Rigid Multiview Varieties

Michael Joswig, Joe Kileel*, Bernd Sturmfels, André Wagner*

Multiview Variety

What is the space of pictures of one world point?

Given n generic 3×4 camera matrices A_1, \ldots, A_n .

Multiview map ►

$$\phi_A : \mathbb{P}^3 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \cdots \times \mathbb{P}^2$$
 $X \mapsto (A_1 X, A_2 X, \dots A_n X)$

Multiview variety $\triangleright V_A := \overline{\operatorname{im}(\phi_A)} \subseteq (\mathbb{P}^2)^n$. Irreducible three-fold.

Multiview ideal $\blacktriangleright I_A := I(V_A) \subseteq \mathbb{R}[u_{i0}, u_{i1}, u_{i2} : i = 1, \ldots, n].$

 \mathbb{Z}^n -multihomogeneous prime ideal in a polynomial ring with 3n variables. Here $(u_{i0}: u_{i1}: u_{i2})$ are homogeneous coordinates on the $i^{th} \mathbb{P}^2$.

Linear system \triangleright For which u_i and u_k , does:

$$\begin{cases} A_j X = \lambda_j u_j \\ A_k X = \lambda_k u_k \end{cases}$$

have a nonzero solution in X, λ_j, λ_k ? Rewrite as:

$$B^{jk} \begin{bmatrix} X \\ -\lambda_j \\ -\lambda_k \end{bmatrix} = 0$$
 where $B^{jk} := \begin{bmatrix} A_j & u_j & 0 \\ A_k & 0 & u_k \end{bmatrix}_{6 \times 6}$

Bilinear equations \triangleright For all $1 \le j < k \le n$, $\det(B^{jk}) \in I_A$. It equals $u_i^T F_{jk} u_k$, where F_{jk} is the fundamental matrix.

Theorem 1 (Heyden-Aström 1997)

For $n \ge 4$, the $\binom{n}{2}$ bilinear forms cut out V_A set-theoretically:

$$V_A = V(u_j^T F_{jk} u_k : \forall j, k).$$

Trilinear equations \blacktriangleright Maximal minors of $B^{jk\ell} := \begin{bmatrix} A_1 & u_1 & 0 & 0 \\ A_2 & 0 & u_2 & 0 \end{bmatrix}$

Quadrilinear equations \blacktriangleright Maximal minors of $B^{jk\ell m} := \begin{bmatrix} A_1 & u_1 & 0 & 0 & 0 \\ A_2 & 0 & u_2 & 0 & 0 \\ A_3 & 0 & 0 & u_3 & 0 \end{bmatrix}$ $\begin{vmatrix} A_4 & 0 & 0 & 0 & u_4 \end{vmatrix}_{12 \times 8}$

- ► The bilinear, trilinear, quadrilinear forms are a universal Gröbner basis.

Rigid Multiview Variety

What is the space of pictures of two distance-constrained world points? Rigid multiview map ►

$$\psi_{A}: V(Q) \hookrightarrow \mathbb{P}^{3} \times \mathbb{P}^{3} \longrightarrow (\mathbb{P}^{2})^{n} \times (\mathbb{P}^{2})^{n},$$

$$(X,Y) \mapsto ((A_{1}X, \dots A_{n}X), (A_{1}Y, \dots A_{n}Y)).$$
where $Q(X,Y) = (X_{0}Y_{3} - Y_{0}X_{3})^{2} + (X_{1}Y_{3} - Y_{1}X_{3})^{2} + (X_{2}Y_{3} - Y_{2}X_{3})^{2} - X_{3}^{2}Y_{3}^{2}.$

Rigid multiview variety $\triangleright W_A := (\operatorname{im}(\psi_A)) \subseteq \mathbb{P}^{2n}$. Irreducible 5-fold inside $V_A \times V_A$.

Rigid multiview ideal \triangleright $J_A := I(V_A) \subseteq \mathbb{R}[u_{i0}, u_{i1}, u_{i2}, v_{i0}, v_{i1}, v_{i2} : i = 1, \ldots, n].$ \mathbb{Z}^{2n} -multihomogeneous prime ideal in a polynomial ring with 6n variables.

Triangulate with Cramer's Rule \triangleright For $1 \le j < k \le n$ and $1 \le i \le 6$, let:

- $\triangleright B_i^{jk}(u)$ be the 5 \times 6 matrix that is $B^{jk}(u)$ with its i^{th} row removed
- $\triangleright \widetilde{\bigwedge}_5 B_i^{jk}(u)$ be the height 6 column of signed maximal minors of $B_i^{jk}(u)$
- $ightharpoonup C_i^{jk}(v)$ and $\widetilde{\wedge}_5 C_i^{jk}(v)$ be the analogs with v.

Write Q(X,Y) = T(X,X,Y,Y), where $T(\bullet,\bullet,\bullet,\bullet)$ is a quadrilinear form.

Theorem 3 (J.-K.-S.-W. 2015)

The octics coming from two pairs of cameras:

$$T\left(\widetilde{\wedge}_5 B_{j_1}^{j_1 k_1}, \widetilde{\wedge}_5 B_{j_2}^{j_1 k_1}, \widetilde{\wedge}_5 C_{j_3}^{j_2 k_2}, \widetilde{\wedge}_5 C_{j_4}^{j_2 k_2}\right)$$

cut out W_A as a subvariety of $V_A \times V_A$ set-theoretically. For this, 16 suffice.

Ideals \triangleright Above octics together with $I_A(u) + I_A(v)$ do not generate J_A .

Conjecture 4 (J.-K.-S.-W. 2015)

 J_A is **minimally generated** by $\frac{4}{9}n^6 - \frac{2}{3}n^5 + \frac{1}{36}n^4 + \frac{1}{2}n^3 + \frac{1}{36}n^2 - \frac{1}{3}n$ polynomials, coming from two triples of cameras, and their number per class of degrees is:

 $(110..000..): 1 \cdot 2\binom{n}{2}$ $(220..111..): 3 \cdot 2\binom{n}{2}\binom{n}{3}$ $(220..220..): 9 \cdot \binom{n}{2}^2$ $(211..211..): 1 \cdot n^2\binom{n-1}{2}^2$ $(111..000..): 1 \cdot 2\binom{n}{3} \qquad (211..111..): 1 \cdot 2n\binom{n-1}{2}\binom{n}{3}$ $(220..211..): 3 \cdot 2n\binom{n}{2}\binom{n-1}{2} \qquad (111..111..): 1 \cdot \binom{n}{3}^2$

Computational proof \triangleright Up to n=5, when there are 4940 minimal generators.

Other Constraints, More Points, and No Labels

More points, one polynomial constraint \triangleright Take *n* pictures of *m* world points constrained by a single irreducible multihomogeneous polynomial equation $Q(X^{(1)},\ldots,X^{(m)})=0$. Then **Theorem 3 holds verbatim**: to cut out the image set-theoretically, equations from pairs of cameras suffice. For example if m = 4 and $Q = det(x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)})$, the constraint is four points in \mathbb{P}^3 are coplanar, and $16\binom{n}{2}^2$ polynomials cut out set-theoretically.

More rigid points \triangleright Impose distances between all pairs of m world points:

$$Q_{ij}(X,Y) = (X_0Y_3 - Y_0X_3)^2 + (X_1Y_3 - Y_1X_3)^2 + (X_2Y_3 - Y_2X_3)^2 - d_{ij}^2X_3^2Y_3^2$$

When m = 3, the image of $V(Q_{ij} : \forall i, j)$ in $(\mathbb{P}^2)^{mn}$ is six-dimensional unless: $(d_{12}+d_{13}+d_{23})(d_{12}+d_{13}-d_{23})(d_{12}-d_{13}+d_{23})(-d_{12}+d_{13}+d_{23}) = 0.$

It is cut out by $27\binom{n}{2}^2$ biquadratics set-theoretically, coming from pairs of points and pairs of cameras.

No labels on world points \triangleright Suppose images of m world points are unlabeled. **Future work:** Study the *unlabeled multiview variety*, i.e. the image of:

 $(\mathbb{P}^3)^m \dashrightarrow ((\mathbb{P}^2)^m)^n \to (\operatorname{Sym}_m(\mathbb{P}^2))^n.$

Here $\operatorname{Sym}_m(\mathbb{P}^2)$ is the *Chow variety* of ternary forms that are products of mlinear forms. Some known equations for it inside the space $\mathbb{P}^{\binom{m+2}{2}-1}$ of all ternary forms of degree m are Brill's equations.

References

- ▶ C. Aholt, B. Sturmfels and R. Thomas: A Hilbert scheme in computer vision, Canadian Journal of Mathematics 65 (2013) 961–988.
- A. Heyden and K. Aström, Algebraic properties of multilinear constraints, Mathematical Methods in the Applied Sciences 20 (1997) 1135–1162.
- ► M. Joswig, J. Kileel, B. Sturmfels and A. Wagner, *Rigid Multiview* Varieties, arXiv:1509.032571.