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Dynamics in a stably stratified tilted
square cavity
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The dynamics of a fluid flow in a differentially heated square container is investigated
numerically. Two opposite conducting walls are maintained at constant temperatures,
one hot and the other cold, and the other two walls are insulated. When the conducting
walls are horizontal with the lower one cold, the static linearly stratified state is
stable. When the container is tilted, the static equilibrium ceases to exist and the
fluid flows due to the baroclinic torque arising from the bending of isotherms near
the tilted insulated walls. This flow is found to be steady for tilt angles less than 45◦,
regardless of the relative balance between buoyancy and viscous effects (quantified by
a buoyancy number RN). For tilt angles above 45◦, the flow becomes unsteady above
a critical RN with localized boundary layer undulations at the conducting walls, at the
heights of the horizontally opposite corners. From these corners emanate horizontal
shear layers, which become thinner and more intense with increasing RN . As the tilt
angle approaches 90◦, the nature of the instability changes, corresponding to that of
the well-studied laterally heated cavity flow.

Key words: buoyancy-driven instability, baroclinic flows

1. Introduction
The flow induced in a stably stratified medium near an inclined boundary by the

no-flux boundary condition is a well-known phenomenon. Contours of constant density
are horizontal in the stratified ambient, but are bent to be normal to the inclined
no-flux boundary, resulting in horizontal density gradients near the boundary, so that
the associated baroclinic torque drives a flow in the boundary layer. Phillips (1970)
and Wunsch (1970) independently elaborated on this in the context of a sloping ocean
bottom, and found a steady boundary layer solution for the wall-normal profile of the
wall-tangent velocity as a result of a balance between viscous and buoyancy forces.
Their analysis considered an infinitely long inclined wall. The induced flow is up-
slope if the wall bounds the fluid from below, and down-slope if it is bounded from
above. The boundary layer solution breaks down as the orientation of the no-flux
wall approaches horizontal. Peacock, Stocker & Aristoff (2004) presented the first
experimental validation of the inclination angle dependence of this solution, noting
that the critical angle for solution failure is expected to depend on the strength of
the stratification and the Prandtl/Schmidt number. This flow is often referred to as a
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883 A62-2 H. Grayer and others

diffusion-driven flow, and is often thought of as being slow. The slowness is attributed
to the very large Schmidt number of salt-stratified water (of order 103), which is often
the context that this problem is studied in.

Here, we are interested in studying this phenomenon in a controlled fully enclosed
flow. There have been a number of related studies. Quon (1976, 1983) presented
simulations and asymptotics for a square cavity with two insulated walls and two
walls with specified temperatures, corresponding to a linear temperature variation with
the vertical direction, ostensibly trying to maintain a stable linear stratification. Page
(2011) studied the same problem, but over a wide range of tilt angles, overcoming the
analytical difficulties Quon (1983) faced. These studies assumed the flow to be steady.
The imposed linear temperature profiles are difficult to implement experimentally in a
variable tilt angle set-up. Ulloa & Ochoa (1997) also considered a number of closely
related configurations, having different combinations of insulating and conducting
walls. They also specified the temperature on the conducting walls to correspond
to a uniform stable stratification. In contrast, we are interested in specifying fixed
constant temperatures on the conducting walls, and in investigating what happens
as the tilt angle is varied. This is what is done with Rayleigh–Bénard convection
(hot plate on the bottom, cold plate on the top) subjected to tilt, which has been
studied widely and is experimentally realizable (e.g. Hart 1971; Shishkina & Horn
2016; Jiang, Sun & Calzavarini 2019). At tilt angle θ = 90◦, this set-up corresponds
to the well-studied natural convection in a laterally heated cavity problem (e.g. Gill
1966; Patterson & Imberger 1980; Bejan, Al-Homoud & Imberger 1981; Ivey 1984;
Paolucci & Chenoweth 1989; Le Quéré & Behnia 1998; Xin & Le Quéré 2006; Oteski
et al. 2015). There have also been experimental and numerical studies at selected tilt
angles in the range θ ∈ [0◦, 180◦] (Ozoe et al. 1974; Cliffe & Winters 1984; Inaba
& Fukuda 1984; Baïri 2008; Corvaro, Paroncini & Sotte 2012; Torres et al. 2013),
but these have either been in steady regimes or only reported time-averaged flows.
Here, we investigate the situation where the cold plate is on the bottom and the
hot plate is on the top, and tilt this through angles 0◦ 6 θ 6 90◦. In particular, the
parameter regimes in which the resultant flow becomes unsteady are determined, the
physical mechanisms responsible for the unsteadiness are described, as is how the
flow transitions to the well-studied natural convection scenario as θ→ 90◦.

2. Governing equations, symmetries and numerics

Consider a fluid of kinematic viscosity ν, thermal diffusivity κ and coefficient of
volume expansion β contained in a square cavity of side lengths L that is inclined
to the horizontal by an angle θ ; see figure 1. Two opposite walls of the cavity
are insulated and the other two are held at different fixed temperatures. When the
inclination angle θ = 0◦, the insulated walls are the vertical walls, and the top
and bottom walls are at fixed temperatures Thot and Tcold respectively, such that
1T = Thot − Tcold > 0. Gravity g acts in the downward vertical direction. In the
absence of any other external force, the fluid is linearly stratified.

The non-dimensional temperature is T = (T∗ − Tcold)/1T − 0.5, where T∗ is
the dimensional temperature. Length is scaled by L and time by 1/N, where
N =
√

gβ1T/L is the buoyancy frequency. A two-dimensional Cartesian coordinate
system x= (x, z)∈ [−0.5, 0.5] × [−0.5, 0.5] is attached to the cavity with its origin at
the centre and the directions x and z aligned with the sides. In this non-dimensional
reference frame, the velocity is u= (u,w), and the unit vector in the upward vertical
direction is ξ = (sin θ, cos θ). The velocity boundary condition is no slip on all walls.
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FIGURE 1. Schematic of the square cavity tilted by an angle θ from the horizontal; the
upward vertical direction is indicated by ξ . The isotherms correspond to buoyancy number
RN = 104, Prandtl number σ = 0.71 and tilt angle θ = 30◦, with 14 filled equispaced
isotherms T ∈ [−0.5, 0.5], with cold as blue and hot as red.

The insulated walls have zero heat flux: Tx= 0 at x=±0.5, and the conducting walls
have fixed temperatures: T =±0.5 at z=±0.5.

Under the Boussinesq approximation, the non-dimensional governing equations are

ut + u · ∇u=−∇p+
1

RN
∇

2u+ Tξ , ∇ · u= 0,

Tt + u · ∇T =
1
σRN
∇

2T,

 (2.1)

where p is the reduced pressure, the buoyancy number RN = NL2/ν is the ratio of
the viscous and buoyancy time scales (it is the square root of the Grashof number)
and σ = ν/κ is the Prandtl number. Here, we fix σ = 0.71 (air at room temperature),
and consider RN ∈ [1, 106

] and θ ∈ [0◦, 90◦]. When θ = 0◦, the static linear stratified
equilibrium (u = 0, T = z) is a solution of (2.1). For θ > 0◦ with RN > 0, the static
equilibrium no longer exists and the resulting solutions are non-trivial.

The system (2.1) together with the boundary conditions described above is invariant
to a centrosymmetry, corresponding to reflection through the origin. The action of this
symmetry is

C : [u,w, T](x, z, t) 7→ [−u,−w,−T](−x,−z, t). (2.2)

All observed steady states S have this invariance. Time periodic states that bifurcate
from a steady state via Hopf bifurcations come in two flavours. Either the limit cycle
preserves this symmetry instantaneously, in which case we say that it is pointwise
invariant, or it does not. Limit cycles that are not pointwise invariant may instead
be setwise invariant, whereby they are invariant to a spatio-temporal symmetry
consisting of C composed with a half-period translation in time. The action of this
spatio-temporal symmetry is

Cst : [u,w, T](x, z, t) 7→ [−u,−w,−T](−x,−z, t+ τ/2), (2.3)

where τ is the period of the limit cycle.
The heat fluxes needed to maintain the constant temperatures at the hot and cold

walls at z=±0.5 are quantified by the Nusselt numbers

Nuh =

∫ 0.5

−0.5
Tz(x, 0.5) dx and Nuc =

∫ 0.5

−0.5
Tz(x,−0.5) dx, (2.4a,b)
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R N
 =

 1
04

R N
 =

 1
02

R N
 =

 1
œ = 15° œ = 30° œ = 45° œ = 60° œ = 75° œ = 90°

FIGURE 2. Isotherms of the steady states S at the indicated θ and RN , showing 14 filled
equispaced isotherms in T ∈ [−0.5, 0.5], with cold as blue and hot as red. The online
movie ‘Movie 1’ (available at https://doi.org/10.1017/jfm.2019.913) animates the isotherms
and vorticity of the steady states at RN = 2× 104 over θ ∈ [0◦, 90◦]; unstable steady states
were computed using selective frequency damping.

where Tz(x, ±0.5) is the normal gradient of the temperature evaluated at the
corresponding conducting walls z=±0.5. For the static state at θ = 0◦, T(x, z)= z and
so Nuh = Nuc = 1. When θ > 0◦, the steady states have Nuh = Nuc > 1. For unsteady
flows, Nuh and Nuc are unsteady and in general differ at any instant in time, but their
long-time averages are the same. For limit cycles, Nuh and Nuc are periodic, and if
the limit cycle is pointwise invariant they are in phase whereas for setwise invariant
limit cycles, Nuh and Nuc are half a period out of phase. This phase information on
the heat fluxes provides a convenient way to determine the spatio-temporal symmetry
of a limit cycle.

The governing equations are solved numerically using a spectral-collocation
method. It is the same technique as was used in Wu, Welfert & Lopez (2018)
and Yalim, Welfert & Lopez (2019). Briefly, the velocity, pressure and temperature
are approximated by polynomials of degree n, associated with the Chebyshev–Gauss–
Lobatto grid. A fractional-step improved projection method, based on a linearly
implicit and stiffly stable second-order accurate scheme, is used to integrate in time
with time step δt. For RN 6 3 × 104, the spatial and temporal resolution used was
n = 72 and δt = 2 × 10−7RN . For RN > 3 × 104, the resolution was increased up to
n= 512 and δt= 5× 10−9RN .

3. Static and steady states
For the untilted problem with θ = 0◦, the static linear stratified equilibrium (u= 0,

T = z) is stable for all RN and σ . It is also the stable equilibrium for all θ and σ in
the limit RN → 0. For any RN > 0 and θ > 0◦, this static equilibrium is no longer a
solution. For very small RN , the isotherms are essentially linear in z, irrespective of
the tilt, as can be seen in figure 2 for RN = 1. For such small RN , the flow is very
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FIGURE 3. Kinetic energy E and scaled streamfunction ψ/ sin θ , corresponding to the
steady flows shown in figure 2. E is represented with seven red filled log-spaced contours
in the range E ∈ [3.5 × 10−5, 3.5 × 10−2

], where Emax = 3.5 × 10−2. There are eight
equispaced streamlines with ψ ∈[0,ψmax] where ψmax=1.3×10−3, 6.2×10−2 and 7×10−3

for RN = 1, 102 and 104 respectively.

slow and consists of a weak clockwise circulation centred at the origin; as illustrated
by the corresponding streamlines in figure 3. The streamlines are isocontours of the
streamfunction ψ , which is obtained by solving

∇
2ψ =−η, ψ(x,±0.5)=ψ(±0.5, z)= 0, (3.1a,b)

where η=uz−vx is the vorticity. This Poisson equation is solved using diagonalization
of the second-order pseudospectral operators, as in the main solver. Except for large
RN and θ ≈ 90◦, the streamfunction ψ is positive everywhere in the cavity and the
flow is in the clockwise direction. The streamfunction isocontours are equispaced
linearly, such that the local speed is inversely proportional to the spacing between the
streamlines, and the velocity vector is locally tangent to the streamlines. The speed
is given by

√
2E, the kinetic energy E is also included in figure 3.

Increasing RN to 102 results in a relatively faster flow. The nonlinear terms in the
governing equations are no longer negligible and the isotherms begin bending about
the centre of the cavity due to advection. The bending increases with the tilt angle
θ and the isotherms tend to be horizontal near the origin. The isotherms cannot be
horizontal all the way out to the cavity walls due to the thermal boundary conditions.
On the hot and cold walls the isotherms must be tangential and also must approach
the insulated walls orthogonally. These constraints result in temperature gradients
near the walls which baroclinically drive the circulation. The boundary flows on
the insulated and fixed temperature walls are quite similar, as can be seen from the
streamlines at RN=102. However, the details of the boundary layers are quite different.
On the insulated walls, the bending of the isotherms into the horizontal in the interior
together with the boundary constrain them to meet the insulated walls orthogonally.
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883 A62-6 H. Grayer and others

This causes the isotherms to bunch up towards the two corners (x, z)= (±0.5,±0.5)
on the insulated walls at x=∓0.5, resulting in larger horizontal temperature gradients
(and hence faster flows) than near the other two corners at (x, z)= (±0.5,∓0.5). On
the conducting walls, this means that the heat flux required to maintain the fixed
temperature is greatest near the two opposite corners (x, z)= (±0.5,±0.5).

For RN > 102, buoyancy effects dominate over diffusive effects. The stronger
stratification results in the horizontal isotherms extending further out from the centre
and the interior becomes more vertically stratified, albeit in a nonlinear way. This is
clearly seen in the isotherms at RN=104 shown in figure 2. Also, the flow is no longer
a simple circulation about the centre of the cavity. Instead, at higher RN the flow is
predominately in the boundary layers on the conducting walls, with very different
characteristics between the flows for θ < 45◦ and θ > 45◦. As θ and RN are increased,
the contribution from bent isotherms to the horizontal temperature gradient becomes
negligible compared to the horizontal component of the temperature stratification.
One striking feature of these higher RN flows is the presence of triangular isothermal
regions near the two corners (x, z) = (±0.5, ∓0.5); these regions being largest for
θ = 45◦. Their presence is due to the large gradients in temperature near the two
corners (x, z)= (±0.5,±0.5) on the insulated walls, noted earlier for lower RN . The
near constant temperature in these regions is consistent with the wall temperature
being constant, and since the temperature is very close to being constant near
the insulated walls in these regions, the no-flux condition is also satisfied. These
triangular isothermal regions vanish as θ approaches 0◦ or 90◦, and their vertical
extent is maximal at θ = 45◦.

Figure 4 illustrates the fundamental differences between the θ < 45◦ and θ > 45◦
flows for high RN , using typical steady states at θ = 30◦ and 60◦, both at RN = 104.
The isotherms together with superimposed streamlines are shown in figure 4(a,b). Also
shown schematically, but drawn to scale, is the heat flux Tz along the hot wall. The
isolevels for the streamlines are the same in both plots, showing that the θ = 60◦ flow
is much faster that the θ = 30◦ flow. In both cases the temperature distribution is
similarly partitioned into two near isothermal triangular regions near the two corners
at (x, z)= (±0.5,±0.5), separated by a central, almost linearly stratified region. The
vertical extent (ξ =

√
x2 + z2) of the isothermal regions is 0 . ξ . sin θ for θ < 45◦

and 0 . ξ . cos θ for θ > 45◦, and the central stratified regions have vertical extent
|sin θ − cos θ | =

√
2|sin (θ − 45◦)|.

The flow in the central region differs significantly depending on θ . For θ = 30◦
(in general, for θ < 45◦), the horizontal temperature gradients on the hot and cold
walls at z = ±0.5 near the two corners (x, z) = (∓0.5, ±0.5) lead to the baroclinic
production of vorticity. This locally produced vorticity (shown in figure 4c) drives fast
boundary layer flows on the hot and cold walls, which are turned when they reach
the two corners (x, z)= (±0.5,±0.5), and then return horizontally back to the corners
from which they originated, leaving the central stratified region essentially stagnant.
The vorticity plot reveals a pair of weak horizontal shear layers separating the central
stagnant region and the upper and lower isothermal regions. These shear layers are
strongest near the two corners (x, z) = (±0.5, ∓0.5). They connect these corners
horizontally to the insulated walls at x =±0.5. The corner at (x, z)= (−0.5, 0.5) is
higher than the corner at (x, z) = (0.5, −0.5), so that the central stratified region is
bounded horizontally by portions of the insulated walls. In contrast, for θ = 60◦ (in
general, for θ > 45◦), the central stratified region is bounded horizontally by portions
of the hot and cold walls at z = ±0.5. This sets up a natural convection scenario
(albeit with slanted walls) that drives strong boundary layer flows up the hot wall
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œ = 30° œ = 60°

œ = 60°

œ = 30°

(a) (b)

(c) (d)

Tz

Tz

FIGURE 4. Steady states S at RN = 104, σ = 0.71, and θ as indicated. (a,b) Isotherms with
superimposed streamlines (fourteen equispaced isotherms T ∈ [−0.5, 0.5] and streamlines
ψ ∈ [0, 3.7× 10−3

]), and (c,d) the corresponding vorticity with symmetric log-spaced filled
contours normalized by the absolute maximum vorticity of (d), and the contour lines are
at ±10−nηmax with n = 1, 2, 3 and 4 and ηmax = 36.5. The red (blue) lines are positive
(negative) η, and the η= 0 contour is grey. Also shown schematically, but drawn to scale,
is the heat flux Tz along the hot wall; the length of each wiggly arrow is proportional to
the local heat flux.

and down the cold wall, with the flow into and out of these boundary layers being
replenished by slower horizontal flow between the two walls, with the isotherms in
this interior central region also being horizontal (Gill 1966). Although this interior
horizontal flow is much slower that the flow in the boundary layers, it is significantly
faster that the flow in the triangular isothermal regions, which has speed comparable
to those in the isothermal regions for θ < 45◦. The boundary layer flows at the hot
and cold walls have strong associated temperature gradients, resulting in a heat flux
at the hot and cold walls which is an order of magnitude larger than that for θ = 30◦.

The case θ = 45◦ is particular in that the vertical extent of the central stratified
region becomes vanishingly small with increasing RN , with the two corners
(x, z) = (±0.5, ∓0.5) being at the same height. The upper and lower triangular
regions are essentially isothermal at the temperature of the corresponding hot and
cold walls. The isotherms of the steady state at RN = 106 are shown in figure 5(a).
The fluid is almost stagnant in these regions, which are separated by a strong
horizontal shear layer, with the flow from left-to-right above it and right-to-left below
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(a) (b)T ¥ ˙(c)

FIGURE 5. Isotherms, streamlines and vorticity of the steady state S at RN = 106 and
θ = 45◦. There are 14 equispaced isotherms T ∈ [−0.5, 0.5] and streamlines ψ ∈
[0, 7× 10−5

]. The vorticity contours are symmetric log spaced and based on the absolute
maximum vorticity, ηmax = 117.7; the contour lines are at ±10nηmax with n= 1, 2, 3 and
4. The red (blue) contour lines are positive (negative), and the η= 0 contour is grey.

0.210

0.208

0.206

0.204

0.202

0.200

T ≈
R

-
0.

29

103 105

N

RN

104 106 103

∂R
0.

36
N

105

RN

104 106

4

2

0

(a) (b)

FIGURE 6. Variations with RN of (a) the vertical temperature gradient at the centre of the
container, Tξ , and (b) the half-thickness of the shear layer, δ, for θ = 45◦. The results are
plotted to reveal the power laws Tξ ≈ 0.2R 0.29

N and δ ≈ 4R−0.36
N as RN becomes large.

it. The fluid in this shear layer flows into the two corners (x, z)= (±0.5,∓0.5), and
is then turned into thin boundary layers along the hot and cold walls. There is a
slow flow from these boundary layers back into the shear layer. The corresponding
streamlines in figure 5(b) illustrate this flow. The half-thickness δ of this shear layer
is quantified by the vertical distance from the origin to the first zero in the vorticity
(shown in figure 5c). Figure 6 shows how the vertical temperature gradient at the
origin, denoted Tξ , and δ vary with RN for θ = 45◦. It is apparent that an asymptotic
regime is reached for RN > 105, with power laws Tξ ≈ 0.2R0.29

N and δ≈ 4R−0.36
N . These

indicate that the shear layer thickness δ vanishes faster than the temperature gradient
Tξ becomes unbounded as RN increases.

4. Unsteady periodic flows

For tilt angles θ < 45◦, the flow remains steady for all RN considered (RN 6 106).
However, for θ > 45◦ the steady state S loses stability as RN is increased above a
critical value that depends on θ . Figure 7(a) shows the loci of the first limit cycles
(yellow symbols) for a given θ as RN is increased. The blue line in the figure is the
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FIGURE 7. (a) Loci of the first limit cycle (filled markers) for given θ as RN is in-
creased, and (b) the fit 7000/RN + 50/

√
RN = sin(θ − 45◦) (blue curve), also shown in (a).

fit 7000/RN + 50/
√

RN = sin(θ − 45◦) which collapses the loci (for θ . 82.5◦) onto a
straight line, as shown in figure 7(b). The O(1/

√
RN) contribution in the fit reflects

the dominance of nonlinear effects at large RN , while the O(1/RN) term corresponds
to linear viscous contributions. The former dominates as soon as RN & 15 600, but
still accounts for only 67 % at the onset of instability for θ = 60◦ and RN ≈ 8 ×
104 (i.e. (50/

√
RN)/(7000/RN + 50/

√
RN) ≈ 0.67 for RN ≈ 8 × 104). This suggests

that both viscous and nonlinear terms contribute non-trivially at onset. The fit also
emphasizes the fact that the flow remains steady at tilt angle θ = 45◦ and that a small
but increasing amount of viscosity (decreasing RN) is needed to stabilize the flow as
θ increases from 45◦.

The steady state loses stability via supercritical Hopf bifurcations for tilt angles
45◦<θ 6 90◦ as RN is increased above a critical θ -dependent value, spawning a stable
limit cycle. Figure 8(a) shows the limit cycle frequency as a function of tilt angle θ .
There are three distinct ranges: θ ∈ (45◦, 82◦], θ ∈ [83◦, 87◦] and θ ∈ [88◦, 90◦]. These
correspond to three distinct limit cycles, referred to as L1, L2 and L3. Figure 8(b)
provides a fit 2π/ω= 13

√
sin(θ − 45◦) for the period of L1 along the critical curve.

Figure 9 illustrates how the L1 instability develops with increasing RN for θ = 60◦.
At relatively low RN = 103, the imbalance between the boundary layer flows on the
constant temperature walls and the insulated walls is evident. From the two corners
at (±0.5, ∓0.5), the zero vorticity contour meanders out horizontally towards the
opposite constant temperature wall, but dwindles before reaching the wall. Increasing
RN to 104, the η = 0 contour comes straight out of the corners and proceeds
horizontally until it reaches the boundary layer on the opposite constant temperature
wall, which is much thinner and more intense at this larger RN . The associated
streamlines (shown in figure 3) indicate that the flows near these horizontal η = 0
contours are horizontal shear flows, and that outside of these internal shear layers
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FIGURE 8. (a) Variation of the frequency ω of limit cycles L1, L2 and L3 (symbols) with
θ at onset (RN just above the critical values shown in figure 7), together with the fit
2π/ω= 13

√
sin(θ − 45◦); (b) same data as in (a).

RN = 103 RN = 104 RN = 105(a) (b) (c)

FIGURE 9. Vorticity of steady states S at θ = 60◦ for RN as indicated. The filled contours
are symmetric log spaced based on the absolute maximum vorticity, ηmax= 10.7, 36.5 and
120.1 for (a), (b) and (c) respectively. The contour levels are at ±10−nηmax with n= 1, 2,
3 and 4. The red (blue) lines are positive (negative), and the η= 0 contour is grey. Note
that the conducting hot wall is along the ‘upper left’.

and the boundary layers, the flow is essentially stagnant, as is to be expected for a
steady strongly stratified flow. Where these horizontal shear layers meet the constant
temperature wall boundary layers, the boundary layers are locally perturbed. The
steady state S loses stability to the L1 limit cycle at RN ≈ 8× 104. By using selective
frequency damping (Åkervik et al. 2006; Lopez et al. 2017), we have also computed
the unstable steady states beyond the critical RN . Figure 9 shows the vorticity of the
unstable steady state at RN = 105. The horizontal shear layers are much sharper and
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œ = 55�, RN = 1.6 ÷ 105 œ = 60�, RN = 8 ÷ 104

œ = 70�, RN = 3.8 ÷ 104 œ = 80�, RN = 2.5 ÷ 104

(a) (b)

(c) (d)

FIGURE 10. Snapshots of the perturbation vorticity of L1 for θ and RN just above onset,
as indicated. The rectangular regions in (b) outlined in grey are further examined in
figure 13.

the localized undulations in the constant temperature wall boundary layers are more
clearly evident.

To examine the spatio-temporal nature of the instability, we use the perturbation
vorticity, η − ηs, where ηs is the vorticity of the unstable steady state S. The
perturbation vorticity for L1 consists of two localized standing wave packets, one
on each of the hot and cold fixed temperature walls. Their locations on the respective
walls correspond to the vertical level of the two corners at (x, z)= (±0.5,∓0.5), with
downward (upward) phase velocity on the hot (cold) wall at z = +0.5 (z = −0.5).
Figure 10 shows snapshots of the perturbation vorticity of L1 near onset for a few tilt
angles, illustrating that the size of the associated disturbance wave packets grows with
the tilt angle, and its location moves up (down) the hot (cold) wall with increasing θ .

Closer inspection of L1 near onset for various tilt angles reveals that it comes in
two flavours: one is pointwise C-invariant and the other is setwise Cst-invariant. Which
one bifurcates first from the steady state S depends on the parameters θ and RN . In
figures 7 and 8, different symbols are used to designate pointwise (circles) or setwise
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FIGURE 11. Standard deviation of the hot wall Nusselt number, STD[Nuh], for L1 near
onset at θ = 60◦. The setwise invariant L1 is the first to bifurcate at RN ≈ 79 235, followed
by the pointwise invariant L1 at RN ≈ 79 251. The pointwise invariant L1 is unstable, but
it is stable in the C-invariant subspace.

(triangles) limit cycles; there does not seem to be a regular pattern for which type
bifurcates first from the steady state S. For θ = 60◦, the setwise L1 is the first to
bifurcate as RN is increased. Of the four cases shown in figure 10, L1 at θ = 55◦, 70◦

and 80◦ is pointwise invariant, whereas for θ = 60◦ it is setwise invariant.
For the θ = 60◦ case, we have also restricted the simulations to the C-invariant

subspace, in which the setwise L1 does not exist, and found that the pointwise L1
bifurcates at an RN slightly larger than the critical RN for the setwise L1 in the
full space. Figure 11 shows the standard deviation of the hot wall Nusselt number,
STD[Nuh], for the setwise and pointwise L1 limit cycles near onset for θ = 60◦. The
time averages (means) of Nuh are the same for both L1 limit cycles, and grow linearly
with RN , from Nuh=42.25 at RN=79 300 to Nuh=43.00 at RN=82 000. The standard
deviation STD[Nuh], a measure of the oscillation amplitude, is less than 0.001 % of
the mean for both limit cycles over this range of RN . The oscillations have very
small amplitude and are localized in space. The setwise L1 at θ = 60◦ bifurcates at a
supercritical Hopf bifurcation at RN ≈ 79 235, and the pointwise L1 also bifurcates at
a supercritical Hopf bifurcation from the now unstable steady state S at RN ≈ 79 251.
Figure 12 shows the temporal variations of the Nusselt numbers on the hot and cold
walls for the pointwise L1 and setwise L1 at θ = 60◦ and RN = 8× 104. The pointwise
L1 has Nuh(t) = Nuc(t) and the two time series are exactly the same. The setwise
L1 has Nuh(t) = Nuc(t + τ/2). The oscillation period τ is almost identical for the
pointwise L1 and setwise L1. This means that the onset of instability for L1 is close
to a 1 : 1 resonant double-Hopf bifurcation between the pointwise L1 and setwise L1.

Spatio-temporal details of the pointwise L1 and setwise L1 at θ = 60◦ and RN = 8×
104 are shown in figure 13. The figure shows snapshots of the perturbation vorticity
at four phases of the oscillation, in the zoomed-in areas delineated in figure 10(b).
The online movie ‘Movie 2’ provides animations of the two limit cycles over one
period. Despite the Nusselt number oscillation amplitudes being very different for the
two flavours of L1, the perturbation vorticity shows very little difference between the
pointwise and setwise limit cycles.
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FIGURE 12. Time series of Nusselt numbers on the hot (red) and cold (blue) walls for
(a) pointwise invariant L1 and (b) setwise invariant L1, at θ = 60◦ and RN = 8× 104.
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t = †/4 †/2 3†/4 † t = †/4 †/2 3†/4 †

FIGURE 13. Zoomed snapshots of the perturbation vorticity θ = 60◦ and RN = 8 × 104

over one period for (a) pointwise invariant L1, and (b) setwise invariant L1. The first row
focuses on a region at the hot wall (x ∈ [−0.35, 0.05] and z ∈ [0.4, 0.5]) and the second
row focuses on the centrosymmetry-related region at the cold wall (x ∈ [−0.05, 0.35] and
z ∈ [−0.5,−0.4]). These are the regions indicated in figure 10(b). See the online movie
‘Movie 2’ for an animation of the two flows in the entire container.

As θ is increased beyond approximately 82.75◦, the primary instability of the
steady state S switches from a supercritical Hopf bifurcation spawning L1 to a
different supercritical Hopf bifurcation spawning L2. The two limit cycles, L1 and
L2, differ in a number of ways; L2 has a higher frequency than L1 which increases
rapidly with increasing θ (see figure 8). The propagation direction (phase velocity)
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Q23 setwise

FIGURE 14. States observed in the neighbourhoods of the double-Hopf bifurcations
between (a) L1 and L2, and (b) L2 and L3. The symbols are loci of stable states: steady
state S, limit cycles L1, L2 and L3 and mixed-mode quasiperiodic states Q12 and Q23; their
spatio-temporal symmetry types are also indicated.

(a) (b) (c)L1: RN = 24 000, œ = 82.70� L2: RN = 23 750, œ = 82.75�Q12: RN = 23 950, œ = 82.73�

FIGURE 15. Snapshots of the perturbation vorticity in the neighbourhood of the double-
Hopf bifurcation point shown in figure 14(a): (a) L1, (b) Q12 and (c) L2, at RN and θ as
indicated. See the online movie ‘Movie 3’ for an animation.

of the perturbation vorticity oscillations of L2 is opposite that of L1. For L2, the
small opposite-signed cells in the perturbation vorticity cycle up (down) the hot
(cold) wall, and they are localized much closer to the wall and very close to the
corners of the cavity. At θ ≈ 82.75◦ and RN ≈ 23 800, the two Hopf bifurcation
curves cross at a codimension-2 double-Hopf bifurcation. The ratio of the L1 and
L2 frequencies near the double-Hopf bifurcation is close to 3 : 7, which is not close
to a strong resonance. Figure 14(a) is a regime diagram in the neighbourhood of
the double-Hopf bifurcation between L1 and L2, showing the loci of stable states. In
this neighbourhood, L2 is setwise invariant and L1 is pointwise invariant, although
for slightly lower θ , L1 is setwise invariant. Also in this neighbourhood, there is a
stable quasiperiodic state Q12 which bifurcates via a Neimark–Sacker bifurcation from
either L1 or L2, depending on the path taken in (θ, RN)-space; Q12 is stable in the
neighbourhood of the double-Hopf point shown, and the limit cycles lose stability at
the Neimark–Sacker bifurcations. Figure 15 shows snapshots of L1, L2 and Q12 very
close to the double-Hopf point (the three states encircled in figure 14a). The online
movie ‘Movie 3’ provides an animation of the three states. It is apparent that Q12
is essentially a linear combination of L1 and L2. With the frequencies of L1 and L2
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L2 at œ = 82.75� and RN = 23 750

Q12 at œ = 82.73� and RN = 23 950

(a)

(b)

(c)

FIGURE 16. Time series of the perturbation Nusselt number on the cold wall, Nuc−〈Nuc〉

(blue), and on the hot wall Nuh − 〈Nuh〉 (red), for the flows shown in figure 15 in the
neighbourhood of a double-Hopf bifurcation.

being close to a rational ratio, Q12 is close to being a locked periodic solution on
a two-torus. This is also apparent from the time series of the perturbation Nusselt
numbers (Nu − 〈Nu〉, where 〈·〉 indicates time average) shown in figure 16, which
also indicates that L1 is pointwise invariant and both L2 and Q12 are setwise invariant.
Setwise invariance for non-periodic states, such as Q12, means that applying C at any
point in time results in the same state at some later time. If an unsteady state is
neither pointwise nor setwise invariant, applying C results in a different (conjugate)
state.

Increasing the tilt angle beyond θ ≈ 87.6◦, the primary instability of the steady state
S switches to a Hopf bifurcation spawning another limit cycle L3. Figure 14(b) is
a regime diagram in the neighbourhood of the double-Hopf bifurcation between L2

and L3, where again there exists a stable quasiperiodic mixed mode Q23. Snapshots of
the perturbation vorticity of L2, Q23 and L3 in the neighbourhood of the double-Hopf
bifurcation (the three states encircled in figure 14b) are shown in figure 17 and they
are animated in the online movie ‘Movie 4’. Again, it is clearly evident that Q23 is a
mixed mode of L2 and L3; L2 has the same local behaviour as the example L2 shown
at lower θ in figure 15, albeit localized much closer to the two corners at (x, z) =
(±0.5,±0.5). However, whereas the one shown in figure 15 is setwise invariant, the
L2 in figure 17 is pointwise invariant. The mixed-mode Q23 is also setwise invariant.
These invariances are evident from the time series of the perturbation Nusselt numbers
shown in figure 18.
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(a) (b) (c)L2: RN = 14 400, œ = 87.50� L3: RN = 14 600, œ = 87.70�Q23: RN = 14 500, œ = 87.60�

FIGURE 17. Snapshots of the perturbation vorticity for observed states in the
neighbourhood of the double-Hopf point of L2 and L3: (a) L2, (b) Q23 and (c) L3,
at RN and θ as indicated and θ as indicated. See online movie ‘Movie 4’ for an
animation.
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Q23 at œ = 87.6� and RN = 14 500

FIGURE 18. Time series of the perturbation Nusselt numbers on the cold wall Nuc −

〈Nuc〉 (blue) and the hot wall Nuh − 〈Nuh〉 (red) for the flows shown in figure 17 in the
neighbourhood of a double-Hopf bifurcation.

Figure 19 is a bifurcation diagram for θ = 90◦, using the standard deviation in
the perturbation Nusselt number Nuh at the hot wall as a measure of oscillation
amplitudes. The steady state S loses stability via a supercritical symmetry-breaking
Hopf bifurcation at RN ≈ 16 004, giving birth to a setwise invariant L3 limit cycle.
Restricting the simulations to the C-invariant subspace, S loses stability at the slightly
higher RN ≈ 16 223 at a supercritical Hopf bifurcation that spawns the pointwise
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FIGURE 19. Bifurcation diagram for θ = 90◦ as the buoyancy number RN is varied.

invariant L3. In the full space, this L3 is unstable near onset (as it bifurcates
supercritically from an unstable S), but regains stability at RN ≈ 16 300 (presumably
via a Neimark–Sacker bifurcation that spawns an unstable quasiperiodic state). These
results are consistent with what was found by Le Quéré & Behnia (1998), Xin & Le
Quéré (2006).

5. Discussion and conclusions
The flow in a differentially heated tilted square container, with two opposite

thermally conducting walls and two opposite insulated walls presents a non-intuitively
obvious connection between two well known but completely different states. When
the tilt angle θ = 0◦ (the top wall is the hot one), the state is static with a stable
linear stratification, regardless of how strong the stratification is (as quantified by the
buoyancy number RN giving the balance between buoyancy and viscous effects). At
the other extreme, with the cavity tilted at θ = 90◦, above a critical RN there is an
unsteady flow that quickly becomes complicated with increasing RN (e.g. Paolucci
& Chenoweth 1989). What we have addressed is what happens for intermediate tilt
angles. What makes this problem non-intuitive is that small RN could be interpreted
as implying large dissipative viscous effects, so that steady states are to be expected,
while on the other hand large RN could imply a strong stable stratification, which
should also be stabilizing. Yet, above a critical θ -dependent RN there is instability.
The competition between these two normally stabilizing effects (viscous dissipation
and stable stratification) plays out in the boundary layers.

While the competition is in the boundary layers, the cause of the instability is not
entirely local. The boundary layer flows on the conducting and insulated walls are not
balanced, and this leads to the emission of horizontal shear layers from the corners
where they meet. These shear layers are horizontal because the flow below the critical
RN is steady and stably stratified. They impinge on the wall opposite the corner. If
that wall is insulated (this is so when θ < 45◦), the flow remains steady (at least
for RN 6 106, the largest value considered). For θ > 45◦, the wall of impingement
is conducting, and the strong boundary layer on it is locally perturbed by the shear
layer. Below the critical RN the flow remains steady, but for larger RN unsteadiness
ensues. For 45◦ < θ . 83◦, the limit cycle L1 has a frequency that is close to the
buoyancy frequency, decreasing with increasing θ , and the local unsteady perturbations
emit internal waves when the frequency is less than the buoyancy frequency. These
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internal waves are very weak. Their associated vorticity is a fraction of a per cent of
the vorticity in the impinging shear layers, and are of no dynamical consequence. The
internal waves are a symptom of, rather than the cause of the instability.

The nature of the instability changes for 83◦. θ . 88◦. The horizontal shear layers
are now very close to the insulated walls and are absorbed into their boundary layers.
Now, the boundary layer flows on the conducting walls are much faster than at lower
θ and they impinge into the corner regions, leading to a corner-localized instability.
The resulting limit cycle L2 has a higher frequency than L1, and larger than the
buoyancy frequency. For 88◦ . θ . 90◦, the instability is the familiar instability of
the laterally heated cavity flow, with limit cycle L3 at onset. Now, the fast boundary
layer flows along the conducting walls hit the corners and rebound back into the
interior, advecting hotter (colder) fluid from the top (bottom) insulated wall boundary
layers, resulting in local convectively unstable flow regions. The limit cycle L3 has
a low frequency, approximately 30 % of the buoyancy frequency in the bulk and, as
with L1, weak internal waves are driven.

Acknowledgements

We thank ASU Research Computing facilities and the NSF XSEDE programme for
providing compute resources, and K. Wu for the original code. This research was also
supported via the resources provided by the Open Science Grid (Pordes et al. 2007;
Sfiligoi et al. 2009), which is supported by the National Science Foundation award
1148698, and the US Department of Energy’s Office of Science.

Declaration of interests

The authors report no conflict of interest.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2019.913.

REFERENCES

ÅKERVIK, E., BRANDT, L., HENNINGSON, D. S., HŒPFFNER, J., MARXEN, O. & SCHLATTER, P.
2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys.
Fluids 18, 068102.

BAÏRI, A. 2008 Nusselt–Rayleigh correlations for design of industrial elements: experimental and
numerical investigation of natural convection in tilted square air filled enclosures. Energy
Convers. Manage. 49, 771–782.

BEJAN, A., AL-HOMOUD, A. A. & IMBERGER, J. 1981 Experimental study of high-Rayleigh-number
convection in a horizontal cavity with different end temperatures. J. Fluid Mech. 109, 283–299.

CLIFFE, K. A. & WINTERS, K. H. 1984 A numerical study of the cusp catastrophe for Bénard
convection in tilted cavities. J. Comput. Phys. 54, 531–534.

CORVARO, F., PARONCINI, M. & SOTTE, M. 2012 PIV and numerical analysis of natural convection
in tilted enclosures filled with air and with opposite active walls. Intl J. Heat Mass Transfer
55, 6349–6362.

GILL, A. E. 1966 The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech.
26, 515–536.

HART, J. E. 1971 Stability of the flow in a differentially heated inclined box. J. Fluid Mech. 47,
547–576.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

91
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

ri
zo

na
 S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

29
 N

ov
 2

01
9 

at
 1

5:
40

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.913
https://doi.org/10.1017/jfm.2019.913
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Dynamics in a stably stratified tilted square cavity 883 A62-19

INABA, H. & FUKUDA, T. 1984 Natural convection in an inclined square cavity in regions of density
inversion of water. J. Fluid Mech. 142, 363–381.

IVEY, G. N. 1984 Experiments on transient natural convection in a cavity. J. Fluid Mech. 144,
389–401.

JIANG, L., SUN, C. & CALZAVARINI, E. 2019 Robustness of heat transfer in confined inclined
convection at high Prandtl number. Phys. Rev. E 99, 013108.

LE QUÉRÉ, P. & BEHNIA, M. 1998 From onset of unsteadiness to chaos in a differentially heated
square cavity. J. Fluid Mech. 359, 81–107.

LOPEZ, J. M., WELFERT, B. D., WU, K. & YALIM, J. 2017 Transition to complex dynamics in the
cubic lid-driven cavity. Phys. Rev. Fluids 2, 074401.

OTESKI, L., DUGUET, Y., PASTUR, L. R. & LE QUÉRÉ, P. 2015 Quasiperiodic routes to chaos in
confined two-dimensional differential convection. Phys. Rev. E 92, 043020.

OZOE, H., YAMAMOTO, K., SAYAMA, H. & CHURCHILL, S. W. 1974 Natural circulation in an
enclosed rectangular channel heated on one side and cooled on the opposing side. Intl J.
Heat Mass Transfer 17, 1209–1217.

PAGE, M. A. 2011 Combined diffusion-driven and convective flow in a tilted square container. Phys.
Fluids 23, 056602.

PAOLUCCI, S. & CHENOWETH, D. R. 1989 Transition to chaos in a differentially heated vertical
cavity. J. Fluid Mech. 201, 379–410.

PATTERSON, J. & IMBERGER, J. 1980 Unsteady natural convection in a rectangular cavity. J. Fluid
Mech. 100, 65–86.

PEACOCK, T., STOCKER, R. & ARISTOFF, J. M. 2004 An experimental investigation of the angular
dependence of diffusion-driven flow. Phys. Fluids 16, 3503.

PHILLIPS, O. M. 1970 On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. 17,
435–443.

PORDES, R., PETRAVICK, D., KRAMER, B., OLSON, D., LIVNY, M., ROY, A., AVERY, P.,
BLACKBURN, K., WENAUS, T., WÜRTHWEIN, F. et al. 2007 The Open Science Grid.
J. Phys. Conf. Ser. 78, 012057.

QUON, C. 1976 Diffusively induced boundary layers in a tilted square cavity: a numerical study.
J. Comput. Phys. 22, 459–485.

QUON, C. 1983 Convection induced by insulated boundaries in a square. Phys. Fluids 26, 632–637.
SFILIGOI, I., BRADLEY, D. C., HOLZMAN, B., MHASHILKAR, P., PADHI, S. & WURTHWEIN, F.

2009 The pilot way to grid resources using glideinWMS. In 2009 WRI World Congress on
Computer Science and Information Engineering, vol. 2, pp. 428–432. IEEE.

SHISHKINA, O. & HORN, S. 2016 Thermal convection in inclined cylindrical containers. J. Fluid
Mech. 790, R3.

TORRES, J. F., HENRY, D., KOMIYA, A., MARUYAMA, S. & BEN HALDID, H. 2013
Three-dimensional continuation study of convection in a tilted rectangular enclosure. Phys.
Rev. E 88, 043015.

ULLOA, M. J. & OCHOA, J. 1997 Horizontal convective rolls in a tilted square duct of conductive
and insulating walls. Comput. Fluids 26, 1–17.

WU, K., WELFERT, B. D. & LOPEZ, J. M. 2018 Complex dynamics in a stratified lid-driven square
cavity flow. J. Fluid Mech. 855, 43–66.

WUNSCH, C. 1970 On oceanic boundary mixing. Deep-Sea Res. 17, 293–301.
XIN, S. & LE QUÉRÉ, P. 2006 Natural-convection flows in air-filled differentially heated cavities

with adiabatic horizontal walls. Numer. Heat Transfer 50, 437–466.
YALIM, J., WELFERT, B. D. & LOPEZ, J. M. 2019 Parametrically forced stably stratified cavity flow:

complicated nonlinear dynamics near the onset of instability. J. Fluid Mech. 871, 1067–1096.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

91
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

ri
zo

na
 S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

29
 N

ov
 2

01
9 

at
 1

5:
40

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.913
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Dynamics in a stably stratified tilted square cavity
	Introduction
	Governing equations, symmetries and numerics
	Static and steady states
	Unsteady periodic flows
	Discussion and conclusions
	Acknowledgements
	References


