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Algebraic vision

Multiview geometry studies 3D scene reconstruction from images.
Foundations in projective geometry. Algebraic vision bridges to
algebraic geometry (combinatorial, computational, numerical, ...).
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3D reconstruction

Example from Building Rome in a Day (2009) by S. Agarwal et al.

Input: 2106 Flickr images tagged “Colosseum”

Output: configuration of cameras and 819,242 3D points

Joe Kileel (Berkeley) The Chow form of the essential variety in computer vision



3D reconstruction

Example from Building Rome in a Day (2009) by S. Agarwal et al.

Input: 2106 Flickr images tagged “Colosseum”

Output: configuration of cameras and 819,242 3D points

Joe Kileel (Berkeley) The Chow form of the essential variety in computer vision



How do they do it?

Over-simplification:

Build a graph whose nodes are the images. Put an edge
between two images if their views likely overlap.

Do robust 2-view reconstruction along edges, with point pairs.

Piece together. Refine estimate with nonlinear least squares.
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Moral: ‘Tiny’ reconstructions are subroutines in large-scale
reconstructions. The ‘tiny’ reconstructions rely on super-fast,
specialized polynomial equation solvers.
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What is a camera?

A camera is a full rank 3× 4 real matrix A.

Determines a projection P3 99K P2; X̃ 7→ AX̃.

Math Interpretation
P3 world

P2 image plane

ker(A) camera center

K internal parameters
(e.g. focal length)

[R | t] external parameters
(orientation, center)

Above A3×4 =: K3×3 [R3×3 | t3×1] where K is upper triangular and
R is a rotation. If K = I, so A = [R | t], then A is calibrated.

A is calibrated ⇐⇒
(
A sends the conic { (a : b : c : 0) | a2 + b2 + c2 = 0 } ⊂ P3

to the conic { (a : b : c) | a2 + b2 + c2 = 0 } ⊂ P2

)
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Our problem

Question (S. Agarwal et al. 2014)

Let m = 6. Given point pairs {(x(i), y(i)) ∈ R2 × R2 | i = 1, . . . ,m}. Consider
the system of equations: {

AX̃(i) ≡ x̃(i)

BX̃(i) ≡ ỹ(i).
(1)

Here x̃(i) = (x
(i)
1 : x

(i)
2 : 1)T ∈ P2 and ỹ(i) = (y

(i)
1 : y

(i)
2 : 1)T ∈ P2. The

unknowns are two 3× 4 matrices A,B with rotations in their left 3× 3 block

and m = 6 points X̃(i) ∈ P3. When does (1) admit a solution?

Interpretation: characterize those m = 6 point pairs between two
calibrated images that are mutually consistent.

When m = 5, the system admits 10 complex solutions. Solvers for this
are used in large-scale reconstructions.

When m = 6, generically no exact solution. If there is a solution, then
generically it is unique up to the natural symmetries.
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Main result

Recall m = 6, RHS given, LHS unknown with A,B calibrated:{
AX̃(i) ≡ x̃(i)

BX̃(i) ≡ ỹ(i).
(1)

Theorem (Fløystad, K., Ottaviani 2016)

There exists an explicit 20× 20 skew-symmetric matrix M(x, y) of
degree (6, 6) polynomials over Z in the coordinates of (x(i), y(i))
such that, for generic point correspondences, (1) admits a complex
solution if and only if M(x(i), y(i)) is rank-deficient.
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Here’s that matrix. . .
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. . . after making this substitution
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What about noisy image point pairs?

Practical Question

While the matrix M(x, y) drops rank when there is an exact solution to (1),
how can we tell if there is an approximate solution?

Answer

Calculate the Singular Value Decomposition of M(x, y) when a noisy six-tuple
of image point correspondences is plugged in. Look for a big spectral gap
between smallest singular values.
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Essential matrices

Definition

Given two calibrated cameras A,B. Consider the linear map:

P2 99K Gr(P1,P3) 99K (P2)∨

x̃ 7→ A−1(x̃) 7→ B(A−1(x̃)).

Here the first map takes preimage. Let EA,B be the 3× 3 real matrix
representing the composite with respect to standard bases. Then EA,B is
called an essential matrix. It represents the relative pose of A and B.

Facts

Let x̃, ỹ ∈ P2. Then there exists X̃ ∈ P3 such that AX̃ ≡ x̃ and BX̃ ≡ ỹ
if and only if ỹTEA,B x̃ = 0.

The singular values of EA,B satisfy σ1 = σ2 and σ3 = 0.

Definition/Proposition

Let E := {E ∈ R3×3 : σ1(E) = σ2(E), σ3 = 0}. Then the real radical ideal is
E = {E ∈ R3×3 : det(E) = 0, 2(EET )E − tr(EET )E = 0}. Let EC ⊂ P8

C be
the set of complex solutions, called the essential variety. Dim 5, degree 10.
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Proof of main result

1 Reformulate: want the Chow form of EC. Degree 10 equation in Plücker
coordinates for the divisor {L ∈ Gr(P2,P8) |L ∩ EC 6= ∅} ⊂ Gr(P2,P8).

2 New geometric description: we prove that the singular locus of EC is the
surface Sing(EC) = {abT ∈ P8 | aT a = bT b = 0}. Also, the line secant
variety of the singular locus equals EC, i.e. σ2(Sing(EC)) = EC.

3 Easier equations: we deduce that EC is a hyperplane section of the
projective variety PXs

4,2 of rank ≤ 2 symmetric 4× 4 matrices.

4 Eisenbud-Schreyer theory: we construct a rank 2 Ulrich sheaf on PXs
4,2.

This means the corresponding graded module is Cohen-Macaulay with a
linear minimal free resolution. Here it is GL(4)-equivariant and self-dual:

Through the Bernstein-Gel’fand-Gel’fand correspondence, the product of
the differential matrices over the exterior algebra gives a Pfaffian formula
for the Chow form of PXs

4,2. For EC, we restrict to the hyperplane. �
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Thank you!
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