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Abstract

We show how a central limit theorem for Poisson model random polygons implies a
central limit theorem for uniform model random polygons. To prove this implication,
it suffices to show that in the two models, the variables in question have asymptotically
the same expectation and variance. We use integral geometric expressions for these
expectations and variances to reduce the desired estimates to the convergence (1 +
α
n )

n → eα as n → ∞.

1 Introduction

Given a convex set K ⊂ R
2 of unit area, we may define two random polygon models. For the

Poisson model, we consider a Poisson process of intensity λ inside K, and define ΠK,λ to be
the convex hull of the points of this process. For the uniform model, we take n independent
random points distributed uniformly in K and let PK,n be their convex hull. For a polygon
P inside K, we let N(P) denote the number of vertices of P, and we let A(P) denote the
area of K \P. When one wants to prove central limit theorems for N and A in either of the
two models of random polygons, it is often the case that the Poisson model is easier than
the uniform model. Indeed, in general, results are proved first for the Poisson model, and
then more arguments are needed to deduce a corresponding result for the uniform model.

Recently, the author [4] studied the Poisson model of random polygons and proved the
following central limit theorem for N and A:

Theorem 1.1 ([4]). As λ→ ∞, the following estimates for ΠK,λ hold uniformly over all K
of unit area:

sup
x

∣

∣

∣

∣

P

(

N − E[N ]√
VarN

≤ x

)

− Φ(x)

∣

∣

∣

∣

≪ log2 E[N ]
√

E[N ]
(1.1)

sup
x

∣

∣

∣

∣

P

(

A− E[A]√
VarA

≤ x

)

− Φ(x)

∣

∣

∣

∣

≪ log2 E[N ]
√

E[N ]
(1.2)

Here Φ(x) = P (Z ≤ x) where Z is the standard normal distribution.

In this paper, our goal is to show how to derive the following corollary for the uniform
model:
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Corollary 1.2. As n → ∞, the following estimates for PK,n hold uniformly over all K of

unit area:

sup
x

∣

∣

∣

∣

P

(

N − E[N ]√
VarN

≤ x

)

− Φ(x)

∣

∣

∣

∣

→ 0 (1.3)

sup
x

∣

∣

∣

∣

P

(

A− E[A]√
VarA

≤ x

)

− Φ(x)

∣

∣

∣

∣

→ 0 (1.4)

Here Φ(x) = P (Z ≤ x) where Z is the standard normal distribution.

From the estimates derived in this paper, a secondary result from [4] (Theorem 1.3 below)
also carries over immediately to the uniform model. We should say that Theorem 1.3 and
the consequence derived here, Corollary 1.4, have both been proven independently by Imre
Bárány and Matthias Reitzner.

Theorem 1.3 ([4]). As λ→ ∞, the following estimates for ΠK,λ hold uniformly over all K
of unit area:

E[N ] ≍ VarN ≍ λE[A] ≍ λ2VarA (1.5)

Corollary 1.4. As n → ∞, the following estimates for PK,n hold uniformly over all K of

unit area:

E[N ] ≍ VarN ≍ nE[A] ≍ n2 VarA (1.6)

Though both Theorem 1.1 and Corollary 1.2 have been known for quite some time in
the case that either K is a polygon or ∂K is of class C2, the proof given here of Theorem
1.1 =⇒ Corollary 1.2 for arbitrary convex K appears to be new. Corollary 1.2 answers a
question of Van Vu [1].

We will see below that in order to prove that Theorem 1.1 implies Corollary 1.2, it suffices
to show that when n = λ, the random variables N(PK,n) and N(ΠK,λ) (as well as A(PK,n)
and A(ΠK,λ)) have the same expectation and variance up to a small enough error. This
is essentially the same strategy used by Van Vu in [7] to derive a similar implication for a
special case of random polytopes.

However, in contrast to [7], we will use relatively down to earth integral geometry to
establish our estimates, instead of sophisticated arguments from probability theory. The
approach we take is conceptually very simple. We write down integral geometric expressions
for the expectation and variance for the Poisson and uniform models, and then estimate
their difference in the limit n = λ → ∞. In this formulation, the “reason” that the desired
convergence holds is completely transparent: it is essentially reduced to the convergence
(1 + α

n
)n → eα as n → ∞. Also, the variables N and A are treated simultaneous with an

identical proof for each (c.f. [7] where the case of fi, the number of i-simplices, is harder
than the case of the volume and requires a new idea). An admitted disadvantage of this
approach is that one has to actually write down these integrals explicitly, however once this is
done, no further manipulations are necessary. It is interesting to observe that using integral
geometry is almost never the “right” way to prove statements along the lines of Theorem 1.1
or even Theorem 1.3, essentially because the expressions quickly become too complicated to
deal with either conceptually or theoretically. However for our applications here, the desired
estimates become simple when written in terms of the integral geometry, so we in fact believe
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that these integral geometric expressions do in some sense give the “right” proof of our main
lemmas.

One expects that our results and the proofs given here will admit straightfoward gener-
alization to higher dimensions. For random polytopes in dimension d ≥ 3, Theorems 1.1–1.4
are all known in the case of fixed K whose boundary is C2 and has nonvanishing Gauss
curvature, due to Reitzner [5] and Vu [7]. In the case that K is a polytope, the analogue
of Theorem 1.1 was proven very recently by Bárány and Reitzner [3] (one expects that an
analogue of Theorem 1.3 also follows from their methods). We expect that if applied to
higher dimensions, the methods in this paper would show that Corollaries 1.2 and 1.4 follow
in any situation in which Theorems 1.1 and 1.3 respectively are known to hold (in particular
for the case that K is a polytope). It is conjectured that Theorems 1.1–1.4 hold for d ≥ 3
with no restriction on K.

1.1 Acknowledgement

We thank the referee for useful comments and in particular for making us realize an error in
the original proof of Lemma 3.1.

2 Notation and definitions

We now review some definitions and two basic lemmas from [4].
In this paper, K will always denote a (bounded) convex set in R

2. Any constants implied
by the symbols ≪, ≫, or ≍ are absolute; in particular they are not allowed to depend on
K.

WΠ(θ)

angle θ

K

ΠK

(a) Illustration of W (θ)

p

CK(p, θ)

angle θ

K

(b) Illustration of CK(p, θ)

Figure 2.1: Illustration of some definitions.

Many of the following definitions are illustrated in Figure 2.1. We may leave out the
subscript K later when doing so is unambiguous.

Definition 2.1. We define the random variable WP(θ) to be the vertex of P which has an
oriented tangent line at angle θ. This is illustrated in Figure 2.1(a).
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Definition 2.2. A cap at angle θ is the intersection of K with a halfplane Hθ at angle θ.
We may specify a cap at angle θ by giving either its area r or a point p ∈ ∂Hθ. These are
denoted CK(r, θ) and CK(p, θ) respectively; the latter is illustrated in Figure 2.1(b).

Definition 2.3. We define the real number AK(p, θ) to be the area of the cap CK(p, θ).

Lemma 2.4. The random variableWΠ,λ(θ) has probability distribution given by λ exp(−λAK(p, θ)) dp
where dp is the Lebesgue measure. This has total mass 1− e−λArea(K), as ΠK,λ is empty with

probability e−λArea(K).

Proof. This follows directly from the definition of a Poisson point process. The probability
that no point lands in CK(p, θ) is exp(−λAK(p, θ)), and we multiply this by λ dp, which is
the density of the Poisson point process.

Alternatively, we may differentiate exp(−λAK(p, θ)) with respect to the direction orthog-
onal to θ and divide by the length of ∂Hθ ∩K. This also yields λ exp(−λAK(p, θ)) dp.

Definition 2.5. We define the function fK(x, θ) : [0, 1]× R/2π → R as follows:

fK(x, θ) =











length of (∂Hθ) ∩K where CK(log
1
x
, θ) = Hθ ∩K

if x > exp(−Area(K))

0 if x ≤ exp(−Area(K))

(2.1)

It will be important to have the following bound on the growth of f :

Lemma 2.6. If y ≤ x, then:
f(y)√
− log y

≤ f(x)√
− log x

(2.2)

The bound above is sharp, for instance f(x) = const ·
√
− log x for K = {x, y ≥ 0} (i.e.

the first quadrant).

length ℓ

angle θ

K

Figure 2.2: Illustration of the function h.
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Proof. Project K along the lines at angle θ to get a height function h : [0,∞) → R≥0;

in Figure 2.2, h(ℓ) is the length of the thick segment. Now if A(ℓ) =
∫ ℓ

0
h(ℓ′) dℓ′ then

f(exp(−A(ℓ))) = h(ℓ). Thus we see that it suffices to show that the function:

h(ℓ)
√

A(ℓ)
(2.3)

is decreasing. Differentiating with respect to ℓ, we see that it suffices to show that:

h(ℓ)2 − 2h′(ℓ)A(ℓ) ≥ 0 (2.4)

For ℓ = 0, the left hand side is clearly nonnegative, and the derivative of the left hand side
equals −2h′′(ℓ)A(ℓ), which is ≥ 0 by concavity of h.

When proving central limit theorems, it is important to decompose N and A into local
pieces. Thus we define N(α, β) to equal the number of edges with angle in the interval (α, β).
Then it is easy to see that:

N = N(α1, α2) +N(α2, α2) + · · ·+N(αL, α1) (2.5)

A similar decomposition is valid for A, where A(α, β) is best explained graphically in Figure
2.3.

angle α

angle β

Figure 2.3: Illustration of A(α, β)

Consider for the moment the Poisson model, and let X denote N or A. In [4], it is
shown that if one chooses the partition so that each interval [αi, αi+1] has constant affine

invariant measure (a notion from [4] which will not concern us here), then X(αi, αi+1) has
constant expectation and variance, and the correlation between X(αi, αi+1) and X(αj , αj+1)
is exponentially decreasing in |i−j| (specifically, an α-mixing estimate is proved). From these
facts, along with a general lower bound on the variance of X due to Bárány and Reitzner [2]
(their result also holds in higher dimensions), it follows on general principles that a central
limit theorem holds for X in the Poisson model.
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3 Proofs

Let us begin by stating the lemmas which we will prove.

Lemma 3.1. As n→ ∞, we have:

sup
x

|P (A(ΠK,n) ≤ x)− P (A(PK,n) ≤ x)| → 0 (3.1)

sup
x

|P (N(ΠK,n) ≤ x)− P (N(PK,n) ≤ x)| → 0 (3.2)

uniformly over all convex K of unit area.

Lemma 3.2. As n→ ∞, we have:

|E[N(ΠK,n)]− E[N(PK,n)]| = o(
√

VarN(ΠK,n)) (3.3)

|E[A(ΠK,n)]− E[A(PK,n)]| = o(
√

VarA(ΠK,n)) (3.4)

uniformly over all convex K of unit area.

Lemma 3.3. As n→ ∞, we have:

VarN(ΠK,n) ∼ VarN(PK,n) (3.5)

VarA(ΠK,n) ∼ VarA(PK,n) (3.6)

uniformly over all convex K of unit area.

Lemma 3.1 says essentially that as n→ ∞, the functionals of PK,n and ΠK,n have asymp-
totically the same distributions. Lemmas 3.2 and 3.3 give us equivalence of the expectation
and variance in the two models. It is elementary to observe that these lemmas combine to
give Corollary 1.2 (and also Corollary 1.4). We note that Van Vu has observed (3.4) in [7,
p224, Proposition 3.1 and Remark 3.5]; our proof is different.

3.1 Proof of Lemma 3.1

Proof. We follow and slightly correct an argument of Reitzner [5, p492–3]. We thank the
referee for asking us to clarify our use of Reitzner’s argument, since it was this that led
us to realize the error. The argument below becomes fallacious if we write P (X ≤ x|E)
(as Reitzner does) everywhere we have P (X ≤ x&E). The problem is that the the first
equality in equation (3.9) (which is Reitzner’s equation (13)) is false in this case (note our
E is Reitzner’s A). Thus the proof in [5] is typographically very close to being correct; there
is no problem once we replace every P (X ≤ x|E) with P (X ≤ x&E).

First, fix ǫ > 0 and let Sǫ =
⋃

θ∈R/2π C(θ, ǫ) be the union of all caps of area ǫ. Let EP

and EΠ be the events that ∂P and ∂Π are completely contained in Sǫ respectively. Now
trivially, we have that P (EP ), P (EΠ) → 1 as n→ ∞, uniformly over all K of unit area.

If B is any event, then |P (B)− P (B&E)| ≤ 1− P (E). Letting B be X ≤ x, we have:

sup
K

sup
x

|P (X(ΠK,n) ≤ x)− P (X(ΠK,n) ≤ x&EΠ)| → 0 (3.7)
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sup
K

sup
x

|P (X(PK,n) ≤ x)− P (X(PK,n) ≤ x&EP )| → 0 (3.8)

as n→ ∞, where X denotes either N or A.
Now consider P (X(ΠK,n) ≤ x&EΠ) and P (X(PK,n) ≤ x&EP ). Observe that if we

condition both probabilities on the number of points of the process in Sǫ, then they become
equal. Let us call this probability P (X ≤ x&E|k). In other words, suppose we place k points
uniformly at random in Sǫ. Then P (X ≤ x&E|k) is defined to equal the probability that
the boundary of their convex hull is contained in Sǫ and X ≤ x. Thus setting p = Area(Sǫ),
we find:

|P (X(ΠK,n) ≤ x&EΠ)− P (X(PK,n) ≤ x&EP )|

=

∣

∣

∣

∣

∣

∞
∑

k=0

(np)k

k!
e−npP (X ≤ x&E|k)−

(

n

k

)

pk(1− p)n−kP (X ≤ x&E|k)
∣

∣

∣

∣

∣

≤
∞
∑

k=0

∣

∣

∣

∣

(np)k

k!
e−np −

(

n

k

)

pk(1− p)n−k

∣

∣

∣

∣

≤ 2p (3.9)

where
(

n
k

)

= 0 if k > n. The last bound is due to Vervaat [6]. Combining (3.7) and (3.8)
with (3.9), we find that:

lim sup
n→∞

sup
K

sup
x

|P (X(ΠK,n) ≤ x)− P (X(PK,n) ≤ x)| ≤ 2 sup
K

Area(Sǫ) (3.10)

But we may choose ǫ > 0 arbitrarily, so we are done.

It may indeed be possible to take a similar strategy to prove Lemmas 3.2 and 3.3. How-
ever, in this case bounding the sum in equation (3.9) becomes harder, since we have ex-
pectations instead of probabilities, and the former are not bounded by 1. Also, proving
analogues of equations (3.7) and (3.8) becomes nontrivial. Since we need good estimates
for Lemmas 3.2 and 3.3, choosing ǫ correctly as a function of n and estimating P (EΠ) and
P (EP ) becomes an issue.

3.2 Proofs of Lemmas 3.2 and 3.3

The proofs of Lemmas 3.2 and 3.3 will make use of some simple integral geometric expres-
sions for the expectations and variances in question. The derivation of these expressions
is completely elementary. The integrals appear complicated, though the point is not their
exact form, but rather that they are almost identical for PK and ΠK . With the appropriate
integrals in hand, the desired convergence essentially reduces to the fact that (1 + α

n
)n → eα

as n → ∞. So, before, we begin the proofs, we make some elementary observations about
this convergence. If e−n < x ≤ 1, then 0 < 1 + log x

n
≤ 1, so:

n log

(

1 +
log x

n

)

≤ n
log x

n
= log x =⇒ 1

x

(

1 +
log x

n

)n

≤ 1 (3.11)
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If additionally it holds that (log x)2 ≤ n
2
, then:

n log

(

1 +
log x

n

)

= n

(

log x

n
+O

(

(log x)2

n2

))

= log x+O

(

(log x)2

n

)

=⇒ 1

x

(

1 +
log x

n

)n

= 1 +O

(

(log x)2

n

)

(3.12)

For the proofs of Lemmas 3.2 and 3.3, it is most convenient to use the normalization
Area(K) = n and λ = 1 (breaking from our previous convention). Thus n will be a positive
integer, K will have area n, and we let ΠK = ΠK,1 and PK = PK,n.

Proof of Lemma 3.2. Let X denote either N or A. In the derivation of the integral geometric
expressions, we treat ΠK and PK simultaneously.

The following formula is tautological:

E[X ] =

∫

R/2π

∫

K

IX(p, θ) dθ (3.13)

IX(p, θ) =
d

dh
E[X(θ, θ + h)|W (θ) = p]

∣

∣

∣

∣

h=0

dP (W (θ) = p) (3.14)

Now let us derive expressions for IX(p, θ) for the uniform and Poisson models respectively. It
will be convenient to let yθ,p equal f(p, θ)

−1 times the distance from p to ∂K in the positive
θ direction. For every angle θ, the coordinates xp,θ := exp(−A(p, θ)) and yp,θ give a bijection
between K and [e−n, 1]× [0, 1]. It will prove very useful to express points in K in terms of
these coordinates, mostly because dP (WΠ(θ) = p) = exp(−A(p, θ)) dp = dx dy.

First, let us observe that d
dh
E[X(θ, θ + h)|W (θ) = p]

∣

∣

h=0
is equal to:

For ΠK and X = N :
1

2
y2p,θf(p, θ)

2 (3.15)

For PK and X = N :
1

2
y2p,θf(p, θ)

2 n− 1

n−A(p, θ)
(3.16)

For ΠK and X = A:
1

2
y2p,θf(p, θ)

2 (3.17)

For PK and X = A:
1

2
y2p,θf(p, θ)

2 (3.18)

And we also observe that dP (W (θ) = p) equals:

For ΠK : exp(−A(p, θ)) dp (3.19)

For PK :

(

1− A(p, θ)

n

)n
n

n− A(p, θ)
dp (3.20)

Using coordinates x and y in the integral (3.13) and substituting our expressions for
IX(p, θ), we observe that we can integrate out yp,θ in every case. The reader can check that
the final expressions are:

E[X ] =

∫

R/2π

∫ 1

e−n

IX(x, θ) dx dθ (3.21)
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where IX(x, θ) equals:

For ΠK and X = N :
1

6
f(p, θ)2 (3.22)

For PK and X = N :
1

6
f(p, θ)2

1

x

(

1 +
log x

n

)n−2(

1− 1

n

)

(3.23)

For ΠK and X = A:
1

6
f(p, θ)2 (3.24)

For PK and X = A:
1

6
f(p, θ)2

1

x

(

1 +
log x

n

)n−1

(3.25)

We now proceed to use the representations (3.21) and (3.22)–(3.25) to show that the expec-
tations of X(ΠK) and X(PK) are the same up to a relative error of O(n−1+ǫ).

First, observe that our estimate on the growth of f (Lemma 2.6) shows that cutting off
the integral (3.21) to x ≥ n−B for some large fixed B incurs a relative error of no more
than n−B+ǫ. Now for x ∈ [n−B, 1], we may use (3.12) to see that the relative error incurred

by replacing 1
x

(

1 + log x
n

)n
by 1 is no more than (logn)2

n
. Observe also that for x ∈ [n−B, 1],

we know that replacing 1 + log x
n

with 1 incurs a relative error of no more than logn
n

. These
operations suffice to transform between the expressions for E[X(ΠK)] and E[X(PK)], so we
have shown that they are equal up to a relative error of O(n−1+ǫ).

Thus to finish the proof, we just need to show that:

E[X(Π)]n−1+ǫ = o(
√

VarX(Π)) (3.26)

By a result of Bárány and Reitzner [2], VarX(Π) ≫ E[X(Π)], so it suffices to show that
√

E[X(Π)] = o(n1−ǫ). It is trivial to see that E[X(Π)] ≤ n, so we are done.

Proof of Lemma 3.3. This proof follows the same outline, so we will be a little less explicit;
the interested reader can write down the long integrals if they so desire. Again, we let X
denote either N or A.

Our plan is to show that E[X2] is the same in the two cases up to a relative error of
O(n−1+ǫ).

We think of X as being the integral of a random measure µX on R/2π. This random
measure is just given by the family of variables X(α, β) (explicitly, the measure of the
interval [α, β] is X(α, β)). Now X2 is just the total mass of µX ⊗ µX on (R/2π)2. Using
linearity of expectation, we just need to take the dθ dψ integral of the expectation of X(θ, θ+
dθ)X(ψ, ψ + dψ). This expectation in turn, we condition on W (θ) and W (ψ), writing it as
an integral dP ((W (θ),W (ψ)) = (p, q)) over K × K. We will often implicitly use the fact
that the integrand is positive.

The first step is to show that we may remove the region where either exp(−A(p, θ)) < n−B

or exp(−A(q, ψ)) < n−B and incur a relative error of O(n−1+ǫ). By symmetry, let us deal
with the region where exp(−A(p, θ)) < n−B. Then the contribution to the total integral
representing E[X2] is just:

∫

R/2π

∫

{p∈K:A(p,θ)≥B logn}

d

dh
E[X(θ, θ + h) ·X|W (θ) = p]

∣

∣

∣

∣

h=0

dP (W (θ) = p) dθ (3.27)
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Now the X in the expectation contributes at most a multiplicative factor of n+2. With this
X removed, the integral becomes something we already estimated in the proof of Lemma
3.2 as being O(n−B+ǫ). Thus we are done.

The second step is to show that on the region where A(p, θ) and A(q, ψ) are both ≤
B logn, the integrands (corresponding to E[X(θ, θ + dθ)X(ψ, ψ + dψ)] in the respective
models) are equal up to a relative error of O(n−1+ǫ). As before, this splits up into two
problems:

First, we need to show that the probability densities dP ((W (θ),W (ψ)) = (p, q)) in the
cases of ΠK and PK are the same up to a relative error ofO(n−1+ǫ). As before, we may express
dP ((W (θ),W (ψ)) = (p, q)) elementarily in terms of A(p, q, θ, ψ) := Area(C(p, θ) ∪ C(q, ψ)).
Then the fact that this quantity is O(logn) means we may apply (3.12) to see that the
densities are equal up to a relative error of O(n−1+ǫ) (note that this is true even for the
singular part of the measure dP ((W (θ),W (ψ)) = (p, q)) occurring on the diagonal p = q).

Second, we need to show that the incremental expectations E[X(θ, θ+ dθ)X(ψ, ψ+ dψ)]
are the same up to a relative error of O(n−1+ǫ). Again, this just involves writing equations
such as (3.15)–(3.18). Then the fact that A(p, q, θ, ψ) = O(logn) shows easily that they
coincide up to a relative error of O(n−1+ǫ). Though it presents no difficulty in the proof,
one should note that when X = N , there is a singular component to the measure E[X(θ, θ+
dθ)X(ψ, ψ + dψ)] on the diagonal θ = ψ.

We have shown that:

|E[X(ΠK)
2]− E[X(PK)

2]| ≪ n−1+ǫ
E[X(ΠK)

2] (3.28)

Now E[X(ΠK)
2] = E[X(ΠK)]

2 +VarX(ΠK). Thus we have:

|E[X(ΠK)
2]− E[X(PK)

2]| ≪ n−1+ǫ max(E[X(ΠK)]
2,VarX(ΠK)) (3.29)

In the proof of Lemma 3.2, we showed that E[X(ΠK)] and E[X(PK)] are the same up to a
relative error of O(n−1+ǫ). This implies then that:

|E[X(ΠK)]
2 − E[X(PK)]

2| ≪ n−1+ǫ
E[X(ΠK)]

2 (3.30)

Thus it follows that:

|VarX(ΠK)−VarX(PK)| ≪ n−1+ǫ max(E[X(ΠK)]
2,VarX(ΠK)) (3.31)

Thus to finish the proof, we just need to show that n−1+ǫ
E[X(Π)]2 = o(Var[X(Π)]). By a

result of Bárány and Reitzner [2], VarX(Π) ≫ E[X(Π)], so it suffices to show that E[X(Π)] =
o(n1−ǫ). It is a well known estimate (see [4]) that E[X(Π)] ≪ n1/3, so we are done.
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