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Abstract

I show that every rectifiable simple closed curve in the plane can be continuously

deformed into a convex curve in a motion which preserves arc length and does not

decrease the Euclidean distance between any pair of points on the curve. This result is

obtained by approximating the curve with polygons and invoking the result of Connelly,

Demaine, and Rote that such a motion exists for polygons. I also formulate a general-

ization of their program, thereby making steps toward a fully continuous proof of the

result. To facilitate this, I generalize two of the primary tools used in their program:

the Farkas Lemma of linear programming to Banach spaces and the Maxwell-Cremona

Theorem of rigidity theory to apply to stresses represented by measures on the plane.

1 Introduction

Imagine a loop of string lying flat on a table without crossing itself. Now suppose the loop is
slowly deformed until it becomes convex, without stretching or breaking it, in an expansive
motion. By expansive, I mean that if you pick any pair of points on the string, then during
the deformation, the distance between them will be nondecreasing. Then we can ask whether,
given an initial loop, there always exists an expansive motion which deforms that loop until
it becomes convex. If the loop is a polygon, then the answer is yes, as proved by Connelly,
Demaine, and Rote [2]. The first theorem of this paper (Theorem 2.2) is that the answer
is yes for any rectifiable curve, no matter how complicated (in section 2.3, we give some
examples of pathological curves to which the theorem applies). This solves Problem 4 listed
by Ghomi [3, p. 1].

My proof of the main theorem uses a limiting process, relying on the result of [2]. I
next generalize the program used in [2], which relies on techniques of linear programming,
specifically the Farkas Lemma. This approach naturally lends itself to computation; an
example of research on the computation of nonexpansive unfoldings of polygons is given by
[1]. In my continuous analogue of the program, I develop a version of the Farkas Lemma
for Banach spaces (Theorem 4.2) as well as a continuous version of the Maxwell-Cremona
Theorem (Theorem 5.1), a combinatorial version of which was used in the program in [2].
A different version of the Farkas Lemma in Banach spaces and specifically in Lp spaces has
been studied in [4]. I am not aware of any previous generalization of the Maxwell-Cremona
Theorem to the case I consider here. Finally, I use the continuous version of the program
to give a different proof of the existence of infinitesimal expansions for polygons. The hope
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is that a continuous analogue of the discrete program could yield a direct proof (one which
does not rely on approximation by polygons) of the main theorem for some class of curves
more general than polygons.

I would like to thank Robert Bryant for many useful conversations about the work in
this paper, regarding both its content and presentation, and Robert Connelly for suggesting
some reogranization to clarify the results. I also thank Andrew Ferrari for introducing me
to many of the techniques used here.

1.1 Notation

We will use the following function spaces:

C(X, Y ) the Banach space of continuous functions from X to Y given the supremum norm.

Cc(X, Y ) the subspace of C(X, Y ) consisting of functions of compact support.

C0(X, Y ) the Banach space completion of Cc(X, Y ) with respect to the supremum norm.
These are the functions that “vanish at infinity”.

C∞
0 (X, Y ) the subspace of Cc(X, Y ) consisting of infinitely differentiable functions.

Lp(X, Y ) the Banach space of Lp functions from X to Y .

If Y is left out, it is assumed to be R, except in section 2, where it is assumed to be C. All
Hilbert and Banach spaces are implicitly assumed to be over R, except in section 2, where
they will be over C. If E is a Banach space, E∗ is its dual. The duality bracket 〈x, y〉 will
be used both in the case that x ∈ E∗ and y ∈ E, and in the case that x, y ∈ H , a Hilbert
space. We will write L(X, Y ) for the Banach space of bounded linear transformations from
X to Y given the operator norm.

2 Proof for General Curves using [2]

2.1 Preliminaries

Consider a simple closed curve in the plane. I wish to prove the existence of a continuous
deformation of the curve into a convex curve, so that the intrinsic distance between every
pair of points on the curve stays constant, and the extrinsic distance between every pair of
points on the curve is nondecreasing. Here, by intrinsic distance I mean the distance along
the curve, and by extrinsic distance I mean the Euclidean distance in R2.

A curve is called rectifiable if a finite intrinsic distance can be defined between every pair
of points, that is, the supremum of the lengths of all inscribed polygons is finite:

Lyx(f) := sup
x=a0<a1<···<ak=y

k
∑

j=1

|f(aj)− f(aj−1)| <∞ (2.1)

We will only consider rectifiable curves in this paper. If a curve is rectifiable, then it has
a unit speed parameterization, that is f(s) =

∫ s

0
f ′(s′) ds′ and |f ′(s)| = 1 almost everywhere.
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Since a homothety will scale the arc length of a curve, it suffices to consider simple closed
curves of length 2π. Thus, given f0, we seek a continuous family of simple closed curves
ft : R/2π −→ R2 parameterized by t ∈ [0, 1] such that each curve is of unit speed, |ft1(x) −
ft1(y)| ≤ |ft2(x)− ft2(y)| whenever t1 ≤ t2, and f1 is convex.

2.2 Main Result

For this section, it will be natural to consider curves in C (rather than R2). Thus Banach
spaces will be over C. It will be convenient to have our curves reside in the following space:

D :=
{

f : R/2π −→ C
∣

∣

∣
f(0) = 0, f absolutely continuous, f ′ ∈ L∞(R/2π)

}

(2.2)

There is, of course, the natural correspondence between f ∈ D and f ′ ∈ {u ∈ L∞(R/2π) :
∫

u = 0}. Thus D is a Banach space with norm ‖f ′‖∞. Now topologize D using the weak-∗
topology on L∞(R/2π). Since L1(R/2π) is separable, the Banach-Alaoglu Theorem implies
that any norm bounded sequence in D has a convergent subsequence. The choice of topology
on D is justified by the following lemma.

Lemma 2.1. Suppose fn → f in D, then fn → f uniformly.

Proof. By the Uniform Boundedness Principle, we know that ‖fn‖ is bounded. Thus there
exists M with |f ′n| ≤ M , hence {fn} is an equicontinuous family. It is clear that fn → f
pointwise since we have

∫

χ[0,x]f
′
n →

∫

χ[0,x]f
′. And an equicontinuous sequence of functions

converges pointwise if and only if it converges uniformly.

Define the continuous function E : D −→ R by E(f) =
∫∫

(R/2π)2 |f(x)− f(y)|. Also define

the following order relation on D: we say that f E g if and only if |f(x)−f(y)| ≤ |g(x)−g(y)|
for all x and y.

Theorem 2.2. Given a unit speed simple closed curve f : R/2π −→ C, there exists a
continuous function h : [0, 1] −→ D such that:

(1) h(0) = f .

(2) h(1) is convex.

(3) h(t) has unit speed for all t.

(4) If t1 ≤ t2, then h(t1) E h(t2).

Proof. For n ≥ 3, consider the polygon Pn inscribed in f which has n vertices spaced out at
multiples of 2π/n starting at zero. Explicitly:

Pn(x) :=
(

1−
{nx

2π

})

f

(

2π

n

⌊nx

2π

⌋

)

+
{nx

2π

}

f

(

2π

n

(⌊nx

2π

⌋

+ 1
)

)

(2.3)

This polygon may or may not be simple. It will, however, divide the plane into a finite
number of simply connected regions. Let P ′

n be a constant speed sn ≤ 1 parameterization of
the boundary of that region which has greatest area. Then let hn : [0, 1] −→ D be continuous
and satisfy:
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(1′) hn(0) = P ′
n.

(2′) hn(1) is convex.

(3′) hn(t) has speed sn ≤ 1 for all t.

(4′) If t1 ≤ t2, then hn(t1) E hn(t2).

(5′) hn(t)(π) ∈ R>0 for all t.

(6′) E(hn(t)) is a linear function of t.

The existence of an hn satisfying (1′)–(4′) is implied by Theorem 1 of [2, p. 207]. Condition
(5′) can be achieved by properly rotating each curve. The motion of [2] is strictly expansive,
so E(hn(t)) will be strictly increasing, so a simple reparameterization in t suffices to make it
linear and satisfy (6′).

Let Q[0,1] = Q ∩ [0, 1]. This set is countable; suppose {ri}∞i=1 is a counting of it. Let

h
(0)
n = hn. Inductively, let h

(i)
n be a subsequence of h

(i−1)
n such that h

(i)
n (ri) converges. (Such

a subsequence is guaranteed to exist since ‖h(i)
n (ri)‖ = sn is bounded). Now h

(j)
j converges

pointwise to a function h̃ : Q[0,1] −→ D which satisfies:

(1′′) h̃(0)(R/2π) = f(R/2π).

(2′′) h̃(1) is convex.

(3′′) h̃(t) has speed ≤ 1.

(4′′) If t1 ≤ t2, then h̃(t1) E h̃(t2).

(5′′) h̃(t)(π) ∈ R>0 for all t.

(6′′) E(h̃(t)) is a linear function of t.

We will now construct h : [0, 1] −→ D. For every t ∈ [0, 1], we set h(t) to be some arbitrary
subsequential limit of h̃(qj) where qj is some sequence of rationals converging to t. Clearly
h satisfies (1′′)–(6′′) as well. Now (1′′) and (3′′) together mean that h(0)(s) = f(s + ∆) for
some ∆. We can take ∆ = 0. Hence we have (1), (2), and (4). To prove (3), note that:

∣

∣

∣

∣

f(x+ h)− f(x)

h

∣

∣

∣

∣

≤
∣

∣

∣

∣

h(t)(x+ h)− h(t)(x)

h

∣

∣

∣

∣

≤ 1 (2.4)

As h → 0, the left hand side approaches 1 for almost all x, hence |h(t)′(x)| = 1 almost
everywhere as desired.

Finally, we must show that h is in fact continuous. This follows from (5′′) and (6′′) in
the following way. Suppose the contrary, that there is some t where h is not continuous.
Then there exists a sequence qj → t with either qj < t for all j or qj > t for all j, and
a neighborhood N of h(t) such that h(qj) /∈ N for all j. Now a subsequence of h(qj) will
converge in D to a limit g. Now we have:

(i) E(g) = E(h(t))
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(ii) g E h(t) or g D h(t) depending on whether qj < t or qj > t

(iii) g(0) = 0 = h(t)(0)

(iv) g(π),h(t)(π) ∈ R>0

The conditions (i) and (ii) imply that |g(x) − g(y)| = |h(t)(x) − h(t)(y)| for all x and y.
This means that the curves are rigid motions of each other. Then (iii) and (iv) imply that
they are actually the same curve since they have the same orientation. Thus a subsequence
of h(qj) converges to h(t). This is of course a contradiction since each h(qj) is outside the
neighborhood N of h(t). This contradiction proves that h is continuous.

2.3 Pathological Rectifiable Curves

Define f− and f+:

f±(x) =

{

x2 sin x−1 ± e−1/x x > 0

0 x = 0
(2.5)

If we plot f− and f+ on [0, π−1] and add line segments around the left side of the curve
to close it, we get an infinite number of interlocking “teeth”. This example is based on a
polygon with a finite number of such teeth unfolded by Erik Demaine. We also have:

g(t) =











t2ei/t t > 0

0 t = 0

−t2e−i/t t < 0

(2.6)

Plotting g on [−π−1, π−1] and adding line segments to close the curve gives a simple closed
curve with an infinite spiral. By Theorem 2.2, both of these curves can be unfolded in an
expansive motion, something which is not at all intuitive considering their geometry.

3 A Generalization of the CDR Program

The program in [2] proves the existence of an infinitesimal expansion for any polygon. That
is, if a nonconvex polygon has verticies pi, it shows the existence of velocities vi satisfying:

(pi − pi+1) · (vi − vi+1) = 0 (3.1)

(pi − pj) · (vi − vj) > 0 for i and j not adjacent (3.2)

From this, it is relatively straightforward to solve a differential equation of the form d
dt
{pi} =

{ṽi} (where the {ṽi} depend continuously on the {pi}), thus constructing an expansive
motion of the polygon. Clearly, if we have a curve f , then the analogue is to find a variation
ϕ satisfying:

f ′(x) · ϕ′(x) = 0 for all x (3.3)

(f(x)− f(y)) · (ϕ(x)− ϕ(y)) ≥ 0 for all x and y (3.4)
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The generalized program developed here will be able to prove the existence of infinitesimal
expansions for polygons, a hard theoretical result of [2]. It also proves the existence of
“almost” expansive variations for all rectifiable curves which in a neighborhood of any point
look like the rotated graph of a function from R to R. By this I mean that for every x ∈ R/2π,
there exists v ∈ R2 such that f(y) · v is one to one in a neighborhood of x. The final result
of this generalized program is Theorem 3.4.

The generalizations of the Farkas Lemma and the Maxwell-Cremona Theorem, the tools
used in the program, are stated and proved in sections 4 and 5 respectively.

3.1 Notation

Let H := {u ∈ C(R/2π,R2) : u(0) = 0, u absolutely continuous, and
∫

|u′|2 < ∞}. So that

H is a Hilbert space, equip it with the norm
√

∫

|u′|2 and inner product
∫

u′ · v′. Topologize
H with the weak topology. We will need the sets:

Qf := {u ∈ H : u′ · f ′ ≡ 0} (a closed subspace) (3.5)

T := {t ∈ C((R/2π)2)∗ : t ≥ 0} (3.6)

Note that we will be looking for ϕ ∈ Qf , since it is these variations which preserve arc length.
Also note that in this section, we do not assume that f is parameterized by arc length.

Lemma 3.1. If gn → g in the weak topology on H, then gn → g uniformly.

Proof. This is completely analogous to Lemma 2.1. We know that gn → g pointwise.
Observing that ‖gn‖ is bounded, we have the inequality:

∫ b

a

|g′
n| =

∫

R/2π
g′
n

g′
n

|g′
n|
χ[a,b] ≤

√

∫

R/2π
|g′
n|2
√

∫ b

a

∣

∣

∣

∣

g′
n

|g′
n|

∣

∣

∣

∣

2

≤M
√
b− a (3.7)

This shows that gn are uniformly continuous, and hence converge uniformly.

Define D ⊂ H , the set of curves we will consider, to be the set of f ∈ H satisfying:

(1) f is a simple closed curve, that is f is injective.

(2) f ′ 6= 0 almost everywhere (this in fact is not implied by (1)).

(3) For every x, there exists δ > 0 and v such that f(y) · v is one to one for |y − x| < δ.
(locally graph-like)

The symbol f will always denote a member of D.
The following bounded operator will be essential to the program; it is called the Rigidity

Operator:

Rf : H −→ C((R/2π)2)

(Rfϕ)(x, y) = (f(x)− f(y)) · (ϕ(x)− ϕ(y)) (3.8)
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3.2 Outline of the Program

Before we state the final result of the program in its full generality (Theorem 3.4), it is useful
to state the following corollary which gives the general idea of the result.

Corollary 3.2. Let f ∈ D not be convex. Let V ⊂ (R/2π)2 be closed and have the property
that for all (x, y) ∈ V , the line segment between f(x) and f(y) is not competely contained
in f(R/2π) (for example, if f has no straight sections, we can take V = {(x, y) ∈ (R/2π)2 :
|x− y| > ǫ}). Then there exists a ϕ ∈ Qf such that:

(f(x)− f(y)) · (ϕ(x)− ϕ(y)) > 0 for all (x, y) ∈ V (3.9)

This result includes the result [2] of the existence of infinitesimal expansions for nonconvex
polygons.

Corollary 3.3 (Theorem 3 of [2, p. 215]). If {pi} is a nonconvex simple polygon with no
straight verticies, then there exist {vi} satisfying:

(pi − pi+1) · (vi − vi+1) = 0 (3.10)

(pi − pj) · (vi − vj) > 0 for i and j not adjacent (3.11)

Proof. Apply Corollary 3.2 to f = the polygon and:

V = {(x, y) ∈ (R/2π)2 : there are two full edges separating x and y

in both directions} (3.12)

Then we have a ϕ. Set vi = ϕ(f−1(pi)). Then (pi − pj) · (vi − vj) > 0 for i and j not
adjacent is clear from (3.9). Now:

(vi+1 − vi) · (pi+1 − pi) =

∫ f−1(pi+1)

f−1(pi)

ϕ′(x) · (pi+1 − pi) dx = 0 (3.13)

since ϕ ∈ Qf .

Theorem 3.4, the main result of the generalization of the program of [2] is essentially
Corollary 3.2 made uniform over some suitable set of curves.

Theorem 3.4 (Analogue of Theorem 3 of [2, p. 215]). Suppose D1 ⊂ D is (weakly) closed
and contains no convex curves, and that V ⊂ D1 × (R/2π)2 is closed. Additionally, suppose
that for every (f , x, y) ∈ V , the line segment joining f(x) and f(y) is not completely contained
in f(R/2π). Then there exists ǫ > 0 such that for each f ∈ D1, there exists ϕ ∈ Qf with:

(1) ‖ϕ‖ = 1.

(2) Rfϕ(x, y) ≥ ǫ whenever (f , x, y) ∈ V .

We can see that Corollary 3.2 is obtained by taking D1 to consist of a single curve. A
corollary which does not lose the uniformity is the following:
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Corollary 3.5. Suppose D1 ⊂ D is weakly closed, contains no convex curves, and contains
no curves with straight sections. Then for every δ > 0, there exists ǫ > 0 such that for every
f ∈ D1, there exists ϕ ∈ Qf satisfying:

(1) ‖ϕ‖ = 1.

(2) (ϕ(x)− ϕ(y)) · (f(x)− f(y)) ≥ ǫ if |x− y| ≥ δ.

Proof. Choose V = D1 × {(x, y) ∈ (R/2π)2 : |x− y| ≥ δ} and apply Theorem 3.4.

The main difficulty in showing the existence of a ϕ which is expansive for all pairs x
and y is the fact V being closed is critical to the proof. Clearly (f , x, x) can never be in V
since then we would conclude that (ϕ(x)−ϕ(x)) · (f(x)− f(x)) > 0. Hence, we must always
exclude a neighborhood of the “diagonal” of (R/2π)2. This means that we will not have
shown that (ϕ(x)− ϕ(y)) · (f(x)− f(y)) > 0 for all pairs x and y.

The following theorem is the essence of why expansive variations exist. It relies on the
generalization of the Maxwell-Cremona Theorem (Theorem 5.1).

Theorem 3.6 (Analogue of Theorem 4 of [2, p. 216]). If f ∈ D and t ∈ T such that
〈t, Rfα〉 = 0 for all α ∈ Qf , then either:

(1) The curve f is convex.
OR

(2) For all (x, y) ∈ supp t, the line segment connecting f(x) and f(y) is completely con-
tained in f(R/2π).

In the spirit of the generalization of the Farkas Lemma (Theorem 4.2), it is possible to
prove that Theorem 3.6 implies Theorem 3.4.

Proposition 3.7 (Analogue of Lemma 3 of [2, p. 216]). Theorem 3.6 implies Theorem 3.4.

3.3 Proof of Theorem 3.6

Proof. Suppose that we have some f ∈ D and t ∈ T with 〈t, Rfα〉 = 0 for all α ∈ Qf . Let f̂
′

denote f ′/|f ′|.
First, let us show that there exists β ∈ L2(R/2π) such that:

〈t, Rα〉 =
∫

R/2π
β(x)̂f ′(x) · α′(x) dx (3.14)

Clearly there exists µ ∈ L2(R/2π,R2) such that 〈t, Rα〉 =
∫

R/2π µ(x) · α′(x) dx. Now we can

constrain µ as follows. For any λ ∈ L2(R/2π) satisfying
∫

λf̂ ′ = 0, we know that:

∫

R/2π

(

µ(x) · îf ′(x)
)

λ(x) dx = 0 (3.15)

The set H of such λ is of codimension 2 in L2(R/2π). Now µ(x) · îf ′(x) ∈ H⊥, which is
of dimension 2. But we can exercise two dimensions of freedom by adding constants to
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µ(x). Thus we can assume µ(x) · îf ′(x) ≡ 0, in other words µ ‖ f ′, and hence is of the form
β(x)̂f ′(x).

We will consider the operators A1, A2 ∈ L(C0(R2,R2),R2) defined by:

A1U :=

∫∫

(R/2π)2
t(x, y)(f(x)− f(y))

∫ f(x)

f(y)

U · ds (3.16)

A2U :=

∫

R/2π
β(x)̂f ′(x)[U(f(x)) · f ′(x)] dx (3.17)

Since A1 and A2 are linear combinations of projections, they are symmetric, that is there exist

aj , bj, ej ∈ L(C0(R2,R),R) = C0(R2)∗ such that Aj =
(

aj bj
bj ej

)

. Then A := A1 − A2 = ( a bb e ),

where a, b, e ∈ L(C0(R2,R),R) = C0(R2)∗. We have:

A1∇g =
∫∫

(R/2π)2
t(x, y)(f(x)− f(y))(g(f(x))− g(f(y)))

=
(

〈t, R(e1g(f(·)))〉, 〈t, R(e2g(f(·)))〉
)

=

∫

R/2π
β(x)̂f ′(x)[∇g(f(x)) · f ′(x)] dx = A2∇g

(3.18)

Hence A∇g = 0 for all g ∈ C∞
0 (R2).

By the generalization of the Maxwell-Cremona Theorem, Theorem 5.1, there exists a
c ∈ Cc(R2) such that we have (in the distributional sense):

AU =

∫∫

R2

(

cyy −cxy
−cxy cxx

)

U dx dy (3.19)

Now the matrices
( cyy −cxy
−cxy cxx

)

and (
cxx cxy
cxy cyy ) are related by a similarity transform. The former

is a positive linear combination of projections at every point in R2 − f(R/2π), hence the
latter is positive at every point not on the curve as well. Hence c is locally convex on the
interior of the curve and on the exterior of the curve.

Now letM = supp∈R2 c(p) and define the nonempty closed set S = {p ∈ R2 : c(p) =M}.
Suppose p ∈ ∂S and p /∈ f(R/2π). Then there is a neighborhood of p which is disjoint from
f(R/2π). In this neighborhood, c will be convex. Hence the whole neighborhood will belong
to S, a contradiction. Thus ∂S ⊆ f(R/2π). We thus have four cases:

(1) S is the closure of the exterior of the curve.

(2) S is the closure of the interior of the curve.

(3) S is a closed subset of the curve.

(4) S is the whole plane.

If (1) is true, then c is zero on the curve. This implies that f is a level curve of a function
with positive hessian and as such must be convex. If (4) is true, then c ≡ 0. Then for every
(x, y) ∈ supp t, we will necessarily have the line segment joining f(x) and f(y) completely
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contained in f(R/2π). This is because if not, then there would be a point in R2 − f(R/2π)
where the matrix

( cyy −cxy
−cxy cxx

)

would be positive, giving c upward convexity. The case (2) is
easily disposed of since c = 0 outside the convex hull of the curve and hence will be zero on
at least one point of the curve. Hence the maximum value c attains is zero, a contradiction.
Thus it suffices to show that case (3) cannot happen.

Assume (3) is true. We have two cases:

(1′) There exists x ∈ R/2π such that for every δ > 0, f([x, x+δ]) * S and f([x−δ, x]) * S.

(2′) There does not exist such an x ∈ R/2π.

I will deal with the easier case (1′) first. WLOG x = 0. Also, WLOG, f(x) · e1 is one to one
for |x| < ǫ. Choose δ1, δ2 > 0 such that the curve in the square [−δ1, δ1] × [−δ2, δ2] ⊂ R2

looks like the graph of a function, that is, f−1([−δ1, δ1]× [−δ2, δ2]) ⊆ [−ǫ, ǫ]. Let −δ1 < x− <
0 < x+ < δ1 have c(x−, 0) 6=M and c(x+, 0) 6=M . Now let:

M ′ =
1

2

(

M + max
p∈∂[x

−
,x+]×[−δ2,δ2]

c(p)

)

< M (3.20)

Let y+ be the least y > 0 such that c(0, y) = M ′ and let y− be the highest y < 0 such that
c(0, y) = M ′. Consider the level curves passing through y+ and y−. By the convexity of c
they must curve away from (0, 0) where the maximum occurs, but they must meet the curve
on both sides of (0, 0) at some x′− and x′+. This is a contradiction.

Now suppose (2′) is true. Let [x, y] ⊂ R/2π satisfy c(f([x, y])) =M and for every δ > 0,
f([x − δ, x]) * S and f([y, y + δ]) * S. Then f([x, y]) is a level curve of c restricted to the
interior of the curve. As the level curve of a convex function it must be curved towards the
interior of the curve. But by the same reasoning, f([x, y]) is a level curve of c restricted to
the outside of the curve, and hence must be curved towards the outside of the curve. Hence
f([x, y]) is a line segment. As above, we can rotate f so it looks like the graph of a function
R −→ R near f(x) and near f(y). Using the same procedure as above, we get a contradiction
by considering level curves of M − η for a suitably small η > 0.

We have now justified every step in the proof of Theorem 3.4 except for Proposition 3.7
and the generalized Maxwell-Cremona Theorem. We will prove these next.

4 A Generalization of the Farkas Lemma

The Farkas Lemma from linear programming is as follows:

Lemma 4.1 (Farkas Lemma). Let A : Rn → Rm be a linear transformation. Then exactly
one of the following two statements holds:

(1) There exists a nonzero y ∈ Rm whose components are all nonnegative and which satis-
fies ATy = 0.

(2) There exists an x ∈ Rn such that every component of Ax is positive.

The generalization of the Farkas Lemma that we will need will have the basic form:
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Theorem 4.2. Let X be a compact Hausdorff space and Y a (real) Hilbert space. Let
A : Y −→ C(X) be linear and bounded. Also let A′ : C(X)∗ −→ Y denote its adjoint, that
is 〈λ,Ay〉 = 〈A′λ, y〉. Then exactly one of the following two statements holds:

(1) There exists a nonzero positive t ∈ C(X)∗ such that A′t = 0.

(2) There exists a y ∈ Y such that Ay > 0.

We remark that if we take Y to be finite dimensional and X to consist of a finite number
of points, then we recover Lemma 4.1.

Proof. It is trivial that (1) and (2) cannot simultaneously hold, for if so, 0 = 〈A′t, y〉 =
〈t, Ay〉 > 0.

It remains to show that ∼(1) =⇒ (2). Let T := {t ∈ C(X)∗ : t ≥ 0}.
I claim that there exists ǫ > 0 such that ‖A′t‖ ≥ ǫ‖t‖ for all t ∈ T . If we suppose the

contrary, then there exists a sequence tn ∈ T with ‖tn‖ = 1 such that A′tn → 0. By the
Banach-Alaoglu Theorem, there exists a subnet tα which converges to t ∈ T (in the weak-∗
topology on T ). We know that we will have t ∈ T and ‖t‖ = 1. Also, for all y ∈ Y , we have:

0 = lim
α
〈A′tα, y〉 = lim

α
〈tα, Ay〉 = 〈t, Ay〉 = 〈A′t, y〉 (4.1)

Thus A′t = 0, contradicting ∼(1). Thus the claim is true. I now can show (2).
Let tn ∈ T be a sequence such that ‖tn‖ = 1 and:

‖A′tn‖ → inf
t∈T
‖t‖=1

‖A′t‖ =: w ≥ ǫ (4.2)

Then a subnet tα will converge in the weak-∗ topology to a limit t∞. Now:

w ≤ ‖A′t∞‖ ≤ lim inf
α

‖A′tα‖ = w (4.3)

Hence ‖A′t∞‖ = w.
Let y := A′t∞/‖A′t∞‖. I claim that (Ay)(x) ≥ ǫ for all x ∈ X . It suffices to show that

〈t, Ay〉 ≥ w for all t ∈ T with ‖t‖ = 1. But if 〈t, Ay〉 < w for some t ∈ T with ‖t‖ = 1, then
〈A′t, y〉 < w. Consider then:

d

dη

∣

∣

∣

∣

η=0

‖A′((1− η)t∞ + ηt)‖2

=
d

dη

[

(1− η)2‖A′t∞‖2 + 2η(1− η)〈A′t, A′t∞〉+ η2‖A′t‖2
]

∣

∣

∣

∣

η=0

= −2w2 + 2〈A′t, wy〉 < 0

(4.4)

This is a contradiction since ‖(1− η)t∞ + ηt‖ = 1. Hence the proof is complete.

We can prove Proposition 3.7 using the same proof outline from Theorem 4.2. We will,
however, need the following approximation lemma.
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Lemma 4.3. Suppose fn → f in D and that q ∈ Qf is of the form q′ = λif ′ where λ is
smooth. Then there exist qn ∈ Qfn such that qn → q (weakly).

Proof. We will search for qn of the form q′n = (λ + νn)if
′
n. We will have ‖qn‖ bounded if

‖νn‖∞ is bounded. Hence we will have qn → q weakly if ‖νn‖∞ is bounded and 〈ℓ, q−qn〉 → 0
for all smooth ℓ ∈ H . Now |〈ℓ, q − qn〉| is equal to:

∣

∣

∣

∣

∫

R/2π
ℓ′ · (q′ − q′n)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R/2π
ℓ′ · (λif ′ − λif ′n − νnif

′
n)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R/2π
ℓ′λ · i(f ′ − f ′n)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R/2π
νnℓ

′ · if ′n
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R/2π
[ℓ′′λ+ ℓ′λ′] · i[f − fn]

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R/2π
νnℓ

′ · if ′n
∣

∣

∣

∣

≤ 2π‖ℓ′′λ+ ℓ′λ′‖∞‖f − fn‖∞ + ‖νn‖∞‖ℓ′‖∞
√
2π‖fn‖

(4.5)

By Lemma 3.1, ‖f − fn‖∞ → 0. Thus in order for qn → q weakly, all we need is ‖νn‖∞ → 0
and

∫

R/2π(λ + νn)f
′
n = 0 (because clearly we must have

∫

R/2π q
′
n = 0). Using integration by

parts, this last equality can be written:

∫

R/2π
fnν

′
n =

∫

R/2π
[f − fn]λ

′ (4.6)

We can pick a1, a2, and a3 in R/2π such that:

∣

∣

∣

∣

∣

∣

1 1 1
f(a1) · e1 f(a2) · e1 f(a3) · e1
f(a1) · e2 f(a2) · e2 f(a3) · e2

∣

∣

∣

∣

∣

∣

≥ 2ǫ > 0 (4.7)

There exists an N such that for every n ≥ N , the determinant with f replaced with fn is
greater than ǫ. It suffices to choose νn for n ≥ N . Set Cn =

∫

R/2π[f − fn]λ
′. We know that

|Cn| ≤ 2π‖λ′‖∞‖f − fn‖∞. We solve the following system of equations for bn,i ∈ R:

bn,1 + bn,2 + bn,3 = 0 (4.8)

fn(a1)bn,1 + fn(a2)bn,2 + fn(a3)bn,3 = Cn (4.9)

For n ≥ N , we can use Cramer’s Rule to give the follwing bound on the solution:

|bn,i| ≤ ǫ−12[2π‖λ′‖∞‖f − fn‖∞]2[
√
2π‖fn‖] (4.10)

Set νn(0) = 0 and:

ν ′n(x) = bn,1δ(x− a1) + bn,2δ(x− a2) + bn,3δ(x− a3) (4.11)

Then we will guarantee
∫

R/2π ν
′
n = 0, equation (4.6), and ‖νn‖∞ → 0. Thus we will have

qn → q (weakly).
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Proof of Proposition 3.7. We will write V (f) for {(x, y) ∈ (R/2π)2 : (f , x, y) ∈ V }. Also, if
Z ⊂ (R/2π)2, we will write TZ for {t ∈ C((R/2π)2) : t ≥ 0 and supp t ⊆ Z}. We assume
Theorem 3.6. Let πf : H −→ Qf be the orthogonal projection and let Jf = πf ◦ R′

f . Then
Theorem 3.6 implies “If f ∈ D1, t ∈ TV (f), and Jf t = 0, then t = 0”.

I claim that there exists ǫ > 0 such that ‖Jf t‖ ≥ ǫ‖t‖ for all f ∈ D1 and t ∈ TV (f). If we
suppose the contrary, then there exist two sequences, fn ∈ D1 and tn ∈ TV (fn) with ‖tn‖ = 1
such that ‖Jfntn‖ → 0. Since D1 is weakly closed, it is compact by the Banach-Alaoglu
Theorem, hence there exists a convergent subsequence of fn which we assume WLOG is the
whole sequence, so that fn → f . Since this means that fn → f uniformly, we will have
‖R′

fn
−R′

f‖ → 0. Thus:

‖πfnR′
fn
tn‖ → 0 =⇒ ‖πfnR′

f tn‖ → 0 (4.12)

Now there is also a weak-∗ convergent subsequence of the tn by the Banach-Alaoglu Theorem,
which again WLOG is the whole sequence. Thus tn → t ∈ TV (f) since V is closed; also
‖t‖ = 1. Pick some q ∈ Qf which can be written as q′ = λif ′ where λ is smooth (such q are
dense in Qf ). Let qn ∈ Qfn be the sequence guaranteed to exist by Lemma 4.3. We note
that since qn is weakly convergent, it is bounded. Now:

0 = lim
n→∞

〈πfnR′
f tn, qn〉 = lim

n→∞
〈R′

f tn, qn〉 = lim
n→∞

〈tn, Rfqn〉 (4.13)

Now by Lemma 3.1, Rfqn → Rfq strongly. Thus the final limit in equation (4.13) is equal
to 〈t, Rfq〉. This means that 〈R′

f t, q〉 = 0 for a dense subset of q ∈ Qf . Thus Jf t = 0 where
f ∈ D1 and t ∈ TV (f) − {0}, contradicting Theorem 3.6. Thus the claim is proved.

We can now show the existence of an appropriate ϕ for every f ∈ D1 exactly as in the
proof of Theorem 4.2.

Fix some f ∈ D1. Let tn ∈ TV (f) be a sequence such that ‖tn‖ = 1 and:

‖Jf tn‖ → inf
t∈TV (f)

‖t‖=1

‖Jf t‖ =: w ≥ ǫ (4.14)

A subsequence is weak-∗ convergent (WLOG the whole sequence) to a limit t∞. Using the
same reasoning as above, we conclude that Jf tn → Jf t∞ in the weak topology, so:

w ≤ ‖Jf t∞‖ ≤ lim inf ‖Jf tn‖ = w (4.15)

Thus ‖Jf t∞‖ = w. Let q := Jf t∞/‖Jf t∞‖.
Now I claim that 〈Jf t, q〉 ≥ w‖t‖ for all t ∈ TV (f). Suppose not, that we have t ∈ TV (f)

with ‖t‖ = 1 and 〈Jf t, q〉 < w. Then 〈Jf t, Jf t∞〉 < w2. But consider then:

d

dη

∣

∣

∣

∣

η=0

‖Jf((1− η)t∞ + ηt)‖2

=
d

dη

[

(1− η)2‖Jf t∞‖2 + 2η(1− η)〈Jf t, Jf t∞〉+ η2‖Jf t‖2
]

∣

∣

∣

∣

η=0

= −2w2 + 2〈Jf t∞, Jf t〉 < 0

(4.16)
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This is a contradiction since ‖(1− η)t∞ + ηt‖ = 1. Hence the claim is proved.
Let ϕ = q. Then:

〈t, Rfϕ〉 = 〈Jf t, q〉 ≥ w‖t‖ ≥ ǫ‖t‖ for all t ∈ TV (f) (4.17)

This means that Rfϕ(x, y) ≥ ǫ for all (x, y) ∈ V (f).

5 A Generalization of the Maxwell-Cremona Theorem

Let A ∈ L(C0(R2,R2),R2) have compact support. Then by the Riesz Representation Theo-
rem, A can be thought of as a matrix of measures on R2:

A =

(

a b
d e

)

(5.1)

We are concerned with the case when A is symmetric, that is b = d. For the moment,
suppose a, b, and e are continuous functions. In this case, at each point A has orthogonal
eigenvectors v1 and v2 with eigenvalues λ1 and λ2. We think of A as representing a “stress”
on the plane, where at each point, there is tension in the vi direction of magnitude λi. It
turns out that it is right to call such a stress is an “equilibrium stress” if:

A∇g = 0 for all g ∈ C∞
0 (R2) (5.2)

In the case that a, b, and e are continuous, it is straightforward to show that in fact:

A =

(

a b
b e

)

=

(

cyy −cxy
−cxy cxx

)

(5.3)

The function c will be in Cc(R2). This is the Maxwell-Cremona “lifting” of the stress
represented by A.

However, the notion of being an equilibrium stress (5.2) makes sense for any compactly
supported A, so one would expect that (5.3) should hold in some sense for all equilibrium
stresses A. If U is a smooth vector field and we integrate

∫∫

R2

( cyy −cxy
−cxy cxx

)

U dx dy by parts,

we get
∫∫

R2 c[i∇ curlU] dx dy, so if (5.3) holds in the distributional sense, we would like this
last integral to give AU for smooth U. This is the intuition for the following theorem.

Theorem 5.1. Let A ∈ L(C0(R2,R2),R2) have compact support. Suppose A is symmetric,
that is there exist a, b, c ∈ C0(R2)∗ such that:

A =

(

a b
b e

)

(5.4)

Additionally, suppose that for every g ∈ C∞
0 (R2), A∇g = 0. Then there exists c ∈ Cc(R2)

such that for all U ∈ C∞
0 (R2,R2):

AU =

∫∫

R2

c[i∇ curlU] dx dy (5.5)
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Proof. First, let us show that (the matrix of measures associated with) A has no pure
point part. Let p and v be arbitrary. Choose g ∈ C∞

0 (R2) so that ∇g(p) = v. Then
0 = A(∇g)(ǫ(·) + p), but as ǫ → 0, right hand side approaches the pure point part of A at
p applied to v. Hence A has no pure point part.

Consider the measure |A| ∈ C0(R2)∗, where the | · | of a matrix is its operator norm. In
other words, for f ≥ 0, we define:

|A|f := sup
θ:R2−→R
ψ:R2−→R

∫∫

R2

(

cos θ sin θ
)

(

a b
b e

)(

cosψ
sinψ

)

f (5.6)

We know |A| comes from a measure, which we will also denote |A|. Let µ(θ) be the measure
on the real line R at angle θ passing through the origin, obtained by projecting the measure
|A| orthogonally onto the line. In other words:

∫

R
f(x) dµ(θ) =

∫∫

R2

f((x, y) · (cos θ, sin θ))|A| (5.7)

Now let µpp(θ) be the pure point part of µ(θ). I claim that µpp(θ) 6= 0 for at most countably
many θ. We note that this is implied by the following:

N
∑

i=1

‖µpp(θi)‖ ≤ ‖|A|‖ whenever θi are distinct (5.8)

But (5.8) is true because any part of |A| which contributes to both ‖µpp(θi)‖ and ‖µpp(θj)‖
would have to be supported on a countable set of points, and hence would have to be pure
point, which we know A, and hence |A| does not have. Now letm(θ, h) = supx∈R

∫ x+h

x
µ(θ)(y) dy.

Now m(θ, h) → 0 as h → 0 if µ(θ) has no pure point part, thus m(θ, h) → 0 for almost all
θ. This fact being proved, we can proceed to the construction of c.

Let φ be a smooth real valued even function on R2 with support contained in the unit
disc which satisfies φ ≥ 0 and

∫∫

R2 φ = 1. Let φη(p) = η−2φ(η−1p). We can then define the
operator:

Aη = A ∗ φη =
(

a(η) b(η)

b(η) e(η)

)

(5.9)

Now we know that:

a(η), b(η), e(η) ∈ C∞
0 (R2) and that Aη∇g = 0 for all g ∈ C∞

0 (R2) (5.10)

Thus the vector fields (a(η), b(η)) and (b(η), e(η)) have zero divergence. That means there exist

f (η), g(η) ∈ C∞
0 (R2) such that a(η) = f

(η)
y , b(η) = −f (η)

x = −g(η)y , and e(η) = g
(η)
x . The equality

f
(η)
x = g

(η)
y implies that there exists c(η) ∈ C∞

0 (R2) such that f (η) = c
(η)
y and g(η) = c

(η)
x . In

other words:

Aη =

(

c
(η)
yy −c(η)xy

−c(η)xy c
(η)
xx

)

(5.11)

Claim: For every ǫ > 0, there exist δ > 0 and η0 > 0 such that:

η0 > η > 0 and |q− p| < δ =⇒ |c(η)(p)− c(η)(q)| < ǫ (5.12)
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Let ǫ > 0 be given. Suppose p = (x0, y) ∈ R2 and q ∈ R2 and we wish to bound
|c(η)(p) − c(η)(q)| given |q − p| < δ. To simplify notation, we will for the moment assume
that q = (x, y). Then:

∣

∣c(η)(p)− c(η)(q)
∣

∣ =

∣

∣

∣

∣

∫ x

x0

c(η)x (t, y) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

x0

∫ y

−∞

c(η)xy (t, z) dz dt

∣

∣

∣

∣

≤
∫ x

x0

∫ ∞

−∞

∣

∣b(η)(t, z)
∣

∣ dz dt ≤
∫ x+η

x0−η

∫ ∞

−∞

|A(t, z)| dz dt

≤ m(0, δ + 2η)

(5.13)

Similary, if θqp is the angle of the segment from p to q, then we have:

∣

∣c(η)(p)− c(η)(q)
∣

∣ ≤ m(θqp, 2η + δ) (5.14)

Now since m(θ, h) → 0 as h → 0 for all but at most countably many θ, there exists h > 0
such that the measure of the set {θ : m(θ, h) < ǫ/4} is more than 5π

3
. Then if 2η + δ <

min(ǫ/(4π‖t‖), h) and the slope the segment from p to q is not in the exceptional set of
θ (which has measure less than π

3
), then |c(η)(p) − c(η)(q)| ≤ ǫ/2. But for any p and q

within δ of each other, we can find a r within δ of both p and q so that neither of the
segments p to r and r to q are in the exceptional set of θ. Hence by the triangle inequality,
|c(η)(p)− c(η)(q)| ≤ ǫ if we set η0 = δ = 1

4
min(ǫ/(4π‖t‖), h). Thus the claim is true.

Now by the Arzelà-Ascoli Theorem, there exists a subsequence of c(1/n) which converges
uniformly to a continous function c ∈ Cc(R2). Thus let ηi → 0 and satisfy c(ηi) → c ∈ Cc(R2)
uniformly as i → ∞. As remarked before, if U is smooth compactly supported vector field,
then it is a straightforward integration by parts to show:

A(U ∗ φηi) = AηiU =

∫∫

R2

c(ηi)[i∇ curlU] dx dy (5.15)

Taking the limit as i→ ∞, we obtain (5.5) as was to be shown.

6 Open Problems

Now, I can state some conjectures on possible strengthening of Theorem 2.2. For example,
we can conjecture that there exists an h which is not only continuous, but in fact smooth.
Also, if the initial curve is smooth, we can require that the curve be smooth at every time
during the deformation.

Conjecture 6.1. Given a unit speed simple closed curve f : R/2π −→ C, there exists a
smooth function h : [0, 1] −→ D satisfying (1)–(4).

Conjecture 6.2. Given a smooth unit speed simple closed curve f : R/2π −→ C, there exists
a continuous function h : [0, 1] −→ D satisfying (1)–(4) as well as:

(5) h(t)(x) is a smooth function of x for all t ∈ [0, 1].
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I also conjecture that it is possible to extend Corollary 3.2 to something resembling the
following.

Conjecture 6.3. Suppose f : R/2π −→ R2 is a rectifiable simple closed curve which is not
convex. Then there exists ϕ : R/2π −→ R2 which is absolutely continuous and satisfies
f ′ · ϕ′ ≡ 0, as well as (f(x)− f(y)) · (ϕ(x)− ϕ(y)) > 0 whenever the line segment connecting
f(x) and f(y) is not completely contained in f(R/2π).

Of course, this would be in preparation to prove:

Meta-Conjecture 6.4. There exists a proof of Theorem 2.2 which does not rely on approx-
imation by polygons.
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