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Abstract

We describe properties of Hadamard products of algebraic vari-
eties, the multiplicative version of joins. We study linear spaces as
an interesting case. We show any Hadamard power of a line is a
linear space, and we construct star configurations from products
of collinear points. Tropical geometry is used to find the degree of
Hadamard products of other linear spaces.

1. Hadamard products in general

Work over C throughout.

Definition 1. Given points p = [a0 : a1 : . . . : an] and q = [b0 : b1 :
. . . : bn] in Pn, their Hadamard product is p ? q := [a0b0 : a1b1 : . . . :
anbn], when defined. Given varieties X, Y ⊂ Pn, their Hadamard
product is X ? Y := {p ? q : p ∈ X, q ∈ Y, p ? q is defined}. It is a
linear projection of the Segre product ofX and Y . Given a positive
integer r, the r−th Hadamard power of X is X?r := X?(r−1) ?X.

Three motivations to study Hadamard products of varieties:

•Multiplicative analog of joins and secants.

•Correspond to Minkowski sums in tropical geometry.

• Algebraic statistics: varieties of joint probability distributions
arising from graphical models are Hadamard products.

Lemma 2 (Terracini’s lemma). Let X, Y ⊂ Pn be varieties, and
p ∈ X, q ∈ Y general points. Then:

Tp?q(X ? Y ) = 〈p ? Tq(Y ), q ? Tp(X)〉.

Lemma 3 (Tropical connection). Let X, Y ⊂ Pn be irreducible
varieties. The tropicalization of the Hadamard product is the
Minkowski sum of the tropicalizations:

trop(X ? Y ) = trop(X) + trop(Y )

as sets. If also X × Y 99K X ? Y is generically δ to 1, then:

trop(X ? Y ) =
1

δ

(
trop(X) + trop(Y )

)
as weighted balanced fans.

Example 4 (Toric varieties). The set of varieties parameterized by
monomials is closed under Hadamard product.

2. Powers of a line

Let L ⊂ Pn be a line on which every point has at most one zero coordinate. Let 1 ≤ r ≤ n.

Theorem 5. The power L?r ⊂ Pn is a linear space of dimension r.

Sketch. (1) L?r has dimension r, by Terracini. (2) The linear span
of L?r has dimension r, by induction.

Proposition 6. Plücker coordinates for L?r and L relate by:

[i0, i1, . . . , ir]L?r =
∏

0≤j<k≤r
[ij, ik]L.

Corollary 7. The hyperplane L?(n−1) ⊂ Pn is defined by:

n∑
i=0

(
(−1)n+i

∏
0≤j<k≤n
j,k 6= i

[j, k]L
)
xi = 0.

3. Star configurations

Let N ≥ n.

Definition 8. A set of
(N
n

)
points X ⊂ Pn is a star configuration

if there exist hyperplanes H1, . . . , HN ⊂ Pn such that:

•Hi are in linear general position

•X =
⋃

1≤i1<...<in≤N Hi1 ∩ . . . ∩Hin.

To construct a star configuration, one could take N random hy-
perplanes and solve

(N
n

)
many n × (n + 1) linear systems. We

found a much cheaper construction.

Definition 9. Let Z ⊂ Pn be a finite set of points. The r−th
square-free Hadamard power of Z is:

Z?r := {p1 ? . . . ? pr : pi ∈ Z and pi 6= pj for i 6= j}.

Theorem 10. Let L ⊂ Pn be a line on which every point has at most one zero coordinate, and
let Z ⊂ L be a set of N points none of which has a zero coordinate. Then Z?n is a
star configuration.

Sketch. For hyperplanes, set Hi = pi ? L
?(n−1). Then Hi ∩ Hj =

pi ? pj ? L
?(n−2) etc.

Figure 1: Taking Hadamard square of a line in P2 with three
marked points gives a star configuration in P2 of three points.

4. Products of other linear spaces
In general, for linear spaces L,M ⊂ Pn, the product L ? M con-
tains many linear spaces {p ? M : p ∈ L} ∪ {q ? L : q ∈M}, but is
not a linear space. We quantify this by dimension of linear span
and degree.

Let L1, . . . , Lk ⊂ Pn be generic linear spaces of dimensions
m1, . . . ,mk. Let r1, . . . , rk be positive integers. Assume n� 0.

Proposition 11 (Linear span). The linear span 〈L?r11 ? . . . ? L?rkk 〉
has dimension

(m1+r1
r1

)
. . .
(mk+rk

rk

)
− 1.

Corollary 12 (Identifiability). The product L?r11 ? . . . ?L?rkk is identi-
fiable, meaning L×r11 × . . .×L×rkk 99K L?r11 ? . . .?L?rkk is generically
(r1!) . . . (rk!) to 1.

Theorem 13 (Degree formula). Set m = r1m1 + r2m2 + ... + rkmk
and d =

( m
m1,m1, ... ,mk

)
(downstairs there are ri copies of mi).

Then L?r11 ? . . . ? L?rkk has dimension m and degree d
(r1!) ... (rk!)

.

Sketch. (1) Generically trop(Li) equals the standard tropical lin-
ear space Λmi of dimension mi:

trop(Li) = Λmi :=
⋃

0≤j1<...<jmi≤n
pos(ej1, . . . ,ejmi).

Here e0, . . . ,en are images in Rn+1/R1 of the standard basis vec-
tors, pos is positive span, and all facet multiplicites are 1.
(2) So, trop(L1)+r1 + . . . + trop(Lk)+rk = dΛm (same support as
Λm, all facet multiplicities d).
(3) By Lemma 3 and Corollary 12:

trop(L?r11 ? . . . ? L?rkk ) =
d

(r1!) . . . (rk!)
Λm.

(4) For an irreducible variety, tropicalization preserves dimension
and degree is recovered by stably intersecting with the standard
tropical linear space of complementary dimension and then mea-
suring the multiplicity of the origin.

Example 14. Let L and M be generic distinct lines in P3, with
Plücker coordinates [ij] := [i, j]L and {ij} := [i, j]M respectively.
Then L ? M is the quadric surface in P3 doubly ruled by {p ? M :
p ∈ L} ∪ {q ? L : q ∈M} cut out by:

[12][13][23]{12}{13}{23} x2
0 + [02][03][23]{02}{03}{23} x2

1

+ [01][03][13]{01}{03}{13} x2
2 + [01][02][12]{01}{02}{12} x2

3
− [23]{23}

(
[02][13]{03}{12} + [03][12]{02}{13}

)
x0x1

+ [13]{13}
(
[01][23]{03}{12} + [03][12]{01}{23}

)
x0x2

− [12]{12}
(
[01][23]{02}{13} + [02][13]{01}{23}

)
x0x3

− [03]{03}
(
[01][23]{02}{13} + [02][13]{01}{23}

)
x1x2

+ [02]{02}
(
[01][23]{03}{12} + [03][12]{01}{23}

)
x1x3

− [01]{01}
(
[02][13]{03}{12} + [03][12]{02}{13}

)
x2x3.

Sketch. The incidence variety

X =
{

(p, L,M) ∈ P3 ×Gr(2, 4)×Gr(2, 4) : p ∈ L ?M
}

has three group actions:

•S2 acts by switching L and M

•S4 acts by permuting the homogeneous coordinates of P3

• (C∗)4/C∗ acts by scaling the homogeneous coordinates of P3.

So, the defining equation of X is (S2 × S4)-symmetric and Z3-
multihomogeneous. Also, specializing L = M should give the
square of the linear equation in Corollary 7.

Example 15. Let P be a generic 2-plane in P5, with Plücker co-
ordinates [ijk] := [i, j, k]P . Then P ?2 is the cubic hypersurface in
P5. In a defining equation, the coefficient of x3

0 is −(−1)0+0+0 times:
[123][124][125][134][135][145][234][235][245][345].

The coefficient of x2
0x1 is −(−1)0+0+1 times:

(
[023][045][124][125][134][135] + [024][035][123][125][134][145] + [025][034][123][124][135][145]

)
[234][235][245][345].

The coefficient of x0x1x2 is −(−1)0+1+2 times:
[013][024][134][234][125][035][235][045][145][345] + [013][124][034][234][025][135][235][045][145][345] +

[023][014][134][234][125][035][135][045][245][345] + [023][124][034][134][015][135][235][045][245][345] +

[123][014][034][234][025][035][135][145][245][345].

To get the other coefficients, act on the indices by S6.

Sketch. Specialize P = L?2, where L is a line.
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