these. Now, it is easy to calculate:

H•F•p =

{
Z p ∈M◦ ∪N◦

0 p /∈M◦ ∪N◦
(A.6.8)

concentrated in degree zero (see [Hat02, p231 §3.3] for the special case N = ∂M = ∅). Hence
F• is a pure homotopy K-sheaf. In fact, it is not hard to see (using the adjunction j! a j∗)
that (A.6.8) lifts to an isomorphism of sheaves f!i

∗j!j
∗oM → H0F• where f : X ↪→ X+.

Now we conclude:

H•F•(X+)
Prop A.5.4

= Ȟ•(X+; f!i
∗j!j

∗oM)
Lem A.4.7

= Ȟ•c (X; i∗j!j
∗oM)

Now observe that H•F•(X+) is the left hand side of (A.6.5).

Remark A.6.5 (Why homotopy K-sheaves instead of homotopy sheaves?). The naive mod-
ification of (A.6.7) substituting open U ⊆ X in place of compact K ⊆ X does not yield
a homotopy sheaf. To get a homotopy sheaf, one could apply the proposed functor Rα∗ :
hShvKX → hShvX from Remark A.2.8 to the homotopy K-sheaf (A.6.7). It is somewhat
easier, though, to just work directly in the setting of homotopy K-sheaves (which has some
advantages, for example stalks of K-presheaves are easier to define/understand). It is for this
reason that throughout this paper we work with homotopy K-sheaves instead of homotopy
sheaves.

44In other words, N ⊆ ∂M is a closed subset which locally looks like either ∅ ⊆ Rn−1, R≥0×Rn−2 ⊆ Rn−1,
or Rn−1 ⊆ Rn−1.
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A.7 Homotopy colimits

We make common use of the following type of “homotopy diagram” and its corresponding
“homotopy colimit”.

Definition A.7.1 (Homotopy diagram). Let S be a finite poset. A homotopy diagram over
S is a collection of complexes {A•s,t}s�t∈S equipped with compatible maps A•s,t → A•s′,t′ for
s � s′ � t′ � t (meaning that A•s,t → A•s′,t′ → A•s′′,t′′ and A•s,t → A•s′′,t′′ agree).

Definition A.7.2 (Homotopy colimit). Let S be a finite poset and let {A•s,t}s�t∈S be a
homotopy diagram over S. We define the homotopy colimit :

hocolim
s�t∈S

A•s,t :=
⊕
p≥0

⊕
s0≺···≺sp∈S

A•+ps0,sp
(A.7.1)

with differential (decreasing p) given by the alternating sum over forgetting one of the si
(plus the internal differential).45 Loosely speaking, we are “gluing together” the {A•s,s}s∈S
along the “morphisms” A•s,s ← A•s,t → A•t,t for s � t.

Lemma A.7.3 (Terminal object for hocolim). Let S be a finite poset with unique maximal
element stop, and let {A•s,t}s�t∈S be a homotopy diagram with the property that every map
A•s,t → A•s,t′ (s � t′ � t) is a quasi-isomorphism. Then the natural inclusion A•stop,stop →
hocolims�t∈SA

•
s,t is a quasi-isomorphism.

Proof. We filter hocolims�t∈SA
•
s,t by the number of s0, . . . , sp which are not equal to stop.

The zeroth associated graded piece is the subcomplex A•stop,stop , so it suffices to show that
all the other associated graded pieces are acyclic. Each of these is a direct sum of mapping
cones [A•+1

s,stop → A•s,t], which are acyclic by assumption.

Lemma A.7.4 (hocolim preserves quasi-isomorphisms). Fix a finite poset S and let {A•s,t}s�t∈S
and {B•s,t}s�t∈S be homotopy diagrams over S. Suppose that there are compatible quasi-
isomorphisms A•s,t → B•s,t. Then the induced map hocolims�t∈SA

•
s,t → hocolims�t∈SB

•
s,t is a

quasi-isomorphism.

Proof. Since the functor hocolims�t∈S commutes with the formation of mapping cones, it
suffices to show that if each A•s,t is acyclic, then so is hocolims�t∈SA

•
s,t. This holds since in

this case it has a finite filtration whose associated graded is acyclic.

Definition A.7.5 (Tensor product of homotopy diagrams). Let S and T be two finite posets,
and let {A•s,s′} and {B•t,t′} be homotopy diagrams over S and T respectively. Their tensor
product {A•s,s′ ⊗ B•t,t′} is naturally a homotopy diagram over S× T. Now there is a natural
morphism:

hocolim
s�s′∈S

A•s,s′ ⊗ hocolim
t�t′∈T

B•t,t′ → hocolim
s×t�s′×t′∈S×T

A•s,s′ ⊗B•t,t′ (A.7.2)

To define this morphism, we simply observe that the nerve of S×T is the standard simplicial
subdivision of the product of the nerves of S and T, and this is covered by a morphism of
coefficient systems.46

45This can be interpreted as the complex of simplicial chains on the nerve of S using a coefficient system
determined by {A•s,t}.

46In fact, from this perspective one easily sees that (A.7.2) is always a quasi-isomorphism.
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A.8 Homotopy colimits of pure homotopy K-sheaves

We introduce a gluing construction for pure homotopy K-sheaves. The relevance of this
Lemma A.8.2 is best understood in its (only) intended application, namely Lemma 4.3.3
(which is best understood in context).

Lemma A.8.1 (hocolim preserves homotopy K-sheaves). Let S be a finite poset and let
{F•s,t}s�t∈S be a homotopy diagram of homotopy K-sheaves. Then hocolims�t∈S F

•
s,t is a ho-

motopy K-sheaf.

Proof. The associated graded of the p-filtration on hocolims�t∈S F
•
s,t is a homotopy K-sheaf

by assumption; now use Lemma A.2.11.

Lemma A.8.2 (Gluing pure homotopy K-sheaves). Let A be a finite set. Let {UI}I⊆A be
an open cover of a space X satisfying:

i. UI ∩ UK ⊆ UJ for I ⊆ J ⊆ K.
ii. UI ∩ UI′ ⊆ UI∪I′ for I, I ′ ⊆ A.

Let G be a sheaf on X and let GIJ := (jIJ)!(jIJ)∗G where jIJ : UI ∩ UJ ↪→ X. By property
(i), this gives rise to a homotopy diagram {GIJ}I⊆A over 2A of sheaves on X.

Let {F•IJ}I⊆J⊆A be a homotopy diagram over 2A of pure homotopy K-sheaves on X,
and suppose we give a compatible system of isomorphisms GIJ

∼−→ H0F•IJ . Then F• :=
hocolimI⊆J⊆A F

•
IJ is a pure homotopy K-sheaf and there is a canonical induced isomorphism

G
∼−→ H0F•.

Proof. Certainly F• is a homotopy K-sheaf by Lemma A.8.1. Since A is finite, it is easy to
see that H iF•IJ being bounded below implies that H iF• is bounded below.

Now let us calculate F•p using the spectral sequence associated to the p-filtration. The
E1 term is concentrated along the q = 0 row since (HqF•IJ)p is concentrated in degree zero;
thus there are no further differentials after the E1 page. On the E1 page the differentials
coincide precisely with the differentials in the definition of hocolimI⊆J⊆A(GIJ)p (regarding
GIJ as complexes concentrated in degree zero). Hence we have an isomorphism:

H•F•p = H• hocolim
I⊆J⊆A

(GIJ)p (A.8.1)

To calculate the right hand side of (A.8.1), let us start with the trivial observation that:

(GIJ)p =

{
Gp p ∈ UI ∩ UJ
0 p /∈ UI ∩ UJ

(A.8.2)

Now consider (2A)p := {I ⊆ A : p ∈ UI}, which satisfies the following properties:
i. (2A)p has a maximal element (restatement of (ii)).
ii. I,K ∈ (2A)p implies J ∈ (2A)p for I ⊆ J ⊆ K (restatement of (i)).

These two properties imply that hocolimI⊆J⊆A(GIJ)p is simply Gp tensored with the simplicial
chain complex of the nerve of (2A)p (which is contractible). Hence (A.8.1) gives a canonical
isomorphism of stalks H0F•p = Gp (and thus in particular F• is pure).

Now it remains to construct a canonical isomorphism of sheaves G
∼−→ H0F•. Over the

open set UI , we define this isomorphism to be the composition GII
∼−→ H0F•II → H0F• (the
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second map being the inclusion of a p = 0 subcomplex in the homotopy colimit). At any
point p ∈ UI , this specializes to the isomorphism of stalks Gp = H0F•p defined earlier. Hence
since {UI}I⊆A is an open cover of X, these isomorphisms patch together to give the desired
global isomorphism.

A.9 Steenrod homology

Steenrod homology H• is a homology theory for compact Hausdorff spaces. It is character-
ized uniquely by a certain set of axioms due to Berikashvili [Ber80, Ber83] (see also Goldfarb
[Gol97, p355, §7.4] and Inassaridze [Ina91]); a simpler axiomatic characterization of Steenrod
homology on compact metrizable spaces is due to Milnor [Mil95]. Note that it follows as usual
from these axioms that Steenrod homology coincides with singular homology on finite CW-
complexes. Steenrod homology is due to Steenrod for compact metrizable spaces [Ste40] and
was later generalized to compact Hausdorff spaces (some sources include Edwards–Hastings
[EH76], Hastings [Has77], Carlsson–Pedersen [CP98], and Goldfarb [Gol97]). Another ref-
erence is Mardešić’s book [Mar00] (note that Mardešić studies the more general theory of
strong homology, which coincides with Steenrod homology on compact spaces).

A.9.1 Čech cochains

The following definition is due to Carlsson–Pedersen [CP98]. The idea of using open covers
indexed by the points of the space being covered goes back at least to Godement [God58, II
§5.8], and was also used by Friedlander [Fri82] in the context of étale homotopy theory.

Definition A.9.1 (Rigid open cover). A rigid open cover of a compact space X con-
sists of open sets {Ux ⊆ X}x∈X such that x ∈ Ux, {x : Ux = U} ⊆ U , and #{U : U =
Ux for some x} < ∞. Warning: even if Ux = Uy for some x 6= y, they are still different
elements of the cover; in particular, the nerve of a rigid cover is always infinite unless X is
finite.

For doing Čech theory, the category of rigid open covers is technically more convenient
than the usual cateory of open covers (c.f. Remark A.4.1). Specifically, the collection of rigid
covers forms a set, and there is at most one morphism between any pair of rigid covers (we
only consider refinements which act as the identity on the index set X).

Definition A.9.2 (Č• and Č•c of sheaves; c.f. Definition A.4.3). Let F be a sheaf. We define
the Čech cochains:

Č•(X;F) := lim−→
{Ux⊆X}x∈X

rigid open cover

⊕
p≥0

∏
S⊆X
|S|=p+1

F
(⋂
x∈S

Ux

)
[−p] (A.9.1)

with the standard Čech differential. For any compact K ⊆ X, define Č•K(X;F) (Čech
cochains with supports in K) via (A.9.1) except replacing every instance of F(U) with
ker[F(U)→ F(U \K)]. We let Č•c (X;F) := lim−→K⊆X Č

•
K(X;F) (Čech cochains with compact

supports).
Clearly the homology of Č•(X;F) (resp. Č•K(X;F), Č•c (X;F)) is Ȟ•(X;F) (resp. Ȟ•K(X;F),

Ȟ•c (X;F)).
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Definition A.9.3 (Č• of complexes of K-presheaves; c.f. Definition A.4.10). Let F• be a
complex of K-presheaves on a compact space X. We define:

Č•(X;F•) := lim−→
{Ux⊆X}x∈X

rigid open cover

⊕
p≥0

∏
S⊆X
|S|=p+1

F•−p
(⋂
x∈S

Ux

)
(A.9.2)

with the standard Čech differential (plus the internal differential of F•). We also define
Č•(X;F) for any K-presheaf F by viewing it as a complex concentrated in degree zero.

The homology of Č•(X;F•) is Ȟ•(X;F•), as can be seen by applying the arguments from
the proof of Lemma A.4.11. Note that for a sheaf F, the complexes (A.9.1) and (A.9.2) are
canonically isomorphic.

Definition A.9.4 (Pullback on Č• and Č•c ; c.f. Definitions A.4.6, A.4.21). Let f : X → Y be
a map of spaces. A rigid open cover {Uy}y∈X pulls back to a rigid open cover {f−1(Uf(x))}x∈X ,
and this gives natural maps:

i. f ∗ : Č•(Y ; f∗F)→ Č•(X;F) for F ∈ PrshvX.
ii. f ∗ : Č•c (Y ; f∗F)→ Č•c (X;F) for F ∈ ShvX (if f is proper).
iii. f ∗ : Č•(Y ; f∗F

•)→ Č•(X;F•) for Fi ∈ PrshvKX.
whose action on homology coincide with the maps f ∗ defined earlier.

A.9.2 Derived inverse limits

Definition A.9.5 (Derived inverse limit R lim←−). Let {C•λ}λ∈Λ be an inverse system of com-
plexes. We define:

R lim←−
λ∈Λ

C•λ :=
∏
q≥0

∏
λ0≤...≤λq

C•−qλ0
(A.9.3)

with differential obtained by viewing this as cochains on the nerve of Λ with a particular
coefficient system. See Mardešić [Mar00, §17] for more details on and basic properties of
R lim←−.

Definition A.9.6 (Derived functors lim←−
i). Let {Aλ}λ∈Λ be an inverse system of abelian

groups. We define:

lim←−
i

λ∈Λ

Aλ := H i
[
R lim←−
λ∈Λ

Aλ

]
(A.9.4)

(viewing Aλ as an inverse system of complex concentrated in degree zero). The inverse limit
functor lim←− from inverse systems of abelian groups indexed by Λ to abelian groups is left

exact, and lim←−
i are its right derived functors (see Mardešić [Mar00, Corollary 11.47]). See

Mardešić [Mar00, §§11–15] for more details on and basic properties of lim←−
i.

Lemma A.9.7 (Cofinality for lim←−
i and R lim←−). Let f : Λ′ → Λ be weakly increasing (λ1 ≤

λ2 =⇒ f(λ1) ≤ f(λ2)) and cofinal (f(Λ′) ⊆ Λ cofinal). Then the following natural map is
an isomorphism:

lim←−
i

λ∈Λ

Aλ
∼−→ lim←−

i

λ′∈Λ′

Af(λ′) (A.9.5)
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More generally, the following natural map is a quasi-isomorphism:

R lim←−
λ∈Λ

C•λ
∼−→ R lim←−

λ′∈Λ′

C•f(λ′) (A.9.6)

Proof. For lim←−
i, see [Mar00, p291, Theorem 14.9], and for R lim←−, see [Mar00, p349, Corollary

17.18].

Lemma A.9.8. If C•λ
∼−→ D•λ is a morphism of inverse systems which is a level-wise quasi-

isomorphism (i.e. for every λ), then the natural map:

R lim←−
λ∈Λ

C•λ
∼−→ R lim←−

λ∈Λ

D•λ (A.9.7)

is a quasi-isomorphism.

Proof. See [Mar00, p348, Theorem 17.16].

A.9.3 Steenrod chains

Definition A.9.9 (due to Chogoshvili [Čog51]). A partition X =
⊔n
i=1Ei shall mean an

unordered partition into finitely many disjoint nonempty subsets E1, . . . , En ⊆ X; there is
an associated finite closed covering X =

⋃n
i=1Ei, whose nerve is denoted N(X; {Ei}ni=1)

(the simplicial complex with vertices {1, . . . , n} where S ⊆ {1, . . . , n} spans a simplex iff⋂
i∈S Ei 6= ∅). A partition {Fj}mj=1 refines {Ei}ni=1 iff for all j, there exists a (necessarily

unique) i with Fj ⊆ Ei. For a refinement {Ei}ni=1 → {Fj}mj=1, there is an associated map of

nerves N(X; {Fj})→ N(X; {Ei}).

For doing Čech theory, Chogoshvili’s construction has exceptionally nice properties. The
collection of partitions is a set, and there is at most one morphism between any pair of
partitions. The poset of partitions is cofinite (a given partition refines only finitely many
other partitions). Each nerve N(X; {Ei}) is a finite simplicial complex, and the transition
maps N(X; {Fj})→ N(X; {Ei}) are all surjective. Also, any pair of partitions has a minimal
common refinement. Given a map f : X → Y , a partition {Ei} of Y pulls back to a partition
{f−1(Ei)} of X, and there is an associated map on nerves N(X; {f−1(Ei)})→ N(Y, {Ei}).

Lemma A.9.10. Let X be compact. There is a natural map:

lim←−
X=

⊔n
i=1 Ei

N(X; {Ei})→ X (A.9.8)

which induces an isomorphism on Čech cohomology.

Proof. There is a natural correspondence C ⊆ X×N(X; {Ei}), whose fiber over x ∈ X is the
complete simplex on {i : x ∈ Ei}. Now it is not hard to check that the inverse limit of these
correspondences maps bijectively (and thus homeomorphically) to lim←−X=

⊔n
i=1 Ei

N(X; {Ei}),
thus giving rise to the desired map (A.9.8).

Now the inverse image of p ∈ X under (A.9.8) is an inverse limit of complete simplices
with surjective transition maps (“the complete simplex on a profinite set”), and this has the

132



Čech cohomology of a point. Indeed, for any inverse system of compact spaces {Xα}, the
natural map lim−→α

Ȟ•(Xα) → Ȟ•(lim←−αXα) is an isomorphism (since open covers of lim←−αXα

pulled back from some Xα are cofinal among all open covers). Thus it follows from the Leray
spectral sequence that (A.9.8) induces an isomorphism on Čech cohomology.

Definition A.9.11 (Steenrod chains and homology). Let X be compact. We define:

C•(X) := R lim←−
X=

⊔n
i=1 Ei

⊕
p≥0

⊕
S⊆{1,...,n}
|S|=p+1⋂
i∈S Ei 6=∅

Z[−p] (A.9.9)

For a map f : X → Y , there is an induced pushforward map f∗ : C•(X) → C•(Y ). We
denote by H•(X;F) the homology of C•(X;F), and we define relative homology H•(X, Y ;F)
as the homology of the relevant mapping cone.

More generally, let F be a locally constant sheaf of abelian groups on X. Fix a partition
X =

⊔n
i=1E

0
i and trivializations of F|

E0
i
. This gives rise to a local system F on N({Ei}ni=1)

for any partition {Ei} refining {E0
i }. We now define C•(X;F) as in (A.9.9), restricted to

partitions refining {E0
i } and using the coefficient system on the nerve induced by F and

the fixed trivializations of F|
E0
i
. Since any two choices of trivializations of F|Ei become

isomorphic (in the sense that that their sets of “constant sections” coincide) after pulling
back to some common refinement, it follows that C•(X;F) is well-defined up to essentially
unique quasi-isomorphism (by Lemma A.9.7). For a map f : X → Y and F → f ∗G, there is
a pushforward map C•(X;F)→ C•(Y ;G).

Although not logically necessary for our purposes, we now argue that Steenrod homology
as given in Definition A.9.11 coincides with the definition from Mardešić [Mar00] (at least for
constant coefficient systems). First of all, note that (a special case of) Mardešić’s definition
of strong homology is that if a compact space X is an inverse limit of compact polyhedra
Xα over a cofinite index set, then:

H•(X) = H•R lim←−
α

C•(Xα) (A.9.10)

(see [Mar00, p379, §19.1], and note that such an inverse system is a “cofinite polyhedral
resolution” of its inverse limit [Mar00, p103, §6]). In particular, C•(X) as defined in (A.9.9)
computes the Steenrod homology of lim←−X=

⊔n
i=1 Ei

N(X; {Ei}) (using the morphism of inverse

systems Csimp
• (N(X; {Ei})) → Csing

• (N(X; {Ei})) given by barycentric subdivision, which
is a level-wise quasi-isomorphism and thus induces a quasi-isomorphism on derived inverse
limits by Lemma A.9.8). Finally, note that the map (A.9.8) induces an isomorphism on
strong homology by Lemma A.9.10 and [Mar00, p446, Theorem 21.15].

Lemma A.9.12 (Steenrod homology is the derived dual of Čech cohomology). Let F be a
locally constant sheaf whose stalks are finitely generated free R-modules, and let M be an
R-module. Then there is a natural isomorphism:

C•(X; Hom(F,M)) = RHomD(R)(Č
•(X;F),M) (A.9.11)
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in the derived category D(R). The same holds for relative (co)chains of a closed subspace
Y ⊆ X, and the isomorphisms are compatible with the relevant exact triangles relating Y ,
X and (X, Y ).

This result is very similar to Milnor [Mil95, p92, Definition, Lemma 5] and Mardešić
[Mar00, p446, Theorem 21.15]. Note also that morally, the above result should be thought of
as following trivially from some derived universal property of the formR lim←−RHom(A•α, B

•) =
RHom(lim−→A•α, B

•) (hopefully this provides some motivation for the proof below).

Proof. Let us relate Č•(X;F) as defined using rigid open covers to a version using partitions.
Specifically, we consider the following quasi-isomorphisms:

Č•(X;F) = lim−→
{Ux⊆X}x∈X

rigid open cover

⊕
p≥0

∏
S⊆X
|S|=p+1

F
(⋂
x∈S

Ux

)
[−p] (A.9.12)

↑

lim−→
X=

⊔n
i=1 Ei

Ei⊆Ui

⊕
p≥0

∏
S⊆{1,...,n}
|S|=p+1

F
(⋂
i∈S

Ui

)
[−p] (A.9.13)

↓

lim−→
X=

⊔n
i=1 Ei

⊕
p≥0

∏
S⊆{1,...,n}
|S|=p+1

F
(⋂
i∈S

Ei

)
[−p] (A.9.14)

↑⊕
q≥0

⊕
{E(0)

i }
n0
i=1<···<{E

(q)
i }

nq
i=1

⊕
p≥0

∏
S⊆{1,...,n0}
|S|=p+1

F
(⋂
i∈S

E
(0)
i

)
[q − p] (A.9.15)

↑↓⊕
q≥0

⊕
{E(0)

i }
n0
i=1≤···≤{E

(q)
i }

nq
i=1

⊕
p≥0

∏
S⊆{1,...,n0}
|S|=p+1

F
(⋂
i∈S

E
(0)
i

)
[q − p] (A.9.16)

The first map is induced by associating to a partition {Ei} and Ei ⊆ Ui the rigid open
cover assigning Ui to x ∈ Ei, and pulling back along the induced map on nerves; it can
be seen to be a quasi-isomorphism by a filtration argument (basically the Leray spectral
sequence). The second map is a quasi-isomorphism by Lemma A.1.7 and the definition of
α∗. The third map is defined as the tautological map on q = 0 direct summands and zero for
q > 0; it can be seen to be a quasi-isomorphism by expressing the domain (resp. codomain)
as the direct limit over partitions {Ei} of the corresponding complex (resp. direct limit)
restricted to partitions refined by {Ei} and observing that for any fixed {Ei} the map is a
quasi-isomorphism by Lemma A.7.3. Finally, the last pair of maps consists of the natural
inclusion (↓) and the retraction annihilating any component with {E(j)

i }
nj
i=1 = {E(j+1)

i }nj+1

i=1

for some j (↑); one can see that both are quasi-isomorphisms by filtering by {Ei} (as before)

and then by the number of distinct {E(j)
i }

nj
i=1.
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For any partition {Ei} of X and collection of trivializations of F|Ei , there is a sub-K-

presheaf Fpre ⊆ F whose sections over K are those sections of F whose restrictions to K ∩Ei
are constant with respect to the specified trivializations. The complex (A.9.14) calculates
Čech cohomology (A.4.6) by a cofinality argument, and the inclusion Fpre → F induces an
isomorphism on stalks and thus on Čech cohomology by Lemma A.4.18. The third map
above remains a quasi-isomorphism for Fpre (for the same reason), and furthermore we may
restrict (A.9.16) to partitions refining the fixed {Ei} by Lemma A.9.7.

The conclusion of the above discussion is that we have thus constructed a canonical (and
functorial) quasi-isomorphism between Č•(X;F) and:⊕

q≥0

⊕
{Ei}≤{E

(0)
i }

n0
i=1≤···≤{E

(q)
i }

nq
i=1

⊕
p≥0

∏
S⊆{1,...,n0}
|S|=p+1

Fpre
(⋂
i∈S

E
(0)
i

)
[q − p] (A.9.17)

(for any fixed partition {Ei} and trivializations of F|Ei giving rise to Fpre ⊆ F). Note

that C•(X,Hom(F,M)) is precisely Hom((A.9.17),M). Thus it suffices to show that this
particular Hom is in fact the RHom.

Recall that RHom in D(R) may be computed using a K-projective resolution of the
first argument (see Spaltenstein [Spa88]), where a complex P • is called K-projective iff
Hom•(P •,M•) is acyclic for every acyclic complex M• (note that a bounded above complex
of projective modules is K-projective). Thus it suffices to show that (A.9.17) is K-projective.

We consider subsets ℘ of the poset of partitions of X with the property that any partition
refined by a partition in ℘ also lies in ℘. Since the poset of partitions is cofinite, we may
use Zorn’s lemma to choose a directed system {℘i}i∈I of such collections, indexed by a
well-ordered set I, with the following properties:

i. ℘0 = ∅, where 0 ∈ I is the least element.
ii. |℘i \ ℘i−1| = 1 if i ∈ I has a predecessor i− 1.
iii. ℘i =

⋃
i′<i ℘i′ if i ∈ I has no predecessor.

Now for i ∈ I, let (A.9.17)i ⊆ (A.9.17) denote the subcomplex generated by restricting to
partitions in ℘i. It follows that:

i. (A.9.17)0 = 0, where 0 ∈ I is the least element.
ii. (A.9.17)i−1 → (A.9.17)i is injective and component-wise split with K-projective cok-

ernel if i ∈ I has a predecessor i− 1 (this holds since the cokernel is a bounded above
complex of free modules).

iii. lim−→i′<i
(A.9.17)i′ → (A.9.17)i is an isomorphism if i ∈ I has no predecessor.

It follows that (A.9.17) = lim−→i
(A.9.17)i is K-projective by Spaltenstein [Spa88, p131, 2.8

Corollary].
Since the construction of the isomorphism (A.9.11) was given by a functorial chain-

level construction, it can be checked that it is natural, applies in the relative case, and is
compatibile with exact triangles.
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B Gluing for implicit atlases on Gromov–Witten mod-

uli spaces

In this appendix, we provide the gluing analysis used in §9 to verify that the implicit at-
lases constructed there satisfy the openness and submersion axioms (specifically, we prove
Proposition 9.2.6).

The gluing theorem we prove here is of a very standard sort which has been treated (in
different related settings) many times over in the literature, and so we make no claim of orig-
inality in this appendix. The methods used here are based on our partial understanding of
the treatments of gluing in Abouzaid [Abo12a] and McDuff–Salamon [MS04], as well as con-
versations with Abouzaid, Ekholm, Hofer, and Mazzeo (we also thank the anonymous referee
for their comments). We understand that there is work in progress of McDuff–Wehrheim
proving a similar result (keeping track of more smoothness) in their (very similar) setting
of Kuranishi atlases [MW15, McD15]. We also refer the reader to Ekholm–Smith [ES14],
Fukaya–Oh–Ohta–Ono [FOOO12], and Hofer–Wysocki–Zehnder [HWZ14b] for related gluing
results.

The essential content of our result is that, for a certain moduli space of holomorphic
curves M(X), the regular locus M(X)reg ⊆ M(X) (i.e. the locus where a certain linearized
∂̄-operator is surjective) is a topological manifold. We prove this by constructing local
manifold charts covering M(X)reg (since being a topological manifold is a property rather
than extra structure, we need not address any question of compatibility between different
local charts or of their compatibility with any auxiliary group action).

B.1 Setup and main result

We use new notation, unrelated to (and simpler than) that from §9.
Fix a smooth almost complex manifold:

(X, J) (B.1.1)

Fix codimension two submanifolds with boundary:

D,D1, . . . , Dr ⊆ X (B.1.2)

(let D◦ := D \∂D, and similarly for Di). Fix a smooth manifold M equipped with a smooth
étale map M → Mg,n+`

47 (in the orbifold sense). Denote by Cg,n+` → Mg,n+` the universal
family, and define a family of curves C→M via the following pullback square:

C −−−→ Cg,n+`y y
M −−−→ Mg,n+`

(B.1.3)

47We give Mg,n+` the standard smooth structure from its structure as a complex analytic orbifold. Every
point in a smooth orbifold M is in the image of a smooth étale map M ′ → M . Indeed, M is covered by
open sets each diffeomorphic to Rn/G for some finite group G→ GLn(R), and the map Rn → Rn/G ↪→M
is smooth étale.
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Let C
◦ ⊆ C denote the open subset where the fiber is smooth. Fix a finite dimensional vector

space E and a linear map:

λ : E → C∞(

r times︷ ︸︸ ︷
C
◦ ×

M

· · · ×
M

C
◦ ×

M

C
◦ ×X,Ω0,1

C
◦
/M
⊗C TX) (B.1.4)

Here Ω0,1

C
◦
/M

is the (0, 1)-part of the complexified vertical cotangent bundle T ∗
C
◦
/M
⊗R C of

(the last factor of) C
◦ → M, and C∞ means smooth sections. We require that λ be zero in

a neighborhood of the nodes C \ C◦ of the last C
◦

factor.
For a nodal curve C, we denote by C̃ its normalization, i.e. the unique smooth compact

Riemann surface equipped with a map C̃ → C which identifies points in pairs to form the
nodes of C. A function on C being smooth means (by definition) that its pullback to C̃ is
smooth.

Fix a homology class β ∈ H2(X;Z). We are interested in the following moduli space:

M(X) :=


s ∈M

u : Cs → X
xi ∈ Cs 1 ≤ i ≤ r
e ∈ E

∣∣∣∣∣∣∣∣
u smooth and u∗[Cs] = β
u(pn+i) ∈ D◦ (1 ≤ i ≤ `)
u(xi) ∈ D◦i and u t Di at xi (1 ≤ i ≤ r)
∂̄u+ λ(e)(x1, . . . , xr, ·, u(·)) = 0

 (B.1.5)

We let Cs denote the fiber of C→M over s, with marked points p1, . . . , pn+` ∈ Cs. Here u t

Di at xi means (by definition) that xi is not a node of Cs and the map TxiCs⊕Tu(xi)Di
du⊕id−−−→

Tu(xi)X is surjective. Now λ(e)(x1, . . . , xr, ·, u(·)) is a smooth section of Ω0,1

C̃s
⊗C u

∗TX over

Cs supported away from the nodes; hence the last equation makes sense. We give M(X) the
topology of uniform convergence (i.e. using the Hausdorff distance between graphs ⊆ C×X
to compare maps u).

We spend this appendix studying M(X), though the only reason to care about M(X)

itself is as an intermediate tool for proving the desired result for M
β

g,n(X)I . Note that M(X)
is not necessarily compact, however this will be irrelevant since we are only interested in its
local properties.

Fix a subspace E ′ ⊆ E.
Let us now define the “E ′-regular locus” M(X)reg ⊆ M(X) (which for simplicity we

will just call the “regular locus”). Fix (s0, u0, {x0
i }, e0) ∈ M(X); we will describe when

(s0, u0, {x0
i }, e0) ∈M(X)reg. We consider the smooth Banach manifold:

B :=
{

(u, e) ∈ W k,p(Cs0 , X)× E
∣∣∣ u(pn+i) ∈ D◦ (1 ≤ i ≤ `)

}
(B.1.6)

Over B, we consider the smooth Banach bundle E whose fiber over a map u : Cs0 → X is
W k−1,p(C̃s0 ,Ω

0,1

C̃s0
⊗Cu

∗TX)⊕E/E ′. Now suppose k is large; then there are unique continuous

functions:
xi : B→ Cs0 (1 ≤ i ≤ r) (B.1.7)

defined in a neighborhood of (u0, e0) ∈ B, which coincide with x0
i at (u0, e0), and for which

u(xi(u)) ∈ D◦i . Moreover, (B.1.7) are “highly differentiable”, by which we mean that for all
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` < ∞, the function (B.1.7) is of class C` provided k ≥ k0(`). In the present situation, we
can of course be more precise: xi is C` as a function of u ∈ C` (by the implicit function
theorem), so (B.1.7) is C` as long as W k,p ↪→ C` (which holds iff (k − `)p > 2). It follows
that:

(u, e) 7→
[
∂̄u+ λ(e)(x1, . . . , xr, ·, u(·))

]
⊕ e (B.1.8)

is a highly differentiable section of E over B (the only nonsmoothness comes from how the
xi’s depend on u). Assume 1 < p < ∞. We say (s0, u0, {x0

i }, e0) ∈ M(X)reg iff (B.1.8) is
transverse to the zero section at (u0, e0). It is an easy exercise using elliptic regularity to
see that this notion is independent of (k, p) (as long as k is sufficiently large so that the
condition makes sense).

For a topological manifold M , let oM denote its orientation sheaf (whose fiber at a point
p ∈M is canonically HdimM(M,M \p;Z)). For a vector space E, let oE denote its orientation
module (canonically HdimE(E,E \ 0;Z)). The main result of this appendix is:

Theorem B.1.1. In the above setup (from the beginning of §B.1 until here), we have:

i. M(X)reg ⊆M(X) is open.
ii. M(X)reg is a topological manifold of dimension dimMg,n+`+(1−g) dimX+2〈c1(X), β〉+

dimE − 2`.
iii. The projection M(X)reg → E/E ′ is a topological submersion, i.e. locally modeled on a

projection Rn × Rm → Rn.
iv. The orientation sheaf oM(X)reg is canonically isomorphic to oE ⊗

⊗`
i=1 o

∨
u(pn+i)∗ND/X

.

Let us now explain how Theorem B.1.1 implies Proposition 9.2.6. Proposition 9.2.6 is a lo-
cal statement, so let us prove it in a neighborhood of a specific point (C, u, {φα}α∈I , {eα}α∈I) ∈
M

β

g,n(X)reg
I . We will construct data (X, J,D,D1, . . . , Dr,M, E, λ, E ′) as in the above setup

and a point (s, u, {xi}, e) ∈ M(X). It will be clear from the construction that there is a
natural homeomorphism between a small neighborhood of this point in M(X) and a small

neighborhood of the given point in M
β

g,n(X)I , and using this we will infer Proposition 9.2.6
from Theorem B.1.1.

We claim that every unstable irreducible component of C has a point where du is injective.
If I = ∅, this follows from the domain stabilization step Lemma 9.2.9, and if I 6= ∅, then
picking any α ∈ I, this follows from the fact that u t Dα and adding the intersections as
marked points makes C stable. It follows from the claim that we may pick D ⊆ X with
u t D such that adding these intersections as extra marked points makes C stable, and none
of these points are nodes or marked points. We take ` to be the minimum number of points
in u−1(D) necessary to stabilize C, and we fix an ordered `-tuple of such points, adding them
as new marked points pn+1, . . . , pn+` ∈ C, so now C is a curve of type (g, n+ `). Now we let
r =

∑
α∈I rα, we let D1, . . . , Dr ⊆ X consist of rα copies of Dα (union over α ∈ I), and we

let the xi’s be the intersection points u−1(Dα) (union over α ∈ I). For the purposes of the
present argument, let us reindex {xi}1≤i≤r as {xαi }α∈I,1≤i≤rα . Now since C is a curve of type
(g, n + `), it corresponds to a point in Mg,n+`. Choose an étale map M → Mg,n+` covering
this point, and choose a point s ∈M and an isomorphism ι : C → Cs. Now for every α ∈ I,
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there is a unique map:

φ̃α :

rα times︷ ︸︸ ︷
C
◦ ×

M

· · · ×
M

C
◦ ×

M

C
◦ → Cα (B.1.9)

defined in a neighborhood of {xα1}×· · ·×{xαrα}×Cs so that φ̃α(xα1 , . . . , x
α
rα , ι(·)) = φα(·) and

φ̃α(y1, . . . , yrα , ·) classifies the curve in the last factor after forgetting the last ` marked points
and adding y1, . . . , yrα as marked points (this follows from the fact that Cα → Mg,n+rα/Srα
is étale). We let E := EI =

⊕
α∈I Eα, and we define:

λ

(⊕
α∈I

eα

)
({yαi }α∈I,1≤i≤rα , ·, ·) =

∑
α∈I

λα(eα)(φ̃α(yα1 , . . . , y
α
rα , ·), ·)

in a neighborhood of {xαi }α∈I,1≤i≤rα ×Cs×X (and then we simply cut it off to be zero else-
where). Finally, we observe that with this definition, a neighborhood of (s, u◦ι−1, {xαi }α∈I,1≤i≤rα ,

⊕
α∈I eα) ∈

M(X) coincides with a neighborhood of (C, u, {φα}α∈I , {eα}α∈I) ∈M
β

g,n(X)I (note that the

point (C, u, {φα}α∈I , {eα}α∈I) ∈M
β

g,n(X)reg
I has trivial automorphism group by definition of

M
β

g,n(X)reg
I ).

For E ′ = E, under this identification of a small open set in M
β

g,n(X)I and a small open

set in M(X), we have M(X)reg ⊆M
β

g,n(X)reg
I (for this it is important that we chose ` as the

minimum number of points necessary to stabilize C). It follows that Theorem B.1.1(i,iv)
implies Proposition 9.2.6(i,iii) (note that over this small open set, we have an identification
ou(pn+i)∗ND/X = oTpn+iCs

and that the latter is canonically trivial using the complex structure

on Cs). Taking the above construction with J in place of I and setting E ′ := EI ⊆ EJ = E,
we get Proposition 9.2.6(ii) from Theorem B.1.1(ii,iii) as well.

B.2 Local model for resolution of a node

The rest of this appendix is devoted to the proof of Theorem B.1.1. We now fix (s0, u0, {x0
i }, e0) ∈

M(X)reg, and we prove the desired statements (i)–(iv) in a neighborhood of this point.
Our first task is to fix a nice local coordinate system on M near s0. Let d be the number

of nodes of C0 := Cs0 .
On each side of each node of C0, fix a “cylindrical end”, that is, a map:

[0,∞)× S1 → C0 (B.2.1)

which is a biholomorphism onto some small neighborhood D2 \ 0 of the node. We use
coordinates (s, t) ∈ [0,∞)×S1, which is given the standard holomorphic structure z = es+it.

Let M
d ⊆ M denote the locus of curves with exactly d nodes. Pick a smooth family of

smooth almost complex structures jy on C0 parameterized by y ∈ RdimM
d

, where j0 is the
given almost complex structure on C0, which is constant over the cylindrical ends (B.2.1),

and such that the induced map RdimM
d

→M
d

is a diffeomorphism onto its image.
Now consider the following procedure, which takes a “gluing parameter” α = e−6S+iθ ∈ C

and two copies of the standard end [0,∞)× S1 t [0,∞)× S1. We first truncate both ends,
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leaving just the subset [0, 6S] × S1 t [0, 6S] × S1. We then identify (s, t) in the first piece
with (6S − s, θ − t) = (s′, t′) in the second piece. We call the resulting cylinder a “neck”.

Now given gluing parameters48 α = (α1, . . . , αd) ∈ Cd, we may perform the gluing op-
eration above on C0, using the chosen cylindrical ends (B.2.1). We call the resulting curve
Cα, and it is equipped with cylindrical ends (corresponding to those αi = 0) and necks
(corresponding to those αi 6= 0):

[0,∞)× S1 → Cα (B.2.2)

[0, 6Si]× S1 → Cα (B.2.3)

In each neck, we have coordinates (s, t) ∈ [0, 6Si]×S1 and coordinates (s′, t′) ∈ [0, 6Si]×S1,
which satisfy s+ s′ = 6Si and t+ t′ = θi. The curve Cα is also equipped with n+ ` marked
points p1, . . . , pn+` ∈ Cα coming from the given p1, . . . , pn+` ∈ C0. Since jy is constant over
the cylindrical ends, it descends to give an almost complex structure on Cα.

Now since M→Mg,n+` is étale, there is an induced map:

Cd × RdimM
d

→M (B.2.4)

(α, y) 7→ (Cα, jy, p1, . . . , pn+`) (B.2.5)

which is a local diffeomorphism near zero. Using these local coordinates, we may alternatively
define M(X) as:

M(X) :=


α ∈ Cd

y ∈ RdimM
d

u : Cα → X
xi ∈ Cα 1 ≤ i ≤ r
e ∈ E

∣∣∣∣∣∣∣∣∣∣
u smooth and u∗[Cα] = β
u(pn+i) ∈ D◦ (1 ≤ i ≤ `)
u(xi) ∈ D◦i and u t Di at xi (1 ≤ i ≤ r)
∂̄yu+ λ(e)(α, y, x1, . . . , xr, ·, u(·)) = 0

 (B.2.6)

and this coincides with the definition (B.1.5) in a neighborhood of (s0, u0, {x0
i }, e0) = (0, 0, u0, {x0

i }, e0).
For the purposes of (B.2.6), λ denotes the function:

λ : E → C∞(Cd × RdimM
d

×
r times︷ ︸︸ ︷

C0 × · · · × C0 × C0 ×X,HomR(TC̃0, TX))

for which λ(·)(·, y, . . .) lands in Ω0,1

C̃0,jy
⊗C TX ⊆ HomR(TC̃0, TX), defined in terms of the old

λ via:

λnew(e)(α, y, x1, . . . , xr, p, x) :=

λold(e)(x1 ∈ (Cα, jy) ⊆ C, . . . , xr ∈ (Cα, jy) ⊆ C, p ∈ (Cα, jy) ⊆ C, x)

48In the present construction, and in many other constructions/definitions to come later, certain expres-
sions, equalities, etc. only make sense or only hold if the gluing parameters αi ∈ C are sufficiently close to
zero (i.e. |αi| ≤ ε for some ε > 0 depending only on data which we have previously fixed). We will often
leave this assumption implicit, since we only care about what happens for α in a neighborhood of 0 ∈ Cd

anyway. The same goes for y ∈ RdimM
d

.
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We assume that the cylindrical ends were chosen disjoint from the support of λold, so we can
make sense of λnew as giving sections on Cα.

Now to prove the main result, it suffices to study the local structure of M(X) (defined
as in (B.2.6)) near the basepoint:

(0, 0, u0 : C0 → X, {x0
i }, e0) (B.2.7)

which we are assuming lies in M(X)reg.

B.3 Pregluing

Let exp : TX → X denote the exponential map of some Riemannian metric on X for
which D is totally geodesic. Let ∇ denote any J-linear49 connection on TX (equivalently,
a connection for which ∇J = 0). Let PTx→y : TxX → TyX denote parallel transport via ∇
along the shortest geodesic between x and y (we will only use this notation when it may be
assumed that x and y are very close in X); note that PTx→y is J-linear.

Fix a smooth function χ : R→ [0, 1] satisfying:

χ(x) =

{
0 x ≤ 0

1 x ≥ 1
(B.3.1)

Definition B.3.1 (Flattening). For α ∈ Cd, we define the “flattened” map u0|α : C0 → X
as follows. Away from the ends, u0|α coincides with u0. Over an end [0,∞)× S1, we define
it as follows:

u0|α(s, t) :=


u0(s, t) s ≤ S − 1

expu0(n)

[
χ(S − s) · exp−1

u0(n) u0(s, t)
]

S − 1 ≤ s ≤ S

u0(n) S ≤ s

(B.3.2)

where n ∈ C0 denotes the corresponding node.

Definition B.3.2 (Pregluing). For α ∈ Cd, we define the “preglued” map uα : Cα → X as
follows. Away from the necks, uα coincides with u0. Over a neck [0, 6S] × S1, we define it
as follows:

uα(s, t) :=



u0(s, t) s ≤ S − 1

expu0(n)

[
χ(S − s) · exp−1

u0(n) u0(s, t)
]

S − 1 ≤ s ≤ S

u0(n) S ≤ s ≤ 5S

expu0(n)

[
χ(S − s′) · exp−1

u0(n) u0(s′, t′)
]

5S ≤ s ≤ 5S + 1

u0(s′, t′) 5S + 1 ≤ s

(B.3.3)

(uα should be thought of as the “descent” of u0|α from C0 to Cα).

49Given any connection ∇0, the connection ∇XY := 1
2 (∇0

XY − J(∇0
X(JY ))) is J-linear.
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Definition B.3.3 (Pregluing vector fields). For ξ ∈ C∞(C0, u
∗
0TX), we define:

ξα ∈ C∞(Cα, u
∗
αTX) (B.3.4)

as follows. Away from the necks, ξα coincides with ξ. Over a neck [0, 6S]× S1, we define it
as follows:

ξα(s, t) :=



ξ(s, t) s ≤ S − 1

PTu0(s,t)→uα(s,t) [ξ(s, t)] S − 1 ≤ s ≤ S

PTu0(s,t)→uα(s,t) [ξ(s, t)] · (1− χ(s− S)) + χ(s− S) · ξ(n) S ≤ s ≤ S + 1

ξ(n) S + 1 ≤ s ≤ 5S − 1

PTu0(s′,t′)→uα(s′,t′) [ξ(s′, t′)] · (1− χ(s′ − S)) + χ(s′ − S) · ξ(n) 5S − 1 ≤ s ≤ 5S

PTu0(s′,t′)→uα(s′,t′) [ξ(s′, t′)] 5S ≤ s ≤ 5S + 1

ξ(s′, t′) 5S + 1 ≤ s

(B.3.5)

B.4 Weighted Sobolev norms

Fix k ∈ Z≥6 and fix δ ∈ (0, 1). Fix a metric on TX for the purposes of defining Sobolev
norms of sections; this could be the same as the metric used to define exp, though there is
no need for it to be.

We denote by W k,2(Cα, u
∗
αTX) the space of sections of u∗αTX over Cα whose pullback

to C̃α is W k,2 (since W k,2 ↪→ C0 as k ≥ 6, this is the same as W k,2 sections over C̃α which
coincide on each pair of points identified in C̃α → Cα, where C̃α denotes the normalization
of Cα). Similarly we denote by W k−1,2(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX) the space of sections of class

W k−1,2. Note that both W k,2 andW k−1,2 refer to spaces of functions on the compact Riemann
surface C̃α. The specific choice of metric on Cα used to define the norms ‖·‖k,2 and ‖·‖k−1,2

will be of little importance (they will matter only up to commensurability).
We now define certain weighted Sobolev spaces W k,2,δ and W k−1,2,δ on the possibly non-

compact Riemann surface Cα minus the nodes. The specific choice of norms ‖·‖k,2,δ and
‖·‖k−1,2,δ (not just their commensurability classes) will be of great importance.

To make calculations in ends/necks easier, for each node n ∈ C0 we fix the local trivial-
ization of TX given by parallel transport:

PTu0(n)→p : Tu0(n)X → TpX (B.4.1)

over p contained in a small ball centered at u0(n). We assume that the ends (B.2.1) were
chosen small enough so that u0 maps each end into a compact subset of the small ball
associated to the corresponding node.

Definition B.4.1. For α ∈ Cd, we define a weighted Sobolev space:

W k,2,δ(C0, u
∗
0|αTX) (B.4.2)

using the following norm. We use the usual (k, 2) norm away from the ends. Over an
end [0,∞) × S1 ⊆ C0, we consider the local trivialization (B.4.1), in which a section of
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u∗0|αTX simply becomes a function ξ : [0,∞)× S1 → Tu0(n)X. In terms of this function, the
contribution from the end to the norm squared is:

|ξ(n)|2 +

∫
[0,∞)×S1

[
|ξ(s, t)− ξ(n)|2 +

k∑
j=1

∣∣Djξ(s, t)
∣∣2]e2δs ds dt (B.4.3)

The derivatives of ξ are measured with respect to the standard metric on [0,∞)× S1.
By Sobolev embedding W 2,2 ↪→ C0 in two dimensions, in any end we have a uniform

bound on |ξ(s, t)− ξ(n)| eδs and |Djξ(s, t)| eδs (1 ≤ j ≤ k − 2) linear in ‖ξ‖k,2,δ.

Definition B.4.2. For α ∈ Cd, we define a weighted Sobolev space:

W k,2,δ(Cα, u
∗
αTX) (B.4.4)

using the following norm. We use the usual (k, 2) norm away from the ends/necks. Over
an end, the contribution to the norm squared is (B.4.3). Over a neck [0, 6S]× S1 ⊆ Cα, we
again think of a section as a function ξ : [0, 6S]×S1 → Tu0(n)X, and the contribution to the
norm squared is:∣∣∣∣∫

S1

ξ(3S, t) dt

∣∣∣∣2 +

∫
[0,6S]×S1

[∣∣∣ξ(s, t)− ∫
S1

ξ(3S, t) dt
∣∣∣2 +

k∑
j=1

∣∣Djξ(s, t)
∣∣2]e2δmin(s,6S−s) ds dt

Of course, for fixed α ∈ Cd, this norm is equivalent to not weighting the necks, though the
two norms are not uniformly equivalent as α → 0. The weight in the necks is important
since the key point is to establish certain estimates which are uniform as α→ 0.

By Sobolev embedding W 2,2 ↪→ C0 in two dimensions, in any neck we have a uniform
bound on

∣∣ξ(s, t)− ∫
S1 ξ(3S, t) dt

∣∣ eδmin(s,6S−s) and |Djξ(s, t)| eδmin(s,6S−s) (1 ≤ j ≤ k − 2)
linear in ‖ξ‖k,2,δ.

Definition B.4.3. For α ∈ Cd, we define a weighted Sobolev space:

W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTX) (B.4.5)

as follows. We use the usual (k − 1, 2) norm away from the ends/necks. Over an end or
neck, we trivialize (TC̃α, jy) over C by the basis vector ∂

∂s
, and we trivialize TX via (B.4.1),

and hence the section is simply a function η from the end/neck to Tu0(n)X. In terms of this
function, the contribution to the norm squared is (for end/neck respectively):∫

[0,∞)×S1

k−1∑
j=0

∣∣Djη(s, t)
∣∣2 e2δs ds dt (B.4.6)

∫
[0,6S]×S1

k−1∑
j=0

∣∣Djη(s, t)
∣∣2 e2δmin(s,6S−s) ds dt (B.4.7)

By Sobolev embedding W 2,2 ↪→ C0 in two dimensions, in any end (resp. neck) we have a
uniform bound on |Djη(s, t)| eδs (resp. |Djη(s, t)| eδmin(s,6S−s)) (1 ≤ j ≤ k − 3) linear in
‖η‖k,2,δ.
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B.5 Based ∂̄-section Fα,y and linearized operator Dα,y

Fix a norm on E. On direct sums of normed spaces we use the direct sum norm ‖a⊕ b‖ :=
‖a‖+ ‖b‖.

We consider the following partially defined function:

Fα,y : C∞(Cα, u
∗
αTX)D ⊕ E → C∞(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX)

ξ 7→ PTexpuα ξ→uα
[
∂̄y expuα ξ + λ(e0 + projE ξ)(α, y, x1, . . . , xr, ·, (expuα ξ)(·))

]
This function Fα,y is defined for ξ in a C1-neighborhood of zero; for these ξ we define
xi = xi(ξ) as in (B.1.7). The subscript D indicates restriction to sections which are tangent
to D at pn+1, . . . , pn+`. It follows that for ξ contained in a C0-neighborhood of zero, expuα ξ
sends pn+1, . . . , pn+` to D◦.

Now we observe that Fα,y extends continuously to a map:

Fα,y : W k,2,δ(Cα, u
∗
αTX)D ⊕ E → W k−1,2,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX) (B.5.1)

which is defined for ‖ξ‖k,2,δ ≤ c′ (some c′ > 0). Moreover, this map is highly differentiable
(see (B.1.7)–(B.1.8) and the surrounding discussion; recall we have fixed k ≥ 6). We denote
by:

Dα,y : W k,2,δ(Cα, u
∗
αTX)D ⊕ E → W k−1,2,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX) (B.5.2)

the derivative of Fα,y at zero.
Let T∇(X, Y ) := ∇XY − ∇YX − [X, Y ] denote the torsion of ∇. Let (·)0,1

y denote the

projection HomR(TC̃α, u
∗
αTX)→ Ω0,1

C̃α,jy
⊗C u

∗
αTX, so (V )0,1

y := 1
2
(V + J ◦ V ◦ jy).

Lemma B.5.1. The linearized operator Dα,y is given by:

Dα,yξ =
(
∇ξ + T∇(ξ, duα)

)0,1

y

+
r∑
i=1

d[λ(e0)]

dxi
(α, y, x1, . . . , xr, ·, uα(·))(− projTCα ξ(xi))

+∇ξ[λ(e0)](α, y, x1, . . . , xr, ·, uα(·))
+ λ(projE ξ)(α, y, x1, . . . , xr, ·, uα(·)) (B.5.3)

where proj : u∗αTX → TCα denotes the projection associated to the splitting Tuα(xi)X =
Tuα(xi)Di ⊕ TxiCα, and ∇ξ[λ(e0)] means covariant derivative in the direction of ξ along the
X factor.

Proof. The first term
(
∇ξ + T∇(ξ, duα)

)0,1

y
comes from differentiating:

PTexpuα ξ→uα
[
∂̄y expuα ξ

]
(B.5.4)

The second two terms come from differentiating:

PTexpuα ξ→uα
[
λ(e0)(α, y, x1, . . . , xr, ·, (expuα ξ)(·))

]
(B.5.5)
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where we use the fact that d
dt
xi(expuα(tξ)) = − projTCα ξ(xi). The last term comes from

differentiating:

PTexpuα ξ→uα
[
λ(projE ξ)(α, y, x1, . . . , xr, ·, (expuα ξ)(·))

]
(B.5.6)

We leave the calculations to the reader.

Lemma B.5.2. Consider the following commutative square:

W k,2,δ(Cα, u
∗
αTX)D ⊕ E W k−1,2,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX)

W k,2(Cα, u
∗
αTX)D ⊕ E W k−1,2(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX)

Dα,y

Dα,y

(B.5.7)

Both horizontal operators are Fredholm, and the induced map from the kernel (resp. cokernel)
of the bottom horizontal map to the kernel (resp. cokernel) of the top horizontal map is an
isomorphism.

Let us remark on the reason for the vertical inclusions in (B.5.7). For the leftmost vertical
inclusion, one just needs to check that for a function f : D2 → R, the W k,2,δ norm of its
pullback to [0,∞) × S1 is bounded linearly by its W k,2 norm on D2. For the rightmost
vertical inclusion, one checks the same property for 1-forms. In both of these calculations
we use the fact that δ < 1.

Proof. The operator Dα,y equals (∇ξ)0,1
y plus compact terms (by Lemma B.5.1), so it is

equivalent to show that ξ 7→ (∇ξ)0,1
y is Fredholm (and we may forget about E). Here ∇

is really the pullback of ∇ via uα. Thus it suffices to show that if V is a smooth complex
vector bundle over a nodal Riemann surface C equipped with a smooth connection ∇, then
the horizontal maps:

W k,2,δ(C, V ) W k−1,2,δ(C̃,Ω0,1

C̃
⊗C V )

W k,2(C, V ) W k−1,2(C̃,Ω0,1

C̃
⊗C V )

ξ 7→(∇ξ)0,1

ξ 7→(∇ξ)0,1

(B.5.8)

are Fredholm. For the bottom map, the Fredholm property is standard. Indeed, W k,2(C, V )
lies inside W k,2(C̃, V ) as a closed subspace of finite codimension, and ∇0,1 : W k,2(C̃, V ) →
W k−1,2(C̃,Ω0,1

C̃
⊗C V ) is Fredholm by elliptic regularity on the compact Riemann surface C̃.

For the top map, the Fredholm property follows from results of Lockhart–McOwen [LM85]
concerning the Fredholmness (in weighted Sobolev spaces) of elliptic operators on manifolds
with cylindrical ends. Specifically, W k,2,δ(C, V ) lies inside W k,2,δ(C̃, V ) as a closed subspace
of finite codimension, and the map ∇0,1 : W k,2,δ(C̃, V )→ W k−1,2,δ(C̃,Ω0,1

C̃
⊗CV ) is Fredholm

by the theory of Lockhart–McOwen [LM85]. This uses the fact that the weight δ ∈ (0, 1) is
not an eigenvalue of the asymptotic linearized operator in any end (the set of eigenvalues in
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any end is precisely Z, corresponding to the powers {zn}n∈Z on D2 \ 0). Let us also remark
that both of these Fredholmness statements are easier at p = 2 than for general p ∈ (1,∞),
since for p = 2 one can use Fourier analysis (after localizing the problem with a partition of
unity).

Now it remains to show that the induced maps on kernel and cokernel are isomorphisms.
The map on kernels is obviously injective, and the map on cokernels is easily seen to be
surjective (use the fact that the image of the top horizontal map is closed and the fact that
the rightmost vertical inclusion is dense).

For the surjectivity of the map on kernels and the injectivity of the map on cokernels, it
suffices to show that if Dα,yξ = η for ξ ∈ W k,2,δ and η ∈ W k−1,2, then ξ ∈ W k,2. To show
ξ ∈ W k,2, it suffices to argue locally on one side of a given node.

Certainly (the vector field part of) ξ extends continuously to Cα (by definition of W k,2,δ),
and this continuous extension satisfies Dα,yξ = η+ε where ε is a distribution on C̃α valued in
Ω0,1

C̃α,jy
⊗Cu

∗
αTX and supported inside the (inverse images of the) nodes. By elliptic regularity,

it suffices to show that ε = 0.
Now for smooth test functions ϕ supported inside a small neighborhood of the support

of ε, we have:
〈ε, ϕ〉 = 〈Dα,yξ − η, ϕ〉 = 〈ξ,D∗α,yϕ〉 − 〈η, ϕ〉 (B.5.9)

We thus obtain the bound |〈ε, ϕ〉| ≤ c ‖ϕ‖1,1 since D∗α,y is a first order operator and ξ, η are
bounded (as they are continuous). On the other hand, ε is supported at a finite set of points,
so it is a linear combination of δ-functions and their derivatives. Hence ε does not satisfy
the bound |〈ε, ϕ〉| ≤ c ‖ϕ‖1,1 (recall that W 1,1 ↪→9 C0 since we are in two dimensions) unless
ε = 0, as desired.

We denote the kernel of D0,0 (whose meaning is unambiguous by Lemma B.5.2) by:

K := kerD0,0 ⊆ C∞(C0, u
∗
0TX)D ⊕ E (B.5.10)

Note that our assumption (0, 0, u0, {x0
i }, e0) ∈ M(X)reg is equivalent to saying that D0,0 is

surjective and K � E/E ′ is surjective.

B.6 Pregluing estimates

Fix norms on K, Cd, and RdimM
d

.

Lemma B.6.1 (Estimate for map pregluing). We have:

∥∥∂̄yuα + λ(e0)(α, y, x0
1, . . . , x

0
r, ·, uα(·))

∥∥
k−1,2,δ

≤ c ·

[
|y|+

d∑
i=1

e−(1−δ)Si

]
(B.6.1)

uniformly over (α, y) in a neighborhood of zero, for c <∞ depending on data which has been
previously fixed.

Data which has been previously fixed includes (s0, u0, {x0
i }, e0), the cylindrical ends, jy,

the metrics used to define exp and Sobolev norms, k, δ, the cutoff function χ, the norms on

E, K, Cd, RdimM
d

, etc.
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Proof. Away from the ends/necks of Cα, the expression is zero when y = 0 (since (0, 0, u0, {x0
i }, e0) ∈

M(X)) and more generally it follows easily that its jth derivative is bounded pointwise by
cj |y|. In the ends of Cα, the expression is zero.

In a given neck [0, 6S] × S1 ⊆ Cα, argue as follows. Recall that λ vanishes in the
ends/necks, so we just have to bound ∂̄yuα. Now ∂̄yuα is only nonzero over [S − 1, S] ∪
[5S, 5S + 1]; by symmetry we may just work over [S − 1, S]. Now since u0 is smooth, it and
all its derivatives decay exponentially in any cylindrical end [0,∞)× S1 (since every end is
holomorphically conjugate to the map [0,∞)× S1 → D2 given by z = e−s−it). Precisely, we
have the following pointwise bound over [S − 1, S]:∣∣Dju0(s, t)

∣∣ ≤ cje
−S (B.6.2)

(derivatives with respect to s and t). It follows from the definition of uα that the same
bound holds for uα. Thus the contribution of [S − 1, S] to the norm of ∂̄yuα is bounded by
a constant times eSδe−S.

Lemma B.6.2 (Estimate for kernel pregluing). For all κ ∈ K, we have:

‖Dα,yκα‖k−1,2,δ ≤ c ·

[
|y|+

d∑
i=1

e−(1−δ)Si

]
‖κ‖ (B.6.3)

uniformly over (α, y) in a neighborhood of zero, for c <∞ depending on data which has been
previously fixed.

Proof. Away from the ends/necks, the norm is bounded by c · |y| ‖κ‖. In the ends, the
expression is zero. In the necks, argue as follows.

The expression is only nonzero over [S − 1, S + 1] ∪ [5S − 1, 5S + 1]; by symmetry we
may just work over [S − 1, S + 1]. Then since u0 and κ are smooth, we have (by the same
reasoning used to justify (B.6.2)) the following pointwise bound over [S − 1, S + 1]:∣∣Djκα(s, t)

∣∣ ≤ cje
−S ‖κ‖ (B.6.4)

(derivatives with respect to s and t, in local coordinates (B.4.1)). Thus the overall contri-
bution of [S − 1, S + 1] to the total norm of the expression is bounded by a constant times
eSδe−S ‖κ‖.

B.7 Approximate right inverse

Recall that by assumption, the linearized operator:

D0,0 : W k,2,δ(C0, u
∗
0TX)D ⊕ E → W k−1,2,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0TX) (B.7.1)

is surjective (even if we replace E with E ′). We now proceed to fix a bounded right inverse:

Q0,0 : W k−1,2,δ(C̃0,Ω
0,1

C̃0,j0
⊗C u

∗
0TX)→ W k,2,δ(C0, u

∗
0TX)D ⊕ E ′ (B.7.2)

whose image admits a simple description (the description of the image will be important for
the proof that the gluing map is continuous (Proposition B.10.4)). Fix a collection of points
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qi ∈ C0 (1 ≤ i ≤ h) not contained in any of the cylindrical ends, subspaces Vi ⊆ Tu0(qi)X,
and a subspace E ′′ ⊆ E ′ so that the natural evaluation map:

L0 : K
∼−→
( h⊕
i=1

Tu0(qi)X/Vi

)
⊕ E/E ′′ (B.7.3)

is an isomorphism (such choices exist since K � E/E ′ is surjective and elements of K satisfy
unique continuation). Now we can consider the same evaluation map on the larger space:

L0 : W k,2,δ(C0, u
∗
0TX)D ⊕ E → W :=

( h⊕
i=1

Tu0(qi)X/Vi

)
⊕ E/E ′′ (B.7.4)

Since L0 sends K = kerD0,0 isomorphically to W , it follows that the restriction of D0,0 to
kerL0 is an isomorphism of Banach spaces. Hence there is a unique right inverse:

Q0,0 : W k−1,2,δ(C̃0,Ω
0,1

C̃0,j0
⊗C u

∗
0TX)→ kerL0 ⊆ W k,2,δ(C0, u

∗
0TX)D ⊕ E

and it is bounded. Since E ′′ ⊆ E ′, kerL0 is in fact contained in the right hand side of (B.7.2).
We fix once and for all this Q0,0.

Definition B.7.1 (Approximate right inverse Tα,y). We define a map:

Tα,y : W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTX)→ W k,2,δ(Cα, u

∗
αTX)D ⊕ E (B.7.5)

as the composition:

Tα,y := glue ◦ PT ◦ id ◦Q0,0 ◦ Iy ◦ PT ◦ break (B.7.6)

of maps in the following diagram, to be defined below:

W k,2,δ(Cα, u
∗
αTX)D ⊕ E W k−1,2,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTX)

W k,2,δ(C0, u
∗
0|αTX)D ⊕ E W k−1,2,δ(C̃0,Ω

0,1

C̃0,jy
⊗C u

∗
0|αTX)

W k,2,δ(C0, u
∗
0TX)D ⊕ E W k−1,2,δ(C̃0,Ω

0,1

C̃0,jy
⊗C u

∗
0TX)

W k,2,δ(C0, u
∗
0TX)D ⊕ E W k−1,2,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0TX)

Dα,y

breakglue

D0|α,y

PTPT

D0,y

Iyid

D0,0

Q0,0

(B.7.7)

(D0|α,y denotes the linearized operator at u0|α).

We fix once and for all a smooth family of (j0, jy)-linear identifications Iy : (TC̃0, j0) →
(TC̃0, jy) which are the identity over the ends/necks. This gives rise to the bottom right
vertical map in (B.7.7).
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We define the middle vertical maps in (B.7.7) using parallel transport (equivalently, using
the local trivializations defined by (B.4.1)).

We define the map:

W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTX)

break−−−→ W k−1,2,δ(C̃0,Ω
0,1

C̃0,j0
⊗C u

∗
0|αTX) (B.7.8)

as follows. Fix a smooth function χ̄ : R→ [0, 1] such that:

χ̄(x) =

{
1 x ≤ −1

0 x ≥ +1
χ̄(x) + χ̄(−x) = 1 (B.7.9)

Let η ∈ W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTX). Away from the ends with α 6= 0, break(η) is simply

η. In any particular end [0,∞)× S1 ⊆ C0 with α 6= 0, we define:

break(η)(s, t) :=


η(s, t) s ≤ 3S − 1

χ̄(s− 3S) · η(s, t) 3S − 1 ≤ s ≤ 3S + 1

0 3S + 1 ≤ s

(B.7.10)

(noting the corresponding neck [0, 6S]× S1 ⊆ Cα).
We define the map:

W k,2,δ(C0, u
∗
0|αTX)D

glue−−→ W k,2,δ(Cα, u
∗
αTX)D (B.7.11)

Let ξ ∈ W k,2,δ(C0, u
∗
0|αTX)D. Away from the necks of Cα, glue(ξ) is simply ξ. In any

particular neck [0, 6S]× S1 ⊆ Cα, we define:

glue(ξ)(s, t) :=


ξ(s, t) s ≤ 2S

ξ(n) + χ(4S − s) · [ξ(s, t)− ξ(n)] + χ(4S − s′) · [ξ(s′, t′)− ξ(n)] 2S ≤ s ≤ 4S

ξ(s′, t′) 4S ≤ s

(B.7.12)
(noting the corresponding ends (s, t) ∈ [0,∞) × S1 ⊆ C0 and (s′, t′) ∈ [0,∞) × S1 ⊆ C0).
Note that the cutoff of ξ(s, t) occurs around 4S ∈ [0, 6S], where the weight e2δmin(s,6S−s) is
much smaller than the weight e2δs at 4S ∈ [0,∞). We will see in the proof of Lemma B.7.4
that this makes it easy to derive the desired estimates on ∂̄glue(ξ). This trick was explained
to us by Abouzaid and attributed to Fukaya–Oh–Ohta–Ono [FOOO12].

Let us make the elementary observation that the definition of L0 extends perfectly well
to give an analogous bounded linear map:

Lα : W k,2,δ(Cα, u
∗
αTX)D ⊕ E → W (B.7.13)

Since imQ0,0 ⊆ kerL0, it follows from the definition of Tα,y that imTα,y ⊆ kerLα as well.
This is a key ingredient in the proof that the gluing map is continuous (Proposition B.10.4).
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Lemma B.7.2. Let:
X

D−−−→ Y

G

x yB
X ′

D′−−−→ Y ′

(B.7.14)

denote the bottom square in (B.7.7). Then for ξ ∈ X ′ and η ∈ Y with D′ξ = Bη, we have:

‖DGξ − η‖ ≤ c · ‖ξ‖ |y| (B.7.15)

uniformly over (α, y) in a neighborhood of zero, for c <∞ depending on data which has been
previously fixed.

Proof. In simpler terms, we have ‖D0,y − Iy ◦D0,0‖ ≤ c · |y| (calculation left to the reader)
and this trivially implies the claimed statement.

Lemma B.7.3. Let:
X

D−−−→ Y

G

x yB
X ′

D′−−−→ Y ′

(B.7.16)

denote the middle square in (B.7.7). Then for ξ ∈ X ′ and η ∈ Y with D′ξ = Bη, we have:

‖DGξ − η‖ ≤ c · ‖ξ‖
d∑
i=1

e−Si (B.7.17)

uniformly over (α, y) in a neighborhood of zero, for c <∞ depending on data which has been
previously fixed.

Proof. In simpler terms, we bound the operator norm of the difference between the two
diagonal compositions: ∥∥PT ◦D0,y −D0|α,y ◦ PT

∥∥ ≤ c ·
d∑
i=1

e−Si (B.7.18)

(this trivially implies the claimed statement). To show (B.7.18), observe that the two oper-
ators only differ over the [S − 1,∞) subset of each end [0,∞) × S1 ⊆ C0. Using estimates
(B.6.2) arising from the fact that u0 is smooth, we obtain the desired bound.

Lemma B.7.4. Let:
X

D−−−→ Y

G

x yB
X ′

D′−−−→ Y ′

(B.7.19)

denote the top square in (B.7.7). Then for ξ ∈ X ′ and η ∈ Y with D′ξ = Bη, we have:

‖DGξ − η‖ ≤ c · ‖ξ‖
d∑
i=1

e−2δSi (B.7.20)

uniformly over (α, y) in a neighborhood of zero, for c <∞ depending on data which has been
previously fixed.
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Proof. The difference DGξ − η is only nonzero in the necks over s ∈ [2S, 2S + 1] and
s ∈ [4S − 1, 4S]. By symmetry, we may just do the bound over s ∈ [4S − 1, 4S]. Over this
region, one calculates that the norm of the difference is bounded as claimed. The factor of
e−2δS comes as the ratio between the e2δS weight given to [4S−1, 4S]×S1 ⊆ [0, 6S]×S1 ⊆ Cα
and the e4δS weight given to [4S − 1, 4S]× S1 ⊆ [0,∞)× S1 ⊆ C0.

Lemma B.7.5. Let X and Y be Banach spaces, let D : X → Y and T : Y → X be bounded,
and suppose ε := ‖DT − 1Y ‖ < 1. Then:

Q := T ·
∑
n≥0

(1Y −DT )n (B.7.21)

converges and satisfies DQ = 1Y . In addition, we have the following estimates:

‖Q‖ ≤ 1

1− ε
‖T‖ ‖Q− T‖ ≤ ε

1− ε
‖T‖ (B.7.22)

Proof. Use the telescoping sum (1− A)
∑

n≥0A
n = 1 for ‖A‖ < 1.

Lemma B.7.6. Suppose we have a diagram of Banach spaces as follows:

X1 Y1

...
...

Xn−1 Yn−1

Xn Yn

D1

B1G1

Bn−2Gn−2

Dn−1

Bn−1Gn−1

Dn

Qn

(B.7.23)

where ‖Di‖ , ‖Gi‖ , ‖Bi‖ , ‖Qn‖ ≤ c and DnQn = 1. Then for all δ > 0 there exists ε =
ε(n, c, δ) > 0 such that if for all 1 < i ≤ n:

Diξ = Bi−1η =⇒ ‖Di−1Gi−1ξ − η‖ ≤ ε · ‖ξ‖ (B.7.24)

then we have:
‖D1G1 · · ·Gn−1QnBn−1 · · ·B1 − 1Y1‖ ≤ δ (B.7.25)

Proof. We work by induction on n. The case n = 1 is clear: ε(1, c, δ) =∞.
Now assume n ≥ 2. Let us also assume without loss of generality that c ≥ 1. Applying

(B.7.24) to i = n and ξ = QnBn−1η, we see that:∥∥Dn−1Gn−1QnBn−1 − 1Yn−1

∥∥ ≤ ε · ‖Qn‖ ‖Bn−1‖ ≤ εc2 (B.7.26)

Let us require that ε ≤ 1
2
c−2, so the above bound is ≤ 1

2
. Then by Lemma B.7.5 applied to

T = Gn−1QnBn−1, we see that there exists Qn−1 with Dn−1Qn−1 = 1Yn−1 and:

‖Qn−1‖ ≤ 2c3 ‖Qn−1 −Gn−1QnBn−1‖ ≤ 2εc5 (B.7.27)
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Now we see that:

‖D1G1 · · ·Gn−2Gn−1QnBn−1Bn−2 · · ·B1 −D1G1 · · ·Gn−2Qn−1Bn−2 · · ·B1‖
≤ c2n−3 ‖Gn−1QnBn−1 −Qn−1‖ ≤ 2εc2n+2 (B.7.28)

Let us require that ε ≤ 1
4
δc−2n−2, so the above bound is ≤ 1

2
δ. Let us also require that

ε ≤ ε(n− 1, 2c3, 1
2
δ) (which exists by the induction hypothesis), so that:

‖D1G1 · · ·Gn−2Qn−1Bn−2 · · ·B1 − 1Y1‖ ≤
1

2
δ (B.7.29)

Combining (B.7.28) and (B.7.29), we get the desired bound (B.7.25).

Proposition B.7.7 (Approximate right inverse Tα,y). We have:

‖Tα,y‖ ≤ c (B.7.30)

‖Dα,yTα,y − 1‖ → 0 (B.7.31)

imTα,y ⊆ kerLα (B.7.32)

as (α, y)→ 0, for c <∞ depending on data which has been previously fixed.

Proof. It is easy to see that all the maps in (B.7.7) are uniformly bounded. Hence ‖Tα,y‖ ≤ c
as (α, y)→ 0. Now Lemma B.7.6 combined with Lemmas B.7.2, B.7.3, B.7.4 show that for
(α, y)→ 0, we have ‖Dα,yTα,y − 1‖ → 0. We observed earlier that imTα,y ⊆ kerLα.

Definition B.7.8 (Right inverse Qα,y). We define a map:

Qα,y : W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTX)→ W k,2,δ(Cα, u

∗
αTX)D ⊕ E (B.7.33)

as the sum:

Qα,y := Tα,y

∞∑
k=0

(1−Dα,yTα,y)
k (B.7.34)

Proposition B.7.9. We have:

‖Qα,y‖ ≤ c (B.7.35)

Dα,yQα,y = 1 (B.7.36)

imQα,y ⊆ kerLα (B.7.37)

uniformly over (α, y) in a neighborhood of zero, for c <∞ depending on data which has been
previously fixed.

Proof. Apply Lemma B.7.5 and Proposition B.7.7.
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B.8 Quadratic estimates

Proposition B.8.1 (Quadratic estimate). There exist c′ > 0 and c <∞ (depending on data
which has been previously fixed) such that for ‖ξ1‖k,2,δ , ‖ξ2‖k,2,δ ≤ c′, we have:∥∥Dα,y(ξ1 − ξ2)− (Fα,yξ1 − Fα,yξ2)

∥∥
k−1,2,δ

≤ c · ‖ξ1 − ξ2‖k,2,δ (‖ξ1‖k,2,δ + ‖ξ2‖k,2,δ) (B.8.1)

(and Fα,yξ1 and Fα,yξ2 are both defined), uniformly over (α, y) in a neighborhood of zero.

Proof. This is similar to McDuff–Salamon [MS04, p68, Proposition 3.5.3].
We have already remarked that Fα,yξ is defined for ‖ξ‖k,2,δ ≤ c′.
Let F′α,y(ζ, ξ) denote the derivative of Fα,y at ζ applied to ξ. So, for instance, Dα,y(ξ) :=

F′α,y(0, ξ). It suffices to show that:∥∥F′α,y(0, ξ)− F′α,y(ζ, ξ)
∥∥
k−1,2,δ

≤ c · ‖ζ‖k,2,δ ‖ξ‖k,2,δ (B.8.2)

for ‖ζ‖k,2,δ ≤ c′ uniformly as (α, y)→ 0 (one recovers (B.8.1) by integrating
∫ ξ2
ξ1

F′α,y(0, dζ)−
F′α,y(ζ, dζ)).

For ζ ∈ W k,2,δ(Cα, u
∗
αTX)D ⊕ E, let:

Fα,y,ζ : W k,2,δ(Cα, (expuα ζ)∗TX)D ⊕ E → W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C (expuα ζ)∗TX) (B.8.3)

denote the ∂̄-section based at expuα ζ : Cα → X and e0 + projE ζ (so, for example, Fα,y :=
Fα,y,0). Let:

Dα,y,ζ : W k,2,δ(Cα, (expuα ζ)∗TX)D ⊕ E → W k−1,2,δ(C̃α,Ω
0,1

C̃α,jy
⊗C (expuα ζ)∗TX) (B.8.4)

denote the derivative of Fα,y,ζ at zero. Of course, Dα,y,ζ may be calculated as in Lemma
B.5.1, and the result is the same (i.e. we just substitute (expuα ζ, e0 + projE ζ) in place of
(uα, e0)).

Now the first step in proving (B.8.2) is to express F′α,y(ζ, ξ) in terms of Dα,y,ζ . To do
this, we observe that:

Fα,y(a) =
[
PTexpuα a→uα ◦ PTexpuα ζ→expuα a

] [
Fα,y,ζ

(
(exp−1

expuα ζ
expuα a)⊕ (projE a− projE ζ)

)]
(B.8.5)

We now differentiate with respect to a and evaluate at a = ζ and ȧ = ξ. We find:

F′α,y(ζ, ξ) =

[
d

da

∣∣∣∣ a=ζ
ȧ=ξ

(
PTexpuα a→uα ◦ PTexpuα ζ→expuα a

)](
Fα,y,ζ(0)

)
+ PTexpuα ζ→uα

[
Dα,y,ζ

(
d

da

∣∣∣∣ a=ζ
ȧ=ξ

(
exp−1

expuα ζ
expuα a

)
⊕ projE ξ

)]
(B.8.6)

We rewrite the first term:[
d

da

∣∣∣∣ a=ζ
ȧ=ξ

(
PTexpuα a→uα ◦ PTexpuα ζ→expuα a

)]
PTuα→expuα ζ

(
Fα,y(ζ)

)
(B.8.7)
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We know that ‖Fα,y(ζ)‖k−1,2,δ is bounded uniformly for (α, y)→ 0 and ‖ζ‖k,2,δ ≤ c′ (Lemma
B.6.1 implies that ‖Fα,y(0)‖k−1,2,δ is bounded as (α, y)→ 0, and from this one may derive a

bound on ‖Fα,y(ζ)‖k−1,2,δ in terms of ‖ζ‖k,2,δ). The operator [ d
da

(PT ◦ PT)]PT in front is of
the form H(ζ, ξ) for a smooth (non-linear) bundle map H : TX ⊕TX → End(TX) (defined
in a neighborhood of ζ = ξ = 0). Since H satisfies H(0, ·) = H(·, 0) = 0, it follows that
‖H(ζ, ξ)‖k,2,δ is bounded by c · ‖ζ‖k,2,δ ‖ξ‖k,2,δ for ‖ζ‖k,2,δ , ‖ξ‖k,2,δ ≤ c′. Hence the ‖·‖k−1,2,δ-
norm of the first term in (B.8.6) is bounded by c · ‖ζ‖k,2,δ ‖ξ‖k,2,δ, so for the purposes of
proving (B.8.2) it may be ignored.

The second term in (B.8.6) is approximated by PTexpuα ζ→uα
[
Dα,y,ζ

(
PTuα→expuα ζ

ξ
)]

with
error:

PTexpuα ζ→uα

[
Dα,y,ζ

([
PTuα→expuα ζ

ξ − d

da

∣∣∣∣ a=ζ
ȧ=ξ

(
exp−1

expuα ζ
expuα a

)]
⊕ 0

)]
(B.8.8)

which we may write as:

PTexpuα ζ→uα

[
Dα,y,ζ

(
PTuα→expuα ζ

[
ξ − PTexpuα ζ→uα

d

da

∣∣∣∣ a=ζ
ȧ=ξ

(
exp−1

expuα ζ
expuα a

)]
⊕ 0

)]
(B.8.9)

Now the ‖·‖(k−1,2,δ)→(k−1,2,δ) norm of the outer PT is bounded uniformly for (α, y) → 0 and
‖ζ‖k,2,δ ≤ c′, as is the ‖·‖(k,2,δ)→(k−1,2,δ) norm of Dα,y,ζ and the ‖·‖(k,2,δ)→(k,2,δ) norm of the

following PT. The difference ξ − PT d
da

() is of the form H(ζ, ξ) for a smooth (non-linear)
bundle map H : TX ⊕ TX → TX (defined in a neighborhood of ζ = ξ = 0). Since H
satisfies H(0, ·) = H(·, 0) = 0, it follows that ‖H(ζ, ξ)‖k,2,δ is bounded by c · ‖ζ‖k,2,δ ‖ξ‖k,2,δ
for ‖ζ‖k,2,δ , ‖ξ‖k,2,δ ≤ c′. Hence the error (B.8.8) has ‖·‖k−1,2,δ bounded by c · ‖ζ‖k,2,δ ‖ξ‖k,2,δ.

Thus we have reduced the estimate (B.8.2) to proving:∥∥Dα,y − PTexpuα ζ→u ◦Dα,y,ζ ◦ PTuα→expuα ζ

∥∥
(k,2,δ)→(k−1,2,δ)

≤ c · ‖ζ‖k,2,δ (B.8.10)

We calculated Dα,y in Lemma B.5.1, and Dα,y,ζ may be expressed in exactly the same way
(specifically, it is obtained by taking the expression for Dα,y and replacing every occurence
of uα with expuα ζ and e0 by e0 + projE ζ). Now we compare term by term to prove (B.8.10).
We omit the details of this calculation.

B.9 Newton–Picard iteration

Lemma B.9.1. There exists c′ > 0 (depending on data which has been previously fixed) such
that for sufficiently small (α, y):

i. The map Fα,y is defined for ‖ξ‖k,2,δ ≤ c′.
ii. For ξ1 − ξ2 ∈ imQα,y and ‖ξ1‖k,2,δ , ‖ξ2‖k,2,δ ≤ c′, we have:

‖(ξ1 − ξ2)− (Qα,yFα,yξ1 −Qα,yFα,yξ2)‖k,2,δ ≤
1

2
‖ξ1 − ξ2‖k,2,δ (B.9.1)
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Proof. The first assertion has been shown earlier. For the second, write:

‖(ξ1 − ξ2)− (Qα,yFα,yξ1 −Qα,yFα,yξ2)‖k,2,δ
= ‖Qα,yDα,y(ξ1 − ξ2)− (Qα,yFα,yξ1 −Qα,yFα,yξ2)‖k,2,δ
≤ ‖Qα,y‖ ‖Dα,y(ξ1 − ξ2)− (Fα,yξ1 − Fα,yξ2)‖k−1,2,δ

≤ c · ‖Qα,y‖ ‖ξ1 − ξ2‖k,2,δ (‖ξ1‖k,2,δ + ‖ξ2‖k,2,δ) (B.9.2)

by Proposition B.8.1. Since ‖Qα,y‖ is uniformly bounded, this is enough.

Proposition B.9.2 (Newton–Picard iteration). There exists c′ > 0 (depending on data
which has been previously fixed) so that for (α, y, κ ∈ K) sufficiently small, there exists a
unique κα,y ∈ W k,2,δ(Cα, u

∗
αTX)D ⊕ E satisfying:

κα,y ∈ κα + imQα,y (B.9.3)

‖κα,y‖k,2,δ ≤ c′ (B.9.4)

Fα,yκα,y = 0 (B.9.5)

Proof. In fact, we will show that κα,y is given explicitly as the limit of the Newton iteration:

ξ0 := κα (B.9.6)

ξn := ξn−1 −Qα,yFα,yξn−1 (B.9.7)

By Lemma B.9.1, the map ξ 7→ ξ−Qα,yFα,yξ is a 1
2
-contraction mapping when restricted to:

{ξ ∈ κα + imQα,y : ‖ξ‖k,2,δ ≤ c′} (B.9.8)

To finish the proof, it suffices to show that (for sufficiently small (α, y, κ)) (B.9.8) is nonempty
and is mapped to itself by ξ 7→ ξ −Qα,yFα,yξ.

We know that ‖κα‖k,2,δ → 0 as κ → 0 (uniformly in (α, y)), so (B.9.8) is nonempty. By
using Proposition B.8.1 with (ξ1, ξ2) = (0, κα) and Lemmas B.6.1 and B.6.2, we conclude
that:

‖Fα,yκα‖k−1,2,δ → 0 (B.9.9)

as (α, y, κ) → 0. Since the operator norm of Qα,y is bounded uniformly as (α, y) → 0, we
see that κα is almost fixed by ξ 7→ ξ − Qα,yFα,yξ as (α, y, κ) → 0. It then follows from the
contraction property that ξ 7→ ξ −Qα,yFα,yξ maps (B.9.8) to itself.

B.10 Gluing

Definition B.10.1 (Gluing map). We define:

uα,y,κ := expuα κα,y (B.10.1)

eα,y,κ := e0 + projE κα,y (B.10.2)

where κα,y is as in Proposition B.9.2, and we consider the map:

Cd × RdimM
d

×K →M(X) (B.10.3)

(α, y, κ) 7→ (α, y, uα,y,κ, eα,y,κ) (B.10.4)
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(with {xi} understood). It follows from the definition that (B.10.3) commutes with the
projection from both sides to M× E/E ′.

Lemma B.10.2. The gluing map (B.10.3) maps sufficiently small (α, y, κ) to M(X)reg.

Proof. This is true since Qα,y gives an approximate right inverse at (uα,y,κ, eα,y,κ) (use (B.8.2)
with ζ = κα,y).

Let Kα ⊆ C∞(Cα, u
∗
αTX)D⊕E denote the image of κ 7→ κα. It is clear by definition that

K → Kα is an isomorphism, and the respective W k,2,δ norms are uniformly commensurable.
It is also clear that the following commutes:

K Kα

W

L0

κ7→κα

Lα

(B.10.5)

(all maps being isomorphisms). Since imQα,y ⊆ kerLα, it follows in particular that imQα,y∩
Kα = 0. On the other hand, an index calculation shows that indDα,y = indD0,0 (note that
by Lemma B.5.2, it suffices to calculate their indices as operators W k,2 → W k−1,2 on C̃α
and C̃0 respectively, and this is a standard calculation as in McDuff–Salamon [MS04]). Both
are surjective, and hence we have dim cokerQα,y = dim kerDα,y = dim kerD0,0 = dimK =
dimKα. It follows that imQα,y = kerLα and that:

imQα,y ⊕Kα
∼−→ W k,2,δ(Cα, u

∗
αTX)D ⊕ E (B.10.6)

is an isomorphism of Banach spaces. We claim that in fact the two norms are uniformly
commensurable as (α, y) → 0. The map written is clearly uniformly bounded, so we just
need to show the same for its inverse. It suffices to show that the projection from the
right hand side to Kα is uniformly bounded, but this is nothing other than Lα (clearly
uniformly bounded) composed with the inverse of the isomorphism in (B.10.5) (also uniformly
bounded).

Lemma B.10.3. The map (B.10.3) is injective in a neighborhood of zero.

Proof. Suppose that:

(α, y, uα,y,κ, eα,y,κ) = (α′, y′, uα′,y′,κ′ , eα′,y′,κ′) (B.10.7)

We see immediately that (α, y) = (α′, y′). Now we see that:

expuα κα,y = expuα(κ′)α,y (B.10.8)

projE κα,y = projE(κ′)α,y (B.10.9)

Since the norms of κα,y and κ′α,y go to zero as (α, y, κ, κ′) → 0 (in W k,2,δ, and hence in C0)
and the injectivity radius of the exponential map is fixed, we see that κα,y = (κ′)α,y. It
follows that κα − (κ′)α ∈ imQα,y, but since Kα ∩ imQα,y = 0 we conclude κα = (κ′)α and
hence κ = κ′.
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Proposition B.10.4. The map (B.10.3) is continuous in a neighborhood of zero.

Proof. The key ingredient in this proof is our precise control of the image of the right inverse
Qα,y (specifically, that imQα,y = kerLα).

Suppose (αi, yi, κi)→ (α, y, κ) is a convergent net.50 We will show that:

(uαi,yi,κi , eαi,yi,κi)→ (uα,y,κ, eα,y,κ) (B.10.10)

First, we claim that ‖(κi)αi,yi − καi,yi‖∞ → 0. In fact, we will show the stronger statement
that ‖(κi)αi,yi − καi,yi‖k,2,δ → 0. Since the Newton iteration converges uniformly, it suffices

to show that
∥∥(κi)

n
αi,yi
− κnαi,yi

∥∥
k,2,δ
→ 0 for all n ≥ 0, where κnα,y denotes the nth step of the

Newton iteration converging to κα,y. It is easy to verify this for n = 0:∥∥(κi)
0
αi,yi
− κ0

αi,yi

∥∥
k,2,δ

= ‖(κi − κ)αi‖k,2,δ → 0 (B.10.11)

The inductive step follows from the fact that Qαi,yi is uniformly bounded and Fαi,yi is uni-
formly Lipschitz (e.g. as a consequence of Proposition B.8.1). Now from the claim, we see
that it suffices to show that:

(uαi,yi,κ, eαi,yi,κ)→ (uα,y,κ, eα,y,κ) (B.10.12)

Recall that by definition:

uα,y,κ = expuα κα,y κα,y = κα + ξ for some ξ ∈ imQα,y (B.10.13)

uαi,yi,κ = expuαi καi,yi καi,yi = καi + ξi for some ξi ∈ imQαi,yi (B.10.14)

Now we define ξαi ∈ W k,2,δ(Cαi , u
∗
αi
TX)D ⊕ E by “pregluing” ξ from Cα to Cαi as follows.

Note that we may assume without loss of generality that at the nodes where α 6= 0, we also
have αi 6= 0. Away from the ends/necks of Cαi , we set ξαi = ξ. Over the ends of Cαi , note
there is a corresponding end of Cα, so we may also simply set ξαi = ξ over the ends of Cαi .
Over the necks of Cαi for which α = 0, we define ξαi via (B.3.5) (note that this is reasonable
since ξ is smooth on Cα). Over the necks of Cαi for which α 6= 0 we define ξαi as:

ξαi(s, t) := PTuα(fi(s),t)→uαi (s,t)[ξ(fi(s), t))] (B.10.15)

where fi : [0, 6Si]→ [0, 6S] is defined as follows:

fi(s) :=


s s ≤ S − 2

s− 3Si + 3S 3Si − 2S + 2 ≤ s ≤ 3Si + 2S − 2

s− 6Si + 6S 6Si − S + 2 ≤ s

(B.10.16)

fi([S − 2, 3Si − 2S + 2]) ⊆ [S − 2, S + 2] (B.10.17)

fi([3Si + 2S − 2, 6Si − S + 2]) ⊆ [5S − 2, 5S + 2] (B.10.18)

50We could restrict to sequences rather than nets since Cd×RdimM
d

×K is first countable. However, this
would not make the argument any simpler.
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and is smooth with absolutely bounded derivatives of all orders. More informally, fi is
smooth and matches up [0, S − 2], [S + 2, 5S − 2], [5S + 2, 6S] ⊆ [0, 6S] with corresponding
intervals of the same length inside [0, 6Si], symmetrically.

Now the C0-distance between:

uα,y,κ = expuα(κα + ξ) : Cα → X and

expuαi (καi + ξαi) : Cαi → X (B.10.19)

goes to zero (this is easy to see from (B.3.5) and (B.10.15)). Hence it suffices to show that
‖ξi − ξαi‖∞ → 0. In fact, we will prove the stronger statement that:

‖ξi − ξαi‖k,2,δ → 0 (B.10.20)

First, we claim that we may assume that:

lim sup
i
‖ξαi‖k,2,δ (B.10.21)

is arbitrarily small by taking (α, y, κ) sufficiently close to zero. We know ‖Fα,yκα‖k−1,2,δ → 0
as (α, y, κ)→ 0 by (B.9.9). Now since the Newton iteration is uniformly convergent and Qα,y

is uniformly bounded, it follows that ‖ξ‖k,2,δ → 0 as (α, y, κ) → 0. We may easily bound
‖ξαi‖k,2,δ in terms of ‖ξ‖k,2,δ and the desired claim follows.

Now since the lim sup (B.10.21) can be assumed to be arbitrarily small, we may, in
particular, assume that for sufficiently large i, ‖καi + ξαi‖k,2,δ ≤ c′ for the constant c′ > 0
from Proposition B.9.1 for which (B.9.8) is a domain of contraction. By construction, the
fact that ξ ∈ imQα,y = kerLα implies that ξαi ∈ kerLαi = imQαi,yi . Hence καi + ξαi lies
in the domain of contraction (B.9.8) for (αi, yi, κ) where the Newton iteration applies. By
definition, we have Fαi,yi(καi+ξi) = 0 and καi+ξi is in the same domain of contraction. Since
the Newton iteration is a 1

2
-contraction on this domain and Qαi,yi is uniformly bounded, to

show (B.10.20), it suffices to show that:

‖Fαi,yi(καi + ξαi)‖k−1,2,δ → 0 (B.10.22)

To prove (B.10.22), first recall that Fα,y(κα + ξ) = 0.
Away from the ends/necks of Cαi , the expression Fαi,yi(καi + ξαi) differs from Fα,y(κα +

ξ) = 0 only in terms of the complex structure jyi in place of jy. Clearly this difference goes
to zero as yi → y.

Over the ends of Cαi , the expression Fαi,yi(καi + ξαi) coincides with Fα,y(κα + ξ) = 0.
Over the necks of Cαi , we bound Fαi,yi(καi + ξαi) as follows. Fix a neck [0, 6Si] ⊆ Cαi . If

α 6= 0 for this neck, then the desired estimate follows easily from the definition of ξαi , καi ,
and uαi , and the fact that Fα,y(κα + ξ) = 0. If α = 0 for this neck, then we argue as follows.
The expression Fαi,yi(καi + ξαi) is only nonzero over [Si − 1, Si + 1] ∪ [5Si − 1, 5Si + 1]; by
symmetry we may just bound it over [Si − 1, Si + 1]. As in the proof of Lemma B.6.1, we
win because of the weights: the expression in question has derivatives bounded by e−S and
is weighted by eδS.
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B.11 Surjectivity of gluing

We identify R2n = Cn via zj = xj + iyj. Let gstd denote the standard metric on R2n, and let
Jstd denote the standard almost complex structure on Cn.

The following proposition is well-known, and is essentially contained in McDuff–Salamon
[MS04].

Proposition B.11.1 (A priori estimate on long pseudo-holomorphic necks). For all µ < 1,
there exists ε > 0 with the following property. Let J be a smooth almost complex structure
on B2n(1) ⊆ R2n satisfying ‖J − Jstd‖C2 ≤ ε (measured with respect to gstd). There exists
ck <∞ depending only on ‖J‖Ck with the following property. Let u : [−R,R]×S1 → B2n(1)
be J-holomorphic. If: ∫

∂[−R,R]×S1

∣∣∣du
dt

∣∣∣2 dt < ε (B.11.1)

Then: ∣∣(Dku)(s, t)
∣∣ ≤ ck · eµ·(|s|−R)

(∫
∂[−R,R]×S1

∣∣∣du
dt

∣∣∣2 dt)1/2

(B.11.2)

for |s| ≤ R− 1.

Proof. First, apply Lemma B.11.2 to get an exponential decay bound on the W 1,2 norm of
u restricted to [−r, r]×S1. Second, apply Lemma B.11.3 to conclude that the bound on the
W 1,2 norm implies a similar bound on the W 1,∞ norm. Finally, apply elliptic bootstrapping
Lemma B.11.4 to conclude that the bound on the W 1,∞ norm implies a similar bound on
the Ck norm for all k <∞.

Lemma B.11.2 (W 1,2 norm decays exponentially). For all µ < 1, there exists ε > 0 with the
following property. Let u : [−R,R]× S1 → B2n(1) be J-holomorphic for an almost complex
structure J on B2n(1) ⊆ R2n satisfying ‖J − Jstd‖ ≤ ε (measured with respect to gstd). Then:(∫

[−r,r]×S1

[∣∣∣du
ds

∣∣∣2 +
∣∣∣du
dt

∣∣∣2] ds dt)1/2

≤ c · eµ·(r−R)

(∫
∂[−R,R]×S1

∣∣∣du
dt

∣∣∣2 dt)1/2

for 0 ≤ r ≤ R.

Proof. This proof is essentially lifted from McDuff–Salamon [MS04, p99, Lemma 4.7.3].
Let λstd := 1

2

∑
j xj dyj − yj dxj. Note the identity:

∑
j

zj dz̄j =
1

2

∑
j

d |zj|2 − 2iλstd (B.11.3)

Let γ : S1 → R2n be a smooth loop. Write the Fourier series γ(t) =
∑

k ake
ikt ∈ Cn where

ak ∈ Cn. Now using (B.11.3), we see that:∫
S1

γ∗λstd =
i

2

∫
S1

∑
j

γ∗(zj dz̄j) =
i

2

∫
S1

∑
k,`

akā`(−i`)ei(k−`)t dt = π
∑
k

k |ak|2
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We may also calculate:∫
S1

∣∣∣dγ
dt

∣∣∣2 dt =

∫
S1

∑
k,`

akā`(ik)(−i`)ei(k−`)t dt = 2π
∑
k

k2 |ak|2 (B.11.4)

Hence we conclude that: ∣∣∣∣∫
S1

γ∗λstd

∣∣∣∣ ≤ 1

2

∫
S1

∣∣∣dγ
dt

∣∣∣2 dt (B.11.5)

Let:

E(r) :=

∫
[−r,r]×S1

∣∣∣du
dt

∣∣∣2 ds dt ≈ ∫
[−r,r]×S1

u∗ωstd =

∫
∂[−r,r]×S1

u∗λstd (B.11.6)

(≈ means equality up to a factor which can be made arbitrarily close to 1 by taking ε > 0
sufficiently small). Applying (B.11.5), we conclude that:

E(r) .
1

2

∫
∂[−r,r]×S1

∣∣∣du
dt

∣∣∣2 dt (B.11.7)

(. means inequality up to a factor which can be made arbitrarily close to 1 by taking ε > 0
sufficiently small). The right hand side above equals 1

2
E ′(r), so we have E ′(r) & 2E(r),

and hence E ′(r) ≥ 2µE(r) (for ε > 0 sufficiently small), from which we conclude that
E(r) ≤ e2µ·(r−R)E(R). Using (B.11.7) to bound E(R), we see that:

E(r) . e2µ·(r−R) 1

2

∫
∂[−R,R]×S1

∣∣∣du
dt

∣∣∣2 dt (B.11.8)

We have:

E(r) ≈ 1

2

∫
[−r,r]×S1

[∣∣∣du
ds

∣∣∣2 +
∣∣∣du
dt

∣∣∣2] ds dt (B.11.9)

Hence we conclude that:∫
[−r,r]×S1

[∣∣∣du
ds

∣∣∣2 +
∣∣∣du
dt

∣∣∣2] ds dt . e2µ·(r−R)

∫
∂[−R,R]×S1

∣∣∣du
dt

∣∣∣2 dt (B.11.10)

which is the desired estimate.

Lemma B.11.3 (W 1,2 controls W 1,∞). Let J be an almost complex structure on B2n(1) ⊆
R2n; there exist ε > 0 and c < ∞, depending only on ‖J‖C2 (measured with respect to gstd)
with the following property. Let u : [0, 1] × [0, 1] → B2n(1) be J-holomorphic, and suppose
that: ∫

[0,1]2

[∣∣∣du
dx

∣∣∣2 +
∣∣∣du
dy

∣∣∣2] dx dy < ε (B.11.11)

Then we have:∣∣∣du
dx

(1
2
, 1

2
)
∣∣∣+
∣∣∣du
dy

(1
2
, 1

2
)
∣∣∣ ≤ c ·

(∫
[0,1]2

[∣∣∣du
dx

∣∣∣2 +
∣∣∣du
dy

∣∣∣2] dx dy)1/2

(B.11.12)

160



Proof. This proof is essentially lifted from McDuff–Salamon [MS04, p80, Lemma 4.3.1].
Let w := 1

2
u2
x + 1

2
u2
y (using the standard inner product gstd), so w : [0, 1]2 → R≥0. Now

we calculate:

wxx + wyy =
[
u2
xx + 2u2

xy + u2
yy

]
+
[
ux · (uxxx + uxyy) + uy · (uxxy + uyyy)

]
(B.11.13)

Now differentiating (B.11.20) yields:

uxxx + uxyy =J̈(u, ux, uy) ◦ ux + J̇(u, uxy) ◦ ux + J̇(u, uy) ◦ uxx
− J̈(u, ux, ux) ◦ uy − J̇(u, uxx) ◦ uy − J̇(u, ux) ◦ uxy

uxxy + uyyy =J̈(u, uy, uy) ◦ ux + J̇(u, uyy) ◦ ux + J̇(u, uy) ◦ uxy
− J̈(u, ux, uy) ◦ uy − J̇(u, uxy) ◦ uy − J̇(u, ux) ◦ uyy

Now we conclude that:∣∣ux · (uxxx + uxyy) + uy · (uxxy + uyyy)
∣∣

≤ 2 ‖J‖C2 · (|ux|3 |uy|+ |ux| |uy|3)

+ 2 ‖J‖C1 · (|ux|2 |uxy|+ |ux| |uy| |uxx|+ |uy|2 |uxy|+ |ux| |uy| |uyy|)
≤ c ‖J‖C2 w

2 + c ‖J‖C1 w · (|uxx|+ |uxy|+ |uyy|)

≤ c ‖J‖C2 w
2 + c ‖J‖2

C1 w
2 +

1

100
(u2

xx + 2u2
xy + u2

yy)

Plugging this into (B.11.13), we conclude that:

∆w = wxx + wyy ≥ −c · (‖J‖C2 + ‖J‖2
C1)w2 (B.11.14)

Now we may apply a mean value inequality McDuff–Salamon [MS04, p81, Lemma 4.3.2] or
Wehrheim [Weh05, p306, Theorem 1.1] to see that there exist ε > 0 and c <∞ such that if∫

[0,1]2
w dx dy < ε, then w(1

2
, 1

2
) ≤ c ·

∫
[0,1]2

w dx dy. Thus we are done.

Lemma B.11.4 (W 1,∞ controls W k,p). Let u : [0, 1] × [0, 1] → B2n(1) be J-holomorphic
for an almost complex structure J on B2n(1) ⊆ R2n. For all k ≥ 1, there exists ck < ∞
depending only on ‖J‖Ck such that if:

sup
(x,y)∈[0,1]2

[∣∣∣du
dx

∣∣∣+
∣∣∣du
dy

∣∣∣] ≤ 1 (B.11.15)

then: ∣∣(Dku)(1
2
, 1

2
)
∣∣ ≤ ck · sup

(x,y)∈[0,1]2

[∣∣∣du
dx

∣∣∣+
∣∣∣du
dy

∣∣∣] (B.11.16)

Proof. For more details see McDuff–Salamon [MS04, p533, §B.4].
The ∂̄-equation for u may be written as:

uy = J(u) ◦ ux (B.11.17)
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Differentiating with respect to x and to y, we conclude that:

uxy = J̇(u, ux) ◦ ux + J(u) ◦ uxx (B.11.18)

uxx = J̇(u, uy) ◦ ux + J(u) ◦ uxy (B.11.19)

Combining these and using the fact that J̇ and J anticommute, we conclude that:

∆u = uxx + uyy = J̇(u, uy) ◦ ux − J̇(u, ux) ◦ uy (B.11.20)

Now a standard elliptic bootstrapping argument based on (B.11.20) gives the desired result.
By hypothesis, we have an L∞ bound in terms of ‖J‖C1 on the right hand side of (B.11.20),
which gives a W 2,p bound (2 < p <∞) on u in terms of ‖J‖C1 . Now we have a W 1,p bound
on the right hand side of (B.11.20) in terms of ‖J‖C2 , which gives a W 3,p bound on u in
terms of ‖J‖C2 . Iterating, we get a W k,p bound on u in terms of ‖J‖Ck−1 , which is enough.
There is no need to worry about elliptic regularity estimates near the boundary since we can
shrink the domain slightly after each iteration.

Proposition B.11.5. The restriction of (B.10.3) to any neighborhood of zero is surjective
onto a neighborhood of (0, 0, u0, e0) ∈M(X).

Proof. Let (αi, yi, ui, {xij}, ei) ∈ M(X) be a sequence converging to (0, 0, u0, {x0
j}, e0). We

must show that for i sufficiently large, (αi, yi, ui, {xij}, ei) is contained in the image of the

map (B.10.3). We may restrict to sequences rather than nets since the topology on M(X)
is first countable (recall the definition of the topology following (B.1.5); it is even a metric
topology). This is convenient when we apply Arzelà–Ascoli.

Let us define ξi ∈ C∞(Cαi , u
∗
αi
TX)D ⊕ E by the property:

ui = expuαi ξi (B.11.21)

ei = e0 + projE ξi (B.11.22)

(and the exponential follows the shortest geodesic). Obviously projE ξi → 0 and ‖ξi‖∞ → 0.
Now we claim that ui → u in the C∞ topology away from the nodes, or equivalently, that

ξi → 0 in the C∞ topology away from the nodes of C0. To see this argue as follows. The
thickened holomorphic curve equation from (B.2.6) is equivalent to an honest holomorphic
curve equation for the graph u : C → C ×X where the almost complex structure on C ×X
is defined in terms of λ(e). Hence the Gromov–Schwarz Lemma (see [Gro85, p316, 1.3.A] or
[Mul94, p223, Corollary 4.1.4]) applies and we conclude that ‖dui‖∞ is uniformly bounded,
on compact sets away from the nodes (equivalently, the same for ‖dξi‖∞). Now elliptic
bootstrapping (as in the proof of Lemma B.11.4) implies that all derivatives are bounded
uniformly on compact sets away from the nodes. Using Arzelà–Ascoli and diagonalization,
we conclude that there exists a subsequence of ui which is convergent in the C∞ topology
away from the nodes. Since we know that ui → u in the C0 topology, the limit of this C∞

convergent subsequence must be u. This argument can be applied to any subsequence of ui,
so we conclude that every subsequence of ui has a subsequence which converges to u in C∞

away from the nodes. It follows that in fact ui itself converges to u in C∞ away from the
nodes.
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In the ends/necks of Cαi , note that ui is genuinely J-holomorphic (the λ term vanishes),
so we may apply Proposition B.11.1 to conclude that ‖ξi‖k,2,δ → 0 (here using the fact that
δ < 1). We should remark that to apply Proposition B.11.1, we need to be able to choose
some M < ∞ such that for any neck [0, 6S] × S2 ⊆ Cαi , the derivatives of ui restricted
to ∂[M, 6S −M ] ⊆ Cαi are bounded by δ (the constant in Proposition B.11.1). Such an
M exists because of our earlier observation that ui → u in C∞ on compact sets away
from the nodes, and we can certainly choose a large M such that the derivatives of u over
{M} × S1 ⊆ [0,∞)× S1 ⊆ C0 (any end) are arbitrarily small.

Let us define κi ∈ K by the property that ξi ∈ (κi)αi + imQαi,yi . Now since ‖ξi‖k,2,δ → 0
and the norms on the left and right of (B.10.6) are uniformly commensurable, we see that
κi → 0. Now the uniqueness in Proposition B.9.2 shows that ξi = (κi)αi,yi for i sufficiently
large. Thus we are done.

B.12 Conclusion of the proof

Lemma B.12.1. Let X be a Hausdorff topological space and let f : Rn → X be continuous.
Suppose that:

i. f is injective.
ii. The restriction of f to any neighborhood of zero is surjective onto a neighborhood of
f(0).

Then there is an open set 0 ∈ U ⊆ Rn such that f(U) ⊆ X is open and f : U
∼−→ f(U) is a

homeomorphism.

Proof. Let B(1) ⊆ Rn denote the closed unit ball and B(1)◦ its interior. We know that
f(B(1)) is compact (since f is continuous) and Hausdorff (since X is Hausdorff). We know
that f : B(1)→ f(B(1)) is bijective (since f is injective), so it is in fact a homeomorphism.

Now choose an open subset V ⊆ X with f(0) ∈ V ⊆ f(B(1)◦) (which exists by as-
sumption). Set U = f−1(V ) ∩ B(1)◦, which is clearly open. Now f : U → f(U) is a
homeomorphism onto its image (since U ⊆ B(1)), and f(U) = V is open.

Proof of Theorem B.1.1(i),(ii),(iii). We have shown that the map g :=(B.10.3) is contin-
uous, injective, and that its restriction to any neighborhood of zero is surjective onto a
neighborhood of the image of zero. The target M(X) is Hausdorff, and thus it follows from

Lemma B.12.1 that for some open neighborhood of zero U ⊆ Cd × RdimM
d

× K, we have
g(U) is open and g : U

∼−→ g(U) is a homeomorphism. Since g respects the projection map
from both sides to M× E/E ′, we obtain the desired conclusions (i), (ii), and (iii).

B.13 Gluing orientations

To show Theorem B.1.1(iv) (the statement about orientations), observe that since M(X)reg →
M is a submersion, and M is canonically oriented as a complex manifold, it follows that
oM(X)reg is canonically identified with the orientation sheaf of the fibers of M(X)reg → M.
Now orienting a fiber is the same as orienting the kernel K. It is standard to see that
oK = oE ⊗

⊗`
i=1 o

∨
u(pn+i)∗ND/X

.
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This argument gives an identification oM(X)reg with oE ⊗
⊗`

i=1 o
∨
u(pn+i)∗ND/X

at every

point in M(X)reg. Via the gluing map, we get an identification of oM(X)reg with oE ⊗⊗`
i=1 o

∨
u(pn+i)∗ND/X

over a small neighborhood of every point in M(X)reg. It is probably

straightforward to check that these identifications agree on overlaps (this is a concrete ques-
tion about whether the projection map K → Kα → kerDα,y is orientation preserving; a
similar question is dealt with in Floer–Hofer [FH93]).

This is the best way to prove the desired result, but we can actually get away with
a less technical argument. Namely, it is easy to see that the identifications induced by
points with smooth domain curve agree on overlaps (since then there is no gluing and we
have a nice smooth Banach bundle picture). Since the nodal locus is codimension two
inside M(X)reg (this follows from the gluing map constructed previously), the identification
oM(X)reg = oE ⊗

⊗`
i=1 o

∨
u(pn+i)∗ND/X

away from the nodal locus extends uniquely to all of

M(X)reg.

C Gluing for implicit atlases on Hamiltonian Floer mod-

uli spaces

In this appendix, we supply the gluing analysis which was quoted in §10 to justify our
assertions that the implicit atlases constructed there satisfy the openness and submersion
axioms and to identify their orientation local systems (specifically, we prove Propositions
10.3.3 and 10.6.2). Our arguments here are very similar to those used in Appendix B to
prove the analogous results for the implicit atlases on Gromov–Witten moduli spaces, and
Appendix B should be read first. As in Appendix B, our work here is little more than an
appropriate combination of already existing techniques.

C.1 Setup for gluing

The goal of this subsection is to reduce Propositions 10.3.3 and 10.6.251 to a single concrete
gluing statement concerning a new moduli space M(M). We then spend the rest of the
appendix proving this statement.

Fix a symplectic manifold (M,ω), an integer n ≥ 0, and a simplex σ ∈ JHn(M), i.e. maps
H : ∆n → C∞(M × S1) and J : ∆n → J(M) as in Definition 10.1.3. Also fix γ− ∈ PH(0)

and γ+ ∈ PH(n).
Since Propositions 10.3.3 and 10.6.2 are local statements, it suffices to prove them in a

neighborhood of a given point. Thus let us fix a basepoint (C0, `0, u0, {φβ0}β∈I , {e
β
0}β∈I) ∈

M(σ, γ−, γ+)≤sI in the setup of either Proposition 10.3.3 or 10.6.2. This point consists (in
particular) of the following data:

i. C0, a Riemann surface of genus zero with marked points q−, q+ ∈ C0. Note that C0 may
be written uniquely as

∐k
i=1C

(i)
0 /∼, where each C

(i)
0 is a nodal Riemann surface with

51The moduli spaces in Proposition 10.6.2 carry a natural S1-action, and following our arguments carefully
may lead to the construction of an S1-equivariant gluing map. However we do not need such an S1-equivariant
gluing map, so henceforth we will ignore this S1-action.
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marked points qi−1, qi (contained in the same irreducible component), the equivalence

relation ∼ identifies qi ∈ C
(i)
0 with qi ∈ C

(i+1)
0 , and q− = q0, q+ = qk. We call any

irreducible component containing some qi a main component, and we call all other
irreducible components bubble components. The nodes other than q1, . . . , qk−1 ∈ C0

will be called bubble nodes.
ii. `0 = {`i0 : R→ ∆n}1≤i≤k, where `i0 is a (possibly constant) Morse flow line (for the flow

from Definition 10.1.4) from vertex vi−1 to vertex vi, for vertices 0 = v0 ≤ · · · ≤ vk = n.

iii. A0 = {Ai0 : C
(i)
0 \{qi−1, qi} → S1×R}1≤i≤k, where Ai0 is holomorphic, sends qi−1 (resp.

qi) to −∞ (resp.∞), and restricts to a biholomorphism on the main component of C
(i)
0 .

Recall that we always use (t, s) ∈ S1×R as coordinates, and that we equip S1×R (and
any subset thereof) with the standard complex structure z = es+it. We may identify
each main component of C0 with S1 × R via A0, and thus we have coordinates (t, s)
on each such component.

iv. u0 = {ui0 : C
(i)
0 \ {qi−1, qi} → M}1≤i≤k, where ui0 is a smooth map with finite energy,

converging to ui0(t,−∞) = γi−1(t) and ui0(t,∞) = γi(t), for periodic orbits γi ∈ PH(vi)

with γ0 = γ− and γk = γ+.
v. e0 :=

⊕
β∈I e

β
0 ∈

⊕
β∈I Eβ = EI =: E.

such that:(
du0+2d(projS1 A0)⊗XH((`0×idS1 )(A0(·)))(u0)+

∑
β∈I

λβ(eβ0 )(φβ0 (·), u0(·))
)0,1

J(`0(A0(·)))
= 0 (C.1.1)

There are a few differences (of an essentially self-explanatory nature) between our notation
here and the notation from §10. Note that A0 is holomorphic even when e0 6= 0, since λβ
lands in Ω0,1

C0,2+rβ
/M0,2+rβ

⊗R TM (as opposed to Ω0,1

C0,2+rβ
/M0,2+rβ

⊗R T (M × S1 × R)).

We now proceed to formulate an alternative description of the moduli space M(σ, γ−, γ+)≤sI
in a neighborhood of (C0, `0, u0, {φβ0}β∈I , {e

β
0}β∈I). This description will be tailored specifi-

cally for the present goal of proving a gluing theorem, and we will give a more manageable
repackaging of the set of thickening datums β ∈ I.

C.1.1 Points {xi0}1≤i≤r and submanifolds {Di}1≤i≤r ⊆M × S1 ×∆n

Let us consider the intersections {xβ,i0 }β∈I,1≤i≤rβ of (idM×S1 ×`0)(u0 × A0)|(C0)β with Dβ

(recall from Definition 10.3.2(iii) that (C0)β ⊆ C0 denotes the union of C
(i)
0 ’s corresponding

to β, and that there are exactly rβ such intersections, all of which are transverse). We
immediately reindex these intersection points as {xi0}1≤i≤r (defining r :=

∑
β∈I rβ). Now

Dβ ⊆M × S1 ×∆[i0...im] (for [i0 . . . im] dictated by β), and a neighborhood of ∆[i0...im] ⊆ ∆n

may be naturally parameterized by ∆[i0...im]× [0, ε){1,...,n}\{i0,...,im}. Let D̃β := (Dβ \∂essDβ)×
[0, ε){1,...,n}\{i0,...,im} ⊆M×S1×∆n, and define D1, . . . , Dr ⊆M×S1×∆n as the reindexing of
{D̃β}β∈I,1≤i≤rβ corresponding to our earlier reindexing of {xβ,i0 }β∈I,1≤i≤rβ to {xi0}1≤i≤r (thus

D1, . . . , Dr contains rβ copies of D̃β). In particular, (idM×S1 ×`0)((u0 × A0)(xi0)) ∈ Di with
transverse intersection (this intersection is transverse, rather than merely “transverse when
viewed inside M × S1 ×∆[i0...im]”, since we replaced Dβ with D̃β; we made this replacement
purely for the sake of this linguistic convenience).
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C.1.2 Points {pi}1≤i≤L, {p′i}1≤i≤L′ ∈ C0 and submanifolds D,H ⊆M

We claim that every unstable bubble component of C0 has a point where du0 is injective.
Indeed, on any unstable bubble component which is not contained in (C0)β for any β ∈ I, the
map u0 is a (nonconstant!) J(`0(A0(·)))-holomorphic sphere in M , and thus has such a point
of injectivity. Any unstable bubble component contained in (C0)β for some β ∈ I is stabilized
by its intersections with the corresponding Dβ. Since these intersections are transverse (and
A0 is constant on the bubble), it follows that du0 has a point of injectivity on such bubble
components as well. Hence the claim is valid. Let us now choose points p1, . . . , pL ∈ C0

(a minimal set of distinct non-nodal points stabilizing all bubble components of C0) and a
codimension two submanifold with boundary D ⊆ M such that u0(pi) ∈ D with transverse
intersection for 1 ≤ i ≤ L.

We claim that every unstable main component of C0 over which `0 is constant has a point
where ∂

∂s
u0 is nonzero. Indeed, this holds because such an unstable main component cannot

be a trivial cylinder (otherwise the trajectory would be unstable). Let us now choose points
p′1, . . . , p

′
L′ ∈ C0 (consisting of exactly one non-nodal point in every unstable main component

over which `0 is constant) and a codimension one submanifold with boundary H ⊆M such
that u0(p′i) ∈ H with ∂

∂s
u0 transverse to H for 1 ≤ i ≤ L′. We assume that D and H are

disjoint: this can be achieved by first perturbing D (and correspondingly p1, . . . , pL) so that
on each of the main components under consideration here, there exists a point where ∂

∂s
u0

is nonzero and which is not mapped to D.

C.1.3 Gluing C0,
∐k

i=1 R and varying j0, A0, `0

A subset of the Riemann sphere C ∪ {∞} homeomorphic to S1 is called a circle iff its
intersection with C is either a straight line or a circle (in the usual sense). It is well-known
that this notion is invariant under biholomorphisms of the Riemann sphere. For any Riemann
surface C biholomorphic to the Riemann sphere minus finitely many points, a subset of C
homeomorphic to S1 is called a circle iff its image under such a biholomorphism is a circle.

On both sides of every bubble node of C0, fix cylindrical ends:

S1 × [0,∞)→ C0 (C.1.2)

which are circular, in the sense that every (equivalently, some) cross section S1 × {s} is a
circle (inside the corresponding irreducible component of C0). We will call the ends (C.1.2)
the bubble ends. We also fix some large N < ∞, and we call the subsets S1 × [N,∞) and
S1 × (−∞,−N ] of the main components of C0 the main ends (which come in two types:
positive and negative). At a few later points in the gluing argument, we will need to assume
that the bubble ends were chosen sufficiently small and that N was chosen sufficiently large.

We now fix a smooth family of (necessarily integrable) almost complex structures jy on
C0 and a smooth family of jy-holomorphic maps:

Aiy : C
(i)
0 \ {qi−1, qi} → S1 × R (C.1.3)

parameterized by y ∈ R∗ (for an integer ∗ ≥ 0 to be specified shortly), specializing to (j0, A0)
at y = 0 (where j0 denotes the given almost complex structure on C0). We require that this
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family (jy, Ay)y∈R∗ satisfy the following conditions. The family jy must be constant over
the bubble ends, and Ay (and hence jy) must be constant over the main ends. The bubble
ends (C.1.2) must also be circular with respect to every jy. Now, for each stable bubble
component of C0 (say, with ν ≥ 3 special points), the family jy induces a map R∗ → M0,ν .
For each main component of C0 (say, with ν ≥ 0 bubble nodes), the family Ay induces a
map R∗ → (S1×R)ν (namely taking the images of the bubble nodes under Ay). We require
that the resulting map:

R∗ →
∏

bubble components
with ν ≥ 3

M0,ν ×
∏

main components
with `0 non-constant

(S1 × R)ν ×
∏

main components
with `0 constant

and ν ≥ 1

(S1 × R)ν/R

be a diffeomorphism onto its image (in particular, this determines ∗ ∈ Z≥0). We fix, once
and for all, a family (jy, Ay)y∈R∗ satisfying the above properties (such a family always exists).

Given a set of gluing parameters52 α ∈ Cd × Rk−1
≥0 (where d is the number of bubble

nodes of C0), we may glue C0 to obtain a curve Cα as follows. At a bubble node with gluing
parameter α = e−6S+iθ ∈ C, we truncate both bubble ends (C.1.2) from S1 × [0,∞) to
S1 × [0, 6S], and we identify them via the map s′ = 6S − s and t′ = θ− t (if α = 0, then we
do nothing). At each main node qi with gluing parameter α = e−6S ∈ R≥0, we truncate the

main ends S1× [N,∞) ⊆ C
(i)
0 and S1×(−∞,−N ] ⊆ C

(i+1)
0 incident at qi to S1× [N, 6S−N ]

and S1× [−6S +N,−N ], and we identify them via s′ = s− 6S and t′ = t (if α = 0, then we
do nothing). The curve Cα now has main ends and bubble ends (those where no gluing was
performed), as well as bubble necks S1 × [0, 6S] and main necks S1 × [N, 6S −N ].

We perform a similar gluing operation to
∐k

i=1 R, and we denote the result by (
∐k

i=1 R)α.
Namely, for the gluing parameter α = e−6S ∈ R≥0 associated to qi, we truncate the ith copy
of R to (−∞, 6S], we truncate the (i + 1)st copy of R to [−6S,∞), and we identify [0, 6S]
in the ith copy with [−6S, 0] in the (i + 1)st copy via s′ = s − 6S (if α = 0, then we do
nothing).

The almost complex structure jy clearly descends to Cα, since it is constant over the ends
of C0. Furthermore, the maps (C.1.3) induce jy-holomorphic maps:

Ay : Cα \ {q0, . . . , qk} → S1 ×
( k∐
i=1

R
)
α

(C.1.4)

characterized uniquely by the property that they agree with (C.1.3) over the images of
the truncated main components of C0 (the existence of such a map Ay follows from our
assumption that the bubble ends (C.1.2) are circular with respect to every jy). The points
p1, . . . , pL, p

′
1, . . . , p

′
L′ ∈ C0 clearly descend to points p1, . . . , pL, p

′
1, . . . , p

′
L′ ∈ Cα, and there is

a node qi ∈ Cα whenever the corresponding gluing parameter is zero.
Eventually, only a subset of Cd × Rk−1

≥0 will be relevant for us, namely the subset Cd ×
(Rk−1
≥0 )≤s ⊆ Cd × Rk−1

≥0 cut out by the requirement that if the break in the trajectory at
(vi, γi) is dictated by the stratum s, then the gluing parameter at qi is zero.

52We only care about what happens for gluing parameters α in a neighborhood of zero, and many construc-
tions will only make sense (and many statements will only be true) for sufficiently small gluing parameters α,
even though this assumption is not always explicitly stated. The same goes for the parameters w (introduced
below) and y.
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For every nonconstant `i0, choose a local hypersurface H i ⊆ ∆[vi−1...vi] transverse to `i0
at `i0(0). For w ∈

∏k′
i=1H

i (where
∏k′

i=1 denotes the product over those i for which `i0 is

nonconstant), let `w :
∐k

i=1 R→ ∆n denote the unique trajectory satisfying
∏k′

i=1 `
i
w(0) = w

and broken at the same sequence of vertices 0 = v0 ≤ · · · ≤ vk = n. We let 0 :=
∏k′

i=1 `
i
0(0) ∈∏k′

i=1H
i, so in this notation `w = `0 for w = 0.

Now choose a neighborhood parameterization ∆[vi−1...vi] × [0, ε){1,...,n}\{vi−1,...,vi} → ∆n,
and define a local hypersurface H̄ i := H i× [0, ε){1,...,n}\{vi−1,...,vi} ⊆ ∆n and a projection map
H̄ i → H i. For α ∈ Rk−1

≥0 , let `α,w : (
∐k

i=1 R)α → ∆n denote the trajectory characterized

uniquely by the property that
∏k′

i=1 `α,w(0i) ∈
∏k′

i=1 H̄
i projects to w ∈

∏k′
i=1H

i, where

0i ∈ (
∐k

i=1 R)α denotes the image of 0 in the ith copy of R. In this notation, `α,w = `0 for
α = 0 and w = 0. The existence and uniqueness of `α,w for (α,w) close to (0, 0) follows
simply by explicitly integrating the Morse flow on ∆n from Definition 10.1.4.

Eventually, only a subset of
∏k′

i=1H
i will be relevant for us, namely the subset

∏k′
i=1(H i)≤s ⊆∏k′

i=1H
i, where (H i)≤s ⊆ H i is the intersection ofH i with ∆[i0...im]∩∆[vi−1...vi] = ∆[i0...im]∩[vi−1...vi],

where (σ|[i0 . . . im], γa, γb) is the part of the stratum s containing `i0.

C.1.4 Linear map λ

Recall that for all β ∈ I, we have a linear map:

λβ : Eβ → C∞(C0,2+rβ ×M,Ω0,1

C0,2+rβ
/M0,2+rβ

⊗R TM) (C.1.5)

We now repackage these λβ into a single linear map:

λ : E → C∞(Cd × (Rk−1
≥0 )≤s × R∗ × Cr

0 × C0 ×M,Ω1
C0
⊗R TM) (C.1.6)

which vanishes over the ends of (the last factor of) C0. We will actually only define λ in a
small neighborhood of {0} × {0} × {x1

0} × · · · × {xr0} × C0 ×M , as this is the only part of
the domain which will be relevant.

Suppose we are given e ∈ E =
⊕

β∈I Eβ, α ∈ Cd × (Rk−1
≥0 )≤s, and y ∈ R∗, along with

points x1, . . . , xr ∈ C0, each in a small neighborhood of the corresponding xi0; let us define
λ(e)(α, y, x1, . . . , xr, ·, ·) as a section C0 × M → Ω0,1

C0,jy
⊗R TM ⊆ Ω1

C0
⊗R TM . Consider

the glued curve Cα equipped with the almost complex structure jy and the marked points
x1, . . . , xr ∈ Cα (descended from C0). Since α ∈ Cd × (Rk−1

≥0 )≤s, there is a subcurve (Cα)β ⊆
Cα corresponding to any given β ∈ I. If we equip it with the rβ marked points from
x1, . . . , xr corresponding to β (with respect to the reindexing from §C.1.1), then this induces
a unique map φβ : (Cα)β → C0,2+rβ (isomorphism onto a fiber) which is close to the given

map φβ0 : (C0)β → C0,2+rβ (this assumes we are in the setting of Proposition 10.3.3; in the

setting of Proposition 10.6.2, we instead have a map φβ : ((Cα)β)st → C0,2+rβ close to the

given map φβ0 : ((C0)β)st → C0,2+rβ , where (Cα)β → ((Cα)β)st contracts those components all
of whose constituent components of (C0)β were contracted by (C0)β → ((C0)β)st). Now the
pullback of λβ(projEβ e) under φβ gives us a section Cα×M → Ω0,1

Cα,jy
⊗R TM (defined to be

zero at those points not contained in (Cα)β). We may assume without loss of generality that
the ends of C0 were chosen small enough so that this section vanishes over the ends/necks
of Cα, and hence gives rise to a well-defined lift to a section C0 × M → Ω0,1

C0,jy
⊗R TM .
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We declare λ(e)(α, y, x1, . . . , xr, ·, ·) to be the sum of these sections over all β ∈ I. This
defines the function λ, which is indeed of class C∞ since the partially defined composition
C0 → Cα → (Cα)β → C0,2+rβ depends smoothly on α, y, x1, . . . , xr.

C.1.5 A new moduli space M(M)

Let M(M) denote the moduli space of tuples (α,w, y, u, e, {xi}1≤i≤r), where:
i. α ∈ Cd × (Rk−1

≥0 )≤s.

ii. w ∈
∏k′

i=1(H i)≤s.
iii. y ∈ R∗.
iv. u : Cα \ {q0, . . . , qk} →M is smooth with finite energy, is asymptotic to γi at qi ∈ Cα

(whenever the gluing parameter α at qi ∈ C0 is zero), and u(pi) ∈ D◦ (1 ≤ i ≤ L) and
u(p′i) ∈ H◦ (1 ≤ i ≤ L′).

v. e ∈ E.
vi. xi ∈ Cα (not nodes) satisfy (idM×S1 ×`α,w)((u × Ay)(xi)) ∈ Di with transverse inter-

section (1 ≤ i ≤ r).
vii. We require that:(

du+ 2d(projS1 Ay)⊗XH((`α,w×idS1 )(Ay(·)))

+ λ(e)(α, y, x1, . . . , xr, ·, u(·))
)0,1

jy ,J(`α,w(Ay(·)))
= 0 (C.1.7)

We equip M(M) with the topology of uniform convergence. More precisely, let M := Cd ×
(Rk−1
≥0 )≤s, and let C$ → M be the bundle whose fiber over α is C$

α, obtained from Cα by

replacing each qi (0 ≤ i ≤ k) with a copy of S1 (thus u as above extends continuously to C$
α

and equals γi(t) on the S1 over qi whenever the corresponding α is zero). We equip M(M)
with the obvious topology on w ∈

∏k′
i=1(H i)≤s, y ∈ R∗, e ∈ E, {xi}1≤i≤r ∈ Cr, and the

Hausdorff topology on the graph of u inside C$ ×M .
Note that there is a distinguished basepoint (0, 0, 0, u0, e0, {xi0}1≤i≤r) ∈ M(M). Fur-

thermore, a neighborhood of this basepoint in M(M) is canonically homeomorphic to a
neighborhood of the given basepoint in M(σ, γ−, γ+)≤sI (as long as the given basepoint in
M(σ, γ−, γ+)≤sI has trivial automorphism group). Note that to justify this statement in the
setting of Proposition 10.6.2, we must appeal to Lemma 10.5.4.

C.1.6 The regular locus M(M)reg

We now define a subset M(M)reg ⊆M(M), depending on a choice of subspace E ′ ⊆ E. Fix
a point (α,w, y, u1, e1, {xi1}1≤i≤r) ∈M(M), and we will describe when it lies in M(M)reg.

Fix an integer k ∈ Z≥6 (not to be confused with the number k of main components
of C0) and a small real number δ ∈ (0, 1) (we will be precise about how small δ must
be shortly). Let W k,2,δ(Cα,M) denote the smooth Banach manifold consisting of maps
u : Cα \ {q0, . . . , qk} → M which are of locally of class W k,2 such that for all positive main
ends of Cα with corresponding node qi, we have:∫

S1×[N ′,∞)

k∑
j=0

∣∣∣Dj
[
exp−1

γi(t)
u(t, s)

]∣∣∣2 e2sδ dt ds <∞ (C.1.8)
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for sufficiently large N ′ <∞ (along with the analogous condition over negative main ends);
this definition is independent of the choice of metric and connection used in (C.1.8). Over
W k,2,δ(Cα,M), we consider the smooth Banach bundle E whose fiber over u : Cα → M is
W k−1,2,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗TMJ(`α,w(Ay(·)))), namely the space of sections η : C̃α → Ω0,1

C̃α,jy
⊗C

u∗TMJ(`α,w(Ay(·))) which are locally of class W k−1,2 and which satisfy:

∫
S1×[N ′,∞)

k−1∑
j=0

∣∣∣Dj
[
PTu(t,s)→γi(t)η(t, s)

]∣∣∣2e2sδ dt ds <∞ (C.1.9)

over positive main ends (along with the analogous condition over negative main ends); this
definition is independent of the choice of metric and connection used in (C.1.9).

It is well-known (see Proposition C.11.1 below) that for every non-degenerate periodic
orbit γ of a smooth Hamiltonian H : M × S1 → R and every smooth ω-compatible almost
complex structure J on M , there exists δH,J,γ > 0 such that for every u : S1 × [0,∞)→ M
(resp. u : S1 × (−∞, 0] → M) of finite energy satisfying (du + 2dt ⊗ XH)0,1

J = 0 and
asymptotic to u(t,∞) = γ(t) (resp. u(t,−∞) = γ(t)), all derivatives of u decay like e−δs for
any δ < δH,J,γ (precisely, δH,J,γ is the smallest magnitude of any eigenvalue of the asymptotic
linearized operator, which depends only on ω, H, J , and γ). In particular, for 0 ≤ i ≤ k,
there is a corresponding δi := δH(vi),J(vi),γi > 0. We fix δ ∈ (0, 1) with δ < δi for all i; thus
u1 ∈ W k,2,δ(Cα,M).

Now since k ≥ 6, there are unique continuous functions:

xi : W k,2,δ(Cα,M)→ Cα (1 ≤ i ≤ r) (C.1.10)

defined for u in a neighborhood of u1 ∈ W k,2,δ(Cα,M), coinciding with the given xi1 ∈ Cα
at u1, and which satisfy (idM×S1 ×`α,y)((u×Ay)(xi(u))) ∈ Di (the intersection is automati-
cally transverse for u close to u1). Moreover, (C.1.10) are of class Ck−2 (see the discussion
following (B.1.7)). It follows that the left hand side of (C.1.7) is a Ck−2 section of E over
W k,2,δ(Cα,M) × E. By results of Lockhart–McOwen [LM85], this section is Fredholm for
δ > 0 as above (note that over each end, the almost complex structure on M is constant
and ω-compatible). Let W k,2,δ(Cα,M)D,H denote the subspace cut out by the requirements
u(pi) ∈ D and u(p′i) ∈ H. We say that the given point (α,w, y, u1, e1, {xi1}1≤i≤r) ∈ M(M)
lies in M(M)reg iff the section (u, e) 7→ (C.1.7)⊕ e of E⊕ E/E ′ over W k,2,δ(Cα,M)D,H × E
is transverse to the zero section at (u1, e1) (it follows from elliptic regularity theory that this
condition is independent of the choice of k, δ as above).

Now suppose that we take E ′ := EI′ for I ′ ⊆ I and that the given basepoint in
M(σ, γ−, γ+)≤sI was chosen inside the inverse image of (M(σ, γ−, γ+)≤sI′ )reg. Then, the base-
point of M(M) lies in M(M)reg (this uses the fact that L,L′ were chosen to be min-
imal), and furthermore M(M)reg ∩ proj−1

E/E′(0) is contained inside the inverse image of

(M(σ, γ−, γ+)≤sI′ )reg.
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C.2 Our goal: the gluing map

We henceforth assume that the basepoint in M(M) lies in M(M)reg. The remainder of this
appendix is devoted to the construction of a germ of a local chart:(

Cd × (Rk−1
≥0 )≤s × R∗ ×

k′∏
i=1

(H i)≤s ×K, (0, 0, 0, 0)
)
→
(
M(M), (0, 0, 0, u0, e0, {xi0}1≤i≤r)

)
(C.2.1)

which respects the natural projection from both sides to Cd× (Rk−1
≥0 )≤s×R∗×

∏k′
i=1(H i)≤s×

E/E ′ and whose image is contained in M(M)reg (K denotes the kernel of the linearization
of (C.1.7) at the distinguished basepoint of M(M); see (C.5.9)). We will also discuss the
compatibility of gluing with orientations, and more generally we will discuss how to define
coherent orientations on the moduli spaces of Floer trajectories. Propositions 10.3.3 and
10.6.2 follow from the existence of such a chart (C.2.1) and our earlier observations relating
M(M) to M(σ, γ−, γ+)≤sI .

C.3 Pregluing

Let exp : TM →M denote the exponential map of some Riemannian metric on M for which
D and H are totally geodesic (such a metric exists since D and H are disjoint). Recall
that J is a smooth family of almost complex structures on M parameterized by ∆n which
is constant near the vertices. Let ∇ denote a smooth family of J-linear connections on
M parameterized by ∆n which is constant near the vertices (for instance, we could take
∇XY := 1

2
(∇0

XY − J(∇0
X(JY ))) for any fixed connection ∇0). Let PTx→y : TxM → TyM

denote parallel transport via ∇ along the shortest geodesic between x and y (we will only
use this notation when it may be assumed that x and y are very close in M); note that
PTx→y is J-linear, and that PTx→y is a family of maps parameterized by ∆n.

Fix a smooth function χ : R→ [0, 1] satisfying:

χ(x) =

{
0 x ≤ 0

1 x ≥ 1
(C.3.1)

Definition C.3.1 (Flattening). For α ∈ Cd × Rk−1
≥0 , we define the “flattened” map u0|α :

C0 → M as follows. Away from the ends, u0|α coincides with u0. Over a bubble end
S1 × [0,∞), we define u0|α as follows:

u0|α(t, s) :=


u0(t, s) s ≤ S − 1

expu0(n)

[
χ(S − s) · exp−1

u0(n) u0(t, s)
]

S − 1 ≤ s ≤ S

u0(n) S ≤ s

(C.3.2)

where n ∈ C0 denotes the corresponding node. Over a positive main end S1 × [N,∞), we
define u0|α as:

u0|α(t, s) :=


u0(t, s) s ≤ S − 1

expγ(t)

[
χ(S − s) · exp−1

γ(t) u0(t, s)
]

S − 1 ≤ s ≤ S

γ(t) S ≤ s

(C.3.3)
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where γ(t) = u0(t,∞) denotes the corresponding periodic orbit; an analogous definition
applies over the negative main ends.

Definition C.3.2 (Pregluing). For α ∈ Cd×Rk−1
≥0 , we define the “preglued” map uα : Cα →

M as follows. Away from the necks, uα coincides with u0. Over a bubble neck S1 × [0, 6S],
we define uα as:

uα(t, s) :=



u0(t, s) s ≤ S − 1

expu0(n)

[
χ(S − s) · exp−1

u0(n) u0(t, s)
]

S − 1 ≤ s ≤ S

u0(n) S ≤ s ≤ 5S

expu0(n)

[
χ(S − s′) · exp−1

u0(n) u0(t′, s′)
]

5S ≤ s ≤ 5S + 1

u0(t′, s′) 5S + 1 ≤ s

(C.3.4)

and over a main neck S1 × [N, 6S −N ], we define uα as:

uα(t, s) :=



u0(t, s) s ≤ S − 1

expγ(t)

[
χ(S − s) · exp−1

γ(t) u0(t, s)
]

S − 1 ≤ s ≤ S

γ(t) S ≤ s ≤ 5S

expγ(t)

[
χ(S + s′) · exp−1

γ(t) u0(t′, s′)
]

5S ≤ s ≤ 5S + 1

u0(t′, s′) 5S + 1 ≤ s

(C.3.5)

(uα should be thought of as the “descent” of u0|α from C0 to Cα).

C.4 Weighted Sobolev norms

Recall that we have fixed k ∈ Z≥6 and δ ∈ (0, 1) smaller than δi > 0 for 0 ≤ i ≤ k.
We now introduce new weighted Sobolev spaces W k,2,δ,δ (with weights over all ends and

necks) which we will work with from now on. The specific choice of norms (not just their
commensurability classes) on these W k,2,δ,δ spaces is crucial.

Definition C.4.1. We define the weighted Sobolev space W k,2,δ,δ(Cα, u
∗
αTM) using the usual

(k, 2)-norm away from the ends/necks, and using the following weighted (k, 2)-norms over
the bubble ends/necks and main ends/necks respectively (we will write the contribution to
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the norm squared):

|ξ(n)|2 +

∫
S1×[0,∞)

[
|ξ(t, s)− ξ(n)|2 +

k∑
j=1

∣∣Djξ(t, s)
∣∣2]e2δs dt ds (C.4.1)

∣∣∣∣∫
S1

ξ(t, 3S) dt

∣∣∣∣2+

∫
S1×[0,6S]

[∣∣∣ξ(t, s)− ∫
S1

ξ(t, 3S) dt
∣∣∣2 +

k∑
j=1

∣∣Djξ(t, s)
∣∣2]e2δmin(s,6S−s) dt ds

(C.4.2)∫
S1×[N,∞)

k∑
j=0

∣∣Djξ(t, s)
∣∣2 e2δ(s−N) dt ds (C.4.3)

∫
S1×[N,6S−N ]

k∑
j=0

∣∣Djξ(t, s)
∣∣2 e2δmin(s−N,6S−N−s) dt ds (C.4.4)

These are to be interpreted as follows. For each bubble node n ∈ C0, we fix, once and for all,
a small trivialization of TM in a neighborhood of u0(n); this allows us to view ξ as a function
(rather than a section) for the purposes of the integrals over the bubble ends/necks. For
each i = 0, . . . , k, we fix, once and for all, a smooth family of trivializations of TM near γi(t)
(parameterized by t ∈ S1); this allows us to view ξ as a section of γ∗i TM for the purposes
of the integrals over the main ends/necks. We also fix, once and for all, a connection on
each such bundle γ∗i TM over S1. The derivatives in the integrals above are measured with
respect to the standard metric on S1 × R. The case of negative main ends is completely
analogous to that of positive main ends.

By Sobolev embedding W 2,2 ↪→ C0 in two dimensions, we get uniform bounds linear
in ‖ξ‖k,2,δ,δ on |ξ(t, s)− ξ(n)| eδs in the bubble ends, |ξ(t, s)| eδs in the main ends, and

|Djξ(t, s)| eδs (1 ≤ j ≤ k − 2) in all ends (as well as similar estimates in the necks).
We will occasionally use other very similar weighted Sobolev spaces (e.g.W k,2,δ,δ(C0, u

∗
0|αTM)),

and we leave it to the reader to make the necessary adjustments to the definition (which is
essentially identical to the above).

Remark C.4.2. The particular choice of trivializations and connections in the definition above
is not crucial: any other (fixed) choice would lead to a uniformly commensurable norm (this
holds because u0 satisfies the exponential decay estimates (C.6.1), (C.6.3), and because δ < 1
and δ < δi).

Definition C.4.3. We define the weighted Sobolev space W k−1,2,δ,δ(C̃α, T
∗C̃α ⊗R u

∗
αTM)

using the usual (k− 1, 2)-norm away from the ends/necks, and using the following weighted
(k − 1, 2)-norms over the bubble ends/necks (we will write the contribution to the norm
squared): ∫

S1×[0,∞)

k−1∑
j=0

∣∣Djη(t, s)
∣∣2 e2δs dt ds (C.4.5)

∫
S1×[0,6S]

k−1∑
j=0

∣∣Djη(t, s)
∣∣2 e2δmin(s,6S−s) dt ds (C.4.6)
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(for the main ends/necks, simply make the obvious replacement of [0,∞) with [N,∞) and
e2δs with e2δ(s−N), etc.). These are to be interpreted as follows. We trivialize TC̃α over any
end/neck with the basis vectors ∂

∂t
, ∂
∂s

. We trivialize TM as in Definition C.4.1, and hence
the section η is simply a pair of functions η = (η1, η2).

By Sobolev embedding W 2,2 ↪→ C0 in two dimensions, we get uniform exponential decay
bounds on η up to k − 3 derivatives in any end/neck, linear in ‖η‖k−1,2,δ,δ.

We are actually interested in certain closed subspaces of W k−1,2,δ,δ(C̃α, T
∗C̃α⊗R u

∗
αTM),

e.g. W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,j
⊗C u

∗
αTMJ) for certain almost complex structures j, J on Cα,M

respectively, which we equip with the restriction of the norm defined above. We will occa-
sionally use other very similar weighted Sobolev spaces, and we leave it to the reader to make
the necessary adjustments to the definition (which is essentially identical to the above).

Henceforth, we will work exclusively with the weighted Sobolev spaces defined above,
rather than those from §C.1.6. The Fredholm index and the kernel/cokernel of the relevant
linearized operators are unchanged by the placement of weights in the bubble ends/necks
(the argument from Lemma B.5.2 applies without modification).

C.5 Based section Fα,w,y and linearized operator Dα,w,y

We consider the following partially defined function:

Fα,w,y : C∞(Cα, u
∗
αTM)D,H ⊕ E → C∞(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))

Fα,w,y(ξ) := PT
`α,w(Ay(·))
expuα ξ→uα

(
d expuα ξ + 2d(projS1 Ay)⊗XH((`α,w×idS1 )(Ay(·)))(expuα ξ)

+ λ(e0 + projE ξ)(α, y, x
1, . . . , xr, ·, (expuα ξ)(·))

)0,1

jy ,J(`α,w(Ay(·)))
(C.5.1)

(recall that PT and (·)0,1 commute). This function Fα,w,y is defined for ξ in a C1-neighborhood
of zero; for these ξ we define xi = xi(ξ) as the unique intersection of (idM×S1 ×`α,w) ◦
(expuα ξ × Ay) with Di close to the image of xi0 ∈ C0 in Cα (note, however, that even xi(0)
may not coincide exactly with the image of xi0 ∈ C0 in Cα); as before, these functions xi are
of class Ck−2. The subscript D,H indicates restriction to sections which are tangent to D at
p1, . . . , pL and tangent to H at p′1, . . . , p

′
L′ . Thus for ξ contained in a C0-neighborhood of

zero, expuα ξ sends p1, . . . , pL to D◦ and sends p′1, . . . , p
′
L′ to H◦.

Now we observe that Fα,w,y induces a continuous map:

Fα,w,y : W k,2,δ,δ(Cα, u
∗
αTM)D,H ⊕ E → W k−1,2,δ,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·)))) (C.5.2)

which is defined for ‖ξ‖k,2,δ,δ ≤ c′ (some c′ > 0) and small α,w. Moreover, this map is of

class Ck−2. We denote by:

Dα,w,y : W k,2,δ,δ(Cα, u
∗
αTM)D,H ⊕ E → W k−1,2,δ,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·)))) (C.5.3)

the derivative of Fα,w,y at zero.
Let T∇(X, Y ) := ∇XY −∇YX − [X, Y ] denote the torsion of ∇.
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Lemma C.5.1. The linearized operator Dα,w,y is given by:

Dα,w,yξ =

(
∇`α,w(Ay(·))ξ + T

`α,w(Ay(·))
∇ (ξ, duα) (C.5.4)

+ 2d(projS1 Ay)⊗∇`α,w(Ay(·))
ξ XH((`α,w×idS1 )(Ay(·))) (C.5.5)

+
r∑
i=1

d[λ(e0)]

dxi
(α, y, x1, . . . , xr, ·, uα(·))(− projTCα ξ(x

i)) (C.5.6)

+∇`α,w(Ay(·))
ξ [λ(e0)](α, y, x1, . . . , xr, ·, uα(·)) (C.5.7)

+ λ(projE ξ)(α, y, x
1, . . . , xr, ·, uα(·))

)0,1

jy ,J(`α,w(Ay(·)))
(C.5.8)

where projTCα : T (M × S1 × ∆n) → TCα denotes the projection associated to the splitting
T (M × S1 ×∆n) = TDi ⊕ TCα at the point xi ∈ Cα and (idM×S1 ×`α,w)((uα × Ay)(xi)) ∈
M × S1 ×∆n, and ∇ξ[λ(e0)] denotes the derivative in the direction of ξ along the M factor
with respect to the connection ∇.

Proof. Calculation as in Lemma B.5.1. Note that PT and (·)0,1 in (C.5.1) commute, since
PT is J-linear.

We denote the kernel of D0,0,0 by:

K := kerD0,0,0 ⊆ C∞(C0, u
∗
0TM)D,H ⊕ E (C.5.9)

Note that our assumption that (0, 0, 0, u0, e0, {xi0}) ∈M(M)reg is equivalent to the statement
that D0,0,0 is surjective and K � E/E ′ is surjective.

Definition C.5.2 (Kernel pregluing). For κ ∈ K ⊆ C∞(C0, u
∗
0TM), we define κα ∈

C∞(Cα, u
∗
αTM) as follows. Away from the necks, κα coincides with κ. Over a bubble

neck S1 × [0, 6S], we define κα as:

κα(t, s) :=



κ(t, s) s ≤ S − 1

PTu0(t,s)→uα(t,s) [κ(t, s)] S − 1 ≤ s ≤ S

PTu0(t,s)→uα(t,s) [κ(t, s)] · (1− χ(s− S)) + χ(s− S) · κ(n) S ≤ s ≤ S + 1

κ(n) S + 1 ≤ s ≤ 5S − 1

PTu0(t′,s′)→uα(t′,s′) [κ(t′, s′)] · (1− χ(s′ − S)) + χ(s′ − S) · κ(n) 5S − 1 ≤ s ≤ 5S

PTu0(t′,s′)→uα(t′,s′) [κ(t′, s′)] 5S ≤ s ≤ 5S + 1

κ(t′, s′) 5S + 1 ≤ s

(C.5.10)
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and over a main neck S1 × [N, 6S −N ], we define κα as:

κα(t, s) :=



κ(t, s) s ≤ S − 1

PTu0(t,s)→uα(t,s) [κ(t, s)] S − 1 ≤ s ≤ S

PTu0(t,s)→uα(t,s) [κ(t, s)] · (1− χ(s− S)) S ≤ s ≤ S + 1

0 S + 1 ≤ s ≤ 5S − 1

PTu0(t′,s′)→uα(t′,s′) [κ(t′, s′)] · (1− χ(−s′ − S)) 5S − 1 ≤ s ≤ 5S

PTu0(t′,s′)→uα(t′,s′) [κ(t′, s′)] 5S ≤ s ≤ 5S + 1

κ(t′, s′) 5S + 1 ≤ s

(C.5.11)

C.6 Pregluing estimates

Fix norms on E and K, and equip Cd × Rk−1 and R∗ with their standard norms. Equip
each H i (and hence

∏k′
i=1H

i) with the pullback of the standard norm under a fixed choice
of local diffeomorphism to Rn × Rm

≥0 sending 0 to 0.
Note that we have the following estimates on u0 and κ ∈ K:

in bubble ends:
∣∣∣Dj exp−1

u0(n) u0(t, s)
∣∣∣ ≤ cje

−s (C.6.1)

in bubble ends:
∣∣Dj[κ(t, s)− κ(n)]

∣∣ ≤ cje
−s ‖κ‖ (C.6.2)

in main ends:
∣∣∣Dj exp−1

γi(t)
u0(t, s)

∣∣∣ ≤ cje
−δ′s ∀δ′ < δi (C.6.3)

in main ends:
∣∣Djκ(t, s)

∣∣ ≤ cje
−δ′s ‖κ‖ ∀δ′ < δi (C.6.4)

The estimates in the bubble ends hold simply because u0 and κ are smooth on C0\{q0, . . . , qk}.
The estimates in the main ends hold for u0 by Proposition C.11.1 and for κ since K =
kerD0,0,0 remains the same for any choice of k ≥ 6 and any collection of end weights δ, each
of which is less than the corresponding δi.

Lemma C.6.1 (Estimate for map pregluing). We have the following estimate on Fα,w,y(0):∥∥∥∥(duα + 2d(projS1 Ay)⊗XH((`α,w×idS1 )(Ay(·)))(uα)

+ λ(e0)(α, y, x1, . . . , xr, ·, uα(·))
)0,1

jy ,J(`α,w(Ay(·)))

∥∥∥∥
k−1,2,δ,δ

≤ c ·
(
|α|ε + |w|+ |y|

)
(C.6.5)

uniformly over (α,w, y) in a neighborhood of zero, for c < ∞ and ε > 0 depending on data
which has been previously fixed.

Proof. Recall that:(
du0+2d(projS1 A0)⊗XH((`0,0×idS1 )(A0(·)))(u0)+λ(e0)(0, 0, x1

0, . . . , x
r
0, ·, u0(·))

)0,1

j0,J(`0,0(A0(·)))
= 0

(C.6.6)
We estimate Fα,w,y(0) over the main ends/necks. Note that over this region, the λ term

vanishes, jy = j0, J(`α,w(Ay(·))) = J(`0,0(A0(·))), and H((`α,w × idS1)(Ay(·))) = H((`0,0 ×
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idS1)(A0(·))). Now due to (C.6.6), it follows that in this region, Fα,w,y(0) is supported inside
the subsets S1×([S−1, S]∪[5S, 5S+1]) of the main necks S1×[N, 6S−N ]. The contribution
of such a region to the norm of Fα,w,y(0) is bounded above by a constant times |α|ε, as follows
from the estimate (C.6.3) on the derivatives of u0 and the fact that δ < δi.

We estimate Fα,w,y(0) away from the ends/necks. Note that `α,w is close to `0,0, in the

sense that they differ over
∐k

i=1[−N,N ] (which may be viewed as a subset of
∐k

i=1 R and of

(
∐k

i=1)α) by a constant times |α|ε + |w| in C` for some fixed ε > 0 (depending on the flow
on ∆n from Definition 10.1.4) and any ` < ∞. It follows that away from the ends/necks,
the C` distance between J(`α,w(Ay(·))) on Cα and J(`0,0(A0(·))) on C0 is bounded by a
constant (depending on `) times |α|ε + |w|+ |y|, where we identify C0 and Cα away from the
ends/necks in the canonical way (any ` < ∞). The same holds for H((`α,w × idS1)(Ay(·)))
and H((`0,0× idS1)(A0(·))). It also follows that the distance between xi ∈ Cα and (the image
in Cα of) xi0 ∈ C0 is bounded by a constant times |α|ε + |w|. Hence we conclude that away
from the ends/necks, Fα,w,y(0) differs from the left hand side of (C.6.6) in C` by a constant
times |α|ε + |w| + |y| for any ` < ∞. It follows that the contribution of this region to the
norm of Fα,w,y(0) is bounded by a constant times |α|ε + |w|+ |y|.

We estimate Fα,w,y(0) over the bubble ends. The reasoning above applies as written to
imply that Fα,w,y(0) is bounded in C` (with respect to the usual metric on C̃α) by a constant
times |α|ε+ |w|+ |y| for any ` <∞. Since δ < 1, the weighted Sobolev norm over the bubble
ends is also bounded by a constant times |α|ε + |w|+ |y|.

We estimate Fα,w,y(0) over the bubble necks S1 × [0, 6S]. The argument for the bubble
ends applies to show that the contribution outside S1 × [S − 1, 5S + 1] is bounded by a
constant times |α|ε + |w|+ |y|. Over S1× ([S− 1, S]∪ [5S, 5S+ 1]), we bound the expression
termwise: both uα and Ay are O(e−s) in all derivatives, so the contribution of this region
is bounded by |α|ε. Over S1 × [S, 5S], only the term involving XH is nonzero, and since
Ay = O(e−s) in all derivatives, its contribution to the norm is bounded by a constant times
|α|ε since δ < 1.

Lemma C.6.2 (Estimate for kernel pregluing). For all κ ∈ K, we have:

‖Dα,w,yκα‖k−1,2,δ,δ ≤ c ·
(
|α|ε + |w|+ |y|

)
‖κ‖ (C.6.7)

uniformly over (α,w, y) in a neighborhood of zero, for c < ∞ and ε > 0 depending on data
which has been previously fixed.

Proof. Recall that D0,0,0κ = 0; we will use this to estimate Dα,w,yκα via the explicit expres-
sion for Dα,w,y from Lemma C.5.1.

We estimate Dα,w,yκα over the main ends/necks. Over this region, the λ terms vanish,
and J,H are the same for (α,w, y) as they are for (0, 0, 0). Thus Dα,w,yκα is supported inside
S1 × ([S − 1, S + 1] ∪ [5S − 1, 5S + 1]) in the main necks, and vanishes in the main ends.
From the exponential decay estimates (C.6.3)–(C.6.4), we obtain that the contribution to
the norm of Dα,w,yκα over the main ends/necks is bounded by a constant times |α|ε ‖κ‖.

We estimate Dα,w,yκα away from the ends/necks. As in the proof of Lemma C.6.1, the
difference between J,H for (α,w, y) and for (0, 0, 0) is bounded in C` by a constant times
|α|ε + |w| + |y| for any ` <∞; similarly for the distance between xi and xi0. It thus follows

177



from the explicit form in Lemma C.5.1 that the contribution to the norm of Dα,w,yκα over
this region is bounded by a constant times (|α|ε + |w|+ |y|) ‖κ‖.

Over the bubble ends, the same reasoning applies, and we obtain the desired bound since
δ < 1.

We estimate Dα,w,yκα over the bubble necks. Outside S1× [S − 1, 5S + 1], the reasoning
for the bubble ends applies to show that the contribution is bounded as desired. Over
S1 × ([S − 1, S + 1] ∪ [5S − 1, 5S + 1]), the exponential decay estimates on u0 and κ, along
with similar estimates on Ay, show that the contribution of this region is bounded by |α|ε ‖κ‖
for some ε > 0 since δ < 1. Over S1× [S+ 1, 5S−1], only the term involving XH is nonzero,
and its contribution is bounded by a constant times |α|ε ‖κ‖ since δ < 1 and Ay decays like
O(e−s) in all derivatives.

C.7 Approximate right inverse

Recall that by assumption, the linearized operator:

D0,0,0 : W k,2,δ,δ(C0, u
∗
0TM)D,H ⊕ E → W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·)))) (C.7.1)

is surjective (even if we replace E with E ′). We now proceed to fix a bounded right inverse:

Q0,0,0 : W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·))))→ W k,2,δ,δ(C0, u

∗
0TM)D,H ⊕ E ′ (C.7.2)

whose image admits a simple description. Fix a collection of points zi ∈ C0 (1 ≤ i ≤ h)
not nodes and not contained in any of the ends, subspaces Vi ⊆ Tu0(zi)M , and a subspace
E ′′ ⊆ E ′ so that the natural evaluation map:

L0 : K
∼−→
( h⊕
i=1

Tu0(zi)M/Vi

)
⊕ E/E ′′ (C.7.3)

is an isomorphism (such choices exist since K � E/E ′ is surjective and we may shrink the
ends without loss of generality). Now we can consider the same evaluation map on the larger
space:

L0 : W k,2,δ,δ(C0, u
∗
0TM)D,H ⊕ E → W :=

( h⊕
i=1

Tu0(zi)M/Vi

)
⊕ E/E ′′ (C.7.4)

Since L0 sends K = kerD0,0,0 isomorphically to W , it follows that the restriction of D0,0,0 to
kerL0 is an isomorphism of Banach spaces. Hence there is a unique right inverse:

Q0,0,0 : W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·))))→ W k,2,δ,δ(C0, u

∗
0TM)D,H ⊕ E (C.7.5)

with image kerL0, and it is bounded. Since E ′′ ⊆ E ′, imQ0,0,0 = kerL0 is in fact contained
in the right hand side of (C.7.2). We fix once and for all this Q0,0,0.

Definition C.7.1 (Approximate right inverse Tα,w,y). We define a map:

Tα,w,y : W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))→ W k,2,δ,δ(Cα, u

∗
αTM)D,H ⊕ E (C.7.6)
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as the composition:

Tα,w,y := glue ◦ PT ◦Q0,0,0 ◦ PT ◦ (id1,0
∗ ⊗ id1,0)−1 ◦ break (C.7.7)

of maps in the following diagram, to be defined below:

W k,2,δ,δ(Cα, u
∗
αTM)D,H ⊕ E W k−1,2,δ,δ(C̃α,Ω

0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))

W k,2,δ,δ(C0, u
∗
0|αTM)D,H ⊕ E W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`0,0(Ay(·))))

W k,2,δ,δ(C0, u
∗
0|αTM)D,H ⊕ E W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0|αTMJ(`0,0(A0(·))))

W k,2,δ,δ(C0, u
∗
0TM)D,H ⊕ E W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·))))

Dα,w,y

breakglue

D0|α,0,y

D0|α,0,0

PT

id1,0
∗ ⊗id1,0

PT

D0,0,0

Q0,0,0

(C.7.8)

The top and bottom horizontal maps Dα,w,y and D0,0,0 are the linearized operators defined
earlier. The third horizontal map D0|α,0,0 is the linearized operator at the flattened map u0|α
(its definition is identical to that of D0,0,0 except for using u0|α in place of u0). Similarly,
the second horizontal map D0|α,0,y is the linearized operator at the flattened map u0|α, using
(jy, Ay) in place of (j0, A0).

The vertical maps PT are simply parallel transport PT`0,0(A0(·)); this is valid since PT is
J-linear.

The vertical map id1,0
∗ ⊗ id1,0 denotes the tensor product of id1,0 : TMJ(a) → TMJ(b)

(the (1, 0)-component of the identity map) and id1,0
∗ : Ω0,1

C0,j0
→ Ω0,1

C0,jy
(the map induced by

id1,0 : (TC0, j0)→ (TC0, jy)).
We define the map:

W k,2,δ,δ(C0, u
∗
0|αTM)D,H

glue−−→ W k,2,δ,δ(Cα, u
∗
αTM)D,H (C.7.9)

Let ξ ∈ W k,2,δ,δ(C0, u
∗
0|αTM)D,H . Away from the necks of Cα, glue(ξ) is simply ξ. In any

particular bubble neck S1 × [0, 6S] ⊆ Cα, we define:

glue(ξ)(s, t) :=


ξ(s, t) s ≤ 2S

ξ(n) + χ(4S − s) · [ξ(s, t)− ξ(n)] + χ(4S − s′) · [ξ(s′, t′)− ξ(n)] 2S ≤ s ≤ 4S

ξ(s′, t′) 4S ≤ s

(C.7.10)
(noting the corresponding ends (t, s) ∈ S1 × [0,∞) ⊆ C0 and (t′, s′) ∈ S1 × [0,∞) ⊆ C0);
this definition also applies over the main necks with the obvious adjustment (and no ξ(n)
terms).
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We define the map:

W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))

break−−−→ W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`0,0(Ay(·))))

(C.7.11)
as follows. Fix a smooth function χ̄ : R→ [0, 1] such that:

χ̄(x) =

{
1 x ≤ −1

0 x ≥ +1
χ̄(x) + χ̄(−x) = 1 (C.7.12)

Let η ∈ W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,jy
⊗Cu

∗
αTMJ(`α,w(Ay(·)))). Away from the ends with α 6= 0, break(η)

is given by (id1,0)−1(η), where id1,0 : TMJ(`0,0(Ay(·))) → TMJ(`α,w(Ay(·))) denotes the (1, 0)-
component of the identity map. In any particular bubble end [0,∞)× S1 ⊆ C0 with α 6= 0,
we define:

break(η)(t, s) :=


(id1,0)−1(η(t, s)) s ≤ 3S − 1

χ̄(s− 3S) · (id1,0)−1(η(t, s)) 3S − 1 ≤ s ≤ 3S + 1

0 3S + 1 ≤ s

(C.7.13)

(noting the corresponding neck [0, 6S]× S1 ⊆ Cα); this definition also applies over the main
ends, with the obvious adjustment for negative main ends.

Let us make the elementary observation that the definition of L0 extends perfectly well
to give an analogous bounded linear map:

Lα : W k,2,δ,δ(Cα, u
∗
αTM)D,H ⊕ E → W (C.7.14)

Since imQ0,0,0 ⊆ kerL0, it follows from the definition of Tα,w,y that imTα,w,y ⊆ kerLα as
well.

Lemma C.7.2. Let:
X

D−−−→ Y

G

x yB
X ′

D′−−−→ Y ′

(C.7.15)

denote the bottom square in (C.7.8). Then for ξ ∈ X ′ and η ∈ Y with D′ξ = Bη, we have:

‖DGξ − η‖ ≤ c · |α|ε ‖ξ‖ (C.7.16)

uniformly over (α,w, y) in a neighborhood of zero, for c < ∞ and ε > 0 depending on data
which has been previously fixed.

Proof. In simpler terms, we bound the operator norm of the difference between the two
diagonal compositions: ∥∥PT ◦D0,0,0 −D0|α,0,0 ◦ PT

∥∥ ≤ c |α|ε (C.7.17)

(this trivially implies the claimed statement). To show (C.7.17), observe that the two opera-
tors only differ over the S1× [S−1,∞) subset of each end. Now it follows from Lemma C.5.1
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that the contribution to the operator norm over S1 × [S − 1,∞) is bounded by a constant
times the Ck-distance between u0 and u0|α over S1 × [0,∞). The estimates (C.6.1), (C.6.3)
imply that this distance is bounded by a constant times |α|ε (to be precise, the bubble ends

contribute |α|1/6−ρ and each main end contributes |α|δi/6−ρ for any ρ > 0).

Lemma C.7.3. Let:
X

D−−−→ Y

G

x yB
X ′

D′−−−→ Y ′

(C.7.18)

denote the middle square in (C.7.8). Then for ξ ∈ X ′ and η ∈ Y with D′ξ = Bη, we have:

‖DGξ − η‖ ≤ c · |y| ‖ξ‖ (C.7.19)

uniformly over (α,w, y) in a neighborhood of zero, for c < ∞ and ε > 0 depending on data
which has been previously fixed.

Proof. In simpler terms, we have
∥∥D0|α,0,y − (id1,0

∗ ⊗ id1,0) ◦D0|α,0,0
∥∥ ≤ c · |y|, which trivially

implies the claimed statement. To prove this, argue as follows.
We are comparing two first-order differential operators. Appealing to their explicit form

from Lemma C.5.1, we see that their coefficients differ by a constant times |y| in C` for any
` < ∞ (measuring with respect to the cylindrical coordinates S1 × [0,∞) in the ends). It
follows that we have the desired estimate.

Lemma C.7.4. Let:
X

D−−−→ Y

G

x yB
X ′

D′−−−→ Y ′

(C.7.20)

denote the top square in (C.7.8). Then for ξ ∈ X ′ and η ∈ Y with D′ξ = Bη, we have:

‖DGξ − η‖ ≤ c ·
(
|α|ε + |w|

)
‖ξ‖ (C.7.21)

uniformly over (α,w, y) in a neighborhood of zero, for c < ∞ and ε > 0 depending on data
which has been previously fixed.

Proof. We consider the following diagram, which is a copy of the top square in (C.7.8) with

181



one extra vector space and some extra maps (to be defined below).

W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))

W k,2,δ,δ(Cα, u
∗
αTM)D,H ⊕ E

W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`α,w(Ay(·))))

W k,2,δ,δ(C0, u
∗
0|αTM)D,H ⊕ E

W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`0,0(Ay(·))))

break′

break

Dα,w,y

glue

(id1,0)−1

glue

D0|α,0,y

Dα,w,y

id1,0

(C.7.22)
Since the almost complex structure J(`α,w(Ay(·))) is a function of a point in Cα, we should
remark immediately on what we mean by W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`α,w(Ay(·)))). Away

from the ends, the curve C0 is identified canonically with Cα, and this identification extends
holomorphically to a (non-injective) map from C0 to Cα defined outside the S1 × [4S,∞)
subsets of the ends. Thus there is a well-defined such W k−1,2,δ,δ space of sections on C0

defined outside the S1× [4S,∞) subsets of the ends, valued in Ω0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`α,w(Ay(·))).

Now, for instance, the middle horizontal map Dα,w,y can be seen as giving a section in this
W k−1,2,δ,δ space defined outside S1× [4S,∞). In the proof below, it is convenient to use this
W k−1,2,δ,δ space of sections defined outside S1× [4S,∞), though we must be careful that the
expressions we write are well-defined.

Let us define the rest of the maps in (C.7.22). The vertical map break has been factored
as (id1,0)−1 ◦ break′ in the obvious way. Finally, let us define the map:

W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`α,w(Ay(·))))

glue−−→ W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))

(C.7.23)
Let η ∈ W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,jy
⊗C u

∗
0|αTMJ(`α,w(Ay(·)))). Away from the necks of Cα, glue(η) is

simply η. In any particular bubble neck S1 × [0, 6S] ⊆ Cα, we define:

glue(η)(t, s) :=


η(t, s) s ≤ 2S

χ(4S − s)η(t, s) + χ(4S − s′)η(t′, s′) 2S ≤ s ≤ 4S

η(t′, s′) 4S ≤ s

(C.7.24)

(this definition also applies over the main necks with the obvious adjustment). Note that
glue ◦ break′ is the identity map.

Now suppose that D0|α,0,yξ = break(η); we must show that:

‖Dα,w,y(glue(ξ))− η‖k−1,2,δ,δ ≤ c ·
(
|α|ε + |w|

)
‖ξ‖k,2,δ,δ (C.7.25)

Using the triangle inequality and the fact that η = glue(break′(η)) = glue(id1,0(D0|α,0,yξ)),
we conclude that ‖Dα,w,y(glue(ξ))− η‖ is bounded above by:

‖Dα,w,y(glue(ξ))− glue(Dα,w,y(ξ))‖+
∥∥glue

[
Dα,w,y(ξ)− id1,0(D0|α,0,y(ξ))

]∥∥
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We now estimate each term separately.
To estimate ‖Dα,w,y(glue(ξ))− glue(Dα,w,y(ξ))‖, argue as follows. The difference is only

nonzero over the regions S1 × ([2S, 2S + 1] ∪ [4S − 1, 4S]) of each neck. Now the norm is
bounded by ‖ξ‖ e−2Sδ (calculation left to the reader), where the factor of e−2Sδ comes as the
ratio of the weight given to S1 × [4S − 1, 4S] inside a neck vs inside an end; this gives the
desired bound since δ > 0.

To estimate
∥∥glue

[
Dα,w,y(ξ)− id1,0(D0|α,0,yξ)

]∥∥, argue as follows. This is bounded by a

constant times the (k− 1, 2, δ, δ)-norm of Dα,w,y(ξ)− id1,0(D0|α,0,yξ) over the complement of
the subsets S1 × [4S,∞) of the ends. Now this is bounded by (|α|ε + |w|) ‖ξ‖k,2,δ,δ using the
reasoning from Lemma C.7.3.

Proposition C.7.5 (Approximate right inverse Tα,w,y). We have:

‖Tα,w,y‖ ≤ c (C.7.26)

‖Dα,w,yTα,w,y − 1‖ → 0 (C.7.27)

imTα,w,y ⊆ kerLα (C.7.28)

as (α,w, y)→ 0, for c <∞ depending on data which has been previously fixed.

Proof. It is easy to see that all the maps in (C.7.8) are uniformly bounded. Hence ‖Tα,w,y‖ ≤
c as (α,w, y)→ 0. Now Lemma B.7.6 combined with Lemmas C.7.2, C.7.3, C.7.4 show that
for (α,w, y) → 0, we have ‖Dα,w,yTα,w,y − 1‖ → 0. We observed earlier that imTα,w,y ⊆
kerLα.

Definition C.7.6 (Right inverse Qα,w,y). We define a map:

Qα,w,y : W k−1,2,δ,δ(C̃α,Ω
0,1

C̃α,jy
⊗C u

∗
αTMJ(`α,w(Ay(·))))→ W k,2,δ,δ(Cα, u

∗
αTM)D,H ⊕E (C.7.29)

as the sum:

Qα,w,y := Tα,w,y

∞∑
k=0

(1−Dα,w,yTα,w,y)
k (C.7.30)

Proposition C.7.7. We have:

‖Qα,w,y‖ ≤ c (C.7.31)

Dα,w,yQα,w,y = 1 (C.7.32)

imQα,w,y ⊆ kerLα (C.7.33)

uniformly over (α,w, y) in a neighborhood of zero, for c < ∞ depending on data which has
been previously fixed.

Proof. Apply Lemma B.7.5 and Proposition C.7.5.
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C.8 Quadratic estimates

Proposition C.8.1 (Quadratic estimate). There exist c′ > 0 and c <∞ (depending on data
which has been previously fixed) such that for ‖ξ1‖k,2,δ,δ , ‖ξ2‖k,2,δ,δ ≤ c′, we have:∥∥Dα,w,y(ξ1 − ξ2)− (Fα,w,yξ1 − Fα,w,yξ2)

∥∥
k−1,2,δ,δ

≤ c · ‖ξ1 − ξ2‖k,2,δ,δ (‖ξ1‖k,2,δ,δ + ‖ξ2‖k,2,δ,δ)
(C.8.1)

(and Fα,w,yξ1 and Fα,w,yξ2 are both defined), uniformly over (α,w, y) in a neighborhood of
zero.

Proof. The proof is identical to the proof of Lemma B.8.1, with the evident notational
differences, Fα,w,y for Fα,y, and Lemma C.5.1 for Lemma B.5.1. As with Lemma B.8.1, we
actually prove the stronger statement that:∥∥F′α,w,y(0, ξ)− F′α,w,y(ζ, ξ)

∥∥
k−1,2,δ,δ

≤ c · ‖ζ‖k,2,δ,δ ‖ξ‖k,2,δ,δ (C.8.2)

C.9 Newton–Picard iteration

Lemma C.9.1. There exists c′ > 0 (depending on data which has been previously fixed) such
that for sufficiently small (α,w, y):

i. The map Fα,w,y is defined for ‖ξ‖k,2,δ,δ ≤ c′.
ii. For ξ1 − ξ2 ∈ imQα,w,y and ‖ξ1‖k,2,δ,δ , ‖ξ2‖k,2,δ,δ ≤ c′, we have:

‖(ξ1 − ξ2)− (Qα,w,yFα,w,yξ1 −Qα,w,yFα,w,yξ2)‖k,2,δ,δ ≤
1

2
‖ξ1 − ξ2‖k,2,δ,δ (C.9.1)

Proof. The proof is identical to the proof of Lemma B.9.1, using Proposition C.8.1 in place
of Proposition B.8.1.

Proposition C.9.2 (Newton–Picard iteration). There exists c′ > 0 (depending on data
which has been previously fixed) so that for (α,w, y, κ ∈ K) sufficiently small, there exists a
unique κα,w,y ∈ W k,2,δ,δ(Cα, u

∗
αTM)D,H ⊕ E satisfying:

κα,w,y ∈ κα + imQα,w,y (C.9.2)

‖κα,w,y‖k,2,δ,δ ≤ c′ (C.9.3)

Fα,w,yκα,w,y = 0 (C.9.4)

Proof. The proof is essentially identical to the proof of Proposition B.9.2; we write it out
anyway.

In fact, we will show that κα,w,y is given explicitly as the limit of the Newton iteration:

ξ0 := κα (C.9.5)

ξn := ξn−1 −Qα,w,yFα,w,yξn−1 (C.9.6)

By Lemma C.9.1, the map ξ 7→ ξ−Qα,w,yFα,w,yξ is a 1
2
-contraction mapping when restricted

to:
{ξ ∈ κα + imQα,w,y : ‖ξ‖k,2,δ,δ ≤ c′} (C.9.7)
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To finish the proof, it suffices to show that (for sufficiently small (α,w, y, κ)) (C.9.7) is
nonempty and is mapped to itself by ξ 7→ ξ −Qα,w,yFα,w,yξ.

We know that ‖κα‖k,2,δ,δ → 0 as κ → 0 (uniformly in (α,w, y)), so (C.9.7) is nonempty.
By using Proposition C.8.1 with (ξ1, ξ2) = (0, κα) and Lemmas C.6.1 and C.6.2, we conclude
that:

‖Fα,w,yκα‖k−1,2,δ,δ → 0 (C.9.8)

as (α,w, y, κ)→ 0. Since the operator norm of Qα,w,y is bounded uniformly as (α,w, y)→ 0,
we see that κα is almost fixed by ξ 7→ ξ − Qα,w,yFα,w,yξ as (α,w, y, κ) → 0. It then follows
from the contraction property that ξ 7→ ξ −Qα,w,yFα,w,yξ maps (C.9.7) to itself.

C.10 Gluing

Definition C.10.1 (Gluing map). We define:

uα,w,y,κ := expuα κα,w,y (C.10.1)

eα,w,y,κ := e0 + projE κα,w,y (C.10.2)

where κα,w,y is as in Proposition C.9.2, and we consider the following gluing map:

Cd × (Rk−1
≥0 )≤s × R∗ ×

k′∏
i=1

(H i)≤s ×K →M(M) (C.10.3)

(α,w, y, κ) 7→ (α,w, y, uα,w,y,κ, eα,w,y,κ) (C.10.4)

({xi}1≤i≤r are determined uniquely by α,w, y, uα,w,y,κ, so we omit them from the notation).
It follows from the definition that the gluing map commutes with the projection from both
sides to Cd × (Rk−1

≥0 )≤s × R∗ ×
∏k′

i=1(H i)≤s × E/E ′.

Lemma C.10.2. The gluing map (C.10.3) maps sufficiently small (α,w, y, κ) to M(M)reg.

Proof. This is true since Qα,w,y gives an approximate right inverse at (uα,w,y,κ, eα,w,y,κ) (use
(C.8.2) with ζ = κα,w,y).

Let Kα ⊆ C∞(Cα, u
∗
αTM)D,H ⊕ E denote the image of κ 7→ κα. It is clear by definition

that K → Kα is an isomorphism and that the respective W k,2,δ,δ norms are uniformly
commensurable. It is also clear that the following commutes:

K Kα

W

L0

κ7→κα

Lα

(C.10.5)

(all maps being isomorphisms). Since imQα,w,y ⊆ kerLα, it follows in particular that
imQα,w,y∩Kα = 0. On the other hand, an index calculation shows that indDα,w,y = indD0,0,0

(note that by the argument for Lemma B.5.2, it suffices to calculate their indices as operators
W k,2,δ → W k−1,2,δ, i.e. with no weights at the bubble nodes, on C̃α and C̃0 respectively; the
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calculation of such indices is originally due to Floer [Flo89, Flo88a] and is by now standard).
Both are surjective, and hence we have dim cokerQα,w,y = dim kerDα,w,y = dim kerD0,0,0 =
dimK = dimKα. It follows that imQα,w,y = kerLα and that:

imQα,w,y ⊕Kα
∼−→ W k,2,δ,δ(Cα, u

∗
αTX)D ⊕ E (C.10.6)

is an isomorphism of Banach spaces (an alternative justification for this is to use an argu-
ment similar to the proof of Propositions B.11.5/C.11.3 to show that the natural projection

Kα
κα 7→κα−Qα,w,yDα,w,yκα−−−−−−−−−−−−−−→ kerDα,w,y is surjective, and thus bijective). We claim that in fact

the two norms are uniformly commensurable as (α,w, y) → 0. The map written is clearly
uniformly bounded, so we just need to show the same for its inverse. It suffices to show
that the projection from the right hand side to Kα is uniformly bounded, but this is nothing
other than Lα (clearly uniformly bounded) composed with the inverse of the isomorphism
in (C.10.5) (also uniformly bounded).

Lemma C.10.3. The gluing map (C.10.3) is injective in a neighborhood of zero.

Proof. The proof is identical to the proof of Lemma B.10.3, with the obvious notational
differences.

Proposition C.10.4. The gluing map (C.10.3) is continuous in a neighborhood of zero.

Proof. The proof follows the same basic outline as the proof of Proposition B.10.4; some
parts of the proof are identical, and we will omit these. The key ingredient is our precise
control of the image of the right inverse Qα,w,y (specifically, that imQα,w,y = kerLα).

Suppose (αi, wi, yi, κi)→ (α,w, y, κ) is a convergent net.53 We will show that:

(uαi,wi,yi,κi , eαi,wi,yi,κi)→ (uα,w,y,κ, eα,w,y,κ) (C.10.7)

First, observe that the argument from the proof of Proposition B.10.4 applies verbatim to
give that in fact it suffices to show that:

(uαi,wi,yi,κ, eαi,wi,yi,κ)→ (uα,w,y,κ, eα,w,y,κ) (C.10.8)

Now recall that by definition:

uα,w,y,κ = expuα κα,w,y κα,w,y = κα + ξ for some ξ ∈ imQα,w,y (C.10.9)

Now we define ξαi ∈ W k,2,δ,δ(Cαi , u
∗
αi
TX)D ⊕ E by “pregluing” ξ from Cα to Cαi as follows.

Note that we may assume without loss of generality that at the nodes where α 6= 0, we also
have αi 6= 0. Away from the ends/necks of Cαi , we set ξαi = ξ. Note that for every end of
Cαi , there is a corresponding end of Cα, so we may also simply set ξαi = ξ over the ends
of Cαi . Over the necks of Cαi for which α = 0, we define ξαi via (C.5.10)–(C.5.11) (note
that this is reasonable since ξ satisfies the estimates (C.6.2), (C.6.4) as a consequence of
Proposition C.11.1). Over the necks of Cαi for which α 6= 0, we define ξαi as:

ξαi(s, t) := PTuα(t,fi(s))→uαi (t,s)[ξ(t, fi(s)))] (C.10.10)

53We could restrict to sequences rather than nets since Cd × (Rk−1≥0 )≤s × R∗ ×
∏k′
i=1(Hi)≤s × K is first

countable. However, this would not make the argument any simpler.
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where fi : [0, 6Si]→ [0, 6S] is smooth and satisfies:

fi(s) :=


s s ≤ S − 2

s− 3Si + 3S 3Si − 2S + 2 ≤ s ≤ 3Si + 2S − 2

s− 6Si + 6S 6Si − S + 2 ≤ s

(C.10.11)

fi([S − 2, 3Si − 2S + 2]) ⊆ [S − 2, S + 2] (C.10.12)

fi([3Si + 2S − 2, 6Si − S + 2]) ⊆ [5S − 2, 5S + 2] (C.10.13)

so that fi → id uniformly in all derivatives as Si → S. More informally, fi is smooth and
matches up [0, S − 2], [S + 2, 5S − 2], [5S + 2, 6S] ⊆ [0, 6S] with corresponding intervals of
the same length inside [0, 6Si], symmetrically.

Now at this point we appeal to the corresponding arguments from the proof of Proposition
B.10.4, which apply as written (using the fact that imQα,w,y = kerLα) and imply that it
suffices to show that:

‖Fαi,wi,yi(καi + ξαi)‖k−1,2,δ,δ → 0 (C.10.14)

Recall that Fα,w,y(κα + ξ) = 0; we will use this to estimate Fαi,wi,yi(καi + ξαi).
Away from the ends/necks of Cαi , it is clear by definition that Fαi,wi,yi(καi + ξαi) →

Fα,w,y(κα+ξ) uniformly in all derivatives. Thus the contribution to the norm of Fαi,wi,yi(καi+
ξαi) over this region approaches zero.

Over the necks of Cαi which correspond to necks of Cα, we again have uniform convergence
in all derivatives, so the contribution of these regions approaches zero as well.

We estimate the contribution over the ends of Cαi (recall that these necessarily correspond
to ends of Cα). Over main ends, we have Fαi,wi,yi(καi + ξαi) = Fα,w,y(κα + ξ). Now the
convergence Fαi,wi,yi(καi + ξαi)→ Fα,w,y(κα + ξ) uniformly in all derivatives is valid near the
bubble nodes in the usual metric on Cαi = Cα. It follows that we also have convergence in
the relevant δ-weighted Sobolev norm since δ < 1. Thus the contribution of this region to
the norm approaches zero.

Finally, let us estimate the contribution to the norm over the necks of Cαi which corre-
spond to ends of Cα. We treat main necks and bubble necks separately. Over main necks,
Fαi,wi,yi(καi+ξαi) is supported inside S1×([S−1, S+1], [5S−1, 5S+1]). The contribution of
this region to its norm goes to zero, as follows using the exponential decrease on κ and ξ from
Proposition C.11.1 and the fact that δ < δi. Over bubble ends, Fαi,wi,yi(καi + ξαi) converges
to Fα,w,y(κα + ξ) uniformly in all derivatives over the complement of S1 × [S − 1, 5S + 1]
(measured with respect to the usual metric on C0), and hence the contribution of this region
to the weighted norm goes to zero since δ < 1. Over S1 × ([S − 1, S + 1]∪ [5S − 1, 5S + 1]),
the smoothness of κ and ξ over Cα and the fact that δ < 1 shows that the contribution of
this region to the norm goes to zero (since S →∞). Finally, over S1 × [S + 1, 5S − 1], both
uαi and καi + ξαi are constant, so Fαi,wi,yi(καi + ξαi) is simply:

PT
`αi,wi (Ayi (·))
expu0(n)(κ(n)+ξ(n))→u0(n)

(
2d(projS1 Ayi)⊗XH((`αi,wi×idS1 )(Ayi (·)))

)0,1

j,J(`αi,wi (Ayi (·)))

The norm of this expression over S1 × [S + 1, 5S − 1] approaches zero since Ayi = O(e−s) in
all derivatives and δ < 1.
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C.11 Surjectivity of gluing

We recall a well-known principle of exponential decay for Floer trajectories converging to
non-degenerate periodic orbits; this has appeared in many forms in the literature, for example
in Floer [Flo88b, pp801–802].

Proposition C.11.1 (A priori estimate on decay of connecting cylinders). Let (M,ω) be a
symplectic manifold, J an ω-compatible almost complex structure on M , H : M × S1 → R
a Hamiltonian, and γ : S1 → M a non-degenerate periodic orbit of H. We consider the
(unbounded) asymptotic linearized operator:

L2(S1, γ∗TM)→ L2(S1, γ∗TM) (C.11.1)

ξ 7→ JLXHξ (C.11.2)

where LXH denotes the symplectic connection on γ∗TM induced by XH , and we use the stan-
dard inner product g(·, ·) := ω(·, J ·) on γ∗TM for the inner product on L2(S1, γ∗TM). This
operator is self-adjoint; we denote by δ > 0 the smallest magnitude of any of its eigenvalues
(δ is positive since the orbit is non-degenerate).

We consider (partially defined) sections ξ : S1 × R → γ∗TM with |ξ(t, s)| < ε such that
u := expγ ξ : S1 × R → M satisfies (du + 2dt ⊗ XH(u))0,1

J = 0. Now for all µ < 1, there
exists ε > 0 such that we have the following estimates.

Suppose that ξ as above is defined on S1 × [0,∞). Then:

∣∣Dkξ
∣∣ ≤ ck · e−µδs

(∫
S1

∣∣ξ(t, 0)
∣∣2 dt)1/2

s ≥ 1 (C.11.3)

for all k ≥ 0. A symmetric statement holds for u and ξ defined over S1 × (−∞, 0].
Suppose that ξ as above is defined on S1 × [0, N ]. Then:

∣∣Dkξ
∣∣ ≤ ck·

[
e−µδs

(∫
S1

∣∣ξ(t, 0)
∣∣2 dt)1/2

+ e−µδ(N−s)
(∫

S1

∣∣ξ(t, N)
∣∣2 dt)1/2

]
1 ≤ s ≤ N−1

for all k ≥ 0.

Proof. This proof is adapted from Salamon [Sal99, p170, Lemma 2.11].
We have by assumption that ∂su+J(u)(∂tu−XH(u)) = 0, where u(t, s) = expγ(t) ξ(t, s).

Now we may rewrite this equation in exponential coordinates in terms of ξ as follows. Denote
by ∂t the connection LXH on γ∗TM , which is given by the Lie derivative with respect to
XH . Now the equation for u is equivalent to:

∂sξ + J∂tξ + A(ξ)∂tξ +Q(ξ) = 0 (C.11.4)

for certain smooth (non-linear) bundle maps A : γ∗TM → End(γ∗TM) and Q : γ∗TM →
γ∗TM . We have A(0) = 0, Q(0) = 0, and Q′(0, ·) = 0 (we denote by A′ and Q′ their
“vertical” derivatives).

Now we let:

f(s) :=

∫
S1

|ξ(t, s)|2 dt = ‖ξ‖2
2 (C.11.5)
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and we will show that f ′′(s) ≥ (1 − o(1))4δ2f(s), where o(1) denotes a quantity which can
be made arbitrarily small by choosing ε > 0 sufficiently small. We have:

f ′′(s) = 2

∫
S1

|∂sξ|2 dt+ 2

∫
S1

〈ξ, ∂s∂sξ〉 dt = 2 ‖∂sξ‖2
2 + 2〈ξ, ∂s∂sξ〉 (C.11.6)

and we will now prove estimates ‖∂sξ‖2
2 ≥ (1−o(1))δ2f(s) and 〈ξ, ∂s∂sξ〉 ≥ (1−o(1))δ2f(s).

Recall that J∂t is self-adjoint and that ‖J∂tξ‖2 ≥ δ ‖ξ‖2.
To bound ‖∂sξ‖2

2, we write:

‖∂sξ‖2 = ‖J∂tξ + A(ξ)∂tξ +Q(ξ)‖2

≥ ‖J∂tξ‖2 − ‖A(ξ)∂tξ‖2 − ‖Q(ξ)‖2

≥ ‖J∂tξ‖2 − ‖A(ξ)‖∞ ‖∂tξ‖2 − c ‖ξ‖∞ ‖ξ‖2

= ‖J∂tξ‖2 − o(1) ‖J∂tξ‖2 − o(1) ‖ξ‖2 ≥ (1− o(1))δ ‖ξ‖2 (C.11.7)

and thus ‖∂sξ‖2
2 ≥ (1− o(1))δ2f(s).

To bound 〈ξ, ∂s∂sξ〉, we write:

〈ξ, ∂s∂sξ〉 = −〈ξ, ∂s[J∂tξ + A(ξ)∂tξ +Q(ξ)]〉
= −〈J∂tξ, ∂sξ〉 − 〈ξ, A′(ξ, ∂sξ)∂tξ〉 − 〈ξ, A(ξ)∂t∂sξ〉 − 〈ξ,Q′(ξ, ∂sξ)〉(C.11.8)

Now substituting in ∂sξ = −J∂tξ − A(ξ)∂tξ −Q(ξ), we obtain the following:

〈ξ, ∂s∂sξ〉 = ‖J∂tξ‖2
2 + 〈J∂tξ, A(ξ)∂tξ〉

+ 〈J∂tξ,Q(ξ)〉
+ 〈ξ, A′(ξ, [J + A(ξ)]∂tξ)∂tξ〉
+ 〈ξ, A′(ξ,Q(ξ))∂tξ〉
+ 〈ξ, A(ξ)∂t([J + A(ξ)]∂tξ)〉
+ 〈ξ, A(ξ)∂t(Q(ξ))〉
+ 〈ξ,Q′(ξ, [J + A(ξ)]∂tξ)〉
+ 〈ξ,Q′(ξ,Q(ξ))〉 (C.11.9)

The first term ‖J∂tξ‖2
2 is the main term; let us estimate the remaining error terms. The

first error term is bounded by ‖ξ‖∞ ‖J∂tξ‖
2
2, the second by ‖ξ‖∞ ‖ξ‖2 ‖J∂tξ‖2, the third by

‖ξ‖∞ ‖J∂tξ‖
2
2, the fourth by ‖ξ‖2

∞ ‖ξ‖2 ‖J∂tξ‖2, the fifth by ‖ξ‖∞ ‖J∂tξ‖
2+‖ξ‖∞ ‖ξ‖2 ‖J∂tξ‖2

(integrate by parts to move the outermost ∂t onto ξ, A(ξ), and 〈·, ·〉), the sixth by ‖ξ‖2
∞ ‖ξ‖2 ‖J∂tξ‖2,

the seventh by ‖ξ‖∞ ‖ξ‖2 ‖J∂tξ‖2, and the eighth by ‖ξ‖2
∞ ‖ξ‖

2
2. All of these are o(1) ‖J∂tξ‖2

2,
so we conclude that 〈ξ, ∂s∂sξ〉 ≥ (1−o(1))δ2f(s). Combining the above estimates, we obtain
the desired inequality f ′′(s) ≥ (1− o(1))4δ2f(s).

Now we have the following maximum principle for the differential inequality g′′(s) ≥
r2g(s). Namely, suppose that g : [a, b] → R≥0 satisfies g′′(s) ≥ r2g(s) and that G : [a, b] →
R≥0 satisfies G′′(s) = r2G(s); if g ≤ G at the endpoints a, b, then it follows that g ≤ G
over the whole interval [a, b] (one may easily derive a contradiction by assuming that, on the
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contrary, g = G at a1, b1 and g > G on (a1, b1) for a ≤ a1 < b1 ≤ b). Specializing to the case
at hand, we have:

f(s) ≤ e−(1−o(1))2δsf(0) in the case of S1 × [0,∞)

f(s) ≤ e−(1−o(1))2δsf(0) + e−(1−o(1))2δ(N−s)f(N) in the case of S1 × [0, N ]

Now Lemma C.11.2 below asserts that for a J-holomorphic curve u0 and a sufficiently small
perturbation thereof u = expu0

ξ which is also J-holomorphic, we have uniform bounds on
all derivatives of ξ (away from the boundary) in terms of the L2-norm of ξ. Applying this
where u0 is the trivial cylinder over γ(t), we conclude that our bounds on f(s) imply the
desired result.

Lemma C.11.2. Let u : [0, 1] × [0, 1] → B2n(1) be J-holomorphic with respect to some
smooth almost complex structure J on the unit ball B2n(1) ⊆ R2n. There exists ε > 0
(depending only on upper bounds on ‖J‖C` and ‖u‖C` for some absolute ` < ∞) with the
following property. Suppose that ξ : [0, 1] × [0, 1] → R2n with |ξ| < ε pointwise is such that
u+ ξ has image contained in B2n(1) and is J-holomorphic. Then:

∣∣Dkξ(0, 0)
∣∣ ≤ ck

(∫
[0,1]×[0,1]

|ξ(x, y)|2 dx dy
)1/2

(C.11.10)

for all k < ∞ for constants ck < ∞ depending only on upper bounds on ‖J‖C` and ‖u‖C`
for some ` = `(k) <∞.

Proof. By assumption, we have:

ux + J(u)uy = 0 (C.11.11)

(u+ ξ)x + J(u+ ξ)(u+ ξ)y = 0 (C.11.12)

which together imply that:

ξx + J(u+ ξ)ξy = [J(u)− J(u+ ξ)]uy (C.11.13)

which we prefer to write as:
(∂x +B∂y)ξ = A(ξ) (C.11.14)

where B : [0, 1]2 → End(R2n) denotes J(u + ξ) and A : [0, 1]2 × R2n → R2n denotes
A(ξ) = [J(u)− J(u+ ξ)]uy. By definition, we have A(0) = 0 and:∣∣DkA

∣∣ ≤ ck (C.11.15)

for some ck <∞ depending only on upper bounds on ‖J‖C` and ‖u‖C` for some ` = `(k) <
∞. By definition, we have B2 = −1; let us now argue that we also have:∣∣DkB

∣∣ ≤ ck (C.11.16)

for sufficiently small ε > 0 and ck < ∞ as before. Indeed, for sufficiently small ε > 0, we
may apply the Gromov–Schwarz lemma to u+ ξ and conclude that |Dξ| ≤ c <∞ depending
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only on upper bounds on ‖J‖C` and ‖u‖C` for some ` <∞. Now Lemma B.11.4 applied to
u+ ξ gives |Dkξ| ≤ ck <∞, which implies the desired bound on the derivatives of B.

Now we apply (∂x −B∂y) to both sides of (C.11.14) to obtain:

∆ξ = (∂x −B∂y)A(ξ)− ((∂x −B∂y)B)(ξy) (C.11.17)

For any smooth function φ : [0, 1]2 → R≥0 supported in the interior of [0, 1]2, we thus have:

∆(φξ) = ξ∆φ+ 2φxξx + 2φyξy + φ · (∂x −B∂y)A(ξ)− φ · ((∂x −B∂y)B)(ξy)

Now the desired result follows from the usual bootstrapping of the elliptic regularity estimates
for the Laplacian on R2, namely ‖f‖Hs+2 ≤ cs ‖f + ∆f‖Hs (the first step being the case
s = −1). We may shrink the support of φ slightly at each step, so there is no need to worry
about regularity near the boundary.

Proposition C.11.3. The restriction of the gluing map (C.10.3) to any neighborhood of
zero is surjective onto a neighborhood of (0, 0, 0, u0, e0, {xi0}1≤i≤r) ∈M(M).

Proof. The proof is identical to the proof of Proposition B.11.5, except for appealing to
Proposition C.11.1 in addition to Proposition B.11.1 in the appropriate places.

C.12 Conclusion of the proof

We have shown that the map g :=(C.10.3) is continuous, injective, and that its restriction to
any neighborhood of zero is surjective onto a neighborhood of the image of zero. The target
M(M) is Hausdorff, and thus it follows from Lemma B.12.1 that for some open neighborhood
of zero U ⊆ Cd× (Rk−1

≥0 )≤s×R∗×
∏k′

i=1(H i)≤s×K, we have g(U) is open and g : U
∼−→ g(U)

is a homeomorphism. Thus the gluing map (C.10.3) satisfies the properties desired for the
map (C.2.1).

C.13 Gluing orientations

We now show the how to endow the moduli spaces M(σ, p, q) with coherent orientations
using the results of Floer–Hofer [FH93].

C.13.1 Orientations on spaces of flow lines on ∆n

For any simplex σ, define the following orientation line:54

oσ :=

{⊗dimσ−1
i=1 oR dimσ > 0

o∨R dimσ = 0
(C.13.1)

Let us construct an identification between oσ and the orientation sheaf of the space of flow
lines on σ (from Definition 10.1.4) for n = dimσ > 0. Let f : R → [0, 1] be the unique
solution to the initial value problem f(0) = 1

2
and f ′(x) = π sin(πf(x)). Now every flow line

54An orientation line is a Z/2-graded free Z-module of rank one.
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` : R→ ∆n is of the form `(t) = (f(t+ a1), . . . , f(t+ an)) for some a1 ≤ · · · ≤ an which are
unique up to the addition of an overall constant. Thus the space of flow lines is parameterized
by (b1, . . . , bn−1) ∈ [0,∞)n−1, where bi = ai+1 − ai; moreover, this parameterization extends
continuously to a homeomorphism between [0,∞]n−1 and the space of broken flow lines on
∆n. In these coordinates, bk = ∞ iff the flow line is broken at vertex k, and bk = 0 iff
the flow line factors through ∆[0...k̂...n] ⊆ ∆n. Now the coordinates b1, . . . , bn−1 determine an
identification between oσ =

⊗n−1
i=1 oR and the orientation sheaf of the space of flow lines on

σ, when dimσ > 0.
For dim σ = 0, let us simply remark that tensoring with oσ = o∨R is the effect on orienta-

tion sheaves of quotienting by an R-action, and it will follow from this fact that this is the
correct definition of oσ when dimσ = 0 (morally speaking, we may think of the space of flow
lines on σ as the stacky quotient pt/R).

Now let us observe that there are natural (odd) “boundary” maps:

oσ → oσ|[0...k] ⊗ oσ|[k...n] (C.13.2)

oσ → oσ|[0...k̂...n] (C.13.3)

induced by the geometric inclusions of boundary strata (10.1.3)–(10.1.4). Specifically, the
first map is induced by the inclusion of the space of pairs of flow lines on σ|[0 . . . k] and
σ|[k . . . n] into the space of flow lines on σ (0 < k < n), and the second by the inclusion
of flow lines on σ|[0 . . . k̂ . . . n] into flow lines on σ (0 < k < n). In fact, the first map
(C.13.2) admits the following alternative description, which shows that it is in fact defined
for 0 ≤ k ≤ n. Let F(i)(σ) denote the moduli space of stable broken Morse flow lines
on a simplex σ with i ordered marked points appearing in order (this is defined in the
expected way, allowing constant flow lines as long as they are stabilized by the presence of
at least one marked point). Denote the orientation module of F(i)(σ) by o

(i)
σ , and note that

there is a natural isomorphism o
(i)
σ = oσ ⊗ o⊗iR (even for dim σ = 0; this provides another

justification of our definition of oσ in this case). Now there is a natural concatenation map
F(i)(σ|[0 . . . k]) × F(j)(σ|[k . . . n]) → F(i+j)(σ) which is the inclusion of a codimension one

boundary stratum, thus giving rise to a boundary map o
(i+j)
σ → o

(i)
σ|[0...k] ⊗ o

(j)
σ|[k...n]. After

factoring out o
⊗(i+j)
R , this map coincides with (C.13.2) for 0 < k < n, and thus may be used

to define (C.13.2) for 0 ≤ k ≤ n.

Remark C.13.1. The standard orientation of R gives a standard generator [R]1⊗· · ·⊗[R]n−1 ∈
oσ for dimσ > 0, and [R]∨ ∈ oσ for dimσ = 0, where [R]· [R]∨ = 1 (i.e. [R]∨ ∈ o∨R is the “right
dual” of [R] ∈ oR). Using these generators to trivialize oσ determines a sign convention in
which (C.13.2) is given by (−1)k+1 and (C.13.3) is given by (−1)k.

C.13.2 Orientations of linearized operators of Floer equations

Fix two Hamiltonians H0, H1 : M × S1 → R and two non-degenerate periodic orbits p, q :
S1 →M of H0, H1 respectively. Now for any path of ω-compatible almost complex structures
J : R → J(M) (constant near s = ±∞), any path of Hamiltonians H : M × S1 × R → R
(constant near s = ±∞) with H(s = −∞) = H0 and H(s = ∞) = H1, and any map
u : S1 × R → M in W k,2,δ(S1 × R,M) (converging to q at −∞ and to p at ∞), there is a
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natural linearized operator:

DFloer : W k,2,δ(S1 × R, u∗TM)→ W k−1,2,δ(S1 × R,Ω0,1
S1×R ⊗C u

∗TMJ) (C.13.4)

(we assume that δ > 0 is less than the smallest positive eigenvalues of the asymptotic
linearized operators). Let us agree to define this linearized operator using the R-family of
J-linear connections on TM given by ∇XY := 1

2
(∇0

XY −J(∇0
X(JY ))), where ∇0 denotes the

Levi-Civita connection of the metric associated to the compatible pair (ω, J). The results of
Floer–Hofer [FH93] (see the remark after Theorem 2) imply that the Fredholm orientation
line of DFloer is a trivial bundle over the space of paths H, J , and maps u. Thus if we fix p,
q, and a homotopy class of maps u, there is a well-defined orientation line op,q, canonically
isomorphic to oDFloer

for any choice of H, J , and u.
Floer–Hofer [FH93, Theorem 10] also construct natural associative (even) isomorphisms:

op,q ⊗ oq,r → op,r (C.13.5)

by a certain kernel gluing procedure. We refer the reader to [FH93] for the details of this
construction. Suffice it to say here that, after adding a finite-dimensional piece to the
domains of each of two linearized operators (C.13.4) (from p to q and from q to r respectively)
so that they become surjective with kernels K1 and K2, there is a natural kernel pregluing
map from K1⊕K2 to the domain of certain glued operator (from p to r); the L2-orthogonal
projection onto the kernel K3 of the glued operator gives an isomorphism K1 ⊕K2

∼−→ K3,
and this induces the map (C.13.5), which may be shown to be independent of the choices
used to define it.

The coherent trivializations of op,q resulting from the maps (C.13.5) are known to coin-
cide with the usual coherent orientations of Morse theory, when restricted to S1-invariant
Hamiltonians and their S1-invariant Floer trajectories, see e.g. Floer [Flo89].

C.13.3 Orientations on thickened moduli spaces M(σ, p, q)reg
I

The existence of the desired coherent orientations for M(σ, p, q) follows easily from the fol-
lowing result, which we spend the rest of this apendix proving.

Proposition C.13.2. The orientation sheaf (in the sense of Definition 4.1.3) of every moduli
space M(σ, p, q) can be canonically identified with oσ ⊗ op,q. Moreover, under these identifi-
cations, the boundary maps on orientation sheaves induced (as in (4.4.2)) by the structure
maps:

M(σ|[0 . . . k], p, q)×M(σ|[k . . . n], q, r)→ ∂M(σ, p, r) (C.13.6)

M(σ|[0 . . . k̂ . . . n], p, q)→ ∂M(σ, p, q) (C.13.7)

coincide with the maps:

oσ ⊗ op,r → oσ|[0...k] ⊗ op,q ⊗ oσ|[k...n] ⊗ oq,r (C.13.8)

oσ ⊗ op,q → oσ|[0...k̂...n] ⊗ op,q (C.13.9)

induced by (C.13.2)–(C.13.3) and (C.13.5).
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Let us introduce various linearized operators which will play a role in the proof of Proposi-
tion C.13.2 below. At any point in a thickened moduli space M(σ, p, q)I , we have a linearized
operator:

D : EI ⊕W k,2,δ(C, u∗TM)→ W k−1,2,δ(C,Ω0,1
C ⊗C u

∗TMJ(`(·))) (C.13.10)

More precisely, the operator D denotes the usual linearization of the I-thickened holomorphic
equation, e.g. as calculated in Lemma C.5.1 (corresponding to variations of the map u and of
the element e ∈ EI ; we always keep ` fixed when defining linearized operators). We will need
to make use of this and other linearized operators at maps u which do not necessarily satisfy
the relevant pseudo-holomorphic curve equation, and for such u, the lineraized operator D
depends on a choice of (a family of) J-linear connections on M . Let us fix the convention of
always using the J-linear connection ∇XY := 1

2
(∇0

XY − J(∇0
X(JY ))) where ∇0 is the Levi-

Civita connection of the metric associated to the compatible pair (ω, J) (more precisely, this
is a family of connections parameterized by σ = ∆n).

We will make use of another linearized operator:

Dhol : EI ⊕W k,2,δ(C, u∗TM)→ W k−1,2,δ(C,Ω0,1
C ⊗C u

∗TMJ(`(·))) (C.13.11)

The operator Dhol denotes the linearization of the usual holomorphic curve equation (i.e.
without the thickening terms λα(eα)); thus it is given by the expression in Lemma C.5.1
without the terms (C.5.6)–(C.5.8). Clearly there is a natural isomorphism oD = oDhol

since
the terms (C.5.6)–(C.5.8) are compact.

Proof of Proposition C.13.2. To identify the orientation sheaf of M(σ, p, q) with oσ ⊗ op,q,
it suffices to identify the orientation sheaf of every M(σ, p, q)reg

I with oEI ⊗ oσ ⊗ op,q in a
compatible way (for all finite subsets I ⊆ A(σ, p, q)≥s

top
). Moreover, it suffices to make

this identification over the open subset M(σ, p, q)reg◦
I ⊆M(σ, p, q)reg

I where the domain curve
is smooth (it then automatically extends uniquely to all of M(σ, p, q)reg

I , by virtue of the
local topological description of M(σ, p, q)reg

I given by the gluing map); we may also check
compatibility with the inclusions I ⊆ J over M(σ, p, q)reg◦

I . Now the kernel K̃ = kerD of the
linearization (C.13.10) forms a vector bundle over M(σ, p, q)reg◦

I , and the orientation sheaf
of M(σ, p, q)reg◦

I is isomorphic to oσ ⊗ oK̃ (to see this, one must distinguish the two cases
dimσ > 0 and dimσ = 0). Now we have oK̃ = oD = oDhol

= oEI ⊗ op,q; this defines a
fiberwise isomorphism of oK̃ with oEI ⊗ op,q, and since the operators D and Dhol vary nicely
over the base M(σ, p, q)reg◦

I , it is easy to see that this is in fact an isomorphism of sheaves.
Thus we have the desired identification.

Now let us show that the boundary map induced by (C.13.7) coincides with the tautolog-
ical map (C.13.9) (this just amounts to chasing definitions). Let s ∈ SM(σ, p, q) denote the

stratum (σ|[0 . . . k̂ . . . n], p, q) (i.e. the stratum consisting of trajectories over σ which factor
through σ|[0 . . . k̂ . . . n]). Now on the space M(σ|[0 . . . k̂ . . . n], p, q) = M(σ, p, q)≤s, we have
three implicit atlases:

A(σ|[0 . . . k̂ . . . n], p, q)≥s
top ⊆ A(σ, p, q)≥s ⊇ A(σ, p, q)≥s

top

(C.13.12)

(note that the two occurences of stop refer to the top elements of two different strata posets);
in fact (the index set of) the middle atlas is the disjoint union of (the index sets of) the at-
lases on the right and on the left. The reasoning used above to identify the orientation sheaf
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of M(σ|[0 . . . k̂ . . . n], p, q) = M(σ, p, q)≤s under the leftmost implicit atlas applies equally
well for all three atlases (and, in particular, the resulting identifications coincide). Hence,
for the purpose of identifying the boundary map on orientation sheaves, it suffices to con-
sider the single atlas A(σ, p, q)≥s

top
on M(σ, p, q) and the inclusion of the boundary stratum

M(σ, p, q)≤s ↪→ M(σ, p, q). Now it suffices to check that the desired compatibility holds for
the inclusion (M(σ, p, q)≤sI )reg◦ ↪→M(σ, p, q)reg◦

I (for all finite subsets I ⊆ A(σ, p, q)≥s
top

), and
this follows by definition.

Now let us show that the boundary map induced by (C.13.6) coincides with the tau-
tological map (C.13.8). First, we chase definitions as above. Let s ∈ SM(σ, p, r) denote
the stratum (σ|[0 . . . k], p, q)–(σ|[k . . . n], q, r) (i.e. the stratum consisting of Floer trajecto-
ries over σ which are broken at vertex k and periodic orbit q ∈ PH(k)). Now on the space

M(σ|[0 . . . k], p, q)×M(σ|[k . . . n], q, r) = M(σ, p, r)≤s, we have three implicit atlases:

A(σ|[0 . . . k], p, q)≥s
top tA(σ|[k . . . n], q, r)≥s

top ⊆ A(σ, p, r)≥s ⊇ A(σ, p, r)≥s
top

and in fact (the index set of) the middle atlas is the disjoint union of (the index sets of)
the atlases on the right and on the left. The reasoning used above to identify the orien-
tation sheaves of M(σ|[0 . . . k], p, q) and M(σ|[k . . . n], q, r) applies equally well to identify
the orientation sheaf of their product M(σ|[0 . . . k], p, q) ×M(σ|[k . . . n], q, r) = M(σ, p, r)≤s

under all three atlases above (the fact that the thickening datums in the latter two atlases
do not treat the portions of the trajectories from p to q and from q to r “independently”
does not cause any problems). Hence for the purposes of identifying the boundary map on
orientation sheaves, it suffices to consider the single atlas A(σ, p, r)≥s

top
on M(σ, p, r) and the

inclusion of the boundary stratum M(σ, p, r)≤s ↪→ M(σ, p, r). As before, it suffices to check
that the desired compatibility holds for the inclusion (M(σ, p, r)≤sI )reg ↪→ M(σ, p, r)reg

I (for
all finite subsets I ⊆ A(σ, p, r)≥s

top
), and moreover, this may be checked on the locus where

the domain curve is smooth except for the required node over k asymptotic to q ∈ PH(k).
It will be convenient to assume that 0 < k < n, so let us first deduce the case of general

0 ≤ k ≤ n from the case 0 < k < n. Fix σ and 0 ≤ k ≤ n = dim σ. We consider the
degenerate simplex σ′ → σ given by “doubling vertex 0” if k = 0 and “doubling vertex n” if
k = n (i.e. if 0 = k < n, we consider ∆n+1 → ∆n given by superimposing the first two vertices
of ∆n+1, if 0 < k = n, we consider ∆n+1 → ∆n given by superimposing the last two vertices of
∆n+1, and if 0 = k = n we consider ∆2 → ∆0); let k′ = 1 if k = 0 and let k′ = n′−1 if k = n,
where n′ = dim σ′, and note that 0 < k′ < n′. Now there is a natural map A(σ, p, q)≥s

top →
A(σ′, p, q)≥s

top
given by pulling back along σ′ → σ, and σ′ → σ maps flow lines to flow lines

(for the flow from Definition 10.1.4). Hence, given any point x ∈ M(σ, p, r)reg
I with a single

node over k asymptotic to q ∈ PH(k), we may lift it (canonically, up to translating the part(s)

of the trajectory over 0 = k and/or over k = n) to a point x′ ∈ M(σ′, p, r)reg
I with a single

node over k′ asymptotic to q ∈ PH′(k′) = PH(k). Moreover, there is a germ of homeomorphism

M(σ′, p, r)reg
I = M(σ, p, r)reg

I × R1(k=0)+1(k=n) between neighborhoods of x′ and x × 0. Now
the desired compatibility of orientations for (M(σ, p, r)≤sI )reg ↪→M(σ, p, r)reg

I follows from the

compatibility for (M(σ′, p, r)≤s
′

I )reg ↪→M(σ′, p, r)reg
I (which has from 0 < k′ < n′). Hence we

may assume without loss of generality that 0 < k < n.
Now we have come to the heart of the matter, where we will need to analyze the gluing

map. To review: we have identified the orientation sheaf of M(σ, p, r)reg
I with oEI ⊗oσ⊗op,r,
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and we have identified the orientation sheaf of (M(σ, p, r)≤sI )reg with oEI ⊗ oσ|[0...k] ⊗ op,q ⊗
oσ|[k...n]⊗ oq,r (recall that s denotes the stratum consisting of trajectories broken at vertex k
and periodic orbit q ∈ PH(k)). We must show that the boundary map on orientation sheaves

induced by the inclusion (M(σ, p, r)≤sI )reg ↪→M(σ, p, r)reg
I is the expected map (C.13.8), and

it suffices to check this over the locus where the domain curve is smooth except for the
required node over k asymptotic to q ∈ PH(k). We may further assume that 0 < k < n.

We consider the gluing setup for M(σ, p, r)reg
I at a point in (M(σ, p, r)≤sI )reg where C0 is

smooth except for the required node over vertex k asymptotic to q ∈ PH(k). In other words,
C0 \ {q0, q1, q2} = S1×RtS1×R, and u0 : S1×RtS1×R→M is a trajectory from p to q
and from q to r. From §C.1.2, we take L = L′ = 0 (i.e. no points pi or p′i), and we may take
D = H = ∅. From §C.1.3, there is one gluing parameter α ∈ R≥0, there is no nontrivial
variation in (j0, A0) (i.e. y ∈ R∗ = R0), and there is some variation in `0 parameterized by
w ∈

∏2′
i=1H

i. As usual, we denote by K ⊆ W k,2,δ(C0, u
∗
0TM) the kernel of the linearized

operator (we shall omit the subscript D,H since L = L′ = 0). Now the gluing construction
gives rise to a gluing map:

K × R≥0 ×
2′∏
i=1

H i →M(σ, p, r)reg
I (C.13.13)

(κ, α, w) 7→ (uα,w,y,κ, eα,w,y,κ) (C.13.14)

(y = 0). Now if we restrict to α = 0, this map realizes the identification of the orientation
sheaf of (M(σ, p, r)≤sI )reg with oK ⊗ oσ|[0...k] ⊗ oσ|[k...n]. Thus it suffices to show that for fixed
(sufficiently small) α > 0 and fixed w = 0, the gluing map is differentiable in the K direction,
and that its derivative (a map from K to the kernel of the linearized operator at the glued
map uα,w,y,κ) agrees (on orientation lines) with the Floer–Hofer map (C.13.5) (recall that oK
is identified with oEI ⊗op,q⊗oq,r and that the orientation line of the kernel at the glued map
is identified with oEI ⊗ op,r).

For fixed (α,w, y), the gluing map is given by:

K
κ7→κα−−−→ Kα

κα 7→κα,w,y−−−−−−→ F−1
α,w,y(0) (C.13.15)

The second map is defined a priori by a Newton iteration, however a more natural descrip-
tion a posteriori is that {κα,w,y} = {κα + imQα,w,y} t F−1

α,w,y(0) is the unique (necessarily
transverse) intersection in a (k, 2, δ, δ)-neighborhood of zero of fixed size. Note that in this
neighborhood of fixed size, F−1

α,w,y(0) is a (highly differentiable) submanifold, since Fα,w,y is
highly differentiable and Dκα,w,yFα,w,y is surjective as observed in the proof of Lemma C.10.2.
From this description of the second map, it is clearly differentiable. Thus the derivative of
the restricted gluing map (C.13.15) at a given κ is given by:

TκK
κ̇7→κ̇α−−−→ TκαKα

projQα,w,y−−−−−−→ Tκα,w,yF
−1
α,w,y(0) = kerDκα,w,yFα,w,y (C.13.16)

The second map is “projection with respect to Qα,w,y”, i.e. the map induced by identifying
both the domain and codomain with W k,2,δ,δ(Cα, u

∗
αTM)/ imQα,w,y. It suffices to study the
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derivative at κ = 0, namely the first line of the following commuting diagram:

T0K T0Kα kerD(0)α,w,yFα,w,y

kerDα,w,y

κ̇7→κ̇α projQα,w,y

projQα,w,y projQα,w,y

(C.13.17)

The rightmost diagonal map is orientation preserving (i.e. it commutes with the identification
of the orientation lines of the domain and codomain with oEI⊗op,r), because projQα,w,y gives a
local trivialization of the bundle kerDFα,w,y with respect to which the orientation is constant
by definition. Now the leftmost diagonal map is just κ̇α 7→ κ̇α − Qα,w,yDα,w,yκ̇α. Hence it
suffices to show that the following composition (note that we have changed notation from κ̇
back to κ):

kerD0,0,0 = K
κ7→κα−−−→ Kα

κα 7→κα−Qα,w,yDα,w,yκα−−−−−−−−−−−−−−→ kerDα,w,y (C.13.18)

acts as (C.13.5) on orientations (with respect to the previously defined isomorphisms oK =
oEI ⊗ op,q ⊗ oq,r and okerDα,w,y = oEI ⊗ op,r).

We analyze (C.13.18) as follows. For convenience, we may as well assume that w = 0,
and recall that necessarily y = 0. Now let us consider the following diagram:

Kα,0,0 W k,2,δ,δ(Cα, u
∗
αTM)⊕ EI W k−1,2,δ,δ(C̃α,Ω

0,1

C̃α,j0
⊗C u

∗
αTMJ(`α,0(A0(·))))

K0|α,0,0 W k,2,δ,δ(C0, u
∗
0|αTM)⊕ EI W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0|αTMJ(`0,0(A0(·))))

K0,0,0 W k,2,δ,δ(C0, u
∗
0TM)⊕ EI W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·))))

projTα,0,0 Dα,0,0

break

projT0|α,0,0

glue

D0|α,0,0

PT

projQ0,0,0

κ7→κ0|α
PT

D0,0,0

Q0,0,0

(C.13.19)
The right half is just a copy of (C.7.8) (with the middle square collapsed since y = 0).
The left half consists of the inclusions of the kernels of the operators on the right half, as
well as the projection maps associated to the images of the (approximate) right inverses
Q0,0,0, T0|α,0,0 := PT ◦ Q0,0,0 ◦ PT, and Tα,0,0 = glue ◦ PT ◦ Q0,0,0 ◦ PT ◦ break (recall that
imTα,0,0 = imQα,0,0). The diagonal map κ 7→ κ0|α is defined by cutting off as in Definition
C.5.2; thus κα = glue(κ0|α).

Now the map (C.13.18) which we would like to analyze may be written as the compo-
sition κ 7→ projTα,0,0(glue(κ0|α)) from (C.13.19). Now, we know that ‖D0|α,0,0κ0|α‖k−1,2,δ,δ =
‖Dα,0,0κα‖k−1,2,δ,δ, which is small by Lemma C.6.2. It follows that the map we would like to
analyze is well-approximated (as α→ 0) by the map κ 7→ projTα,0,0(glue(projT0|α,0,0

κ0|α)). In
particular, since we are only interested in its action on orientations, it suffices to consider
the latter map κ 7→ projTα,0,0(glue(projT0|α,0,0

κ0|α)).
Now we claim that the map K0,0,0 → K0|α,0,0 given by κ 7→ projT0|α,0,0

κ0|α preserves

orientation (the orientation lines of the domain and codomain are both identified with oEI ⊗
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op,q ⊗ oq,r). To see this, simply observe the map (as well as its domain and codomain and
their orientations) vary continuously over α ∈ [0, ε), and that the statement is true for α = 0
because then the map is the identity map. Hence we have reduced the problem to showing
that the map:

W k,2,δ,δ(C0, u
∗
0|αTM) ⊇ K0|α,0,0

glue−−→ W k,2,δ,δ(Cα, u
∗
αTM)⊕ EI

projTα,0,0−−−−−→ Kα,0,0 (C.13.20)

acts by (C.13.5).
To analyze the map projTα,0,0 ◦ glue : K0|α,0,0 → Kα,0,0, argue as follows. For any finite-

dimensional vector space F and a map Λ : F → W k−1,2,δ,δ(C̃0,Ω
0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·))))

supported away from the ends, we may consider the following modified version of (C.13.19):

KΛ,t
α,0,0 F ⊕W k,2,δ,δ(Cα, u

∗
αTM)⊕ EI W k−1,2,δ,δ(C̃α,Ω

0,1

C̃α,j0
⊗C u

∗
αTMJ(`α,0(A0(·))))

KΛ,t
0|α,0,0 F ⊕W k,2,δ,δ(C0, u

∗
0|αTM)⊕ EI W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0|αTMJ(`0,0(A0(·))))

KΛ,t
0,0,0 F ⊕W k,2,δ,δ(C0, u

∗
0TM)⊕ EI W k−1,2,δ,δ(C̃0,Ω

0,1

C̃0,j0
⊗C u

∗
0TMJ(`0,0(A0(·))))

proj
T

Λ,t
α,0,0 Λ⊕Dtα,0,0

break
proj

T
Λ,t
0|α,0,0

id⊕glue

Λ⊕Dt
0|α,0,0

PT

proj
Q

Λ,t
0,0,0

κ7→κ0|α
id⊕PT

Λ⊕Dt0,0,0

QΛ,t
0,0,0

(C.13.21)
Here t ∈ [0, 1] indicates that the terms (C.5.6)–(C.5.8) carry a factor of t. The estimates from
Lemmas C.7.2 and C.7.4 apply to this modified diagram as well. Thus as long as we fix a
bounded right inverse QΛ,t

0,0,0 of DΛ,t
0,0,0, the rest of the diagram makes sense (and, in particular,

TΛ,t
0|α,0,0 and TΛ,t

α,0,0 are approximate right inverses) for sufficiently small α > 0. Furthermore,

in any family of (Λ, t, QΛ,t), the kernels K0,0,0, K0|α,0,0, Kα,0,0 form vector bundles, and
the identifications of their orientation lines with oF ⊗ op,q ⊗ oq,r ⊗ oEI and oF ⊗ op,r ⊗ oEI
(respectively) vary continuously.

Now the map:

KΛ,t
0|α,0,0

proj
T

Λ,t
α,0,0

◦glue

−−−−−−−−→ KΛ,t
α,0,0 (C.13.22)

is exactly the map we wish to analyze when F = 0, Λ = 0, t = 1, and QΛ,t
0,0,0 = 0 ⊕ Q0,0,0.

More generally, if we allow F nonzero (but still Λ = 0), this map is simply our desired map
plus the identity map on F . Since the space of acceptable maps Λ is contractible, it suffices
to show that (C.13.22) has the desired action on orientations for any single pair (F,Λ), t = 1,
and QΛ,t

0,0,0 = 0⊕Q0,0,0.
Now by compactness of [0, 1], there exists a pair (F,Λ) so that Λ⊕Dt

0,0,0 is surjective for
all t ∈ [0, 1]. Fix such a pair (F,Λ), and also fix a continuously varying family of bounded
right inverses QΛ,t

0,0,0 with QΛ,1
0,0,0 = 0 ⊕ Q0,0,0. Since the kernels form a bundle over the base

[0, 1] and their orientations vary continuously, it suffices to analyze (C.13.22) for this (F,Λ),
t = 0, and this QΛ,0

0,0,0.
Now the Floer–Hofer map (C.13.5) is defined (see [FH93, Proposition 9]) by the property

that it is induced by a certain map KΛ,0
0|α,0,0 → KΛ,0

α,0,0 closely related to (C.13.22); clearly it
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suffices to show that the difference between the Floer–Hofer map and (C.13.22) is very small.
Consider the map:

KΛ,t
0|α,0,0

projL2◦glue
−−−−−−→ KΛ,t

α,0,0 (C.13.23)

in the setting of the above choices of (F,Λ), t = 0, and QΛ,t
0,0,0, where instead of projecting

off of imTΛ,0
α,0,0, we use the L2-orthogonal projection. The difference between (C.13.23) and

(C.13.22) is exactly projL2 ◦QΛ,0
α,0,0 ◦ (Λ⊕D0

α,0,0)◦glue, which has small norm by the estimate
in Lemma C.7.4. Thus it suffices to compare (C.13.23) to the Floer–Hofer map. Now the
Floer–Hofer map is given by:

KΛ,0
0|α,0,0

projL2◦glue′

−−−−−−−→ KΛ,0
α,0,0 (C.13.24)

for a certain map glue′ (see [FH93, Proposition 9]). However, the norm of the difference
glue − glue′ is very small due to the exponential decay of elements of the kernel (here, we
may use the explicit description of K0|α,0,0 as the image of κ 7→ κ0|α − Q0|α,0,0D0|α,0,0κ0|α).
Thus we are done.
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