E. 8pecisl Riemann Surfaces
1. The hyperelliptic muliisecant iQEﬁtitiesl-

The fdentities for szeond-order thete functlons GQHSEQELEQ 1ﬁ tnb

e
R

preceding part ware initielly derived from the deseripbion pf‘t"
varieties 9, in terms of %h@é@ thata Twnctions. There are fﬁri
identities that arise Trom the descriptien of the subvarietié%-‘

v > 0, for those special Riemann surfaces for which these sunvarfetleh
5,.4-;;- .

are nonempty. The simplest case is that invelving th2 subvarxety W »

and will be the Tirst case to be aonqider%d here. If Wl # ﬁ and g > J

‘f'

the Biemann surface M is hyperelllptlc, &8s discussed in sec%lsn Bi@.

As pnoted thers H% consists of & single point e € J, called the

hyperelliptic point, so there is essentially = unique representatidn of

M &8s 8 two-sheetad branbhed holomorphic covering of 'PL, :For ﬁu: is

z, € M it is the case thet w(zl+22) £ Wl precisely when (p) = {21,22

for”scme point.p € Eg} ;n,particular 2w(z ) € Wl premisely wheg,z is.

}

one of the 2g+Z branch yclntq of the mapplng m M -+ ZP
T,

points of M. The interchange of the sheets of thzs hx nbhe

ﬁ‘i

is a well defined biholomorphic mapping of M to ltb?lf

hyperelliptic involutjion;- the fixed p@lnts of thls invo 'u

the branch pgints of the mspping 7, and the quotient spagé
the ecyclic group of mrﬁer two generated by this 1nvolutldn‘
Riemann sphere EP . Note that if 2' ¢ M is the image of‘t,
z-e M under this involution then w(z+z Y} = e cleaIAywthﬁ i
and from 3(9 5) it follows that W = W, 4.4 W =T emW

1 i g
for any index r > 1. ¥From this and B(9.12) it follows in ¢
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AY 1
= W - = - <
H} “r—veg( wv) w}-VCD( ve Fv)
(1) _
= ve + w}—Ev whenever r-v < g-1 ;

thus for hyperelliptic surfaces the subvarieties W: can be described
quite simply in terms of the hyperelliptic point and the elementary

subvarieties W&, and in particular W;v = ve whenever 0 < v < g-1.

For present purposes it is convenient to describe thé special
proﬁerties of hyperelliptic surfeces in terms of the universsl covering
space ﬁ of M. . Chcose & base point 2, £ ﬁ lying over the base point
P, é M, and let p_ be the image of P, under the hyperelliptic involutien.
For eny éhoice of a point E zZ, € M lying over pé there is & lifting of
the hyperelliptic involution to & biholomorphic mepping E: ﬁ 4—ﬁ such
thatrE.zo is the image of the base point z. The most general such
f%%;%fg;ngiis then of the form T E for any element T of the covering

ftzan=1=tloﬂ group I'. The mapping E and the group T generate ; group
?3;F:§f automorphlsms of M , Where: T ‘is clearly independeﬁf of the lifting
E; the gugtlent space M/F 1s.just the Riemenn sphere. There are various
ways to construct such & lifting E, but perhaps the 51mplest is es follows.
Recall that the unlversal covering space . M can be descrlbed as the
space ofl p?motory clasSes of paths in M beglnnlng-at the base point
P, e M; tpe other end point is arbitrary, but the héﬁotopy must leave both end
points fixed. If z is sone representative'paﬁh beginning st p then its

'image mder the hyperellipt1c involution is a path z' beginning at p . If o



ie any path from p, to pa in M then the path obtained by traversing first o
and then z' is manother path Ez = a + z' at } IR and the mapping z + Ez 18 the
desired 1lifting of the hyperelliptic involutiom. The choice of 1ifting is
thus determined by the choice of the connecting path a, up to bhomotopy. A
particularly nice choice of connecting path a consists of a path oy from P
to some fixed point Py of the hyperelliptic involution, follcwed by the image
ul of @ under the hyperelliptic involution but traversed in the gpposite
direction; this peth can be written o= @ - a' 1° With this cholce

Ez = @ - u'l + 2' and E(Ez) = ® - u'l-l- a'l -0 +2=3z,0r egquivalently,

E2 = I. Thus it is alweys possible to choose some 1lifting E thet is also

en involution of M. Some such choice will be supposed made, so that E is

o~ L4

henceforth an analytic automorphism E : M + M such that E dinduces the
hyperelliptic involution on M and Ez = I, Any other choice must be of the

form TE for some element T e T for which TEIE = I. The universal covering

o~

space M is tiholomorphically equivalent to the unit disz, so. F will

correspond to an elliptic linear fractional transformation df the diegc, and

o~

consequently E has a single fixed point in M. It is \m;'i_:h n.tbt'{ngk"'éxplicitly
t+het the condition that E be a lifting of the hyperelliptic inveTution
implies that ErE L = T; for whenever T & T then ETz = ‘]."Ez" for" some ¥
element T' e. T . It is often convelent also to use E 'r.o uenote the °
hyperelliptic imvolution itself, the me,pping, of M in&uced 'by E R

M M.

Since wiz) + w(Ez) :ﬂ% c J for all pointa z = ¥ and since w; :Ls a

single point of the torus it is clear that there 1s a uniquely determined



point e £ L® such that
(2) w(z) = w(Ez} = e for all z e M;

this point will also be called the hyperelliptic point. It should be
noted that this point does not depend on the choice of the 1lifting E,
snd thet the choice of another 1lifting = leﬁds éo the point e + w(T),
ﬁhere TE f is any element for which TETE = I. Differentiating (2) with

respect to the canonical coordinates -on M yields the relation

(3) - w'(Ez) . E'(2) = ' (2),
where E'(z) denotes the derivative of the function representing the mapping E

when both the domein and range of that mapping are described by the cancnicel

coordinates on M. Since the Abelian differentials vj(z) have no common zeros

it 15 clear from (3) that E'(a) = -1 vhere & is the unigue fixed point of

tte mapping E. It is also clear from (3) that if c ¢ €€ and z, eMica

1

point at vhich'tc.w‘(zl) = 0 then tc.v‘(Ezl) = 0 as well; thus the divisor on

M cf any Abelian differentiel is necessarily of the form E’thfg:i(zi+ Ezi)
et =

when none of the zercos is a fixed point of the hyperelliptic involution, and

the evident limiting mrgument shows that the same is true even when some of

g-1
I wizg+Ez) =

the points z, € M are fixed points. Consequently k =
’ =3

{g-1) e in J, or equivalently

(8) k « (g-1).e eég 8,

where as usuel k ¢ U5 4= the canonicel point. For the fixed point & of the

L4

mepping E it is clear from (2) that w(a) = e/2. This point & & M represents
one of the Heierstrass pointe of M, selected from among the others merely by

the choice of the lifting E of the hyperelliptic involution. In general
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z, € M represents a Welerstrass point of M precisely when Ezl = Tzl for some

T ¢ I} in that case e = v(zl) + v(Ezl) = w(zl) + v(Tz.l) = 2v(zl) + ofT) 80 that

L

-'25 - w(z,) = 3w (T) 1s a half-period, and conversely vhenever z - wiz,) 1s 8

half-period then 2, represents a Welerstraes poini. of M. There are thus
-% - WlsJ, and they
correspond to the Welerstrass points of M. Actually it is only for hyper-

precisely 2g+2 distinct half-periods on the translate

elliptic curves that any translate either of Wl or of -¥W; can contain even two
distinct half-periods of J. Indeed if A ,A, € L are such that !"‘1' hz
represent distinct pointe of J and Eli € Wl + t for some t € £2 then
w(ai) = ’hi -t vhere a,,a, represent distinct points of M, and w(2a1-252) =
=2w(al) - 2w(a2) =N =) € ,‘; so that there must be a meromorphic function f
on M with divisor ;_"[ f) = 2a.l - 28.; this function exhibits M as & two-
gheeted branched covering of !1, go shows that M is hyperelliptic.

With these backgroﬁnd properties of hyperelliptic Riemann surfaces

established, the derivation of the hyperelliptic trisecant identity follows

the pattern of the eariier derivetions quite readily. 1If 2942592302 ¢ “

represent distinct points of M and 1r_.§= w(zl-l» 2z, + z3 + zh‘; then by Theorem D2

+ -4
the four vecters 6, [e-w(3)] (w(2,)) for 1gigh spen & subspace of t° of
”~ = .

dimension at most two; the same of course continues to hold by continuity even
4¢ there are coincidences among these points, with the proper interpretation
as ususl. On the other hand it follows easily from the same theorew thai ir
2,525 represent distinct polnts of M then the first two of these veciours
are linearly dependent precisely vhen e—v(z3+zh) = 0 in J, hence praciesly
vhen zZ), - Ez3 on M. Thue B0 long as z, ¢ , on M and T, * Ezs on M the:es are

uniquely determined values fl’ r2 such that

(5) Bz[e-v(,ﬁ)] (wlzg)) = £3 aa[e-\r(ﬁ] (w(z)) + 1, ea[e-w(ﬁ] (wlz ) s
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These walues are holomorphic funtions of the variables z, € M when the

variebles are restricted as sbove, but extend to meromorphic functions on ;}t
with singularities st most along the subvarieties z, = Tz, and zy = TEz;, for
arbitrary T € T+ With this pattern in mind though, the coefficient functions

ecsn be read directly from the ordinery trisecant identity as follovws.

Theorem 1. If M is a h,:yperelliptic Riemsnn surface and Z1:259239%) E M
are arbitrery points of its universal covering space then
+
0= q(zl,Ezh) q(22,23} Oag +.%w(z1 -z, - Z3 - zh))
- alz,, Ez,) alz,,25) ;26 + dwlz, - z; - 25 - z),)}
¢ alags By aleyany ) G+ I¥lzg - 3y - zp - w)):

Proof. This follows immediately from the ordinery trisecant identity,
Theorem D5, merely replacing z in the formule of that theorem by Ezh; for
v(Ez,;) = -% - w(z)). |

Although the hyperelliptic trisecant jdentity is thus really just &
trivial reformilation of the ordinary trisecent identity, there is some point
§n considering it explicitly. On the one hend it is naturally of some interest
to see the analogues of the n_rultisecant jdentities for the gubvarietles
'H: for v > 0; that nothing new arises, at Jeast in the case of the eubvariety
W;_, is of itself interesting, and turns out to be a model of what happens in
general, as will be shown. On the cther hand the reformulation is quite
suggestive; for it is but natural in the context of this reformulation to
look &t limiting cases, mot only as %, tends to z, for instance, but also
85 2, tends to Ez,. These extra limiting cases that erise for hyperelliptic
and other special classes of Riemann surfaces are of considerable interest;

but once having had the idea, the limiting processes can be applied to the

prdipary trisecant or multisecent identities.
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Corollary. If M is a hyperelliptic Riemann gurface then for all peints

z1+25 € M
>
0= q(zl,Ezl) q(za.Eza) 02(0)
'Y
+ q(zl,Eza) Q(Ezluza, 92('(21'22))

- qlzy,25) q(Ez, ,Ez,) 8, (wlz, - Ez,) ).

Proof Setting z) = 2, in the formula of the theorem yields the identity
-
e
(6) o= q(zl,Ezl) q(zz.z3) 0262' - iz, + 23))
Y
+ alEz ,2,) alz,25) 6, + twlz, - 25) - w(z,))

&>
e
- q(zl,za) q(Ezl.z3) 82&2 + iw(zB - 22) - v(zl) }e
Setting Zq = Eze in this gives the desired result almost immediately since
then w(z, + 23) = e, vz, - z3) = 2v(z,) - e, and w(z3 -z) = 2w(z3) -e;
the thete function is an even function, s0 the sign of its argument is
immaterial.

This corollary has a rather interesting geometric interpretation. For

any given point & € M the mepping that sends a point z € M to the point

- 23

ez(v( z-a) ) € 0° induces as usual a holomorphic mapping from M into the
281

projective space E : the image is an algebraic curve Ha. lying in the

Wirtinger variety X c !25-1. Two points 2,,2, € M have the seame image in M,
precisely when w(z.l-a) = + w{ za-a) , &8 is evident from Theorem Al3, and by

Abel's Theorem that means that the divisor z,-a on M is linearly equivalent
to elther z,-8 or a-2,3 the first case can only occur when r,=2, on M, while

the second case amounts to the linear egquivalence z, + 3, ~ 2= and cen only

occur when z, = E22 and & = Ea on M. Thus if a is not a Weierstrass point



this mapping is one-to-one from M to M3 the curve M, ie then a biretional
podel of M in the Wirtinger variety K. On the other hand if a is &
VWejerstrass point this mepping fectors through the hyperelliptic covering
M+ !1; the curve Ma ig a rational curve in the Wirtinger varlety K, and
the mepping M + Ma 4g another realization of the hyperelliptic covering. In
the first case, that in which & is not & Welerstrases point, the corcllary
shovs that the points a, z and Ez have images in Ma that ere collinear.

This provides & geometric interpretation of the hyperelliptic involution E

on the biratione}l model Ma of the curve M : for any point z € Ha' the line in

281
¥ Joining a € Ma_t_o Z E Ma intersects the curve Ma ggain in the point Ez.

Note that this gives a number of trisecants of the Wirtinger veriety pessing

through the point 32(0). -

A

If & 1is a Weierstrass point then w{a) = ::_- + 3

for some period X e L;
-

the mapping just considered is that taking the point z e M to the point in

. -+
projective space represented by the vector x{ A} 32[-% - w(z)), vhere x()) is
the matrix described in Theorem D3. To discuss this mapping it is generally

gufficient to ignore the linear mepping x{ 1) &nd to consider just the mapping

-+
described by the function Bz{g - w(z)). As noted earlier, the velue of this

mapping is unchanged when 2 1s replaced by Ez, a result even more obvious

* + +
upon noting that 82[5 - w(z) )= 82('-]2—‘V(Ez—z)) and recalling thst @, is an

even function; the mapping thus factors through the hyperelliptic covering
M !1, and again as noted earlier provides & birational mapping from 21
to the imsge curve Ma.' An interesting identity in this conpnection arises by

' epplying the differentisl operator 38/ hs in canonical locsl coordinates
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on M to (6) and then setting zy = %3 the result is
(1) 0= - gl B2) 8, - vlzy))
o [alBapay) ayataysey) - alaguny) BalEsy,ey)] G - ¥(zy))
- alaysng) ol ) 38 € - wlz))) ¥ yl25)
<.

"Itz ismota Welerstrass point then q(zl, Ezl} +0 and 3 V(zl) ie not a

half-period. In that case as in the corollary to Theorem All the g+l vectors

*> - +
026 - v(zl) ). 31026 - w(zl)) sasey 3382% - v(zl)) are linearly independent

g
go span & ({g+l) - dimensional linear subspece Lz c E2 , &nd this
1

28y

determines & g-dimensional linear subspace [Lz ] c « For any
1

FY
e
z, €M the identity (7) shows that [6,(5 - wiz,))] ¢ [Lzl]; the entire
retional curve M, thus lies in [L, ], where & €M is the Welerstrass point
1

for which w{a) = %. There are g+l linearly independent functions among the 2g

+»
componente of the vector BQE; - w(z)), so the image curve M cannot be

contained within eny proper linear subspace of [Lz Is but M ¢ [Lz ] for every
1 1
point z, that 1s not a Welerstrass point, and hence [I..I= ]= L] must be
1

independent of the point Zye

To turn from the geomeiric to the analytic espects of the identity (7),
since the first line of that equation is unchanged when 2z, is replaced by E22
while the g+l vectors on the second and third lines are linearly independent
wvhenever Y ig not a Weierstrass point, it is evident that each coefficient

of these g+l vectors ie also unchanged when z, is replaced by Ez,. ¥or the
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coefficient of 2 ,)ee(' - w(z,)) 4t thus follows thst
alzy,2y) alBzy,2z5) vy(2) = alz) Ezp) q(Ez; ,Ez,) ¥ 'y (Ezp),
' 1 & o '
and since w J(EZE) E (22) W J(za) and not all of the values W J(zz) are

gero necessarily
alz, 'EZE) a(Ez, +Ez,.)
qf z, ,22) gl Ez, ,22)

(8) E'(za)

The right-hand side of this formula is almost gymmetric in the variables Zy
and Z5s but of course not really eo since it must actually be a :l‘uncf.ion Just
of the variesble z_; indeed from this formula it i1s clear that
E'(z,) _ alz,Ez )2
E'(z ) q(Ezl,zz)o

This suggests introducing the function

(9) elz) = &' (2)Y/2,

for some choice of & branch of the square root, & well defined holomorphic

function on ﬁ since E'(z) is nowhere vanishing. In terms of this function

then
e(zz) -+ q(zl,Ezz)
e(zl) q(Ezl,zz)

where the sign- is really well determined since the same branch of the sguare
root is involved in both numerstor eand denominator on the left-hand side;
setting 2, = Z, shovs immedistely thet it must be the negative sign, so that
(10) q(z,,Ez,) elz,) = qz,,E2;) elz,),

& fully symmetric function of the variables z, and Z,. It should be noted

ipeidentally that since ¥° = I then E'(Ez) E'(2) = 1 and hence e(Ez) elz) = ¢ 1,

L

where again the gign is really well determined. At the fixed point & e M of

the mepping E 4t was observed that E'(a) = - 1, hence efa) ¢ 1 and



consequently e(Ea) e(e) = e(a.)2 = -1; therefore
(11) e(Ez) efz)= =1
for all pointe £ e M. It should aleoc be noted that taking the logarithmic
derivative of (10) with respect to the veriable z, leads to the result that
d
Vo, (zl) E'(za) = vzz(Ezl) +dz, log e(za)
2

or equivalently

E"(za)
E'tzai i

gince 3 log qfz.,a) / & = wa(z). Replecing z, by Ezy here and subtracting

' 1
(12) wma(zl) E'(zz) = wza(Ezl) +2

the result from (12) yields the jnteresting further identity
(13) v (Ez.) E'(z,) = =w' (z,)
zl.Ezl 2 2 zl,Ezl 2'°*

- ' L 2
gince wa(zl). wa(za) = W zl'za(a.) This is easily seen also to be jusi

the identity that arises from the observation that the coefficient of

Fe
Bzg - w(zl)] in (7) is unchanged vhen z, is replaced by Ez,, to complete the

line of argument from the beginning of this paragraph.

It was noted earlier that W;v = ve whenever O < v < g-1 , 50
the preceding arguments with the trisecant identity for v =1 can be
extended to the a.na.logoﬁs- prguments with the multisecent identity for
enersl velues of v. Th cae N igti

-4 us if Z)» '22v+2 £ M represent distinct
i = +I.l+

points of M and ;} w(zl 22‘”2) then by Theorem D2 the

2v+2 vectors 32[v.e - w(g)] (w(zi)) for 1 i < 2v+2

———— e —— i~
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spaﬁ a linear subspace of Ezg of dimension at most wl; by continuity the
sepe assertion holds even if there are coincidences among these points, with
the appropriate interpretation. OUn the other imnd it follows easily from the
sam® theorem that if Tysocey T .0 represent distinct points of M then the
£irst wl of these vectors are linearly dependent precisely when

viz 4ot Zy n) € Ve &= W .5 this last condition means that the point

w2

*eact Z EM(wl)

2o ig restricted to lie in & holomorphic subvariety of

T2

w1}

codimension two in the complei manifold M Thus 8o long &s

wa +- ..+ zzwa)

there are amiguely deternined values ‘fl guveg T vl such that

2, yeers I,y Tepresent distinct points of ¥ and w(z

F e = wu—l

-+ w1l >
(1) az[v.e-w{ﬁ:)] (wlz p) ) = :1=I:|_ 1,86, Iu.e-w(:'p] wlz) )

L

These values f, are holomorphic functions ©f the varisbles z j € M when
restricted as noted, but extend holomorphicelly across the subvarlety

v.e-wv_:L < Mw1 gince it has cvodimension &t lesst two, and by Cramer's rule

extend meromorphically to all points z 4 £ M; thus [14) holds fdenticelly in

the values ’;j € M, where 1’1 are uniqualy determined meromorphic functions
with poies at most along the subvarieties zJ = ‘Tzk for T € T and 1<), ESwHl.
Agnin these functions can be read directly from the ordinary mmltisecant
identity as follows, in & more symmetric form that does not isolate one of

the terms as in (14).



Theorem 2. If M is a hyperelliptic Riemann surface of genus g then

for any index w1l and any points ZiseerZp o € M

2v2
o="T s=v o e .1
J=w3 q(zi,Ezj) 82&2—- +§w(zi-zl —esem Ty 3mZgLq meee- 22\”_2))

i1=1 w2 gqfz 1"‘"k)
I

k=1
‘k#i

Proof. This follows immediately from the formula of Theorem D9 for
r=w2, upon replacing xJ by Ez \*243 for 1gj<v and noting that then wix J) =

w(Ez } = e —wlz }; by Corollary 2 to Theorem D9 this formula holds

w2+) w2+]

vhenever n=w2 > 3.
For the case v=1 this yields the formula of Theorem 1 upon multiplying
by q(zl ,z2) q(zl,zB) q(za,z3} to make all the coefficients holomorphic. As

gnother illustrative example, for the case w2 after mltiplying by

I

1§J<k_g_h qlz 3 ,zk) to make &l1 the coefficients holomorphic the formula of the

theorem takes the form

]

>
{15) O q(z2,zs)q(za,zh)q(zs,zh)q(zl,EzS)q(zl,Ez6) 02(aiw(zl-ze-zfzh-zs-zt;))

qf 21,23)q(zl ,zh) afl 24 ,zh) al Z, ,Ezs)q( z, ,Ezs) 8, (e+3w( 22'21'23'214'25'26) )

+

-
ql 2y ,za) ql zl,zh)q(zz »2),) ql 23,Ez5)q( 23’E26) 6, (e+ 3wl 23'21‘22'214'25'26) )

g 24 .22) af Zq ,23) af 2, ,23) alz), ,Ezs)q( Z), ,Ezs) o, (e+3w( zh-zl-za—zB-zs-zG) )
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2. Limiting forms of the hyperelliptic multisecant identities,

It is”convenient to discuss briefly some further general
properties of the hyperelliptic involution E: g - ; before continuing
the examination of the multisecant identities. It may be recalled that

ETE = ETE-! € I whenever T € I'. Then replacing z by Tz in (1.2) leads

to the result that

m
n

w(Tz)+w(ETz) = w(Tz) + w(ETE-Ez)

w(z) + w(T) + w(Ez) + w(ETE)

e + o(T) + (ETE),
hence that
{1y w(ETE) = ~w(T) for all T € T.

As noted earlier, the period homomorphism u:lﬂﬂ;identifies the lattice
subgroup,;futr) c CB with the Abelimnization of I', so its kermel is

the commutator subgroup [I',T'}] ¢ I' ; thus (1) is equivalent to
(2) ETET e[I',T'] for all Tel.

This is an interesting result by itself, with various interpretations
and alternative derivations.
Next the notation can often be simplified by introducing the

auxiliary function

(3) hg(z) = q(z,8) q(z,Ea),
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a holomorphic function on ; X ; that for each fixed & € g is a
relatively automorphic function hy € I'({z {ga) = F(pe!’). determined
uniquely up to a constant factor by the condition that its divisor is
a+Ea on M. The projective space !P(pecz)-ll is just the Riemann
sphere, and the mapping that associates to any point aeg the class
[hg] € Pl depends only on the point of M represented by a and amounts
to the standard representation of M as a two-sheeted branched covering

of M. The condition that hy; € r(pec’) is just that
(4)  ha(Tz) = pe(T) §(T,2)° hg(2)

for all Ter', while from (1.8) it follows readily that
(5)  ha(Ez) = -E'(2) ha(z) = -e(z)’ ha(z);

thus hy is actually a relatively automorphic function for the extended

group I acting on M with quotient Pl, with respect to the factor of

automorphy {o(T,z)} for T' defined by
(6)  §elT.2)=pe(T)C(T,2)? for TeT, {e(E,z) = -e(z)’.

To consider the behavior of this function in the other variable, note

that from the definition (3) and (1.10) it follows readily that

(7)  hy(a) = -hg(z) $t&}.
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From this and (5) it is evident that

(8)  hyg(a) e(T2)™1 = pe(T) £(T,2)" by(a)e(z)™d,
while from the definition (3) it is clear that
.(9) ) hg,(a) = hy(a).

On the other hand from (3)

hy.(a2)=q(a, Tz) q(&,ETz) = q(a, Tz) q(a,ETE-Ez)
= py(a)(T) §(T,2) a(a,z)py(a)(ETE) {(ETE,Ez} q(a,E2)

= {(T,z) ¢(ETE,Ez) hz(a),

where pw(a)(ETET) = 1 in view of (2). A comparison of this with (8)

shows that

(10) e(Tz) = S(ETE,E2Z) . e(z).
Pe(T) t(T,z)

This implies that the factor of automorphy ¢(ETE, Ez) for T is

anslytically equivalent to the factor'of automorphy pe(T) T(T,z).
Next consider the holomorphic function g(Ez,z) on g, and note

from what has just been demonstrated and the explicit form for the

canonical factor of sutomorphy found in the proof of Theorem B9 that

q(ETz, Tz) = q(ETE-Ez, Tz)
= pu(Tz) (ETE) {(ETE,E2)*py(Ez)(T) £(T,2)°q(Ez,2)
= PE-ZW(Z)-M(T)(T} ¢ (ETE,Ez) ¢(T,2) q({Ez,z)

= pe(T) «(T,z) £(T,2)> {(ETE,Ez) q(Ez,2)
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hence in view of (10) that
(11) q(ETz,Tz) e(Tz}"1 = [pe(T);(T.z)zl' «(T,z) q(Ez,z) e(z)'l.

The function q(Ez,z) vanishes precisely at those points of ;
representing the 2g+2 Weierstrass points of M, since only at such a
point z € ; do Ez and z represent the same point of M. On the other
hand by (11) this function is a relatively automorphic function for a
factor of automorphy analytically equivalent to p2e(T) :(T.z)“ x(T,z)=
,+2e(T) {(T.z)23+2; it must therefore have 2g+2 zeros altogether on

£
M, so actually has & simple zero at each Weierstrass point.

=p

With these auxiliary results established, it is now possible to
consider limiting cases of the quadrisecant identity in the form
(1.15). Perhaps the most natural limit is that for which z3=z,4,2z3=2s,
and z3=zg; although the formula itself reduces to a trivislity in this
case, an interesting result does arise if the differential operation

0/8z; is applied first.
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Theorem 3. If M is & hyperelliptic Riemann surface then for any
points x,z,aeH

- 2
q(Ez,8)q(z,a)"1 z 3162 (w(z-8)) wj(x)
b J h {I) ’ h (X) ¢
= 85(0) 1 -q(Ez,z)e{z)e(a) ninT wga (x)+q(Egs,a) HinT v, (X)

+ hz(a)w;(z) [“éz.z(x)'wéa.a(x)]l

f

- J’ h (x) ? ’ h (x) ] ]
+ %ji 3yk 82(0) 1q(Ez.z)§f§% H:TET wj (x)w(a)+q(Ea,a) HiTiT w3 (X)W (2)

+ hg(a) [VEz,z (X)-VWEg,a(x)] w_'i(z)wfc(a)l.

J

Proof. Upon setting zs=z; and zg=z3, equation (1.15) takes the

form

-»
{12) 0 q(zz,z3)q(zz,zk)q(zg.zA)q(zl.Ezz)q(zl.Ez3)62(e-&w(-zl+zk+2z2+2z3))

L
q(zl,z3)q(z1.za)q(z3.;4)q(zz.Ezz)q(zz.Ez3)ez(e-ﬁw(zl+za+ZZ3))

-
q(zl.zz)q(zl.z4)q(zz.zg)q(z3.Ezz)q(Z3,E23)92(e-uw(z1+z4+2z2))

+

-
q(zl.zz)q(z1.23)q(zz.23)q(24.Ezz)q(za.Ez3)Gz(e-ﬁw(zl-z4+2z2+2z3)),

To this apply the differential operator 6/dz, and then set z;=z;. The
second and third lines contain the factor q(23,24) that vanishes when

z4=21, SO their only nontrivial contribution is that arising from
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applying the differential operator to that factor. The first and
fourth lines are the same except for sign when z4=23; but w(z;) appears
with different signs in the argument of the theta functions on those
two lines, so differentiation there leads to a nontrivial contribution
(the same for both lines), while z; and z, appear in different places
in the prime function factors, so that too leads to a nontrivial

contribution. To calculate these last terms note that

QEI [atz1.E22)a(21,E23] =a(z1 B2 a (21 Bz Bz log[a(z1.Ezp)a(z1,E23)]

= q(z1,Ez3)q(z1,Ez3) [wzl(Ezz) + wzl(Ez3)],

and similarly in the fourth line. Altogether there results the formula
2 -»
0 = q(23,2z3) q(z2,Ez2)q(z2,Ez3) 63(e-w(z3+23))
2 ->
« q(2z1,22) q(z3,Ez2)q(z3,E23) 6 (e-w(zy+z2))

nd !
+ q(zz,23)hg (21)bg, ()" { §ajez(e-w(z2+z3)) vj(z1)

-
+ [wzl(E22)+wzl(E23}-wzl(zz)-wzl(z3) ] ez(e-w(zz+Z3))} .

By the Corollary to Theorem Bll the expression in brackets above can be

rewritten wézz'zz(zl} + wéz3.23(zl). while Theorem D6 together with

(1.2) and (1.3) imply that
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- -»
Og(e-w{z+a) = 87(w(Ez-a)

’ -+ ! - r +
- q(Ez,a)zwa(Ez)Bz(O)—ﬁq(Ez.a)=E (z)‘lji 3k ez(D)Wj(z)Hk(a);

this last identity is symmetric in the variables z and &, which amounts
to some further identities that are just consequences of (1.10) and
(1.12)‘and means that there is some formal variety in the results
obtainéd by applying it. With these observations the preceding formula

can be rewritten

-+ 1]
q(z2.23) hzz(zl) hzs(zl) § aj 82 (w(Ezz-23)) W j(z1)
-+ s v
- ez(o){ -q(z2,E22)q(22,E23) Bz, (21)" ¥Ez (21)

+q(z3,E2z3)q(23,Ez3) hzz(zl)z Wﬁz2(=1)

-q(E=2-23)h22(21)hz3(21)hz2(233Wz3(E=2)[Wézz,z2(21)+wzz3,z3(=1)]}
ind 2 : [} )
+ %ji ajk92(0) { q{zZ.Ezz)q(zz,EZ3)h23(zl) E (z3)'1Wj(21)wk(23)
-q(z3,Ez2)q(z3,Ez3)h, ézl): E' (z2) v (21)wk(22)

-1

+q(2,E23)hz (21)By_(21)bg (22)E (23) [VEz, 2fz2) k2, 2(20)]

w&(zz)wi(z3)} .
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Upon setting zi=x, z=Ez, z3=a and using the various identities that
have been established heretofore to simplify the result the desired
formula follows fairly directly, to conclude the proof.

For any fixed points z, neg the various functions of x appearing
in the formula of the preceding theorem can be viewed as meromorphic
differential forms on M with singularities at most at the divisor
z+Ez+a+Ea; that is quite obvious for such functions as wj(x) and
wﬁz'z(x), but is also clear for such functions as w;(x} hz(x) /hg(x)
since hy(x) and hy(x) are relatively automorphic functions for the same
factor of automorphy so their quotient is & meromorphic function on M
leading altogether to the singularities &s asserted. The space of all
such differential forms has dimension g+3, and if z,Ez,a,Ea represent

distinct points of M a convenient basis consists of the functions
(13)  WI(X) yeees Wa(X), Wy a(X), VEz,z(X)s VEa,a(x).

The differential forms appearing in the formula of the theorem are
either listed here or uniquely expressible as a linear combination of
these forms; a particularly interesting case is as follows.

Lemma 1. In terms of the guadratic period functions,

q(Ez,z) h_(x) ., ' ' ' p
Sz mitEy Vi06) = Wj(EVEs,p(X) + I [¢§(zsa) 405 (Bzi)E ()] wic(m) -

Proof. Since the differential form of interest here has

Singularities at most at the divisor z+Ez on M it can be written
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h_(x) , ' '
(1) mBrgy ¥j(x) = £5(2.8) WEg 2 (x) + X £5 (z,8) w(x)

for some coefficients fj(z,a), f§ (z,&) which are uniquely determined
so long as Ez end z represent distincf points of M and hence which are
meromorphic functions of (z,a) € M? with singularities at most along

the subvarieties z=zj, where z; € M are the representatives of the 2g+2

Weierstrass points of M. Clearly

£ ) lim ( )lr.;ﬁ_:_x_;, '() __115(_2_2... '()
i(z,8) = - X,2 wilx) = wi(z),

] Xz 4 z'* J g{Ez,z) J

so the functions fj(z,a) have at most simple poles along the

subvarieties z=z; since the function q(Ez,z) has simple zeros there.

With these functions thus determined (14) can be rewritten

k R h (I) ' h (Z) ¢ :
(15) E £5(z,a) wg(x) = HinT wi(x) - E?ggf;; wj(2) WEz,z(x);

the functions wéz.z(x) also vanish whenever z=zj, so the right-hand
side has singularities at most along the subvarieties z=Tx, z=TEx for
Tel', and it is apparent from this that the functions fg(z,a) must
necessarily be holomorphic.

Now it follows immediately from (15) and the functional equation

(8) thsat

(16) €5 (z,Ta) e(Ta)l = pe(T) £(T,2)" £5 (z,2) e(a)7?
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for all Ter. On the other hand by Theorem Ell
WETz, Tz (X) = Wy (ET2)-vg(Tz)=wy(ETE-EZ)-wg(T2)
= wy(Ez)+2xi § B3 (ETE)wj (x)- wx(z)-2xi § B3 (Tywj (x)
= “ﬁz.z (x) - 4xi § Bj (T) vg{x).
since Bj(ETE) = -ﬁj(T) by (2); and using this together with (4), (8),
and (11) shows from (15) after a straightforward calculation that

(17) f}(rz.a) e(Tz)

_ -1 -2 k e{z) h (z) ,
pe(T)™* §(T,2) { f3(2.8)8(2)+4wi ——;TE;?;?" wJ(z)Bk{T)} .

These functional equations are somewhat simpler for the modified

functions
q(Ez,2) gq(Ez,z} e(z)
(18) FE(Z.B) = Tz f}(z.ﬂ) = - Th_taetE f} (z,a),

for which it is readily verified that they become
(16') Ff(z, Ta) = F§(z,2)
a7 F?(Tz.a)‘EJT.z)“l = F§(z,a) + 4xi By(T) wj(z),

It is evident from (18) and what is known about fjx(z,a) that the

functions ?%(z.a) are meromorphic with singularities at most simﬁle
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poles along the subvarieties z=Ta and z=TEa for Tel'. On the other
hand it is evident from (15) that
£ (a,a) = £§(Ea,a) = 85 ,
hence
(19) 130 qcz,a) F¥(z.a) = LiBa a(z,Ba) Fi(z,8) = 65 ;

thus F%(z.a) is actually holomorphic if j#k, but has nontrivial simple

poles at a and Ea if j=k. Finally it is clear from the definitions

that

(20) f%(z,Ea) = £§(z,a). F§(;,Ea) - F}(z,a).

while it is & simple calculation to verify from (15) that
(21) f}(Ez.a)=f§(z.a). F§ (Ez,2) E' (2)=F§(z,2).

Mow consider the linear combination

(22)  Gk(z,a) = FE(z,8) - of(zia) - @§(z;En)

= Ff(z,8) - 20f§(2) + 6% wy(a) + 8% wy(Ea)

of the function F}(z,a) and the quadratic period functions. This is &
meromorphic function on M?, and from (16’) and Theorem Bil it is

readily verified that it satisfies

¢k (z,Ta) = G}(z.a)
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for all Tel while from (17') and the corollary to Theorem Bl2 it is as
readily verified that it satisfies

6% (Tz,a) Kk(T,2) 2= 6§(z,8)
for all Tel; thus it is actually a meromorphic differential form on M
in the variable z and a meromorphic function on M in the variable a.
From the definition it is clear that its singularities are at most
simple poles along the subvarieties z=Ta and z=TEa for all Tel'; but

from (19)
Lim q(z,2) Gf(z.8) = -8§+s5 33 atz,a)va(a) = 0

and similarly at Ea, so that G%(z.a) is actually holomorphic.

Consequently it is of the form

G}(z,a) = } c?P w}(z)

for some constents cgf. and thus
(23)  Fi(z.a) = o§ (z32)+ of (2:Ea) + }j ckp wpta)
= 2§ + 3 eifup(z) - s¥wy(a)-85uz(Ea)

for some constants ij. Now it follows readily from (1.3) and (1.12)

that
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F}(Ez.a)E'(Z) = 2¢§(Ez)E'(z) - ? cj$ wp(z)
- o8 [wgBa) + wz(e) + 2 ' (2 /e(m)],
so in view of (21)

(24) #§(E2)E’ (2) = of(z) + 3 ci¥ wp(z) + 8§ e’ (z)/e(2);

thus fﬁe constants ij can be viewed as determined by the way in which
the quadratic period functions transform under the action of the
hyperelliptic involution. On the other hand eliminating these

constants from (23) and (24) and using (1.12) again shows that

F¥(z,a) = ?g(z) + K (E2)E' (2) - 5§[wz(a)+wz(sa)+ef(z)e(z)]

= () + K EDE (2) - sk [wz(a) + wgp(a) E'(2)]
hence that
(25) F%(z.a) = ¢§(z:a) + ¢§(Ez;a) E'(z).

The desired result follows immediately from (15), (18}, and (25},
thereby concluding the proof.

This lemma can be used to simplify the result of Theorem 3 as

follows.

Corollary. If M is a hyperelliptic Riemann suface then for any

points z,aed and any index j



-27 -

-» ->
qa(z,8)"2 348z(w(z-2)) - 82(0) hj(z.8)
- ¥
g yp 02(0) {[w}ca:z)w}wa:zw'(a)] wic(2)
K,

- Lp}(z;a) + ¢}(Ez;a) E'(z)]wi(a)}

Ld

where hj(z,a) are meromorphic functions on M’. with singularities at
most double poles along the subvarieties z=Ta and z=TEa for Tel', and
are symmetric in the variables z and a.

Proof. Substituting the formula of the lemma, and the same with
the varisbles z and a interchanged, into the result of Theorem 3 yields

the result that

- . -
q(Ez,a)q(z,a)"2 I 3y 82 (w(z-8)) wj(x) - 92(0) h(z,a,x)

= % hp(a) I djk 92(0)wj=(x) {[of(a:z)-'vf(Ea;z)E'(a)]wﬂfz)

jkf
-[efzsareef(Ez:a)E (z)]w{((a)}

for some function h(z,8,x), which can be written out explicitly as in
the theorem; the only property of this function needed here is just
that it is some linear combination of the differentials (13), actually
only inveolving the ordinary Abelian differentials w&(x) since none of
the others appear in the rest of the formula. Comparing the

coefficients of the linearly independent functions wj(x) gives &
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formula of the desired form, for some functions hj(z,2}. Since the
latter are uniquely determined from this formula it is evident that
they have the asserted properties, to conclude the proof.

Thus far limiting cases of both tﬁe trisecant and quadrisecant
formula have been considered; the former involve theta functions
translated by e/2, as in (1.7), whereas in the latter the hyperelliptic
point can be eliminated altogether, as in Theorem 3 and its Corollary.
There are analogous limiting cases for general multisecant formulas,
the even cases sgain leading to simpler results as follows.

Theorem 4. If M is a hyperelliptic Riemann surface then for any

~

index n # 1 and any points x, z] ..+, Z2n € M

f 2n q(x,Ez,} 1J g -
L im TTET I, %kO2(w(Ezy +...% E2n-2p4q ----- Z2n)) vk ()

2n

->
+ By (w(Ez] +...+ Ezp- e I w 1
2(w(Ezy Zn-Zn+l zzn)) I, szk,zk(I)I

2n
2n I gq(z.,Ez;)

-
= -I 1—l—qr—lﬂi—}- (x,2{)"2 0,(w(z;-x+Ezy +++Ezgp-2Zn4q--..-2 .
i1 2n Z 5 q i 2(wizj 1 n*Zn+l 2n))
I

kit
ggggg.‘ In the formula of Theorem 2 for v=2n note that the 2n+2
varisbles zj,..., Zan+2 8nd the 2Zn variables zpp43,..-s Z4n+2 pley
somewhat different roles. In particular there are no factors
q(zi.zj)'l where 1 & 2n+2 and j & 2n+3,:so that it is possible to set
Z2n+j = %j for j=3,...,2n+2 in that formula without any undue

complications; the result can be written
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2n+2
-‘r=[3 q(zllEz') -

0 =4J J— 6o (ne+ww(zy-23)-w(zz+...+
2n+2  q(z3,2g) 2( (z3-22)-w(z3 22n+2))
b1
ki
2n+2
I {z,,Ez.) =»
+ j=3 q 2 h | ez (ne.ﬂﬁw(z].-z'z)-‘!(zs‘*'- . -+22n+2) )

2n+2  q(Zg.2k)
i
k2

2n+2
2n+2 ig q(zi,Ez.) -

3 3
- 84 (ne+uw(zq+zgo)-w(zat.. . +24 1+2i41+..-F2 ),
j=a 2042 Q23,2 2 1¥7=2 3 i-172i+1 2n+2

1}

k7

+

in which now the variables z; &nd z; play special roles. Multiply this

formula by q(z3,z2), then apply the differential operation 9/0z;, and

finally take the limit as zy+z;. In the first line the facter q(zy.,22)

in the denominator is thus cancelled; the differential operator can be

applied first to the theta functionm, yielding in the limit

(26) fgl 3;92 (ne-w(z3+...+Z3n42)) w}(zl).

and then to the prime factors, where by logarithmic differentiation it

yields the same product of prime factors multiplied by

222 (z1)
’ z
!=3 sz: zi 1
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since as observed many times before

Ez.) .
_5‘.._ 1og q(z ! = w' (z )-
8z, qTfi7_’§T Ezjizy W

In the second line the factor q{zp,zj3) in the denominator is cancelled
but with the introductiocn of a negative sign; the differential operator
is onij applied to the theta function, yielding in the limit (26) but
with another negative sign. 1In the remaining terms there is only a
nontrivial result when the factor q(zj,zp) is differentiated, and it

tends to 1 in the limit. Combining these observations gives the result

that
2n+2
I, q(z,,Ez,) - .
0 =322 . I E 36 (ne-w(zg+...+z !
2n+2  q(z1,z) | J=1 02 (ne-wizg 2n+2)) fJ(zl)
iy
k=3
82t )) 232 (z1) |
+ ne-w(zq+...+z W
2 (z3 2n+2 =3 Ez!'zf z1) §
2n+2

2§+2 O g(z,,Ez;) ( y-2 3 (

+ 153—ﬂqrwi———17 Zi,21)7 Ne-W{Zi+zat.. . +Z{_1+Zip1+...+2 .

iT3 2nez Q23070 1ELAL 2 (z1%2z3 i-1%Zi+1 2n+2))
11

E
Noting that ne-w(zz+...+ Zan42) = w(Ez3+...4EZp42 - 2p43--.--2Z2n42) and

ne-w{zy+za+.. . +2j.1+2j41+. - -+Z2n42) = w(zj-z3+Ez3+...+EZn42 - 243

-...- Zgpn42) and meking the obvious change of notation then yields the

desired result, to complete the proof.
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For the case n=1 the result of the preceding theorem reduces to
that of Theorem 3 upon using the formula of Theorem D6é. For the
general case it seems easier to use the result in the form given rather
than to seek a further reduction, using the analogues of Theorem D6 to
be developed in the next chapter. A slight change of notation is
sometimes convenient though, as follows.

Corollary. If M is a hyperelliptic Riemann surface then for any

~

index n # 1 and any points X, 23, -++» 2p, 8], --+y 8 €M

q(x,z,) q(x,Ea;) y ¢ &
J

n - '
{ jI‘Il T(x—.ﬁ_—mx—,r-]— I ak 67 (w(zy +...+2pn-8] =...- an) )we(x)

3 3 1 k=1

- n ‘ )
+ 03(w(zy+...+2p~83-...=8p)) k£1 (wzk‘Ezk (x)-wak'Eak(x)l

f

n q(Ez,,z.) q(Ez.,Ez.) 1
A q—rﬁfti—rqn:i’l‘—r‘]—f
#1 .

J

(Ez,, z.)q{Ez,,Ea.) =+
e PER il 8, (W(Ex-zj+z+...42p-83-...-87))
g(Ezj,8;)q(Ezj,x)

% I % q(ai'zi)q(ai’Eai) 1 .
i=1 1 j;} q(ai.Ezj) q(ai.aj)j

q(airzi) Q(Hi.Eﬂi} -
e {-X+ +..44 - [ .
q‘ai-EZi)Q(ai,x)l 2 (v(aj-x+zy Zn-81 an))

Proof. This follows immediately from the theorem upon replacing

2j by Ez; and Zj4n by &y for 1sjsn and noting that w(Ezj-x)=w(Ex-2j)-
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3. A special limiting form: the KDV equation.

There are interesting further limiting forms of the hyperelliptic
quadrisecant identity, obtained by setting z=a in the Corollary to
Theorem 3. The direct substitution leads as usual to & trivial
identity, but by differentiating first there results the following
analogue of Theorem D8.

Theorem 5. If M is a hyperelliptic Riemann surface then for any
index j and any point zE;

-+ L ’
I 9 02 (0)wg_(2)wi_(2)w, (2
Kykaky CJkakpks O2(00¥k, (2)¥cy (29¥k, )

- tre . '
+ I 8k 02(0) { Sk W'l () + 3w (2)a(2.E2) 1350z, E2)E’ (2)-3up(2) E(2)

-
+ ez(O)hj(z)

{ q:jp(z) + @}(EZ)E'(Z) }

= -3 I 8, (0)wp(z) 2
Iy BpP2 (v Szl e

where @}(z) are the quadratic period functions, hj(z) are holomorphic

functions, and

2 2
lim f a-, a_. 1
f = gy 8 (z,z) + lo Ez,s) - lo Ez,a)l.
(z) = a3z 1 2% ) + 5,z 108 q ) - 3.5 tog a( )I
Proof. Multiply the formula of the corollary to Theorem 3 by
q(z,2)2 apply the differential operator.33/3z3, and then set z=a. For

the left-hand side note from the chain rule for differentiation that
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33aj;2(w(z-a)laz3

- L ? L
= E ajklksz ez(w(z-a))wkl(z)wkz(z)wks(z)
i !
+ 3 i ajklkz 8y (w(z-2)) w'kl(z)wkz(Z)
g e
+ E djk 62 (w(z-a)w ¢ (2),

and Bjk1k232(0)=0 since gz(w) is an even function of w. For the
right-hand.side recall that o}(z;a)am}(z)-s}wz(a) and consider first
fhose terms involving the holomorphic functions @}. For a nontrivial
result the factor q(z.a)2 must be differentiated exactly twice, so
these terms contribute altogether

lim 3.5, &1 62(0) 2 { [ w}ca)+¢}cEa)E'(a)]wﬂ(z)-Lp}(;)+¢}<£z)z'(z)]wﬁ(a)}

9}(8) + 9}(E2)E’(a) 1.

-
=-3I 0) wi(a)2 &
Iy fcf2(0) we(ar? B [ o
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The remaining contribution from the rigbt-hand gide is

1lim
z+a

Q:rv
Nl w

-+ ¥
ka(z.)? X ajkezw){ vic(a) [wg (@) +wg, (a)E" (2)]
- we(z) [walz)tvga(2) E'(a)]}

- lim P 3 ' '
zag % E 33k82(0) gzg { q(z,a) [wk(a) g; q(z,a) - w(z) g; q(Z.a)]

+ q(z,8)2 [wg(a) g-z log q(Ez.a)-w{{(z)g; log q(z.Ea)]}

=% I dk 92(0){ 48 qa(a,a)w(a) + 3w’k (a)

. 2 2
+ 6we(a) | &5 log q(Ez,2) - Eigg log q (Ez,a)]

g2 z=a

- 6 wﬂ(a) [g; log g (z.Ea)]z=a }

-+ -
- I CIY 92(0){ % wise (8) - 3wy (a) q(a,Ea)~1 3,q(a,Ea)E’ (a)

. 2 2
+ 3 wi(a) [Bq3(a.a) + a—z log q {Ez,a) - o log q (Ez.a)] 1,
oz ozda z=af

Combining these observations and changing variables by replacing a by z
lead rather easily to the asserted result and thereby conclude the

proof.
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There are 3g-2 linearly independent functions among the products
uﬁl(z)wiz(z) wis(z) on a hyperelliptic Riemann surface of genus g, and
the index j is arbitrary, so the preceding theorem amounts to at most
g(3g-2) independent linear combinations of the fourth-order theta
derivatives at the origin expressible as linear combinations of lower-
order derivatives; there are more such relations than those described
by the formula of Theorem D8. Altermatively the preceding theorem can
be viewed as expressing some particular third-degree homogeneous
polynomials in the Abelian differentials in terms of other explicitly
given functions in F(x3). To discuss this in & bit more detail, note
first that the function m}(Ez)E‘(z) satisfies the same functional
equation under the action of an element Tel as does the function ¢}(z),
the equation described in Theorem Bl2; this is a simple verification,

using (1.3) and (2.2). Consequently the function
(1) erh(z) = uieh(z) + PP(EIE (2))

must satisfy the same functional equation as well, so differs from
p}(z) by an Abelian differential and can therefore be viewed as another
normalization of the quadratic period function. It is indeed evident
that the function (1) is uniquely characterized by the functional
equation of Theorem Bl2 for all transformations Tel together with the

condition that

(2) ot (Ez) E'(2) = o*} (2).
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since no nontrivial Abelian differential is invariant under E as a
consequence of (1.3). This normalization is particularly appropriate
for hyperelliptic Riemann surfaces of‘course. gnd is much easier to
handle than the period normalization for @}(z} a5 described in Theorem
Bl2. The right-hand side of the formula of the preceding theorem can

be rewritten even more simply in terms of this normalization as

3 -6 X
(3) 2

it + 2 ’
By J02(0) wi(z)2 A { o} (2) /i (2) } .

!
Multiplying the formula of the preceding theorem by arbitrary constants
€j and summing the result over j leads to a system of linear

differential equations in the second-order theta functions of the form

i L [} ]
0 d; 85(0) c; z + lower-order terms;
ik k,k, 2(0) J"k1(2> wkz( ) wks(z)

Eji
the lower-order terms are Bctually fﬁlly determined by the fourth-order
terms, since the vectors ajk 32(0). 32(0) are linearly independent
modulo symmetries. On a hyperelliptic Riemann surface of genus g the
products wil(z) wﬁz(z) wia(z) span a linear subspace of dimension 3g-2
in the space I'(x3) of cubic differentials; the g constants cj can be
quite arbitrary, but multiplying all by the same constent leads to
esseﬁtially the same differential equation, so that this really amounts
to a2 linear system of (g-1)(3g-2) fourth order-differential equations

in the second-order theta functions at the origin. Among these

differential equations are some particuiarly interesting special cases,
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arising when z is taken to be the fixed point of the hyperelliptic
involution and the constants cj are chosen appropriately.
Corollary 1. If a € M is the fixed point of the hyperelliptic

- -
involution E : M » M then

b ’ ¥ t r
I 85(0 a a
kykoKsk, Bk, kk k, 82(0)¥k, (&)Wk ) YWk, (8) Wi (2)

. - . =
= §k ajk92(0) bj wi(a) + 62(0) 2 4d
for some constants bj. d.

Proof. Set z=a in the formula of Theorem 5, multiply the result
by wﬁ(a). and then sum over the index j. The left-hand side of the

result is clearly

> ’ r ’ ’
I 3; 8, (0)w;(a
sk Cikpkoky 2(0)wj(a) w (3)wg, (8) Vi, (8)

- ) ' -
+ §kajk e2(0) Wj(a) bg - €2(0) 2d

where bi is the expression in braces in the formula of Theorem 5 at z=a
and -2d=Ijhj(a)w3(a). In view of (3) and the observation that ¢*}(a)=0
for all indices j,f as an obvious consequence of (2), the right-hand

gide cen be written

g ’ 2t [}
- sjﬁxa‘" 82(0)wi(8)e"} (8) wj(a)

= ii ak! 82(0) wr(a) bp
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where ¢*}'(a) = d ¢*}(a)/da and b}=5§ ¢*}'(a)w3(a). That yields
]
the desired result with by=-bj-bj.
This too can be rewritten in terms of first-order theta functions,

in analogy with the discussion in section D5. Introduce the vectors
(4) Uy = wj(a), Wy= &bj

in €8, together with an entirely arbitrary vector 2€C®, and in temms of
auxiliary varisbles x,tel introduce the holomorphic function f on gt

defined by
fix,t) = @{Ux+Wt+Z).

Note that fy=3f/0x=;d;@ wj(a), fp=0f/3t= % L3336 bj, and similarly for
the higher-order derivatives.
Corollary 2. With the notation as &bove, the function f satisfies

the partial differential equation
0 = £ frppy ~4ExExxx + 3 fax + 4fgfy - 4Efyy - AF°.

Proof. Multiply the formuls of Corollary 1 on the left by the
t->
matrix. ©p(t) for an arbitrary point t € €. It follows readily from

Lemmas D3 end D4 that the result can be written
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2 tle(t o(t)-4dy O(t o(t)+3 o(t o(t)l
0 13k k gk 8 (£)-43, 8 13l O (1) #3831 B (1) Bk gk 1 )y

wkl(a)...wkh(a)

. 1
=23 { o(t) d5x0(t)-9;0(t) ake(t)} bjwi(a) + 2 d e(e)’.

Upon taking the argument teC® to be of the form Ux+Wt+Z, dividing by 2,
and rewriting this in terms of the auxiliary function f, the formula of
the corollary follows immediately.

The auxiliary function £ for a hyperelliptic Riemann surface thus
gatisfies a somewhat simpler partial differential equation than that
satisfied by the analogous functions for a general Riemann surface, as
is evident upon comparing the preceding result with Corollary 2 to
Theorem D8. This amounts to the same thing ss asserting that the
function u(x,t)=28log f(x.t)/ax’ satisfies the classicel Korteweg-
deVries (KdV) equation, whereas the analogous function in the general
case satisfies the XP equation of Corollary 3 to Theorem D8. These
matters are nicely discussed in the survey article Theta functions and
nonlinear equations by B.A. Dubrovin (Russian Math. Surveys 36 (1981),
11-92). In the traditional approach the Abel-Jacobi mapping is
normalized quite explicitly for hyperelliptic Riemann surfaces, among
other things by taking the base point to be a Weierstrass point; that
amounts here to teking a as the fixed point of the hyperelliptic

involution. Another special case of interest is the following.
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Corollary 3. Let aeM again be the firxed point of the
hyperelliptic involution E : ¥ + M, and let Cj be an eigenvector of
the matrix @*i'(a) = dw*i(z)/dz]z,a with eigenvalue c, so that
Ijij*i'(a) = c Ckx. Then

-
I 9 82(0) c3 W ' '
3 O3k k kg 2(0) 5 v, (8) W, (2) v, (2)

- -+
=j§ ajk 62 (0) cj b + 62(0) 2d

for some constants bj.d deﬁending on ;he choice of eigenvector.

Proof. Set z=a in the formula of Theorem 5, multiply the result
by cj. and then sum over the index j. The left-hand side of the result
is clearly

-+ ] ! r
I g4 ©7(0) cy
sk ik k,k, 2(0) ¢4 wkl(a) wkz(a) wks(a)

-» . -
+j£ ajk 32(0) Cj bk - 92(0) 24
where bé is the expression in braces in the formuls of Theorem 5 at z=a
and -2d = Ij hj(a) cj- In view of (3) and the observation that

m*}(a) = 0 for all indices j,f as a consequence of (2), the right-hand

gide can be rewritten as
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-+ .
-6 I 85(0) wi{a) %} (a) cy
jk’akf 2 Yk } J

g L
3pp 82(0)wk(a) c cp .

=63
kf

That yields the desired result with bk=-bi -6¢C wi(a).

In this case introduce the auxiliary vectors
(5) Uy=wj(a), Vy=cj, Wy =% by

in €8, together with an entirely arbitrary vector ZzeCB, and in terms of

auxiliary variables x, y, t € €8 introduce the holomorphic function £

on €3 defined by
£(x,y.t) = O(Ux+Vy+Wt+2).

In these terms the preceding corollary can be rewritten as follows.
Corollary &. With the notation as above, the function f satisfies

the partial differential equation
+ 4 £5fy - 4 £ £yp - as?

Proof. Multiply the formula of Corollary 3 on the left by the

t>
matrix ©;(t) for an arbitrary point t € 8. It follows readily from

Lemmas D3 and D4 that the result can be written
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21 J o) a; e(t)-d;6(t e{t) - 3 e(t) d; 8t
i (t) ik Kok, {t)-d58(t) aklkzka( ) akl (t) ik, K, (t)

3 95, O(t e(t) \ : \ '
+ kg (t) 6k2k3 () f cy wklta) wkz(a) wks(a)

- 2.1 { e(t) djk O(t) - 3;0(t) ake(t)} cyby + 8(t)? 2d.
Uﬁon teking the argument t € U8 to be of the form Ux+Vy+Wt+Z, dividing
b& 2, and rewriting this in terms of the auxiliary function £, the
formula of the colollary follows immediately.

In the general case the differential equation of Theorem 5 can be
rewritten as follows.

Corollary 5. For any vector xj € €8 and any point z € ; there are
constanﬁs bj.Cj,cg,d depending linearly on x and analytically on z
such that

N
I 9 8,(0) x3wWy C(2) W
sk C3kgkoky 2(0) xjwi (2) Wi, (2) ¥k, (2)

-+ s ) + ® g
-3 djk 82(0) [xjbk + cywk(z) + cjvk(z)] + 2d 85(0).

Proof. This follows immedimtely from the formula of Theorem 5

upon multiplying by xj and summing over j; here
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by = ww' (2) - Swi(z) q(z,E2)"1dpq(z,E2) E’(2)+3wi(2)£(z)

3 } xf d¢*!(z)/dz

(6)
cy = -3 } x! w*f(z)

5? xfyf(z)

where f£(z), hj(z) are as in Theorem 5.

o
]

It is worth noting explicitly that the formula of the corollary is
2 homogeneous linear function of the variable x € C8. To express this

general formula in terms of first-order theta functions introduce the

guxiliary wvector
1

(7N Uj=\i'j(z), ijj{z). VjH!j. VJ=CJ' .Vj=Cj, Wj=bj

together with an arbitrary vector Z € Eﬁ,and in terms of auxiliary
variables x,x‘,t, t',t*, y € € consider the holomorphic fuﬁction f on

g6 defined by
f(x,x',¥.t,t',t") = O (Ux+Ug+Ve+V £ +V L " +Uy+Z).

With these conventions there is the following result.
Corollary 6. With the notation as above, the function £ satisfies

the partial differential equation

0 = £ffrpqr - £t fxxx = 3fxfxxt + 3£zt fxx

+ f fyt - fyft + ffxt'—fx ft’ + f fx’t' - fx'ft' -+ df’.
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Proof. Multiply the formula of Corollary 5 on the left by the
t+
matrix ©,(t) for an arbitrary peoint t € €B. It follows readily from

Lemmas D3 and D4 that the result can be written
21 le(t) 84 e(t) - 9;8(t) e(t) - 3 e(t) d; B(t)
ik [ece) Jkykoky 38(8) Bk, ke, O (L) %, Jkky

3 B35y 8(t 8(t ' ' '
+3 3jx B(8) B, 0(8) ] 1y v (2) Wi (2) v (2)

= Zji [e(t) ajke(t)-aje(t)ake(t)] [Ijbk+CjWk(z) + Cjwk(z)]

+ 2 0(t)” d.

Upon setting t = Ux+U’'x’+ VE4V't'+V"L"+Wy+Z, dividing by 2, and
rewriting this in terms of the auxiliary function f, the formula of the

corollary ensues.
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4. The trigonal multisecant identities.

The next simplest class of Riemann surfaces beyond the
hyperelliptic ones are those for which W} ¥ ¢. Any such surface M has
a nontrivial meromorphic function with poles of total order at most 3,
and if g > 1 and M is not hyperelliptic this function has poles of
total order 3 so describes a three-to-one holomorphic mapping x : M »
Pl: thus M can be represented as a three-sheeted branched holomorphic
covering of the Riemann sphere. The surfaces M of this form, that are
of genus g > 1 and are not hyperelliptic, are called triponal Riemann
surfaces.

Since any Riemann surface of genus g=2 is hyperelliptic the
trigonal surfaces must have genus g # 3. It follows from the Riemann-
Roch theorem in the geometric form B(9.8) that W}= k-W; when g=3, so
every nonhyperelliptic Riemann surface of genus g=3 is trigonal;
moreover since W} is one-dimensional in this case theréwaré a number of
quite distinct representations of such a surface as a branched three-
sheeted covering of the Riemann sphere. Any nonhypereiliptic Riemann
gsurface of genus g=4 is trigonal, and as observed in the discussion in
section B9 in this case W} consists of either one or two points. A
general Riemann surface of genus g & 5 is neither hyperelliptic nor
trigonal, but if it is trigonal then W} consists of a single point s0O
the surface has an essentially unique representation as a branched

three-sheeted covering of the Riemann sphere; this sitatuion is
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discussed in the book by H. M. Farkas and I. Kra (Riemann Surfaces,
Springer-Verlag, 1980).

Suppose then that M is a trigonal Riemann surface and that = : M »
Bl is & representation of M es a three-sheeted branched covering of M
associated to a point e € H}. For any point p € M the set t'l(t(p))

can be viewed as a divisor of degree 3 on M, say
(1) = l(x(p)) = p + p'+p"

in general this divisor will consist of three distinct points, but if p
lies over a branch point of the mapping = then it will consist of just

one or two points. For this divisor it is of course the case that
(2) w(p+p'+p*) = e € W} c J,

and conversely whenever (2) holds these three points are related as in
. .

Now in general a divisor of degree r on M can be viewed as an
unordered set of r points of M, so the set of all such divisors can
naturally be identified with the quotient space HFI) = qug} where the
symmetric groupgir acts as & group of complex analytic automorphisms of
the product manifold M' by permuting the factors; the guotient space

M(T) js itself sn r-dimensional complex manifold, a standard result

proved among other places in my book (Lectures on Riemann Surfaces:

Jacobi Varieties, Princeton University Press, 1972). The mapping that

associates to any point p € M the divisor p’+p” € M(®) 15 a well
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defined holomorphic mapping M » M(?); its image is & one-dimensional
analytic subvariety of M(?) by Remmert's proper mapping theorem, and is
birationally equivalent to M since this mapping between M and its image
is evidently one-to-one. If ; is the universal covering space of M
then it is quite easy to see that E(z) is the universal covering space
of M(?), 1Indeed ;\;f/can be identified with the set of divisors of
degree 2 on ;. s0 is evidently at least a covering space of ﬁsi). On k\:f/

the other hand M can be identified with the unit disc in the complex

plane, and the mapping that associates to any point (z3.,Zp) € gz c ¢?
the point (w;,w2) € C? where wy = z1+z3, wp=z3zp clearly identifies the
quotient space ﬁ(z) with an open subset of e?; this open subset is
contractible along the parabolic paths {(twl.tzwz) : 0sts1l}, sois
simply connected. The mapping M - M(i) can be lifted to & holomorphic
mapping E : § - g(’) from the universal covering space of ; into the
universal covering space of M(?); this mapping associaﬁés ;o any point
2 € ; a divisor Ez = E'z+E"z € ;(z}. where if 2z € ; covers a point p €
M, then E’'2+E”’z covers the divisor p’+p”. Of course E’' and E” can be
defined separately by making a choice for each point z € M, but are not
then necessarily even continuous let alone analytic; however the
divisor E',+E"z does depend analytically on z. There any many possible
liftings, each being determined uniquely by the choice of a divisor
E'zo+E"z, covering p, +p; where z, € ;Vis the base point of the
marking of M and covers the point py € ﬁ; any other lifting will

correspond to another choice T'E’zg+T"E”zy for some arbitrary elements



- 4B -

7', T € I'. It will be supposed that some choice has been made, so that
the mapping E is given for the remainder of the discussion.

¥With this choice it follows from (1) that w(z+Ez) = ¢ € J, and
since the divisor Ez depends continuously on z there is é unique point

of T8 which will also be denoted by e such that

(3) w(z+E‘'z+E"z) = e € C&

for all points z € ;. This point will be called a trigonal point; it

depends on the choice of a point in w} if g 5 4 end also on the choice
of the lifting E. If E'a ¥ E"a for some point a then it is possible to
choose the points E'z, E"z so that each will be a holomorphic function

of z near a; in that case it follows from (3) that

(4) w'(z) + w(E'2) & E’(2) + w (E"z) & E"(2) = 0
dz dz

-~

in this neighborhood, in terms of canonical local coordinates on M as
usual. This is just the observation that any holomorphic differential
form on M when symmetrized over the covering mapping = : M =+ Pl will
yield a holomorphic differential form on pl, which of course can only
be identically zero since there are no nontrivial such forms on pl.

The derivation of the first trigonsl multisecant identity follows
almost precisely the pattern of the earlier discussion of the

hyperelliptic trisecant identity. If 2z3,...,25 € M represent distinct

points of M and'g_z w(zy+...+z5) then by Theorem D2 the five vectors
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32 {e-w(8)] (w(zj)) for 1sis5 span a subspace of Ezg of dimension at
most three, while the first three of these vectors are linearly
dependent precisely when e-w(z,+z5) € Wi; this last condition is just
that e = w(z,+z5+zg) for some point zseg. so is equivalent to the
condition that zg € ' E‘z4 v I' E°z4. Thus there must be an identity of

the form
- 3 -
(5) @9 [e-w(g)] (w(zyg) =iElfi(zl,....25) ez[e-w(g)] (w(zi))

for some uniquely determined meromorphic functions f§ with
singularities at most along the subvarieties zj €T 2z for 1 s j <k s
S or z5s € P E'z4 u T E'24. These functions in a symmetrized form can
be obtained directly from the ordinary quadrisecant identity as
follows.

Theorem 6. If M is a trigonal Riemann surface with trigonal point

o~

e then for any points zj,...,25 € M

4 glz,,E'z_)q(z JE"2.) »

0 =73 = 2 i 2 B, [e-W(Z1+...4Z (w(z{))-
i=1 ﬁ q(zi.zj) 2 1 5)1 (1))
j=1

j#

Proof. This follows immediately from the case n=4 of Theorem D9
upon setting x1=E’‘zs, X2 = E"25, and noting that w(E‘'zg+E"z5-2] ~.».~
z;) = e-w(zy +...+ zs) in view of (3).

Here too there is a particularly interesting limiting case of the

identity, that for which z5 = z4. To simplify the notation introduce
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in analogy to the corresponding situation for hyperelliptic surfaces

the suxiliary function
(6) hg(z) = q{z,a) q(z,E’a) q(z,E"a);

this expression is symmetric in E'a and E"a, so is & holomorphic
function on ; X E, For any fixed point & € ; it is a relastively
sutomorphic function hy € T({zlE'afE"a) = P(pe§3), and is clearly
determined uniguely up to a constant factor as that function in P(pe§3)
that §anishes st the point a. The projective space !I‘(pe§3)==21 is just
the Riemann sphere, and the mapping that associates to any point ae;
the class [hg] € pl depends only on the point of M represented by a and
amounts to the representation of M as a three-sheeted branched covering
of Bl associated to the point eeWy.

Corollary 1. If M is a trigonal Riémann surface with trigenal
point e and z,z3,z3,23 are any points of g then with f=

= we-% w(zjt+zp+tzz):-

. z ., .
q(zl zz)q( 1 zs)q(z2 z )

-
q(z,E'z)a(z,E"z) 62(f)
q(z;.2)q(z3.2}a(23,2) z

-y

C = hz(zl)q(zz.23)q(2.21)'2 02 (f-w(z-23))
-

+ hy(22)a(z3,21)0(z,22)"2 83(£-w(z-22))

-
+ h,(23)q(21,22)3(2,23) "2 83 (£-w(z-23))
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Proof. This follows immediately from the formula of the preceding
theorem upon setting z; = 25 = z and multiplying through by
q(z;,22)q(z1,23)q(z2,23)-

Corollary 2. If M is a trigonal Riemann surface then for any

points z, a € M
->
0 = q(z,E'2)q(z,E"2)q(a,E’'a) q(a,E"a) 62(0)

->
+ ha(z) hy(a) g(z,8)"2 @ (w(z-a))
-
- ha(z) h,(E'a) q(a,E"a) q(E'a,E*a)~1 q(z,E'a)"2 8, (w(z-E'a))

-+
+ hy(z) hy(E*a) q(a,E’a) g(E'a,E*a)~l q(z,E*a)~2 @, (w(z-E*a)).

Proof. This in turn follows immediately from the preceding
corollary upon setting zj=s, z2=E’'a, Z3=E"a and noting that with these
choices £=0.

These corollaries have interpretations rather analogous to those
of the corresponding result for hyperelliptic Riemann surfaces. First
for any fixed point aeg the mapping that sends a point zeg to the point
gz(w(z-a)} € Ezginduces as before & holomorphic mapping from M into the
projective space !2g“1. the image being an algebraic curve M, lying in
the Wirtinger variety K C !23-1; since M is not hyperelliptic this
mapping is always one-to-one, so that My is a birational model of M in
the Wirtinger variety. It is evident from the corollary that the point
a € M together with any three points z,z’',z" € M related as in (1) have

as images four coplanar points of My ¢ K. This is true for any

representation of M as a three-sheeted branched covering of »l, even in
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those cases in which W} has more thsnra single point so that there is
more than one such representation. The result of the first corollary
can be interpreted geometrically as a somewhat more general relation of
coplanarity.

In a slightly different direction, the result of Corollary 2 can
be rewritten in a rather interesting alternative form by using the

formula of Theorem D6; a simple calculation shows that it has the form
b d
0 = 92(0){ q(z,E'z)q(z,E*z)q(a,E'2)q(a,E"a) + ha(2)hz(a)w'z(a)

- hg(z) hz(E'a)q(a.E'a)q(E‘a,E'a)‘l w;(E’a)

J

+ hy(z) hy(E*a)q(a,E’a)q(E’'a,E*a)"1 w' g (E"a)
- [ 4 ?
+4.5 Ok 92(0){ hg (2)hg(8)w] (z) vk (a)

- ha(z)hz(E’'a)q(a,E*2)q(E’s,E"a)"] v} (z)wi(E'a)

+ hg(z)h, (E*8)q(a,E’a)q(E’a,Ea)" L wj(2) wc(E"a) }.

Here djk ;2(0) = Okj 32(0). but aside from this obvious symmetry the
vectors ;2(0) and ajk ;2(0) are linearly independent; this result will
only be demonstrated in Theorem F4, but the proof does not rely on
anything bgyond result already established in Section C so the theorem
can be used freely here. It follows that the preceding identity is
really equivalent to a few simpler iden;ities. " A consideration of the
coefficient of najjgz(O) shows after dividing by the nontrivial

function hg(z) hz(a) w&(z) that



« 53 -

' hz(E'u) g(a,E"a)

7 0= - . (E'
(7) wic (&) Bo(a) q(E'a.E'a) wi(E'a)
h (E*a a,E’ .
 DplER) 9 BE) .

h,(a) q(E‘a,E"a)

This is a formula of the form (3), and must actually amount precisely
to the same thing as (3). Indeed if there were two formulas of the
same general form as (3) then there would clearly be an identity of the
form wﬂ(E’z) = f(2) wi(E'z) for some function f£(z), and that would
mean that E‘z and E“’z would have the same image in the canonical curve,
an impossibility since M is not hyperelliptic. It follows from this
that the expressions h,(E’a)/hy(a) and h,(E*a)/h;(a) must be
independent of z. It was noted earlier that the functions h, lie in
the two-dimensional space r(per3). and that the functions associated to
two parameters 2zj,zp representing distinct points of M are linearly
independent; two such functions form a basis for F(pe§3), and since
h,(E‘a) = c hy(a) for some value c¢ independent of z and for all points
z € ; it is evident that h(E’'a) = ¢ h{a) for the same value c and for
any h € r(pe§3). Consequently (7) can be rewritten

h(E'z) gq(z,E"2z) ,

8 0 = w - E’'
(8) Vi (2) h(z) q(E'z,E’2) i (B'2)

h(E"2z) g{(z,E'z) ,
+ wi (E"z)
h(z) q(E'z,E"2)
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for any nontrivial function h € P(pers). where the quotients
h(E'z)/h(z) and h(E"z)/h{z) are independent of the choice of the
function h. It should be noted that this formula is symmetric in E'z
and E*z. This provides an extension of (3) to arbitrary points z of

;, for which z,E’'z,E*z need not represent distinct points of M; but if
there are coincidences the coefficients need not be well defined. The
coefficients are only meromorphic functions at points for which E’'z and
E”z can separately be defined as holomorphic mappings. VA consideration
of the coefficient of ;2(0) in the preceding identity shows similarly
that

q(z,E'z) q(z,E"z) q(a,E'a) q(a,E”a)}
{9) I TE) 0, (7]

' h(E‘a) g(a,E"a) , h(E*a) g(a,E'a) ,
= wy(a) - vy (E'a) + w, (E"a)
h(a) g{(E'a,E"a) h(a) q(E’'a,E"a)

for any nontrivial function h € P(pe§3). This is somewhat analogous to
(8) but for the Abelian differential of the second kind.

Just as in the case of hyperelliptic surfaces so alsoc in the case
of trigonal surfaces are multiples ve of any point e € W} also rather
specisl points, associated to even more interesting multisecant
identities than is the point e itself. The situation is rather more
complicated for trigonal surfaces than it is for hyperelliptic surfaces
though, since the properties of the poiﬁts ve depend on the particular
surface under consideration. The discussion of these properties is

perhaps most conveniently based on the trigonal invariants that were
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apparently introduced by A. Maroni (Le serie lineari speciali sulle
curve trigonali, Ann. di Mat. 25 (194§6), 341-3545; these are instances
of analogous invariants that can be defined for arbitrary Riemann
surfaces, associated to the minimal representations of that surface as
a branched covering of the Riemann sphere. There is a thorough
treatment of these invarients in the paper of A. Andreotti and A. Mayer
{On period relations for Abelian integrals on algebraic curves, Ann.
Scuola Norm. Sup. Pisa 21 (1967), 189-238), but a summary of the
properties that will be needed here in a convenient form for the uses
that will be made of them will be included for the sake of
completeness.

A point e € W} describes a line bundle or factor of automorphy
r=pe§3 for which y(r)=2. If f5,f; € T(r) is any basis for the space of
relatively automorphic functions associated to this factor of
automorphy then for any index vzl the v+l functions £1Y, ff‘l fo.
£Y-2 £L, ..., f4 are linearly independent relatively automorphic
functions for the factor of automorphy rV, so that y(rV)zv+l. There is
an index v, such that y(rV)=v+1 for 1 sv<v; but 1(rv=) = v+2; thus in
addition to homogeneous polynomials of degree vy in f, and f; there is
a further linearly independent relatively automorphic function
£y € P(rvz). For any index vav, the functions £V, £¥-1 £, ,..., £},
fzflv-vz. fzflv-viifo. vees fzfz-vz are linearly independent relatively
automorphic functions for the factor of automorphy rY, so that

¥(rY) & 2v-vy+2. There is another index v3 such that y(rV)=2v-vy+2 for
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v

vpsv<yy but y(r 3)uZV3-v2+3. hence an additional relatively automor-
v

phic function§3er(r 3). For any index vzvs the functions

V-V v-v, -1 V-V
£1V, £V 28, .., £V, £2 £ 2, £3 £7 2 fg, ..., £2fp 2,

£q flv-u3.f3f1v-v3-1 fo, +--. f3 foy3 are a basis for I'(rV) so that
y(rV)=3v-vy-v3+3=3v-g+l. These indices vy, v3 are the invariants of
Maroni. Note that +y(rV) = 3v+l-g for all sufficiently large values of
v by the Riemann-Roch theorem, so that actually vy+vsz=g+2; thus v,
alone specifies the Maroni invariant. This index varies over the
interval % (g+2) svosk (g+2).
As a simple alfernative wvay of thinking of the indices of Maroni,

note from the preceding discussion that

1 if 15 v <o,
(10) YoV -y (r¥-1)={ 2 if vy s v < vy,

3 if vy 5= v,
For g=3 it follows from the inequality v, & %(g+2) that vy,2,

and from the equality vpy+v3=53 that the only possibility is vy=2, v4=3;

thus the values y{rV) are as follows:

(1) :

On the other hand for g=4 there are the two possibilities vp=2, v3=4

and vo=3, vg=3; the values of y(rY) in these cases are as follows:
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{12) v :+ 1 2 3 & 5 ...
g=h,vy=2,v3=4 y(rV): 2 4 6 9 12 ...
g=4,vs=3,v3=3 4(r¥): 2 3 6 9 1z ...

These two cases are distinguished by the value of 1(72). Note from the
Riemann-Roch theorem that 1(57'2)-1(12)-3 so that 1(£r'2) =1 or O
according as vp=2 or 3; but c(;r‘z) = 0, s0 in the first case x = r2
whife in the second case x ¥ 2. 1t also follows from the Riemann-
Roch theorem that x 1 e W}, so if vy=3 then ur'l#r and M is of the
class of Riemann surfaces of genus 4 for which W% consists of two
points. On the other hand if r3, 73 € W} are distinct points and £,
£, € T(r1) and go,B1 € I'(r2) are bases then f,85, foB1. figo £127 are
linearly independent functions, so that y(rjrp) ®é=g while c(ryr3) =

= 6 = 2g-2; in that case x = ryry, and for both rj; and r the Maroni
invariant is vp=3. The two possible cases for the Maroni invariant
thus correspond to the two distinct types of nonhyperelliptic Riemann
surfaces of genus 4 discussed earlier. It is characteristic that the
smaller values of the Maroni invariant vp correspond_to special Riemann
surfaces of a fixed genus, as in this case. For other small values of

the genus the invariants are as follows:



(13) B=5> : V=3, v3=4;
g=6 1 vy=3, vq=3
vo=h, va=4

g=7 vy=3, v3=6
vp=h, v3=5

g=8 va=4, uy=b
v9=5, v3=3

g=9 vg=4, vi3=7
ve=3, v3=6

g=10 : vo=4, v3=8
vy=5, va=7

vp=6, v3=6

From these and the other observat

1(pze§6) = y(r?)

=]
(14) ]

4
3

(15) v¥(psefl?) = y(r%) =

oo~ DO o
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if u=r3§a for some meM,
otherwise;

if & = 14.
otherwise;

if n=74§31§52 for some ajeM,
otherwise;

if n=r5§a for some aeM,
otherwise;

if « = r® hence 1(ur'5)t2.
if y(aer~2) =1,
if y(xr's) = 0.

ions already made it then follows that

2

if g=3 or g=4, K=r
otherwise; -

i1f g=3,
if g=4,
if g=5,
if g=6 or g=7, vy=3,
if g=7, vy=4 or g=8, vy=é&
or g=9, vp=4, or g=10,vp=4
otherwise.

If vye5 clearly 1(r4)=5; it is only possible that 1(r4)>5 vhen vos4,

1
and from the inequality ; {g+2) =

surface of genus gsl0. The speci

va that can only happen for & Riemann

fic instances in which 1(74) exceeds
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the minimal value are those tabulated in (15). In general y(pye$3V) =
y(rV) = v+1, as is always the case whenever vp>v and in particular for -
any Riemann surface of genus g > 3v-2.

To return then to the discussion of further trigonal multisecant
identities, note as a consequence of the preceding discussion that
ZeeW% for any trigonal Riemann surface. If zl,....zge; represent
distinct points of M and 8 = 2z +...+ zg then by theorem D2 the eight
vectors ;Z[Ze-w(g)](w(zi)) for 1=is8 span a linear subspace of ngof
dimension at most five, and the first five of these vectors are
linearly dependent precisely when 2e-w(zg+zy+zg)€Ws; this last
condition only holds for all points zs,zy.zaeg when 2eew3e(-W3)=Wa. in
view of B(%.12), and Zeewa only for the special Riemann surfaces for
which vy=2 s described in (14). Thus so long as M is not one of these

specis]l surfaces there must be an identity of the form

- 5 -
0 [2e-w(8)] (w(zg)) =i£1 £i(z3,..+,28) 02[2e-w(8)] (w(zi))

for some uniquely determined meromorphic functions fj. On the other
hand for these special surfaces the first five vectors are always
linearly dependent, but by Theorem D2 again the first four are
generally linearly independent; thus in these cases there must be an

identity of the form

- 4 .' -
8; [2e-w(8)] (w(zs5)) =i£1 £i(z14...,28) 02{2e-w(8)] (wW(23))
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for some uniquely determined meromorphic functions fj. These functioms

can be obtained directly from the ordinary multisecant identities, but

a few further preliminary observations are helpful for the gecond case.
If 2eeWi then for any divisor zj+zp+z3 on M there is another

divisor z{+z5+z§ on M such that
(16) -  2e = w(zj+zptzatzl+zz+z3),

and this second divisor is unique so long as 2e-w(zj+z3+z3) é W%. Thus
upon identifying divisors on M with points of the symmetric product of

M and setting

(17) X = { zy+zp+z3 € M3) & 2e-w(zy+zaez3) € w}}

the mapping that associates to any divisor zj+zp+z3 € M(3) ~ X the

divisor zI+z§+z§ is a well defined mapping
(18) F: M(3) ~ x » u03);

this mapping is evidently holomorphic, since the unique element h €

4 P(szgs) vanishiné at & divisor 8= zj+zp+23 € M(3) ~ X depends
holomorphically on g,and F(g% ig the divisor of h. If M is a trigonal
Riemann surface of genus g=4 for wvhich U} c J consists of the single
point e then X is clearly the one-dimensional subvariety consisting of
all divisors of the form z+E'z+E*z as z varies over M; the natural
mapping z =+ z+E’z+E"z factors through the trigonal projection M = Bl

and exhibits X as being biholomorphic to p}. If M is a trigonal
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Riemann surface of genus g=3 then W}=k—w1, so that e=sk-w(a) for some
fixed point a € M, and 2e-w{zl+zz+z3)-2k-w(z1+zz+z3+23)ew} precisely
when k=w(zj+zo+z3+2a-z) for some point z € M; but any meromorphic
Abelian differential with at most & simple pole must actually be
holomorphic, since it has total residue zero, so for a canonical
divisor of this form necessarily either z=z; for some index i or z=a.
Thus in this case X consists of all divisors zj+zz+zy for which
zy+zo+za+a is a canonical divisor. If w',w” are any two linearly
independent Abelian differentials vanishing at a then the canonical
divisors of this form are precisely the divisors of the differentials
c'w’'+c”e” for all points (c’,c®) € pl, so egain X is a one-dimensional
subvariety of M(3) biholomorphic to ¥l. The symmetric product §(3) is
the universal covering space of M(3), by essentially the same argument
as for the two-fold symmetric product, and the simply-connected
subvariety x=p1 c M(3) lifts to a subset ; c §(3) that>bonéists of a
number of disjoint homeomorphic copies of X. Here E is an open disc,
and the homogeneous polynomials of degree three exhibit ;(3) as an open
subset of €3; the complement of a set of disjoint two-spheres in an
open subset of 2% is simply-connected, so that §§3) ~ ; is the
universal covering space of M(3} ~ X. At any rate F can always be

lifted to a holomorphic mapping

18y F s M3 ~x e ud),



-62 ~

and since this is a mapping between subsets of g3 and X is & one-
dimensional holomorphic subvariety it follows from known removable

singularity theorems that F extends further to a holomorphic mapping

(18*) F s M(3) o u(3),

~

Thus to any divisor 8=z3+z3+z3 on M there is associated a unique
divisor Fg9)=zf+zz+z§ on E. depending holomﬁrphically on 8, such that
(16) holds for these divisors and the hyperelliptic point e € CE.
There are clearly a number of choices for this extension (18”) of the
mapping (18), even for a particular choice of e € ce.

Theorem 7. If M is & trigonal Riemann surface with trigonal point

-

e then for any points z7,...,2g5 € M

6 (z..E’z ) (z.,E'z ) (z..E'z ) (z..E'z ) -+
0 =1 alz;.F 27)q(2;,5 27097750~ 25707750 %p 8y[2e-w(z3+...+2g) ) (w(zi)).

b1 q(zi.zj)
1gjg6
j¥i

If M is one of the special trigonal surfaces with Maroni invariant vp=2

and F(zgtzy+zg) = zg+z;+z§ for the mapping (187) then in addition

. * * +*
5 qlz;,zg) q(2z;,25) q(z4.25) =

0=z 87 [2e-w(zy +...+zg) 3.
i=1 I q(zi.zj} 2 [ 1 g} (w(zji))
1gjgs
i3 2

Proof. The first assertion of the theorem follows immedistely

from the case n=6 of Theorem D9 upon setting x3=E‘z7, x3=E"z7,
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x3=E’'zg, x4=E"zg and noting from (3) that w(xj+...4x4-23 -...- 2g) =
2e-w(zj+...+zg). The second assertioﬁ follows from the case n=5 of
that theorem upon setting 11=z5*. xzsz;, x3=z§ for the divisor
F(zs+z7+za)=zg+z;+z§ and noting from (16) that w(x; +...+ X3 -

2y =...~ 25) = 2e-w(z] +...+ 2g).

The general situation is much like the special one just
considered, but with a greater variety of supplemental trigonal
multisecant identities for surfaces of small genus. Rather than
attempting here to describe the general situation it is enough just to
examine one further special case, that involving the point 4e. For any
trigonal surface of genus g>10 it was noted in (13) that 1(p4e§12)=5.
so that 4e € w§2~w§2; however for surfaces of genus gs10 the value
1(p42512)=u+1 may exceed 5, as tabulated in (15), so that 4e €

v+l
WY, ~ Wy for the value of v indicated. In any case if z3,...,214

€ M represent distinct points of M and 6=z +...+ 234 then by Theorem
-
D2 the fourteen vectors ez[ae-w(g)] (w(zi)) for 1sisl4 span & linear
g
subspace of €2~ of dimension 13-v. There must thus be an identity of

the form

- 13-v -
92[49-‘7(3)] ("(zlk-v) = izlfi(zl..--.z_ll.) 92[48-“’(1)]_(?(21)
for some uniquely determined meromorphic functions f£j. The general

case is that in which v=4, as observed above, and yields results

precisely paralleling the general case for the point 2e.
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If 1(p4e§12}=v+1 then for any divisor zj;+...+z, on M there is

another divisor z{+...+z;2_v on M such that
’ * ®
(19) e = V(=1+---+zu+zl+---+212-v)-

since there will be some nontrivial function in P(pae§12) vanishing at
the divisor zj+...+z, and the full divisor of that function has image

4e in the Jacobi variety. If.

Xy, = [ 21 #...42zy, € BIV) : de-w(zg+...42y) € W}Z_vl

J

then whenever zj+...+z, ¢ X, the divisor z{+...+z{2*u satisfying (19)
is uniquely determined, so must as usual depend holomorphically on

Z1+...+2y,; there is thus & well defined holomorphic mapping
P, : M(V) ~ g, » u(12-V)

such that the divisors zj+...+z, and F(zl+...+zu)=zi+.::+:Iz_u satisfy
(19). Note that in terms of a basis fj € P(pae§lz) the set X, can be
characterized as the setiof those divisors zj+...+2zy, such that rank
{fi(Zj)}(U when the points zj sre distinct, with the customary
modification for coincidences; thus X, is necessarily & proper
holomorphic subvariety of M{V) . Now the universal covering space of
M) g E(V), just as for the case v=2; so if x: ﬁ(")»ﬂ(") is the
covering mapping and Ev‘ x-1 (X)) the induced mapping Fyx: ;(”) ~

XU¢H(12'") can be lifted to a holomorphic mapping

By s KO ~ X, + BOZD),
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which is unique up to a covering translation on ;(12”"). Here E(V) and
M(12-) can be identified with bounded open subsets of CV and glZ-V
respectively; the component functions of the mapping F, are then
bounded holomorphic functions in the complement of the holomorphic
subvariety Ev. and by familar theorems on removable singularities they
extend to holomorphic functions on all of E(V). Thus there is actually

& holomorphic mapping

(20) F, : M(V) » y(12-V)

"~

that associates to any divisor zj+...+z, on M a divisor
Fv(zl+...+zv)=zi+...+z{2_v on ; such that (19) holds; the mapping can
be chosen so that e € B in this formuls is the trigeonal point (3), but
is still not uniquely determined. 1In the general case, that for which
v=4, all the functions in r(paeclz) can be expressed in terms of
products of functions in P(pe§3) and this construction can be

expressed in terms of the trigonal correspondence; indeed
F4(21+22+23+Z4} = E'z1+E"21+...+ E'z;+Ez, € mM(8)

in this case, but there is nothing similar otherwise.

Theorem 8. If M is & trigonal Riemann surface with trigonal point

e then for any points z3,...,214 € M
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14
10 .0 . q(z,,E'z.)q(z,,E'z,) »
j=13 3'%3 j it %
0= < Bqlbde-~wl{zi+...4212)] (x(z3)).
51710 atzg.n 2l 1 14)] i)
ki1
k#i

v+l
If in particular e € WYy ~ Wy, for 4svs9 and Fy(z35_yt...+214) =

x3+...4+ x37_y then in addition

12-v

0 14£V igl_gifilfil__ 3 4 ( 11 (w(z3))
- — - +...% wlizszl)).
i=1 14-v q(zi.zk) 2lde-w(zy 21471 21

i
kzt

Proof. The first assertion of the theorem follows immediately
from the case n=10 of Theorem D2 upon setting x1=E’z3;, xp=E"2331.,...,
x7=E’z14, xg=E*z;4 and noting from (3) that w(xj+...4xg-23-...-21p)=
4e-w(zy+...+z14). The second assertion follows from the case n=l4-v of
Theorem DZ upon setting x1+...+xlz_qu:(zls_v+...+zl4) and noting from

{19) that w(xj+...tx32_.¢y - Z1~.- =ZT1g4.p) = Be-w(zZyt...+2Z14).



