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Algebraic vision

Multiview geometry studies 3D scene reconstruction from images.
Foundations in projective geometry. Algebraic vision bridges to
algebraic geometry (combinatorial, computational, numerical, ...).
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What is a camera?

A camera is a full rank 3× 4 real matrix A.
Determines a projection P3 99K P2; X 7→ AX

thought of as taking a picture.
A choice of point C ∈ P3 (center), plane π ⊂ P3 (viewing plane),
and coordinates on π gives a camera.
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Multiview variety

Given n cameras A = (A1, . . . , An) in generic position, their
multiview variety VA is the closure of the image of the rational
map:

P3 99K P2 × P2 × · · · × P2

X 7→ (A1X,A2X, . . . , AnX).

Space of n consistent views of one world point.

Irreducible threefold isomorphic to P3 blown-up at n points.

Prime ideal IA ⊂ R[ui0, ui1, ui2 : i = 1, . . . , n] is
Zn-multihomogeneous.
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Equations

For which uj and uk, does: {
AjX = λjuj

AkX = λkuk

have a nonzero solution in X,λj , λk ? Rewrite as:

Bjk

 X
−λj

−λk

 = 0 where Bjk :=

[
Aj uj 0
Ak 0 uk

]
6×6

Theorem (Heyden-Aström 1997)

For n ≥ 4, the
(
n
2

)
bilinear forms det(Bjk) where 1 ≤ j < k ≤ n cut out VA

set-theoretically.

Theorem (Aholt-Sturmfels-Thomas 2013)

These
(
n
2

)
bilinear forms and

(
n
3

)
trilinear forms minimally generate IA. Those

and
(
n
4

)
quadrilinear forms are a universal Gröbner basis.

Joe Kileel (Berkeley) Rigid Multiview Varieties



Equations

For which uj and uk, does: {
AjX = λjuj

AkX = λkuk

have a nonzero solution in X,λj , λk ? Rewrite as:

Bjk

 X
−λj

−λk

 = 0 where Bjk :=

[
Aj uj 0
Ak 0 uk

]
6×6

Theorem (Heyden-Aström 1997)

For n ≥ 4, the
(
n
2

)
bilinear forms det(Bjk) where 1 ≤ j < k ≤ n cut out VA

set-theoretically.

Theorem (Aholt-Sturmfels-Thomas 2013)

These
(
n
2

)
bilinear forms and

(
n
3

)
trilinear forms minimally generate IA. Those

and
(
n
4

)
quadrilinear forms are a universal Gröbner basis.
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Rigid multiview variety

Given n cameras A = (A1, . . . , An) in generic position, their rigid
multiview variety WA is the closure of the image of the rational map:

V (Q) ↪→ P3 × P3 99K (P2)n × (P2)n

(X,Y ) 7−→
(
(A1X, . . . AnX), (A1Y, . . . AnY )

)
,

Q(X,Y ) = (X0Y3−Y0X3)
2+(X1Y3−Y1X3)

2+(X2Y3−Y2X3)
2−X3

2Y3
2.

f2f1

X
Y

u2u1 v1 v2

Irreducible 5-fold inside VA × VA. Prime ideal JA in

R[ui0, ui1, ui2, vi0, vi1, vi2 : i = 1, . . . , n] is Z2n-multihomogeneous.
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Equations

Write Q(X,Y ) = T (X,X, Y, Y ), where T (•, •, •, •) is a quadrilinear form.

Theorem (Joswig-K.-Sturmfels-Wagner 2015)

The octics coming from two pairs of cameras:

T
(
∧̃5B

j1k1
i1

(u) , ∧̃5B
j1k1
i2

(u) , ∧̃5C
j2k2
i3

(v) , ∧̃5C
j2k2
i4

(v)
)

cut out WA as a subvariety of VA × VA set-theoretically. For this, 16 suffice.
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Triangulation

From two views of one world point X, recover X by intersecting
back-projected lines. Works unless X is collinear with centers.

For 1 ≤ j < k ≤ n and 1 ≤ i ≤ 6, let:

Bjk(u) =

[
Aj uj 0
Ak 0 uk

]
6×6

Bjk
i (u) be the 5× 6 matrix that is Bjk(u) with its ith row removed

∧5B
jk
i (u) be the height 6 column of signed maximal minors of Bjk

i (u)

∧̃5B
jk
i (u) be the height 4 column consisting of the top of ∧5B

jk
i (u)

Cjk(v), Cjk
i (v), ∧5C

jk
i (v) and ∧̃5C

jk
i (v) be the analogs with v.
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Equations
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cut out WA as a subvariety of VA × VA set-theoretically. For this, 16 suffice.

Sketch.

These octics vanish on WA. Conversely:

For n ≥ 3, show one of B12
1 , B

12
2 , B

12
1 , B

13
2 has rank 5, similarly with C.

For n = 2, need special geometric argument because of world points
collinear with centers. �
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Computations

Conjecture (Joswig-K.-Sturmfels-Wagner 2015)

JA is minimally generated by 4
9n

6 − 2
3n

5 + 1
36n

4 + 1
2n

3 + 1
36n

2 − 1
3n

polynomials, coming from two triples of cameras, and their number per
symmetry class of degrees is:

(110..000..) : 1 · 2
(
n
2

)
(220..111..) : 3 · 2

(
n
2

)(
n
3

)
(220..220..) : 9 ·

(
n
2

)2
(211..211..) : 1 · n2

(
n−1
2

)2
(111..000..) : 1 · 2

(
n
3

)
(211..111..) : 1·2n

(
n−1
2

)(
n
3

)
(220..211..) : 3·2n

(
n
2

)(
n−1
2

)
(111..111..) : 1 ·

(
n
3

)2

Computational proof.

Up to n = 5, when there are 4940 minimal generators.
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Generalizations

Images of four coplanar world points.

Images of rigid world triangles.

Proposed approach to images of unlabeled world points.
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Thank you!
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