Rigid Multiview Varieties

Joe Kileel

University of California, Berkeley

January 9, 2016 Nonlinear Algebra JMM, Seattle

Joe Kileel Rigid Multiview Varieties

э

arXiv:1509.03257

Michael Joswig

Bernd Sturmfels

André Wagner

- ● ● ●

Algebraic vision

Multiview geometry studies 3D scene reconstruction from images. Foundations in projective geometry. *Algebraic vision* bridges to algebraic geometry (combinatorial, computational, numerical, ...).

Oct 8-9, 2015, Berlin

May 2-6, 2016, San Jose

A camera is a full rank 3×4 real matrix A. Determines a projection $\mathbb{P}^3 \dashrightarrow \mathbb{P}^2$; $X \mapsto AX$

thought of as taking a picture. A choice of point $C \in \mathbb{P}^3$ (center), plane $\pi \subset \mathbb{P}^3$ (viewing plane), and coordinates on π gives a camera.

$$\mathbb{P}^3 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \cdots \times \mathbb{P}^2 X \mapsto (A_1 X, A_2 X, \dots, A_n X).$$

A⊒ ▶ ∢ ∃ ▶

$$\mathbb{P}^3 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \cdots \times \mathbb{P}^2$$
$$X \mapsto (A_1 X, A_2 X, \dots, A_n X).$$

• Space of *n* consistent views of one world point.

伺 ト く ヨ ト く ヨ ト

$$\mathbb{P}^3 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \dots \times \mathbb{P}^2 X \mapsto (A_1 X, A_2 X, \dots, A_n X).$$

- Space of *n* consistent views of one world point.
- Irreducible threefold isomorphic to \mathbb{P}^3 blown-up at n points.

$$\mathbb{P}^3 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \cdots \times \mathbb{P}^2 X \mapsto (A_1 X, A_2 X, \dots, A_n X).$$

- Space of *n* consistent views of one world point.
- Irreducible threefold isomorphic to \mathbb{P}^3 blown-up at n points.
- Prime ideal $I_A \subset \mathbb{R}[u_{i0}, u_{i1}, u_{i2} : i = 1, ..., n]$ is \mathbb{Z}^n -multihomogeneous.

For which u_j and u_k , does:

$$\begin{cases} A_j X = \lambda_j u_j \\ A_k X = \lambda_k u_k \end{cases}$$

have a nonzero solution in X, λ_j, λ_k ? Rewrite as:

$$B^{jk} \begin{bmatrix} X \\ -\lambda_j \\ -\lambda_k \end{bmatrix} = 0 \quad \text{where} \quad B^{jk} := \begin{bmatrix} A_j & u_j & 0 \\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

- 4 回 ト 4 回 ト 4

For which u_j and u_k , does:

$$\begin{cases} A_j X = \lambda_j u_j \\ A_k X = \lambda_k u_k \end{cases}$$

have a nonzero solution in X, λ_j, λ_k ? Rewrite as:

$$B^{jk} \begin{bmatrix} X \\ -\lambda_j \\ -\lambda_k \end{bmatrix} = 0 \quad \text{where} \quad B^{jk} := \begin{bmatrix} A_j & u_j & 0 \\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

Theorem (Heyden-Aström 1997)

For $n \ge 4$, the $\binom{n}{2}$ bilinear forms $det(B^{jk})$ where $1 \le j < k \le n$ cut out V_A set-theoretically.

- **→** → **→**

For which u_j and u_k , does:

$$\begin{cases} A_j X = \lambda_j u_j \\ A_k X = \lambda_k u_k \end{cases}$$

have a nonzero solution in X, λ_j, λ_k ? Rewrite as:

$$B^{jk} \begin{bmatrix} X \\ -\lambda_j \\ -\lambda_k \end{bmatrix} = 0 \quad \text{where} \quad B^{jk} := \begin{bmatrix} A_j & u_j & 0 \\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

Theorem (Heyden-Aström 1997)

For $n \ge 4$, the $\binom{n}{2}$ bilinear forms $det(B^{jk})$ where $1 \le j < k \le n$ cut out V_A set-theoretically.

Theorem (Aholt-Sturmfels-Thomas 2013)

These $\binom{n}{2}$ bilinear forms and $\binom{n}{3}$ trilinear forms minimally generate I_A . Those and $\binom{n}{4}$ quadrilinear forms are a universal Gröbner basis.

Rigid multiview variety

Given n cameras $A = (A_1, \ldots, A_n)$ in generic position, their **rigid multiview variety** W_A is the closure of the image of the rational map:

$$\begin{array}{cccc} V(Q) & \hookrightarrow & \mathbb{P}^3 \times \mathbb{P}^3 & \dashrightarrow & (\mathbb{P}^2)^n \times (\mathbb{P}^2)^n \\ (X,Y) & \longmapsto & \left((A_1X, \dots A_nX), (A_1Y, \dots A_nY) \right), \end{array}$$

 $Q(X,Y) = (X_0Y_3 - Y_0X_3)^2 + (X_1Y_3 - Y_1X_3)^2 + (X_2Y_3 - Y_2X_3)^2 - X_3^2Y_3^2.$

Rigid multiview variety

Given n cameras $A = (A_1, \ldots, A_n)$ in generic position, their **rigid multiview variety** W_A is the closure of the image of the rational map:

$$\begin{array}{cccc} V(Q) & \hookrightarrow & \mathbb{P}^3 \times \mathbb{P}^3 & \dashrightarrow & (\mathbb{P}^2)^n \times (\mathbb{P}^2)^n \\ (X,Y) & \longmapsto & \left((A_1X, \dots A_nX), (A_1Y, \dots A_nY) \right), \end{array}$$

 $Q(X,Y) = (X_0Y_3 - Y_0X_3)^2 + (X_1Y_3 - Y_1X_3)^2 + (X_2Y_3 - Y_2X_3)^2 - X_3^2Y_3^2.$

Irreducible 5-fold inside $V_A \times V_A$. Prime ideal J_A in $\mathbb{R}[u_{i0}, u_{i1}, u_{i2}, v_{i0}, v_{i1}, v_{i2} : i = 1, \dots, n]$ is \mathbb{Z}^{2n} -multihomogeneous.

Write Q(X,Y) = T(X,X,Y,Y), where $T(\bullet,\bullet,\bullet,\bullet)$ is a quadrilinear form.

Theorem (Joswig-K.-Sturmfels-Wagner 2015)

The octics coming from two pairs of cameras:

 $T\left(\widetilde{\wedge}_{5}B_{i_{1}}^{j_{1}k_{1}}(u),\,\widetilde{\wedge}_{5}B_{i_{2}}^{j_{1}k_{1}}(u),\,\widetilde{\wedge}_{5}C_{i_{3}}^{j_{2}k_{2}}(v),\,\widetilde{\wedge}_{5}C_{i_{4}}^{j_{2}k_{2}}(v)\right)$

cut out W_A as a subvariety of $V_A \times V_A$ set-theoretically. For this, 16 suffice.

伺 ト く ヨ ト く ヨ ト

For $1 \leq j < k \leq n$ and $1 \leq i \leq 6$, let:

•
$$B^{jk}(u) = \begin{bmatrix} A_j & u_j & 0\\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

For $1 \leq j < k \leq n$ and $1 \leq i \leq 6$, let:

•
$$B^{jk}(u) = \begin{bmatrix} A_j & u_j & 0\\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

• $B_i^{jk}(u)$ be the 5×6 matrix that is $B^{jk}(u)$ with its $i^{\rm th}$ row removed

For $1 \leq j < k \leq n$ and $1 \leq i \leq 6$, let:

•
$$B^{jk}(u) = \begin{bmatrix} A_j & u_j & 0\\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

- $\bullet \ B^{jk}_i(u)$ be the 5×6 matrix that is $B^{jk}(u)$ with its $i^{\rm th}$ row removed
- $\wedge_5 B_i^{jk}(u)$ be the height 6 column of signed maximal minors of $B_i^{jk}(u)$

For $1 \leq j < k \leq n$ and $1 \leq i \leq 6$, let:

•
$$B^{jk}(u) = \begin{bmatrix} A_j & u_j & 0\\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

- $\bullet \ B^{jk}_i(u)$ be the 5×6 matrix that is $B^{jk}(u)$ with its $i^{\rm th}$ row removed
- $\wedge_5 B_i^{jk}(u)$ be the height 6 column of signed maximal minors of $B_i^{jk}(u)$
- $\widetilde{\wedge}_5 B_i^{jk}(u)$ be the height 4 column consisting of the top of $\wedge_5 B_i^{jk}(u)$

同 ト イ ヨ ト イ ヨ ト

For $1 \leq j < k \leq n$ and $1 \leq i \leq 6$, let:

•
$$B^{jk}(u) = \begin{bmatrix} A_j & u_j & 0\\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$$

- $\bullet \ B^{jk}_i(u)$ be the 5×6 matrix that is $B^{jk}(u)$ with its $i^{\rm th}$ row removed
- $\wedge_5 B_i^{jk}(u)$ be the height 6 column of signed maximal minors of $B_i^{jk}(u)$
- $\widetilde{\wedge}_5 B_i^{jk}(u)$ be the height 4 column consisting of the top of $\wedge_5 B_i^{jk}(u)$
- $\bullet \ C^{jk}(v), \ C^{jk}_i(v), \ \wedge_5 C^{jk}_i(v) \ \text{and} \ \widetilde{\wedge}_5 C^{jk}_i(v) \ \text{be the analogs with} \ v.$

Write Q(X,Y) = T(X,X,Y,Y), where $T(\bullet,\bullet,\bullet,\bullet)$ is a quadrilinear form.

Theorem (Joswig-K.-Sturmfels-Wagner 2015)

The octics coming from two pairs of cameras:

 $T\left(\widetilde{\wedge}_{5}B_{i_{1}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}B_{i_{2}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}C_{i_{3}}^{j_{2}k_{2}}(v)\,,\,\widetilde{\wedge}_{5}C_{i_{4}}^{j_{2}k_{2}}(v)\,\right)$

cut out W_A as a subvariety of $V_A \times V_A$ set-theoretically. For this, 16 suffice.

伺 ト く ヨ ト く ヨ ト

Write Q(X,Y) = T(X,X,Y,Y), where $T(\bullet,\bullet,\bullet,\bullet)$ is a quadrilinear form.

Theorem (Joswig-K.-Sturmfels-Wagner 2015)

The octics coming from two pairs of cameras:

 $T\left(\widetilde{\wedge}_{5}B_{i_{1}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}B_{i_{2}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}C_{i_{3}}^{j_{2}k_{2}}(v)\,,\,\widetilde{\wedge}_{5}C_{i_{4}}^{j_{2}k_{2}}(v)\,\right)$

cut out W_A as a subvariety of $V_A \times V_A$ set-theoretically. For this, 16 suffice.

Sketch.

These octics vanish on W_A . Conversely:

Write Q(X,Y) = T(X,X,Y,Y), where $T(\bullet,\bullet,\bullet,\bullet)$ is a quadrilinear form.

Theorem (Joswig-K.-Sturmfels-Wagner 2015)

The octics coming from two pairs of cameras:

 $T\left(\widetilde{\wedge}_{5}B_{i_{1}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}B_{i_{2}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}C_{i_{3}}^{j_{2}k_{2}}(v)\,,\,\widetilde{\wedge}_{5}C_{i_{4}}^{j_{2}k_{2}}(v)\,\right)$

cut out W_A as a subvariety of $V_A \times V_A$ set-theoretically. For this, 16 suffice.

Sketch.

These octics vanish on W_A . Conversely:

• For $n \ge 3$, show one of $B_1^{12}, B_2^{12}, B_1^{12}, B_2^{13}$ has rank 5, similarly with C.

Write Q(X,Y) = T(X,X,Y,Y), where $T(\bullet,\bullet,\bullet,\bullet)$ is a quadrilinear form.

Theorem (Joswig-K.-Sturmfels-Wagner 2015)

The octics coming from two pairs of cameras:

 $T\left(\widetilde{\wedge}_{5}B_{i_{1}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}B_{i_{2}}^{j_{1}k_{1}}(u)\,,\,\widetilde{\wedge}_{5}C_{i_{3}}^{j_{2}k_{2}}(v)\,,\,\widetilde{\wedge}_{5}C_{i_{4}}^{j_{2}k_{2}}(v)\,\right)$

cut out W_A as a subvariety of $V_A \times V_A$ set-theoretically. For this, 16 suffice.

Sketch.

These octics vanish on W_A . Conversely:

- For $n \ge 3$, show one of $B_1^{12}, B_2^{12}, B_1^{12}, B_2^{13}$ has rank 5, similarly with C.
- For n = 2, need special geometric argument because of world points collinear with centers.

伺 ト イヨト イヨト

Conjecture (Joswig-K.-Sturmfels-Wagner 2015)

 J_A is minimally generated by $\frac{4}{9}n^6 - \frac{2}{3}n^5 + \frac{1}{36}n^4 + \frac{1}{2}n^3 + \frac{1}{36}n^2 - \frac{1}{3}n$ polynomials, coming from two triples of cameras, and their number per symmetry class of degrees is:

$(110000): 1 \cdot 2\binom{n}{2}$	$(220111): 3 \cdot 2\binom{n}{2}\binom{n}{3}$
$(220220): 9 \cdot {\binom{n}{2}}^2$	$(211211): 1 \cdot n^2 \binom{n-1}{2}$
$(111000): 1 \cdot 2\binom{n}{3}$	$(211111): 1 \cdot 2n \binom{n-1}{2} \binom{n}{2}$
$(220211): 3 \cdot 2n \binom{n}{2} \binom{n-1}{2}$	$(111111): 1 \cdot {\binom{n}{3}}^2$

Conjecture (Joswig-K.-Sturmfels-Wagner 2015)

 J_A is minimally generated by $\frac{4}{9}n^6 - \frac{2}{3}n^5 + \frac{1}{36}n^4 + \frac{1}{2}n^3 + \frac{1}{36}n^2 - \frac{1}{3}n$ polynomials, coming from two triples of cameras, and their number per symmetry class of degrees is:

$(110000): 1 \cdot 2\binom{n}{2}$	$(220111): 3 \cdot 2\binom{n}{2}\binom{n}{3}$
$(220220): 9 \cdot \binom{n}{2}^2$	$(211211): 1 \cdot n^2 \binom{n-1}{2}^2$
$(111000): 1 \cdot 2\binom{n}{3}$	$(211111): 1 \cdot 2n \binom{n-1}{2} \binom{n}{3}$
$(220211): 3 \cdot 2n \binom{n}{2} \binom{n-1}{2}$	$(111111): 1 \cdot {\binom{n}{3}}^2$

Computational proof.Up to n = 5, when there are 4940 minimal generators.

- Images of four coplanar world points.
- Images of rigid world triangles.
- Proposed approach to images of unlabeled world points.

- [1] C. Aholt, B. Sturmfels and R. Thomas: A Hilbert scheme in computer vision, Canadian Journal of Mathematics **65** (2013) 961–988.
- [2] D. Grayson and M. Stillman: Macaulay2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.
- [3] R. Hartley and A. Zisserman: *Multiple View Geometry in Computer Vision*, Cambridge University Press, 2003.
- [4] A. Heyden and K. Aström: Algebraic properties of multilinear constraints, Mathematical Methods in the Applied Sciences 20 (1997) 1135–1162.
- [5] M. Joswig, J. Kileel, B. Sturmfels and A. Wagner: *Rigid Multiview Varieties*, arXiv:1509.032571.
- [6] B. Li: Images of rational maps of projective spaces, arXiv:1310.8453.
- [7] E. Miller and B. Sturmfels: *Combinatorial Commutative Algebra*, Graduate Texts in Mathematics, Springer Verlag, New York, 2004.

◆ 同 ♪ ◆ 三 ♪

Thank you!

Joe Kileel (Berkeley) Rigid Multiview Varieties

æ

□ ▶ ▲ 臣 ▶ ▲