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Algebraic vision

Multiview geometry studies 3D scene reconstruction from images.
Foundations in projective geometry. Algebraic vision bridges to
algebraic geometry (combinatorial, computational, numerical, ...).

Oct 8–9, 2015, Berlin

May 2–6, 2016, San Jose

Today, I want to tell you about a numerical algebraic geometry project

that I have been working on this summer. I welcome your feedback.
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First the background: 3D reconstruction

Example from Building Rome in a Day (2009) by S. Agarwal et al.

Input: 2106 Flickr images tagged “Colosseum”

Output: configuration of cameras and 819,242 3D points

Figure: 3D model of the Colosseum in Rome from 2106 Flickr images
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How does Google do it?

I Identify pairs or triplets of images that overlap.

I Do robust reconstruction with pairs or triplets of images.

I Piece together.



Google solves polynomial systems

I Identify pairs or triplets of images that overlap.

I Do robust reconstruction with pairs or triplets of images.

I Piece together.

For mathematicians: ‘Tiny’ reconstructions are subroutines
in large-scale reconstructions. The ‘tiny’ reconstructions rely
on super-fast, specialized polynomial equation solvers.

[Fischler-Bolles: Random Sample Consensus: a Paradigm for Model Fitting with

Application to Image Analysis and Automated Cartography, 1981]

[Kúkelová-Bujnak-Pajdla: Automatic Generator of Minimal Problem Solvers, 2008]



What is a camera?

A camera is a full rank 3× 4 real matrix A (up to scale).

Determines a projection P3 99K P2; X 7→ AX .

Math Interpretation
P3 world

P2 image plane

ker(A) camera center

K internal parameters
(e.g. focal length)

[R | t] external parameters
(orientation, center)

Above A3×4 =: K3×3 [R3×3 | t3×1] where K is upper triangular and
R is a rotation. If K = I , so A = [R | t], then A is calibrated.
RQ factorization
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What is a camera configuration?

Images alone do not determine absolute position of cameras.

Definition
A configuration of n calibrated cameras is an orbit of the group
G ⊂ GL(4) of appropriate changes of world coordinates acting on:

{(A1, . . . ,An) : Ai is a calibrated camera}
via simultaneous right multiplication. Here G consists of
composites translations, rotations, central dilations:

G := {g ∈ C4×4 | (gij)1≤i,j≤3 ∈ SO(3,C), g41 = g42 = g43 = 0 and g44 6= 0}.



Warmup: Two Calibrated Views

A =

? ? ? ?
? ? ? ?
? ? ? ?

 B =

� � � �� � � �
� � � �


The image of (A,B) : P3 99K P2 × P2 is the hypersurface defined by:

f (x , x ′) = det



? ? ? ? x1 0
? ? ? ? x2 0
? ? ? ? x3 0

� � � � 0 x ′1
� � � � 0 x ′2
� � � � 0 x ′3

 (multiview variety)

This polynomial is bilinear:

f (x , x ′) =
[
x1 x2 x3

]
·

� � �
� � �
� � �

 ·
x ′1x ′2
x ′3


This 3×3-matrix is the essential matrix of the two cameras.

It is determined by the configuration of (A,B).

What is its SVD? How to write � in terms of ? and � ?



Warmup cont’d: Nister’s 5 point algorithm

I The set of all essential matrices forms a variety E ⊂ P(C3×3).
E has dimension 5 and degree 10.

I Using Gröbner bases, D. Nister built an efficient solver that
recovers 10 essential matrices from 5 image point pairs.

I Given a pair (x , x ′) ∈ P2 × P2 of points in the first and second
images that are pictures of the same world point. Then the
essential matrix E for the views must satisfy xTEx ′ = 0.
Nister intersects 5 of these hyperplanes with E . Minimal problem

I From essential matrix, camera configuration is easy to get.

I Nister’s solver is used alot for RANSAC 3D reconstruction.

[D. Nistér: An efficient solution to the five-point relative pose problem, 2004]

I Effort for 3 calibrated view solver so far has proven elusive.
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Minimal Problems for the Calibrated Trifocal Variety

I Determines: algebraic degree for various parametrized polynomial
systems, for recovery of configurations of three calibrated cameras

I Method: take special linear sections of fixed Tcal ⊂ P(C3×3×3)

I Relies on: numerical algebraic geometry software



Point/line correspondences

I 3D reconstruction uses points/lines in the photos that match,

I Call elements of P2 image points, and elements of (P2)∨ image lines.

I An element of (P2 t (P2)∨)×3 is a point/line image correspondence.

I E.g., an element of P2 × P2 × (P2)∨ is called a point-point-line image
correspondence, denoted PPL.

Definition
A calibrated camera configuration (A,B,C) is consistent with a given
point/line image correspondence if there exist a point in P3 and a line in P3

containing that point such that are such that (A,B,C) respectively map these
to the given points and lines in P2.

Example
A configuration (A,B,C) is consistent with a given PPL image correspondence
(x , x ′, `′′) ∈ P2 × P2 × (P2)∨ if there exist (X , L) ∈ P3 × Gr(P1,P3) with X ∈ L
such that AX = x ,BX = x ′, and CL = `′′. In particular, this implies that
X 6= ker(A), ker(B) and ker(C) /∈ L.

Say configuration (A,B,C) is consistent with a set of point/line

correspondences if it is consistent with each correspondence.



Main result

Theorem (K)

The rows of the following table display the algebraic degree for 66 minimal

problems across three calibrated views. Given generic point/line image

correspondences in the amount specified by the entries in the first five columns,

then the number of calibrated camera configurations over C that are consistent

with those correspondences equals the entry in the sixth column.

#PPP #PPL #PLP #LLL #PLL #configurations

3 1 0 0 0 272
3 0 0 1 0 216
3 0 0 0 2 448
2 2 0 0 1 424
2 1 1 0 1 528
2 1 0 1 1 424
2 1 0 0 3 736
2 0 0 2 1 304
2 0 0 1 3 648
2 0 0 0 5 1072
1 4 0 0 0 160
1 3 1 0 0 520
1 3 0 1 0 360
1 3 0 0 2 520
1 2 2 0 0 672



Main result (cont’d)
#PPP #PPL #PLP #LLL #PLL #configurations

1 2 1 1 0 552
1 2 1 0 2 912
1 2 0 2 0 408
1 2 0 1 2 704
1 2 0 0 4 1040
1 1 1 2 0 496
1 1 1 1 2 896
1 1 1 0 4 1344
1 1 0 3 0 368
1 1 0 2 2 736
1 1 0 1 4 1184
1 1 0 0 6 1672
1 0 0 4 0 360
1 0 0 3 2 696
1 0 0 2 4 1176
1 0 0 1 6 1680
1 0 0 0 8 2272
0 5 0 0 1 160
0 4 1 0 1 616
0 4 0 1 1 456
0 4 0 0 3 616
0 3 2 0 1 1152
0 3 1 1 1 880
0 3 1 0 3 1280
0 3 0 2 1 672
0 3 0 1 3 1008
0 3 0 0 5 1408



Main result (cont’d again)

#PPP #PPL #PLP #LLL #PLL #configurations

0 2 2 1 1 1168
0 2 2 0 3 1680
0 2 1 2 1 1032
0 2 1 1 3 1520
0 2 1 0 5 2072
0 2 0 3 1 800
0 2 0 2 3 1296
0 2 0 1 5 1848
0 2 0 0 7 2464
0 1 1 3 1 1016
0 1 1 2 3 1552
0 1 1 1 5 2144
0 1 1 0 7 2800
0 1 0 4 1 912
0 1 0 3 3 1456
0 1 0 2 5 2088
0 1 0 1 7 2808
0 1 0 0 9 3592
0 0 0 5 1 920
0 0 0 4 3 1464
0 0 0 3 5 2176
0 0 0 2 7 3024
0 0 0 1 9 3936
0 0 0 0 11 4912



Some clarifying comments

Remark
A calibrated camera configuration (A,B,C ) has 11 degrees of
freedom, and the first five columns in the table above represent
conditions of codimension 3, 2, 2, 2, 1, respectively.

Remark
The proof technique relies on trifocal tensors. These break the
symmetry between the three views. The numbers reported above
are the true, intrinsic degrees for those 66 cases, based on the
underlying camera geometry. However, using correspondences of
type LPP,LPL,LLP, there are other minimal problems with degrees
that are not covered by the result and proof technique.

Remark
Roughly speaking, these algebraic degrees are complexity measures.



Example: ‘1PPP + 4PPL’ has degree 160

Given the following set of real, random correspondences:

PPP :

0.6132
0.8549
0.5979

 ,

0.4599
0.5713
0.1812

 ,

0.6863
0.4508
0.1834

 PPL :

0.6251
0.9248
0.9849

 ,

0.3232
0.5453
0.6941

 ,

0.3646
0.1497
0.1364


PPL :

0.4970
0.6532
0.8429

 ,

0.5405
0.8342
0.6734

 ,

0.2692
0.8861
0.1333

 PPL :

0.2896
0.6909
0.4914

 ,

0.6898
0.9855
0.6777

 ,

0.6519
0.8469
0.6855


PPL :

0.8933
0.3375
0.1054

 ,

0.7062
0.6669
0.7141

 ,

0.3328
0.8228
0.6781

 .

This is a generic instance of the minimal problem ‘ 1PPP + 4PPL ’. Up to the
action of G, there are only a positive finite number of three calibrated cameras
that are exactly consistent with this image data, namely 160 complex
configurations. For this instance, it turns out that 18 of those configurations
are real. For example, one is:

A =

[
1 0 0 0
0 1 0 0
0 0 1 0

]
, B =

[
−0.22 0.95 −0.18 1
0.96 0.24 0.08 1.44
−0.12 0.15 0.97 0.97

]
, C =

[
0.17 0.94 −0.28 1.41
−0.95 0.22 0.18 −0.13
−0.24 −0.23 −0.94 −1.16

]
.



Multi-view varieties

These give tight equational formulations for point/line
correspondences and cameras to be consistent.

Definition
Fix cameras A,B,C corresponding to linear projections α, β, γ : P3 99K P2. Set
F`0,1=

{
(X , L) ∈ P3 × Gr(P1,P3)

∣∣ X ∈ L
}

.

I PLL multi-view variety denoted XPLL
A,B,C is the closure of the image of

F`0,1 99K P2
A × (P2

B)∨ × (P2
C )∨, (X , L) 7→

(
α(X ), β(L), γ(L)

)
I LLL multi-view variety denoted X LLL

A,B,C is the closure of the image of
Gr(P1,P3) 99K (P2

A)∨ × (P2
B)∨ × (P2

C )∨, L 7→
(
α(L), β(L), γ(L)

)
I PPL multi-view variety denoted XPPL

A,B,C is the closure of the image of
F`0,1 99K P2

A × P2
B × (P2

C )∨, (X , L) 7→
(
α(X ), β(X ), γ(L)

)
I PLP multi-view variety denoted XPLP

A,B,C is the closure of the image of
F`0,1 99K P2

A × (P2
B)∨ × P2

C , (X , L) 7→
(
α(X ), β(L), γ(X )

)
I PPP multi-view variety denoted XPPP

A,B,C is the closure of the image of
P3 99K P2

A × P2
B × P2

C , X 7→
(
α(X ), β(X ), γ(X )

)
.



Equations of multi-view varieties
Theorem (Aholt-Sturmfels-Thomas, K)

I dim(XPLL
A,B,C ) = 5 and I (XPLL

A,B,C ) = 〈TA,B,C (x , `′, `′′)〉 ⊂ C[xi , `
′
j , `
′′
k ]

I dim(X LLL
A,B,C ) = 4 and I (X LLL

A,B,C ) ⊂ C[`i , `
′
j , `
′′
k ] is generated by the maximal

minors of the matrix
(
AT ` BT `′ CT `′′

)
4×3

I dim(XPPL
A,B,C ) = 4 and I (XPPL

A,B,C ) ⊂ C[xi , x
′
j , `
′′
k ] is generated by the maximal

minors of the matrix

 A x 0
B 0 x ′

`′′TC 0 0


7×6

I dim(XPLP
A,B,C ) = 4 and I (XPLP

A,B,C ) ⊂ C[xi , `
′
j , x
′′
k ] is generated by the maximal

minors of the matrix

 A x 0
C 0 x ′′

`′TB 0 0


7×6

I dim(XPPP
A,B,C ) = 3 and I (XPPP

A,B,C ) ⊂ C[xi , x
′
j , x
′′
k ] is generated by the maximal

minors of the matrix

A x 0 0
B 0 x ′ 0
C 0 0 x ′′


9×7

together with

det

(
A x 0
B 0 x ′

)
6×6

and det

(
A x 0
C 0 x ′′

)
6×6

and det

(
B x ′ 0
C 0 x ′′

)
6×6



Example cont’d: ‘1PPP + 4PPL’

I Multi-view equations above lead to a parametrized system of
polynomial equations for each minimal problem in main result.

I Minimal problem ‘ 1PPP + 4PPL ’, the unknowns are the 36 entries
of A,B,C , up to the action of G. There are

(
9
7

)
+ 3 + 4 ·

(
7
6

)
= 67

quartic equations. Coefficients parametrized cubically and

quadratically by the image data in (P2)11 ×
(
(P2)∨

)4
.

I Since parameter space is irreducible, to find the generic number of
solutions to the system, we may specialize to one random instance,
such as in earlier example.

I Nonetheless, solving a single instance of this system – ‘as is’ – is
tough, let alone solving systems for the other minimal problems
present in main result.

I Way out: nontrivially replace above systems with others, which
enlarge the solution sets but amount to accessible computations.
This is based on trifocal tensors from multi-view geometry.



Trifocal tensors

Definition
Let A,B,C be three calibrated cameras. Their calibrated trifocal tensor
TA,B,C ∈ P(C3×3×3) is computed as follows:

I Form the 4× 9 matrix
(
AT
∣∣BT

∣∣CT
)
.

I Then for 1 ≤ i , j , k ≤ 3, the entry (TA,B,C )ijk is (−1)i+1 times the
determinant of the 4× 4 submatrix gotten by omitting the i th column
from AT , while keeping the j th and k th columns from BT and CT resp.

Lemma (TA,B,C encodes PLL image correspondences)
TA,B,C (x , `′, `′′) :=

∑
1≤i,j,k≤3 Tijk xi `

′
j `
′′
k = 0 if and only if

α−1(x) ∩ β−1(`′) ∩ γ−1(`′′) 6= ∅.

Remark (necessary conditions for PPP , LLL,PLP ,PPL)
Necessary conditions for a PPP, LLL,PLP,PPL correspondence to be
consistent with (A,B,C) are expressed via polynomials linear in TA,B,C .

[Hartley-Zisserman: Multiple View Geometry in Computer Vision, 2003]



Proposition (Hartley)
Let A,B,C be cameras. Let x ∈ P2

A, x
′ ∈ P2

B , x
′′ ∈ P2

C be points and
` ∈ (P2

A)∨, `′ ∈ (P2
B)∨, `′′ ∈ (P2

C )∨ be lines. Putting T = TA,B,C , then
(A,B,C ) is consistent with:

I (x , `′, `′′) only if T (x , `′, `′′) = 0 [PLL]

I (`, `′, `′′) only if [`]×T (−, `′, `′′) = 0 [LLL]

I (x , `′, x ′′) only if [x ′′]×T (x , `′,−) = 0 [PLP]

I (x , x ′, `′′) only if [x ′]×T (x ,−, `′′) = 0 [PPL]

I (x , x ′, x ′′) only if [x ′′]×T (x ,−,−)[x ′]× = 0. [PPP]

In middle bullets, each contraction of T with two vectors gives a column
vector in C3. Last bullet: T (x ,−,−) =

∑3
i=1 xi (Tijk)1≤j,k≤3 ∈ C3×3.

Above [`]× =

 0 `3 −`2
−`3 0 `1
`2 −`1 0

 etc.



Calibrated Trifocal Variety
Definition
The calibrated trifocal variety, denoted Tcal ⊂ P(C3×3×3), is defined to be the
Zariski closure of the image of the following rational map:

(SO(3,C)× C3) × (SO(3,C)× C3) × (SO(3,C)× C3) 99K P(C3×3×3),(
(R1, t1), (R2, t2), (R3, t3)

)
7→ T[R1|t1], [R2|t2], [R3|t3]

where the formula for T is from the previous slide. So, Tcal is the closure of the

set of all calibrated trifocal tensors. Analog of Nister’s essential variety E

Lemma
The calibrated configuration (A,B,C) is equivalent to the tensor TA,B,C .

Theorem (K)
The calibrated trifocal variety Tcal ⊂ P(C3×3×3) is irreducible, dimension 11 and
degree 4912. It equals the SO(3,C)×3-orbit closure generated by the following

projective plane, parametrized by
[
λ1 λ2 λ3

]T ∈ P2:

T1∗∗ =

 0 λ1 λ2

0 0 0
λ1 0 0

, T2∗∗ =

0 0 0
0 λ1 λ2

0 λ3 0

, T3∗∗ =

0 0 0
0 0 0
0 λ1 λ2 + λ3

.



Numerical algebraic geometry

I I obtain the table of degrees by a computational proof, using
homotopy continuation.

I General methodology: solutions of a start system are tracked to
solutions of a target system (RK4 and Newton’s method)

I Already applied to: kinematics, biology, statistics, Schubert calculus . . .

I Here, it suffices to count number of configurations for one random
instance per minimal problem.

[Sommese-Wampler: The numerical solution of systems of polynomials arising in science and engineering, 2005]

Proof Sketch:

1. Key maneuver: use the necessary conditions for consistency
that are linear in TA,B,C . This is a relaxation of each minimal
problem. Defines a linear section Lspecial of calibrated trifocal
variety Tcal. Move a generic linear section Lgeneral of Tcal to
Lspecial, by tracking 4912 paths via homotopy continuation.

2. Decide which of the endpoints are indeed consistent, by
comparing with multi-view equations. (Use SVD for robustness)

Future project: implement a fast solver to recover (A, B, C), tracking optimal number of paths.

Open problem: can all of the solutions (A, B, C) be REAL?
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Thank you!


