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Theta functions have played a major role in the investigation of compact
Riemann surfaces ever since Riemann’s own pioneering work, and remain
at the core of much current research in this area. The theta functions as-
sociated to Jacobi varieties of compact Riemann surfaces have a number of
quite special properties not shared by more general theta functions; that is
the key to their role and the aspect of their study that will be considered
here. Familiar models of such properties are Riemann’s vanishing and sin-
gularity theorems; possibly less familiar models are Fay’s trisecant identity
and addition theorem. These properties seem inevitably to have both richer
-and simpler structures when expressed in terms of second-order theta func-
tions, no doubt reflecting the fact that there are enough second-order theta
functions to embody almost the full function field of the Jacobi variety. The
analogues of Riemann’s theorems for second-order theta functions are sim-
ple descriptions of all the subvarieties of special positive divisors in terms
of these functions. Fay’s theorems are linearized and hence in some ways
more tractable when expressed in terms of the second-order theta functions;
extensions of the addition theorem are in some ways more natural in this
context, and yield a fascinating further structure that underlies the expres-
sion of solutions of some standard nonlinear partial differential equations
in terms of theta fﬁnctions, The goal of the present book is to discuss pre-

cisely these topics. What is known remains quite overwhelmed by what is



yet unknown; this is more an introduction to an active and open area of

current research than the survey of a complete and polished theory.

No previous knowledge of theta functions will be presupposed; the nec-
essary background is provided in section A, which covers those properties
of theta functions that will be needed in the subsequent discussion and es-
‘{ablishes the notation and terminology that will be used. It is not intended
as a general introduction to the whole theory of theta functions, though, so
nothing is said about algebraic tori of other types, about polarizations other
than the principal polarization, or about identities satisfied by more general
theta functions. On the other hand at least a nodding acquaintance with
Riemann surfaces will be presupposed; while a general background survey
is provided in section B, it is probably too brief to serve by itself as a suf-
ficlent introduction to the subject. The primary purposes of this section,
in addition to establishing the notation and terminology to be used, are
to treat some topics, such as the prime functions, which are not generally
covered in a first course but will be needed subsequently here, and alsoe to

introduce some new material, such as the quadratic period functions.

After these two introductory sections, the special properties of first-order
theta functions on Jacobi varieties are discussed in section C. Riemann’s
theorem is of course the major classical result, and the first four subsections

are a survey of this and other now standard material, based to a consid-
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erable extent on the treatment by John Fay in his book “Theta Functions
on Riemann Surfa,ce;s” (Springer, 1973). The only novelty here is a greater
reliance on the role of the prime functions thén is customary. The discus-
sion in the last three subsections of the second derivatives and second-order
Gauss mapping does contain some new material though. The analogues of
Riemann’s theorem for second-order theta functions are discussed at the
beginning of section D, and are then used to derive Fay’s trisecant identity
and some generalizations and limiting cases, much as in my paper in the
American Journal of Mathematics (vol 108, 1986, pages 39-74). The treat-
ment in section E of the generalized trisecant identities for hyperelliptic
and trigonal surfaces, and some limiting cases of the former, are new. Most
interesting here is the novel approach to demdnstrating that solutions to
the KDV and some more general fourth-order partial differential equations
can be expressed in terms of theta functions on the Jacobi varieties of hy-
perelliptic surfaces. An extensive generalization of Fay’s addition theorem,
amounting to an expansion of the second-order theta functions on appro-
priate symmetric subvarieties of the Jacobi variety in terms of the canonical
holomorphic and meromorphic Abelian differentials, is given in section F.
This leads to a very interesting new set of invariants associated to Riemann
surfaces, as discussed in sections ¥ and G. These invariants yield a rea-

sonably effective approach to the problem of classifying all the systems of



partial differential eqﬁations satisfied by the second-order thetanullwerte.
The classification of all fourth-order systems on hyperelliptic Jacobi vari-
eties is described in detail; the new systems that appear are probably worth
even further analysis. Finally the cases of Jacobi varieties of genus three

and four are worked out to illustrate the general situation.



A. Theta Functions

$1. Complex tori and their period matrices,

A lattice subgroup [ of a vector space Rn is an additive subgroup

generated by n linearly independent vec‘c.or_s. By a suitable change of
coordinates in ln these generators can be taken to be the standard basis
veciors, and the lattice subgroup L can thereby be identified with the
subgroup Z° & X"; the quotient group is then just /2" = (8/z)",

the Cartesian product of n circles or an n-dimensional torus. A lattice
subgroup L of a complex veclior space eé is Just & lattice subgroup of the
underlying reel vector space l?s, hence is en additive subgroup generated
Ty 2g vectors in 6 that are linearly independent over the real nunmbers;
the quetient group Eg/L is topologicelly a 2g-dimensional torus, but also
hes the netural structure of a g-dimensional complex pmanifold and es such

will be called a g~-dimensional complex torus. These manifolds are the

primary objects of interest here.

A choice of 2g generators ) ‘""AEg of a lettice subgroup L & ré
w11l be celled a marking of the complex torus J=C8/L . 1If points in gt
are viewed as colunn vectors of length g, these 2g vectors can be viewed &s
forming & g x 2g complex matrix A= {xl,...,xgg}, which will te called the

period matrix of the marked complex torus J. In these terms the lattice

subgroupl = A 2 2g e Es, the subgroup of e genereted by the 2g
] L}
colunns of the matrix A. FNote that if 3\1....,128 is enother merking of J

]
then Aj= I X

124951 where Q = {q.ji} ¢ GL(2gZ) and A' = A Q; conversely any



invertible 2g x 2g integral metrix Q determines in this manner ancther
marking of J, with the period matrix as indicated. Of course it is also
possible to make a cormplex change of coordinetes in the vector space e,
desc?ibed by an inver;ible g x g complex matrix C = {cij} e Gl{g,E).

This change of coordinates transforms the vectors AJ in & marking of J to
vectors CAJ. end transforms the period matrix A to CA, but merely describes
in another way the same complexhtorus with the same marking. Two period
npatrices A,A'" will be called equivalent if they correspond in this way to
perkings of the same complex torus, that is to say, if A" = P A Q for some
patrices P ¢ GL{g, @) and Q € GL(2g,Z).

Lemma 1. A g x Zg complex matrix A is the pericd matrix of a
g-dimensional complex torus precisely when it satisfies any of the
following equivalent conditions:

(1) #x = O for xe B2B if and only if x = O;

(11) Yz e B2€ for z € LB if and only if 2z = 0;
A
A
Procf. First note thaet A is & period matrix precisely when its

(1ii) +the 2g x 2g matrix is nonsingular.

colunns are linearly independent over X, which is just condition (i).
Yext note that (i) and {iii) are equivalent. Indeed if A satisfies

(i) but not (iii) there must be some nonzero vector z € EQE for

vhich {—%32 = 0, hence for vhich Az = Az = 0; but then Az tz) =0,

g0 since either z + z # 0 or i(z = z) ¢ O there is some nonzero vector

x¢ BB for which Ax = O, in contradiction to (i). On the other hand if

A setisfies (4ii) snd Ax = O for some vector xéikzs then Ax = 0 so

that {%3 x = O and hence x = 0. Then note that (ii) and (iii) are



equivalent. Indeed if A satisfies (ii) but not (iii) there must be sonme

¥ ] "
nonzero vector z = (;.,)e %8 for which (Yz . t2) {%} = 0, hence for

tll

L -—
wvhich Y2 A + ¥z 7= 0; but then

t,' t= t

k] n
(* 2 A% Z A=

" 1t i} [ ] [
zs Y2 ) A= z Azt 3= (t (*2 A), so that
" [ ] "
1%z + ¥ YAk and (Y2 -4 )A€B, and since not both of these values

are zeroc that leads to & contradiction to (ii). On the other hand if 3

setisfies (111) and “Az¢¥°C then (P2, ~*2)(R} = Tan —(P2n)-0
so that z = 0. That suffices to conclude the proof.
Leoma 2. Any period metrix is equivalent to one of the forn {I,8},
where I is the g x g identity matrix and Q is & g x g complex matrix with
nonsingular imaginary part. Moreover two period meirices {I,p} and {I,0']}

are equivalent precisely when

R = (A + ac)™2 (B + D) vhere

o r
o td

¢ GL(2g, Z).

Proof. Any g x 2g pericd matrix A must have g linearly independent
columns, and efter replacing A by AQ for some pernutation matrix
Q € GL{2g,Z) it can be supposed that the first g colunns are linearly
independent; thus AQ = (P,P') where P,P' are g x g matrix blocks and P is

nonsingular, so that P M= {1,0} . It follows from lemms 1 that {I -Q}

I
is nonsingular, hence so is {g Q _%] » Bnd consequently

1

5 i Ho-0) = Ind is nonsingular as well.

Next, if {I, @} end {I, 0'}ere equivalent then {I, 0'} = P{I, 8} Q

AR
P €CL(2g, Z) , or equivalently

vhere P ¢ GL{g, L) and Q =
I = P(a+nC), §' = P(B+OD); then A+fC = P+ is nonsingular &nd

2 = (a+00) Y (B+aD) &s desired, to complete the proof.



Any period matrix is thus equivalent to one in the normal form
A= (I,0), and the g x g matrix block § appeering in this normal form will

also be called a period matrix; just what is meant by e period matrix will

consequently depend on the size of the matrix, whether g x 2g or g x g,
rlthough the former will henceforth usually be called a full periocd matrix
for clarity. The neceséany and sufficient condition thet a g x g matrix Q
be a period matrix is thet Imf bg nonsingular, an evident consequence of
Lerra 1 as in the proof of the preceding result. For & full period matrix
in pormal form the marking naturally fells into two subsets: the vectors
11,...,AE are the columns of the identity matrix, the stendard basis for
the discrete subgroup z8 ¢ EE, wvhile the vectors 18"'1'”"128 are the
colunns of the period matrix Q. Two elternative notations will fregquently
gnd interchangeably be used in this context. First let §, be the Kronecker

J

vector, the components of which are the Kronecker symbols Gk; then 3, = §

J J J

while Ag"’.i = RGJ for 1 £J3 £ g- Alternatively it is sonetinmes easier or

rore convenient to write A, = a, &and A = g forlsg )< g, 50 that o, =

J J g+J J J
8, and B, = 05,

J J J
The present discussion will for the most part be limited to a special
class of complex tori, those for which the g x g period matrix § satisfies
the further conditions (1) thet f is a symmetric matrix, aend (2) that ImQ
is & positive definite matrix. Of course if-n is symmetric then ImQ is &

gymnetric real matrix, so the condition that it be positive definite is



-5 -

neaningful, and if InQ is positive definite it is automatically
nonsingular. The set of all g x g matrices satisfying these two conditions

is called the Siegel upper half-space of rank 8, and will be denoted by 'ﬁ:

Any g x g symmetric matrix f= {u is deternined by the (B831)

13}
conmplex numbers mi,j for 1 <1< J3s g, 80 that ﬁg can be viewed &5 a
subset of the space of (851) complex variables; moreover if § is positive

definite so are all matrices sufficiently near Q, so tha.t‘f% is actually en

open subset of the space of (831) complex variables.



§2. Theta Functions.

For any vector we¢ r® ang eny matrix nebg the associated theta

series is formally
(2) o(w;2) = I exp 2nif% “nmn + *m),

where the suwmation is extended over all integral vectors nezb.

Lemma 3. The theita series ©{w;Q) is uniformly convergent on compact
subsets of @€ x& s 80 defines a holomerphic function in g8 x’&_g.

Proof. Consider any fixed point (wo,no)e & xﬁg. For all points
w=x+ iy, 0= X+i¥ in e sufficiently small open neighborhood of (wo,no)
the coordinate y will be bounded from below by some real number a while the
ninimal eigenvalue of ¥ will be bounded from below by some positive real

nurber » > 0. Then

| exp 21ri[22~ tamn + v !
= exp -Eﬂ%tnYn + tny]
< exp 52![%—13% n +anj,
50 the ternms of the theta series are uniformly deminated in this

neighborhood by the terms of a convergent positive series and the desired

result therefore follows immediately.



For many purposes it is convenient to introduce & modification of this

simple theta series by introducing some suxiliary parameters called

characteristics. Thus for any vectors v,t,vw ¢tf and any matrix nef?ﬁ the

associated theta series with characteristic [vlt] is formally

(2) olv11(w;2) = I exp 2ei G (mrv)almev) + Hmew)(wer)],

where again the summation is extended over all integrasl wvectors n € z8 .

This is related to the simple theta series (1) as follows.

lerma k. For any characteristic [v|1),
olvi{(w;n) = o{wrr+v;n) cexp 2uity (w-rd-%-nv).

Proof. This follows immedistely from the simple calculation

2 Hmv)alnev) + Hnev)(w)
= %— tnm + tnnv + % tvnv + tnwt’nﬁtwﬂ- tv'r
= % tnm + 4% (we+ T+ 0v) + tv(w'ﬁ%nv);

the part that is independent of n is & common factor in ell the terms of
the series {2), and vhen factored out leaves the simple theta series (1)

but with v replaced by v + 1+ Qu, yielding the desired result.
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Thus & theta series ~i-irit.h charécteristie is, eside from & holomorphic
and novhere vanishing factor, Just & translate of a simple theta series.
Jt is evident therefore that a theta series with characteristic [v]ﬂ is a
holomorphic function of the parameters v eEg. v eC® &s well as of the
variables v eEB, nﬁg. For later reference it is worth noting here as a

simple consequence of the preceding lerma that

(3) ' olwtv' [t+1'1{w;0)

= ofv|g{wsr'+nv";0) e exp 2aify ,(w-&-ﬁt'*-%—nu').
A particularly obvicus case of this is
{4) elv |wo]{wn) = eolv|d{w1';0),
which is also an immediate consequence of the definition {2). There are
further results that will follow from combining (3) with the functional
eguaticn for the theta function, &s will be discussed in the next section.
A speciel case worth pentioning here is that

{5) elwv' | (win) = elvid(w;n) 4f Vv € z&,

as is gquite obvious from replacing the index of surmation n in {2) by n+v'.



The reader should be warned that the definition of theta funetions with
characteristics is not universally agreed upon, so some care is required in
comparing various treatments of this topic. The definition adopted here

agrees with that used by Igusa (Theta Functions, Springer-Verlag, 1972},

elthough he writes o  (2,¥) in place of olv]tl(w;n). The definition

»
used by Farkas and Xra (Riemann Surfaces, Springer-Verlag, 1980) differs
from this Just by a factor of 2 in the cheracteristic, so the comparison of

their notation with that used here is

eéﬁ(mn)zemdﬂ(wun.

The older literature omits the factor ni in the variables w,f, s0 the

comparison of the notation of Krazer and Wirtinger (Lehrbuch der

"hetafunk+ionen, Teubner, 1903), or Conforto (Abelsche Funktionen und

Algebraische Geometrie, Springer, 1956) with that used here is

) [:](wiw; rin) = o [vld (w;0).

Fay (Theta Punctions on Riemsnp Surfaces, Springer Lecture Notes in
Mathematics, 1956) uses the classical notation with an exira factor of 2,

50 the conmparison of his notation with that used here is

e [JJ(2niv; 2nin) = olv[4)(v; ).
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In the special case that g = 1 and the characteristics are half-integers

these functions are just the Jacobi theta functions
z' = l —z—‘ -
elold 2:n) = e.(z,q), BI'OIZJ(ﬂ.n) 8,(z,a),
Lol (&) = 1113 (2. 0)=
o510l (%) = 8,(z,q), 9[2|2](ﬂ,n)— 8 (z,q),

where @ = ewin as is customary.’
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3. The functional equation for theta functions.

The basic property of a theta function e[vlrl(w; Q) as a function of
the variable w is the functional equation it satisfies under translation by
any vector in the lattice subgroup with period matrix Q, as follows.

Theorem 1. For any vectors p, g € 223.

olv| 1] (wptag; @)
= olv| ) {w;0)+ exp 27il'p v - tq(w-r-%nq)].

Proof. First note that replacing w by w+p has the effect of
multiplying each term in (2) by exp 2uitv-.p, since exp 2witn Pp =1, and
therefore

elv]d (wp;0) = olv|tl{w;R)e exp 221% v,
Next note that replacing the index of summstion n in (2) by n+q does not
change the value of the sum, since n+q ranges over ZE as n does, but
replaces a typical term in (2) by

exp 2ni [}5 Yntvrg) 0 (nevig) + Y(mewrg) (wer)]

= exp2ni BMmv)alnev) « Mmw)(werng) + Yaldng + werl]
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and conéequently
elv|d(w;n) = elv]d(wng;n)e exp Zwitq[wr*—;—mﬂe

Combining these two formulas yields the desired result and thereby
concludes the proof.

Both the result of the preceﬁing theoren and the role of the
charscteristics can be clarified and perhaps made to appear more natural by
an appropriate iInterpreteticn. In general terms, the theorem esserts that

the theta function satisfies a functional equation of the form
(1) olvl ) (wasn) = olvd(win)e ula,w)

for any lattice vector A = pilg = (I.n)(g)c L, vhere | is the lattice
subgroup with period matrix {I; here y is & holomorphic and
novhere-vanishing function of the complex variable we 8 and depends a&s
vell on the lattice vector A. It is & sinple formal consegquence of (1)

that the function p must heve the property that
(2) u(11+12,w) = u(ll,v+ka). u(la,w)
for any lesttice vectors 11,12 el « A novhere-vanishing function p on

L x 08 that setisfies (2) as a function of Ael and is holomorphic as a

function of wel® is called a factor of putomorphy for the action of the

group Lon e8. The simplest not totally trivial fectors of asutcmorphy are
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those that are ectually independent of w, called the flat factors of

automorphy; for these condition (2) reduces to the assertion that

ul 11*7\2) = 11) u(la). that is, that p is & homorphism from the edditive
group [ to the multiplicetive group I:I:'e of nonzero complex numbers, which
will be indicated by writing peHom{L,I ). Any such factor is uniquely
deternined by its values on the generators of the lattice l, and these can
be any values in (I'. It is convenient to split the generators of the
lettice into the two classes °1=Al""'°g=lg and

31”“g+1""'33="25' and for any vector t = t(tl....,tg) €08 to introduce

L]
the two homomorphisms o €¢Hom (L, ) defined by

t*Py

{3) Ut(c’;]) = exp 27i t Ut(ﬁj) =1,

Ji

pt(aj) =1 . pt( B.j) = exp 2ui tJ.

’ *
Thus any ¢ ¢ Hon( L,U ) can be written in the form ¢ = o p, for soue
vectors s, t¢ EB, and these vectors are uniquely determined up to
elenents of the subgroup zEcté. Further any lattice vector icl can be

written
A= Z‘j(p.j a, + q BJ) = p+Qg
for some uniquely determined vectors p,q € Zg, and then

¢(2) = as(l)pt(l) = exp 2xi Itp s + tq t].
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In these termé Theorenm 1 cen be rést&ted as the functional eguation
(L)} olv|tl(wa3n) = 'u“(x)p_r(x) e(a,wy elv[d(we)
for any lattice vector kel, wvhere E is a factor of autowmorphy that is
independent of the characteristic [v]¢); the characteristic [v]1]

deternines the characters O sP_ge Thus the simple theta function satisfies

the functional equation
(5) olw+a;n) = ela,w)  elw;n)

for any lattice vector Ael. The factor of sutomorplyy £ has the explicit

form
{6) E(priig,w) = exp -2ni tq(w+%nq),
or equivelently is determined by the values on the generators by

1
(7) E(uj,w) =1, E(BJ,V) = exp - 2ziEuJ+-§ ”JJ]
where ﬁ={wij}-
For eny given factor of automorphy py for the ection of Lon Eg, &
holomorphic function f on BB such that flwd) = w(a,w) £{v) for a1l acl

&and ve Eg will be called & relatively automorphic function for the factor

of automorphy u; the collection of all such functions form a complex vector
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gpace that will be denoted by T{y), and the dimension of this vector space
will be denoted by y(u). The theta function is essentially uniquely
determined by the functional eguation of the preceding theorem, a result
that can be expressed in the following terms.

Theorem 2. For mny vectors v,T € I3 the vector space I crvp_TE) is
the one~dimensional vector space spanned by the thete functicn
elv| ) {w; ).

Proof. Suppose that fer(ovp__rz) and set fl(v) = f{w)eexp - 2nity v,
noting then using the explicit form for the factors of automorphy as in

Theorem 1 that

fl(wp«-aq) = fl(w)- exp - Euitq(w-r-t-%nq*-nv)

for any vectors p, g € ZE, fFor p= 53' g = 0 this means that fl(wéj) =
= fl(v), 50 that fl can be viewed as a function of the g complex variebles

z‘,j = exp 2ni 'H’J and is then holcmorphic in the region {(zl""'zg) e 8,

z‘:i #0 ford = 1,...5}; this function has the familier Leurent series
expension in the variables zJ, vhich amounts to & complex Fourier expansion

in ¢the varigbles w f of the form

t
fl(w) = Ic exprl nw

for some complex constants Ch» where the summation is extended over all

integral vectors n € Z8, Then for p=0,¢qg= 53 the functional equetion

when expressed in terms of this Fourier expansion becones



- 16 =
fc_ exp 2sui *a [wens ]
nn J

. Ft t 1
= chn exp 27il n w - 63 (v+t+§nﬁj+nv)3

oS ne 6 + nv)J-

I ¢ exp o2xil'n v - %3 {1¢% 06
3 - J 2

J

The coefficients of exp 2nl tn w on the two sides of this equation must be
the seme, so that
Y

=c_ exp 2ni tﬁjlr"ﬂn + 2963"'9\)]

J

for every vector ne¢ z 8. This implies that all the coefficients c are
explicitly determined by any one of them, for instance o alone, and
therefore the space of all such functions fl is one dimensional. That
suffices to show the desired result.

It is perhaps worth a brief digression into generalities here,
slthough this is not really essential to the main line of discussion;
First two fectors of sutomorphy u,v gre called eguivaelent if there is &
holomorphic and nowhere-vanishing function h con a8 such that
h{w+2) = h{w) v(A,w)/u(a,w) for a1l A € L and w€08; this 1s evidently an
equivalence relastion in the standard sense. Note that if y,v are
equivalent then the function h can be used to give an iscmorphism
T{u)= r{v) by sending a relatively automorphic function fer{y) to the
relatively mutomorphic function h £ € T(v). It is easy to see thet the
function h is unique up to & nonzero constant factor, so this isomorphisnm
is unique to the same extent, and it is clear that functions corresponding

to one another under this isomorphisn heve precisely the same zeros; thus
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for many purposes equivalent factors of automorphy have nuch the sanme
function theoretic properties, irrespective of the particular function h
determining the isomorphism. The first part of the proof of Theorem 2 was
really Just the obseryation that the factor of automorphy c, is eguivalent
to the factor of automorphy Pogy? hence that the factors of automorphy
cvq_TE and P_{ z+qv) £ sare equivalent; with this in mind it is clear that
the factors avneed not play much of & role in the further discussion, and
indeed they will not. Next, as a quite different point, note that a factor
of sutomorphy u cen be used to exteﬁd the natural ac%tion of the lattice Les
a group of holomorphic smutomorphisms of the complex manifold g€ to an

action on the product manifold a8x C, by defining
Aelw,z) = (wer, pla,w)z)

whenever A€ l, wer8, and z € ¥, the defining equation (2) for a factor

of autoporphy is jJust the condition that L does act as & group of
transfornetions on €% x C in this wvay. The quotient space

(28 x ©)}/L has the natural structure of a complex manifold, and the

obvious mapping (L8 x [)/L+ €8/ exhivits this manifold es being

locally & product (EE/L) x [, hence as belng a holomorphic line bundle
over the torus ﬂg/ L. The relatively automorphic functions can then be
interpreted as the holomorphic sections f: €8/L + (% x E)/L of this

line bundle, and equivalent factors of eutomorphy correspond precisely to
biholomorphically equivalent line bundles. This more invariant approach is

sonetimes quite convenient and helpful.
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g£4. Even and odd theta functions.

The functional egquation for theta functions can be expressed as &
property of the characteristic rather than of the variable, by combining
Theorem 1 with Lemma 4.

Theorem 3. For any vectors p, 9 ¢ ZZE,

elwplma)(w;n) =  ofv]d(w;n)e exp 221%q v;

conversely whenever there are vectors p, g€ ¢& such that
elwvplt+a{w;n) = ¢ elv[tl(w;0)

for some constant ce © then necessarily p, qezg and c = exp 2nitq Ve

Procf. From an epplicetion of Lemma 4 in the form of equation (2.3)
and the basic functional equation of Theorem 1 it follows that for any
vectors p, 9 € 75

elwplt+q)(w;n) = elv]d(warap;n)e exp E'Eitp(wt+q+%np)
= glv[tl{w;0)s exp 271 tq»v

as masserted, since exp 2wl 1.'1:: g=l. On the other hand ir

elvip | gd(w;0) = ¢ olv|d{w;n)



-19 -

for soume vectors p,q € £€ and some constant ¢ ¢ L, which must be
nonzero since the theta function is nontriviel, then after replecing w
by wA for & lattice vector A=min € Z5 + Q€ = [ and using the functional

equation of Thecrem 1 it follows that
elwvp|r+q] cexp 27i[%m (wp)-*n (w-rl-q% ton)l
= ¢ 8[v]1){w;Q)-exp 2wi[tm v—tn»(w'ﬁ% an)l
end hence that
exp 2ni [tn' p-tn ql= 1.

Since that is the case for all m,n € zE necessarily p, q € Z8 as well, and
that suffices to conclude the proof.

The besic idea here, and one worth some epphasis, is that the
functional equation of the theta function olv|t]{w;n} as & function of the
variable w, as given in Theorem 1, and its functional equation as &
function of the characteristic [v|tl, a&s given in Theorem 3, are really
precisely equivalent to one another through the relastion between the
varisble w and the characteristic [v]|t] given in lemma 4. The functional
egquation in fact has & considerably simpler form in terms of the
characteristic, although its basic importance is more as a property of the
variable w; passing back and forth between the two forms is a very

convenient tool.



There is another sort of functional equation that the theta series
satisfy. It is clear that replacing the index of summation n and the
pé.rameters Vv, T,W by their negatives does not change the sum of the series
(2.2), hence
{1) ol-vl-d{-w;n) = olv] 1) (w;0).

In particular for the characteristic [0|0] the simple theta series is an

even function of the variable w,

(2) e(-w;n) = elw;n).

It is & useful observation that the only possible theta series that can be
either an even or an odd function of the variable w i;s that for which the
characteristic Ev[{l is half-integral, that is to say, for which 2ve zE&
and 21 € Z5% Whether the theta function is then even or odd depends on the
characteristic. To discuss this it is convenient to sey thet a
half-integral characteristic [v]ﬂ is even or odd according as the integer
1%y 1 15 even or odd. In these terms the following holds.

Theorez 4. The function &[v|t){w;R) is an even (or odd) function of
the variable w precisely when the characteristic [vlﬂ is an even (or odd,
respectively) helf-integral cheracteristic.

Proof. If there is some complex constant ¢ such that

e 8[v|t)(w;n) = olv]x(-w;n)

= 9[—vl-ﬂ (w; 0)

= glw2v] +2gd(w; ),



-2] -

where (1) was used to pass from the first to the second line, then it

follows from Theorem 3 that necessarily 2v ¢ Zlg, 21 € Eg. and moreover

..
l‘\’Tso‘l:ha‘c,t:=l:I.f {vl1] is an even

t = exp - kyitv 1 = (-1)
characteristic while ¢ = =1 if [v|t} is an odd characteristic, just es
asgerted by the stetement of the theorem.

Whether a half-integral characterist;c is even or odd c¢clearly only
depends on the values of “3 and TJ modulo-l. For deciding this, and for
some other purposes &s well, it is convenient to view the values vJ‘TJ as
elements of% Z/Z, hence to view the characteristics [v|t] eas elements of
(%- 2/2)25- There are then 228 such characteristics eltogether. Let g
denote the number of these that are positive, and g_ denote the number

that are negative, so that g +g_= 225. On the other hand

t
g -5 =T, (DM T ()%

g bv
= (z (-1)""3°3)
38 Vo1,
=J§1( («1°0 + (2% 4 ()% (17D

g
4
’agl(z) = 25,

and solving this pair of equations for g .g_ leads to the values

(3) g, = 257 (2841), g =287 (2%).



There are thus approximately the same number of even as of odd

half-integral characteristics for large g, although the even ones always

putnumber the odd ones and do so rather markedly for small g, &8s in the

following table:

g 1 2 3 4

g: 3 10 36 136 528
g 1 6 28 120 Lg6
2P, g 16 6L 256 1024

For the case g=1 the Jacobl theta functions 92, 3 eh are even while £, is

odd.

1



§5. Higher-order theta functions,
As a further extension of the theta series already considered, for any

integer r 2 1 the theta series of order r with characteristic [v|T]

is formally
(1) er[v!T](w;n) = 9P¥lr](rw;rn) .

This is evidently also & holomorphic function of all the variables and
parameters v , 1t , W , { , and for r =1 reduces to the theta function
with characteristic [v]f] already considered. The functional equation
for this series can be deduced immediately from that of Theorem 1, and can
be expressed as follows.

Ty

Theorem 5. For any order r > 1, er[v]Tl(w;n) € T(cvp_Tg

Proof. For any lattice vector A = p + Qq where p , q € 7€ it

follows from (1) and Theorem 1 that

1

o [vtl(w + p + aq;a) = lZ[t) (rv + rp + rag;ra)

ePﬁ[T](rw;rQ) . exp 2ﬂi[tpv—tq(rw + 1+ 3 rpg)l

er[lei(w;n) . Uu(l)p_T(A)E(k,w)r
as desired.

A closer look at the preceding result is quite rewarding. As already
observed, replacing v by v + k for any vector k e:zg leaves the theta
functions ©[v|t]{w;2) unchanged. Therefore replacing v by v + rk for
any vector k ¢ Z® leaves the theta function er(v]t](w;n) unchanged but
replacing v Jjust by v + k may not, although the resulting new function

setisfies the same functional equation since cleariy Ok = Ty » It is



convenient to view the parameter v as an element of Eg/rzzg, and then

to note that as Xk ranges over the set Zﬁ/rZﬁg there arise the o
functions er[v+k|r](w;ﬂ) € F(cvp Tgr) . These functions are actually
distinct, and indeed the following holds.

Theorem 6. For any order r > 1 the vector space r(va Tgr) has

dimension Y(UUD‘TEr) = r® , and the r® functions er[v+kIT](W;ﬂ) as k

ranges Over 7Z& jrw® form a basis.

Proof. The dimension y(uvp Tgr) can be calculated, or at least

bounded, just as in the proof of Theorem 2. If f e F(cup Tgr) then

£ (w) = £{w) exp 2wrtu w satisfies the functicnal egquation

3

fl(w + p+ Qq) = fl(w) « eXp - Ewitq(rw + T+ 2 rog+ Qu)l
for any vectors p , Q € Zg . For p= Sj . 4 =0 this means that
fl(w + 53) = f.(w) , so that f. has a complex Fourier expansion

1 1

_ .t
£, () = Joc,expanin W

for some constantis Ch » where the summation is extended over all integral
vectors n € Z° . Then for p=0,q= 63 the functional equation when

expressed in terms of this Fourier expansion becomes

.t
Xn c exp 2mi’n [w+ Qéj]
t

n

A 1
zn c  exp onil™n w - éj(rw + 1+ 5 rQGj + Q)i
exp 2ni[tn W - tG.(T + 3 rﬂﬁj + Qu)l .

- zn cn+r’d‘j J
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The coefficients of exp 2nitn w on the two sides of this eguation must be

the same, sc that

- T 1
cn+raj = ¢ exp 2mi Gj[-r + Qn + 3 rQGJ + vl
for every vector n eEZg . This means that the coefficients cn for n
varying over any congruence class modulo rzZ8 are explicitly determined by
any one of them, so that for instance all these coefficients are uniquely
determined by those for which nj = 0,l,ses,r-1 « That at least Iimplies

that Y{cvp_ £") < r® .

T
In order to complete the proof it is then sufficient Just to show that
the theta functions er[v + k|tl{w;0) as k varies over 28/rz& are

linearly independent. For this purpose note that the series expansions of

these functions have the form

o lv+k | 1[(wa)

= ] exp 2wiL% Yen+ v+ xalrn+ v+ k) + S{rn+ v+ k(v +.% )]
n

[ c, exp 2ri Yrn + k) w] exp 2nifv w .
n

Thus ag k varles over Zzg/rZZg the separate thets series involve separate
Fourier terms, so must be linearly independent as desired.

The first part of the proof of the preceding theorem can be carried
out for the case r =0 as well, and shows that if f ¢ r(ovp”T) then the
function f, defined by fl(w) = f{w) » exp - 21i% ¥ has a complex

Fourier expansion in which the coefficients must setisfy
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C_= ¢ _ s+ exp Enité.('r + Qn + Qv) ;
n n dJ
consequently c =0 unless tGJ(T + gln + v)) e for all J , that is

to say, unless T + Q{n + v} e Z® . It thus follows that
(2) I‘(avp_r) =0 unless T+ Qv € !:= {1,0) zagg-

Moreover if 7t + Qv = p + Qg then T(va—r) is the one-dimensional space
spanned by the function f(w) = exp 2nit(v - q)w ; this function is never
zero, so the factor of automorphy N is equivalent to the trivial
factor, and conversely whenever O,P_ is equivalent to the trivial factor
then it has a nontrivial relatively automorphic function so by {2)
necessarily T + Qv & L. Incidentally any representation in Homgk,m*)

can be written in the form OWP_¢ for some parameters v , T , ané these
observations show that such a representation is equivalent as a factor of
automorphy to the trivial representation precisely where 1 + Qu ¢ L:

‘Having made these observations it is easy to see that

(3) P(va_TEr} = 0 whenever r < 0 .

Indeed if f ¢ T(cvp_Tgr) for some integer r < 0 then

e_(0]t 1 {wa) £(v) ¢ P(cvp_T_Tl) .

and by (2) this product must vanish identically whenever 1, 1is chosen so

1
that T + 1) + Qv £l, as is quite clearly possible.
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Since the factor of automorphy o is equivalent to it can

Vv p-ﬂv

often and here generally will be dropped from further consideration. The
parameter v in the characteristic [vIT] is still of importance though,
in describing the basis for the vector space r(p_Tgr) as in Theorem 6.

Tt is convenient for some purposes to view the functions of this basis as

the components of a vector-valued function

(L) §r{t](W;ﬂ) = {Or{vlrl(w;ﬂ) : v eZB/rz®) .
As further simplifications of the notation set ﬁr(w;ﬂ) = ér[O](w;Q) .

noting that
(5) 6r[Tl(W;Q) = ér(w + 1/r ;3 Q) .

In much of the further discussion the period matrix @ will be fixed, and
will simply be dropped from the notation whenever confusion is unlikely tc

result. Thus what is of interest is the holomorphic mapping

24
6r[T] : Eg > Er

which hes the property that ér[t](w +A) = Q_T(A)E(l,w)r érlrl(w) for all
lattice vectors X e L= (I,n)ﬂ?g. If the component functions do not have
any common zeros in I® then the value §r[T](w) can be viewed as the

set of homogeneous coordinates of a point in the complex projective space

of dimension r® - 1 , and the values ér[tl(w) and §r[r](w + i) then
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determine the same point in projective space for any lattice vector

This thereby induces a holomorphic mapping

5 0c] s 0"
Ir

from the complex torus J = Eg/L into projective space.



§6. The addition theorem.
since ol0|xl{w;n) ¢ P(Q_TE) gs a function of w it is clear that
2)

olo]t,1{w;0) - slojr,)l{mn) € ﬂp"’f’eg

and it then follows from Theorem 6 that

B{O|11](w;ﬂ) . 9[0|12](V;9) =] (TlsTg) * 921“111+T2](W5Q)

v Sy
for some uniguely determined values cv(Tl'TE) . which being uniquely

determined are easily seen to be holomorphic functions of the parameters

T, o Tn € r® . where the summation is extended over all indices

1 2 i

Vv E zglzzzg. To examine these functions ¢ }  further note that

v(Tl’TE
matters can be simplified somewhat by translating w s0O as to reduce to
the special case that T, = 0 , and it is then more convenient to set

T, = 21 so that the formula becomes

alof2t] (w;) «0{0]0] (w;0) = Iucv(T)-921UI2TI(W;R) .

Now 8[0]21]{w;0) = elo|wl(2v;0) bas the property that for any vectors

P,qc¢€ Zﬁ

plojw](2(t + p+ Qq) ; Q)

ll

plo[w]{21 + 2p + 929 ; Q)

plojwl(2t ; Q) - exp - 27i¥q(lr + 2w + 209) ,

hence as a function of T belongs to the space T(pﬂewgh) , while on the

other hand 62[0]2T](W;Q) = 6210|2W1(1;9) so as a function of , belongs
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to the space T{ 2} ; it must consequently be the case that

2y

Cv(T) e T(E , 50 that cv(r) can be written as a linear combination of
the second-order theta functions of T that form the basis for r(gg)

deseribed in Theorem 6. There thus results an identity of the form
olol2tl(w;n) « elo]ol(w;n) = zv,u CW.BQ[MO](T;Q) GgleET](W;Q)

for some constants c:“11 , where the summation is extended over all indices
vV, U E z?/azzg. These constants can be viewed as forming a 2g x 2g

matrix C , and the above eguation can be rewritten more simply as

o(w + 21) o(w) = "B (1)C « &

2(W+ ),

in terms of the simple first-order theta functions and the vector of
second-order theta functions. This can be simplified even further by

replacing w by w- 1 , leading to the form

o{w+ 1) 0 (w=- 1) = Bi1) ec .8

o () .

The left-hand side is unchanged when w and +t are exchanged, since ©

is an even function; 50 the same holds on the right-hand side; the entries
in the vector 152 are linearly independent functions, so it is clear that
the matrix C must be symmetric. It is thus possible to choose some basis
for the second~order theta functions that reduces this matrix to the
identity matrix, a nastural basis from some point of view and one that is

unigue up to an orthogonal change of basis. 1In fact the bzsgis chosen here

already has that property, so is doubly natural.



Theorem T. O{w + t)6({w - 1) = t62(1) . @2(w) .
Proof. The work lies just in calculating the coefficients cuv in

the preceding formula, but it is as easy to rederive the whole formula in

the process. Write

olw + 21)e(w) = elo]z2t](w;n) efo]o](w;q)

T exp 2wif 1Ynon + Pmlw + 21) + 1 Yagn + owl

m,n

[}

§ exp 2nil} Yo+ walm+ n) + Hm+ n)vw - Fmon + 2wl
m,n

This suggests introducing m + n as a new index of summation, and then

possibly m - n as another; but these new indices differ by an even vector

so must always be congruent modulo 2358, and can better be written
m+n=2kx+ X2 ,m=n=28+ i,

where k , L € :Eg and A ranges over some set of coset representatives of

z8/om8, Any choice of m , n uniquely determines k , £ , A and

conversely since

m=k+ 2+ A,n=k- & .

Jt is convenient to set

and to note that
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Then the series sbove can be written

olw + 21)6{w) = ] exp 2ni[2t§QE + 2% - t{g + Valk - 1) + 2% + Tl
K, %52
= ) exp ori] %ti?em“i + tE(Ev + 21) + 3 Yioat + t?!: 21
k,2,A
= ¥ o[x/2]0] (2w + 21 ; 20) - e[x/2]|0}(27 ; 20)
A

il

; o, (alel(w+ 15 0) - oafollr 5 @)

tga(w + T) e 52(1) .

1]

and that is the desired result.
Sometimes it is convenient to rewrite the formula of the preceding
theorem in alternative forms. For instence by setting u=w+ 1,

v = 1w~ 1 it can be written

(1) sluelv) = 8 (=% . §

The general form for theta functions with characteristics follows by noting

that

oo+ u+v)elt+u-v)

B, (E5t e v -8, (T

t52{o - tl{v) - 52[c+ o} (u)

(2) glol(u+ v) elt] (u~ v)

or alternatively
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(3) olol (W) elxl(v) = *§ 1o - 1(EFT) + E,lo+ 115 .

It is also worth noting as an immediate consequence of the preceding
theorem that if 71, are eny 2€ points at which the vectors 62(11) are
linearly independent then the o8 products
GITi](w) e[-ri](w) = 9(1i + W)O(Ti - w) are linearly independent linear
combinations of second-order theta functions so also form a basis for the
space F(Ez) . There always exist such points T, since the component
functions forming the vector éa(w) are linearly independent, so it is

%)

always possible to express all elements of r(e canonically as products

of first-order theta functions with suitable characteristics.
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§7. The theta locus.

Since the simple theta function 6{w) is multiplied by a nonzeroc
factor when w is replaced by w + A for any lattice vector
A€ £;= (1,0) Zﬁ, it follows that the holomorphic subvariety
" loc 6= {we Eg : olw) = 0} is invariant under translation by L', hence
can be viewed as a holomorphic subvariety of the complex torus J = Eg/éé
when  so viewed this subvariety will be called the theta locus and will be
denéted by Sl'

Tn the special case g = 1 this locus is just a finite set of points
in the one-dimensional torus, as is no doubt guite familiar from the
classical theory of elliptic functions. It may nonetheless be helpful to
review some of this material here., The generators of the lattice i_ are
the complex numbers 1 and 0 , where Im Q > C , and a fundamental
domain A for the action of the lattice L_on T is the rectangle

sketched in Figure 1. If the sides spanned by the basis vectors 1 , Q are’

Q/’ o + 0

A B+1

B

z

V4
//(3 o //]_

Figure 1

denoted by o , B , respectively, the boundary of the fundamental domain A
is the oriented curve 94 = {(a) + {B+1) - (a+0) - {B) . Of course this
configuration can be translated arbitrarily, so it can be supposed that ©
is disjoint from 23A . The number of points in © counting multiplicity
is then just the total order of the functi&n ® 1in the regicn A , so can

be calculated by the familiar contcur integral formula; and since the



function © satisfies the functional equations

hol—=
=
N
w

olw+ 1) = e(w) , olw+ g) = olw) exp - 2nil{w +

this calculation takes the form

27i « order 8 = IBA d log o(w)

[ (4 10g e(w) - d log o{w+a)] + [ [d log o{w+l) - d log olw)!]
o B

f 2ri dw = 27 fé dw = 2711 .

o

Thus the locus Er is a single point in the torus J ; the function ©
vanishes at but a single point in J , and vanishes there to the first
order. To determine this point, recall that ©[3|1](w;R) =

olw+3+2Q) o exprilw+ 3 +1 ) is an odd function of w , since

I 3] 3] is an odd half-integral characteristic, hence this function
vanishes at the origin w= 0 . That implies that the locus defined by the
function © is just @ = 3 4+ 2 © , the central point of the fundamental
domain A based at the origin.

The analogous result for g > 1 1is rather more complicated, since it
really involves properties of holomorphic or algebraic subvarieties of
higher dimensions. The results can be stated and derived in such a manner
as to be meaningful to those willing to accept some general properties of
these subvarieties either as known or as given. The locus © at which the
function € vanishes is a holomorphic subvariety of pure dimension
g -« 1 in the g-dimensional complex manifold J = mg/_£3 at =& dense open

subset g? c g called the regular part of © this point set is
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actually a complex submanifold of dimension g - 1 din J . This is merely
& consequence of the fact that g; is the zero locus of a single function.
This set may or may not be reducible, that is, may or may not be expressible
as a finite union of proper subsets each of which 1s itself a (g-1)-dimen—
sional holomorphic subvariety. When gLis expressed as a union of its
irreducible components)as a necessarily finite union § = UJQG , the
funetion © will vanish at all points of g;j to a commeon order nj e 223

the formal expression Ej nje ig then the divisor of the function @, in

23
analogy with the case g = 1 in which the irreducible components of the
zero locus are just points. Fach subvariety Ej has topological dimension
2g - 2 and carries a homology class [Qﬂ] E Hgg_a(J,iﬁ); the class

zj ny [Qﬂ] € HEg_E(J,Zﬂ is the analogue of the order in the case g = 1 «
This can be expressed more analytically in terms of the dual cohomology
¢lass, which can be considered as a differential form. Thus to each
component Ej there can be associated a differential form ¢j of degree 2

on the manifold J with integral periods, so that

jJ¢j ~ = IB ¢ for every smooth differential form of degree 2g - 2
=]

on J : here at a dense open subset S? c gj this locus is a
differentiable submanifold, so the restriction w[gg is well defined, and

the integral f oY has a finite value that is taken to be the definition
8.
=J

of f§¢ . The differential form ¢ = 53n3¢3 then represents the dual

cohomology class to the divisor of the function © , and it is really this
c;ass that will be taken here as the analogue of the order of the function
& . This class is just the Chern class of the holomorphic line bundle over

J represented by the factor of automorphy of the theta function.



To describe this dual cohomology ¢lass make a real linear change of
coordinates in ré = BEg by using the vectors 61,...,6g,951,...,96g

as coordinate axes with coordinate functions tl,...,t ,t on

e g+l""’t2g
these respective axes; this amounts to representing the torus J as the
product of the 2g circles represented by these coordinate axes, as
observed earlier. Take the orientation of. J as that for which the
differential form dtl/\ dtg+lf‘ dt2 A dtg+2 N eee Adtg A dt.Eg has

positive integral over J , indeed has integral equal to +1 . The

integral cohomology ring consists of exterior differential forms

: . n. .odbl A see AdE, with integral coefficients
Jl<-..<Jk Jyeesdy 9y Iy
nj 1 e 7, so the class dual to the theta divisor is represented by
ll.t k

some differential form dt, A dt, ; in these terms the

N ., .
3190 d3dp Ty dp
desired result is the following theorem of Poincaré.

Theorem &. The cohomology class dual to the theta divisor is

= V& 4t dt .
6= Lioa 00 A S0y,

Proof. Consider first the special case that the period matrix £ is
diagonal. In that case the lattice vectors Gk and Qék lie in the
plane of the complex ceoordinate function Wi and the torus J 1is clearly
Just the product J = Jl XeowX Jg of the one-dimensional complex tori

J. =T/{1l,w

K ) z?. The theta function is moreover clearly the product

kk
olw;q) = I, e(wk;wkk) of the one-dimensional theta functions, so the zero
locus @ is the union of the zeroc loci of these factors. The function

o{w. ;wkk) as a function of the variable w, alone vanishes simply at the

point of Jk represented by i+ 3 Wy » 8S already noted, so as a

function of g variables e(wk;mkk) vanishes simply on the subvariety
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mkk) XJk"l'l XeauwX JgEJ [}

o
I
[
X
]
L]

x
.y
X
P
D=
+
ol

This subvariety is clearly a connected submanifold of J , hence an
irreducible subvariety; as a manifold in its own right it is biholomorphic
to the (g-1)-dimensiocnal complex torus Jl XawaX Jk-l X Jk+1 P Jg .

Now for any differential form

dt, A« 4L it is evident that
3 J

p= )
jl<... e-1

. n .
Uogp J1ttdppen

ngw T By ukel,ktle.egtk-l,g4kt] 000,28 .

On the other hand

dtlA...Adt

Aty A Aty A ¥ S D k1 k+l...gtkel,gtk+l. .. 28 og

so that

[5at, A dty, o AV = f@kw

Thus the differential form dtk A dtk+g is duasl to the divisor Ek . hence

the differential form ¢ = Zk dtkA dt is dual to the divisor zk e

k+g
as desired.

To turn then to the general case, it is easy to see that the Siegel
upper half-space ﬁ}é is connected, so that for any pericd matrix @ EE}E
there is some continuous path Qs E:E% for s & [O,l] c E such that

QO= Q and Ql is & diagonal period matrix. The theta function e(w;ﬂs)

depends continuously on the parameter s , as do the homology class of its
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diviser in H2g 2(J, 7) and the differential form ¢S dual to this homology
class. The coordinates tl""’tzg intreduced above alsc depend
continuously on this parameter s , so that

() at, A dt where {(s) € Z is a continuous

% = 1y.<p, Pay0,t% T N T, I
function of s and hence must be constant, That suffices to conclude the
proof.

It is perhaps worth remarking that the preceding argument cen be
applied directly to the Chern classes of the line bundles represented by
the factor of automorphy for the theta function, so that there is really
less geometry involved that might appear to be the case from the version of
the argument given here. It is also possible to calculate this dual
cohomology class directly in general, to verify the result asserted. The
calculation is more reasonably done in the context of a more general
discussicn and classification of factors of automorphy on complex tori, an
aspect of the subject that will not be treated here.

In most of the subsequent discussion it will be supposed that the
theta locus is an irreducible holomorphic subvariety of J . That is
really a further restriction on the periocd matrix § , a form of
nondegeneracy condition. Any thorough discussion of the significance of
this condition is also most reasonably done in the context of the general
classification of factors of automorphy on complex tori, so will not be
covered here. Let it suffice here just to mention in passing that if the
theta locus @ 1is reducible then after a suitable change of coordinates in
gt and of bases for the lattice subgroup the torus J can actually be
written as a product J = Jl X J2 XawaX Jn of tori of lower dimension, and
the components of 2 are of the form Jl XeouX J x B, xJ XaoaX Jn

k-1 =k k+1

where 93 cdy 1is a theta locus in this factor. Thus what was obgerved in

-
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the proof of the preceding theorem about the theta locus of a product of
one-dimensional complex tori is quite typical of the situation

in general, and the diagonal period matrices are typical of the degenerate
period matrices that will mostly not be considered here. The teri with
reducible theta loci are described by the period matrices of the factors in
this product decomposition, hence by combinations of lower dimensicnal
subvarieties of jﬂ'g .

It is worth noting as an immediate consequence of the preceding
theorem that the theta function ©(w) vanishes to the first order on the
locus © , so that the divisor of o{w) is really just the divisor
1 -9 . Indeed if o(w) wvanished to some order r > 1 then the
cohomology class dual to the theta divié&r would be r +times an integral
form, but that is evidently not the case. The theta function actually
vanishes to first order at each irreducible component of the theta locus in
the reducible case as well, as could he shown as a consequence of the
analysis of the reducible case mentioned in the preceding discussion or a
rather more careful argument from the result of the preceding thecrem; but
this result will not be needed, sc the verification will be omitted here.
Since a theta function with characteristics is just a translate of the
simple thete funciion, aside from a nowhere-vanishing factor, it follows
that the divisor of e[v]T](w;Q) is Just a translate of the theta divisor,
for any characteristic. For any such function the cohomology class dual to
its divisor is represented by the form ¢ of Theorem 8. On thé other
)

nend o{w)* e T(g will have as its divisor r « 6 , and the coholomogy

class dual to that divisor is represented by the form r¢ . For any other
section f e T(Er) the quotient G(W)r/f is a meromorphic function on

J , and any such function is known to have a divisor with trivial dual
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cohomology class; conseguently the cohomology class dual to the divisor of
any f g F(Er) , in particular of any r-th order theta function, is
represented by the form r¢ , and the same holds as above for r-th order
theta functions with characteristic.

It is also worth noting for later purposes some elementary properties
of the theta divisor. First as a matter of notation, for any subset

X cJ set -X={-x:xeX}. Then since o{w) 1is an even function

H

clearly

(1) -

o
I
o
.

Next as another matter of notation, the translate of a subset X c Jd by a
point u e J is defined as the set X +u=u+X={u+x:xeX}.
Theoren 9. g +u=9 precisely when u ¢ L.
Proof. Translation by a lattice vector is a trivial operation on the

torus J , s0 of course @ + u= 9 whenever u e l. On the other hand if

o

+u=9 for some uceE r® +then o(w-u) and ©(w) both vanish to the
first order on the subvariety 8 + u= © , so their quotient f(w) =
o{w-u)/0(w) is a holomorphic and nowhere-vanishing function on é
strictly speaking this has only been demonstrated in the case that 2: is
irreducible, and actually will only be needed in that case, but as noted it
does hold in general. Recall that o(w) e r(g) and e(w-u) = 8l0|-u](w) ¢
r(pug) gso that f(w) e P(pu) ; therefore P(pu) #0 , and as in (5.2) that

means that u e L as desired.



88 singularities of the theta locus,
¥or a number of purposes it is convenient to view the theta funetion
o{w;Q) as a holomorphic function both of the variable W e ® and of

the periocd matrix @ eﬁg , where ﬂ}/g is an open subset of the space of

i, —

(' g+l
2

useful preliminary observation note that this function is a solution of the

) complex variables with coordinates 0y for 1

HA

i<cigfeg. Asa

following partial differential eguatiom.

2 . )
Theorem 10. M(_H_:.ﬁ = 2qi{1 + 51) _BG(V,Q) .
e Bwiawj J amlJ

Proof. It is a simple direct calculation that

—— exp onil1 ¥non + Pow] = (2 - 53’)171 nin, exp 2ail ] Tnan + vl
1]
32 t t 2 t t
e &P 27i[2 “non + “nw] = (271)°n,n, exp 2ril3 “ngn + “nwl .
wiawj i’}

Fach summand in the series expansion (2.1) of the function 8(w;Q) thus

satisfies the asserted partial differential equation, and since that series

is a locally uniformly convergent series of holomorphic functions it can be

differentiated term by term to any order, thus yielding the desired result.
Now associate to any pair of vectors p , 4 € Zg the holomorphic

automorphism of the product manifeld s xflyg that sends the point

(w;0) e L® xf}g to the point (w + p + Qq;R) € L® Xtyg . This is just

the natural extension of the action of the lattice subgroup L = (I,q) z%
on I® considered so far, obtained by considering it as depending on the
period matrix @ as well as on the variable w ; it Is convenient thus to

think of it as another action of the lattice subgroup L , in extension of

that considered earlier. The quotient space J = (Eg x fy Y/ Lis in a
. LS —
‘ . +1
natural way a complex manifold of dimension g + (g 2) , sometimes called
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the universal complex torus. The projection ré xj?g - ﬁk induces a
holomorphic mapping w : J +j§g such that the inverse image or fibre
7 1(Q) over any point @ Ej%g is precisely the complex torus J(f) with
period matrix @ ; the mapping w is topologically a fibering, exhibiting
J locally as the product of a subset of ﬂlg and & topological torus of
dimension 2g , but is not a complex analytic fibering since the complex
structures of the tori J(Q) are not locally constant but vary with g .
Tt is important to note that = is a proper mapping, in the sense that the
inverse image of any compact subset of ﬁyg is a compact subset of J .
The functional equation for the theta function o(w;n) as in
Theorem 1 can be viewed as a property of this extended group action of
on 18 xﬁpg « The holomorphic subvariety

———

1oc 8(wyq) = {(w;q) e £& >F6g : 8(w;n) = 0} is then invariant under this

w—

action of L_ so can be viewed as a subvariety of the universal torus ¥,

it will be called the universal theta locus and will be denoted by ? .

For any fixed point @ Efég the intersection
ol@) = B nr () c J(g) is just the theta locus in the torus J(Q)} . This
exhibits the universal theta locus as a topological fibering over ﬁlg as
well.

These rather simple observations can be coupled with general results
from function theory in several complex variables to yield some useful

constructions. Consider first the subset
{{w;p) e T8 XEZS : o(w;q) = ae(w;n)/awj =0 for J = lyees,g8} ,

evidently a well defined holomorphic subvariety of T x!ig . It (w;0)

is in this locus then for any lattice vector A =p + flg e (1,9)5225 it is
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clear from the functional equation of Theorem 1 that o(wrr;Q) = 0 , and
also that ae(wn;n)/awj = 0 since it is a linear combination of 6{w;Q)
and ae(w;ﬁ)lawj : this locus therefore describes a subvariety ;é;l < 3,
which is of course a subvariety of the universal theta locus E « For any

fixed O E%g the intersection 'él

=

n (o) = 9;(9) is precisely the set

of singular points of the theta locus in the torus J(g} , those points at

which the defining theta function and all its partial derivatives vanish.

"hose peried matrices Q@ € that do not lie in the image 2(8h) c‘h} R
| & =" -

those for which le n n—l(n) = ¢ , are precisely the period matrices

Q efvgg for which the theta locus is a nonsingular subvarilety of the torus

l) are precisely those

(O]

J(q) . Equivalently the period metrices Q e m(

i

for which the theta locus of the torus J(Q) has singularities. A useful
result from the theory of holomorphic functions of several variables is
Remmert's theorem that the image of aL holomorphic subvariety under a proper
holomorphic mapping is a holomorphic subvariety; thus the set of periocd
matrices Q sﬁg for which the theta locus of the torus J{Q) has
singularities is a holomerphic subvariety of ].@g , the image of the

al

subvariety 5

c J under the proper holomorphic mapping 7 : g +_i2g .« Of
course this would be quite trivial if every theta locus had singularities;
but that is not the case,

Theorem 11. The set of period matrices Q E_’Z% for which the theta
locus of the torus J{Q) has singularities is a proper holomorphic
subvariety of f‘a g *

Proof. In view of the preceding observations, it is only necessary to
show that the image n(:(?l) is a proper subset of ﬂ}g . If that is not the

cage, so that the restriction 11|?Ql

—

N

1 . X .
+§7€ is surjective, then it

follows from rather standard properties of holomorphic mappings that the
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restriction admits local sections through all points outside a proper

subvariety of ﬁl ; in particular there are an open set U c ﬁg and a

==

holomorphic mapping f : U + r® such that (£(Q),2) € E} whenever

e U. Now in the subset t® x U the function o{w;n) 1is a solution

of the system of complex analytic partial differential eguations of
Theorem 10. This system is in the form to which the Cauchy-Kowalewskil
initial value theorem applies: the analytic function e{w;n) is a solution
of this system and satisfies the trivial initial value conditions that

o(f(n);n) = se(£(n);q)/aw, = 0 , hence must vanish identically. That is a

J

contradiction, and thereby concludes the proof.
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§0 Wirtinger varieties.

The zero locus of & single higher-order theta function has already
been briefly considered, but of course there are a large number of such
functions and their zero loci, and none particularly distinguished over the
others. More interesting and intrinsic is the set of common zeros of all
of these functions, although perhaps not as interesting as might have been

expected.

Theorem 12. For any order r > 2 the functions in r(g") have no

COIMMOn ZETroS.
broof. First in the special case r = 2 , the second-order theta

functions that are the components of the vector 62(W) form a bhasis for
5 .
r(g%)

, 50 what is to be shown is that these functions have no common
zeros, or equivalently that éé(w) #0 for any w e Eg « If to the

contrary there is some point W, e T8 at which ﬁg(wb} = 0 thken from

the formula of Theorem 7 it follows that 0 = tgg(wb) . §g(w}

= glw+ w.)o(w - w.) for all points w e s ; the product of two

0 0

analytic functicns cannot vanish identically unless one of the factors
does, but © is a nontrivial function and that is an immediate
contradiction. That thereby shows the desired result in this special case.

Then for r > 2 and for any point wo ¢ % choose a value

7 e & such that e(wb + 1) #0 . Since O(w+ 1) = ololtl(w) e T(p &)
-1

gs a function of w while the component functions of the vector

8, (w - (r-2)t/2) = 8,1-(r-2)7] (%) belong to T(pI7(%) it follows that

the component functions of the vector e(w+r)r_2§2(w;(r—2)1/2} belong to
r

r{g) . Now G(WD + 1) # 0 by the choice of 1 while

52(wb - {r-2)1/2) # 0 by the result of the first part of this proof. That

shows that the functions in TI(£’) do not all vanish at the point Yy s
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and since WO

It is worth noting explicitly that the functions that are the

was quite arbitrary that concludes the proof.

components of ér(w - 1/r) = 6r[T](W) are a basis for r(pTEr) , 50 the
functions in r(pTgr) have no common zeros for any parameter 1 € 8

and order r 2 2 .

&
. r° . . )
Now since ér(w) e T is a nonzero vector it determines a point

1§r(w)] £ Erg-l in the associated projective space, the point with
homogeneous coordinates the components of the vector §r(w) » Thus the

function §r(w) can be viewed as describing a holomorphic mapping

g_
3] .78 2 5 L.

The functional equation for the r-th order theta functions implies that
§r(w) and ér(w+k) represent the same point in projective space for any
lattice vector X € £2 since these two vectors differ by & nonzero scalar
factor; thus the above can also be viewed as describing a holomcrphic‘

mapping

This is a proper holomorphic mapping, since J is compact, so by Remmert's
proper mapping theorem the image is a holomorphic subvariety K = lgr](J)
in that projective space; Kr is indeed an algebraic subvariety, the locus
of zeros of a finite number of homogeneous polynomials, by Chow's theorem.
In the further analysis of this situation the cases r =2 and r > 2

are rather different, and will be treated separately. The underlying
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reason for this difference is that §2 is an even mapping,
(1) B, = 8,(w)

while that is not the case for §r for r > 2 . Indeed any component
function of the vector §r(w) is of the form Gr[v!O](w;Q) = 6P¥|0](rw;rﬂ)
vhere v e Z8/rZ& and by Theorem b4 this function can only be even when

LE[O] is an even half-integral characteristic; thus it can only be even
for all indices v e :Eg/r 78 vhen r = 2 , and in that case it is indeed
always an even half-integral characteristic so that all component functions
are even. In case r = 2 the mapping {@2] : J + X thus cannot possibly
be a one-to-one mapping, since the pecints w and -w in & have the
same image; these represent distinct peoints on the torus unless
2w =w- (-w) & Lﬂ that is, unless w 1s one of the 22g half periods
modulo L_. These exceptional points can be described equivalently as
precisely the points of order two in the group J , those points w e J
such that w+ w= 0 ¢ J , where the origin in r® is taken to represent
the zero element in J . This is actually precisely the extent to which
the mapping [§2] : 7 + K fails to be one-to-one, at least for a general
pericd matrix.

Theorem 13. If Q e‘%g describes a complex torus J feor which the

-

theta locus © 1is irreducible then

-

exhibits J as a two-sheeted branched covering of its image subvariety
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K , with 22g branch points which are precisely the points of order two in

d e
Proof. If 162(wi)] = [52(w2)] for some points w, , W, E r® <then
52(wi) =c §2(w2) for a nonzero complex number ¢ . For any point

w e r® it follows from this and the formula of Theorem 7 that

Blw + wl)O(w - wl)

Y80 - By(w)

¢ t§2(w2) e 8 (w) = colw + WE)Q(W'- W

2 2)'

This is an identity among functions of the variable w , and in terms of

the zero loci of the first-order theta functions means that
(0 -w) v(g+w)=1(0-w)ulg+w.
Since the theta locus © and hence all its translates are irreducible

subvarieties by hypothesis, and since the decomposition of a holomorphic

subvariety of J into its irreducible components is unique up to order, it

must be the case that either 6 - W, = e - W, oOr 6 - W o= 8+ L An
application of Theorem 9 shows that in the first case Wy = W, € L, hence

vy and Vo represent the same point on the torus J , while in the second

+ - = + - [,
case w, + W, Ae E? hence W =Wt W, W v, * A  so that v, and
Vo represent the same pecints on J as Wy and -V e Thus the mapping

[§2] : J + X is generally two-to-one, with the exceptions as discussed
above, and the proof is thereby concluded.
The assumption that the theta locus @ 1is irreducible is really

necessary for the preceding theorem to hold as stated. Indeed suppose that

the torus J can be written as a product J = Jl x J2 corresponding to



the decomposition of the theta locus 8 = (21 x JE) U (Jl xlgg) , Where ei‘
is the theta locus in the torus Ji « The theta functions split
correspondingly as products of theta functions in the variables vy of Jl
and those in the variables Vs of J2 , and the factors are alsc even
functions. Then the four points (wl’WE) . (—wl,w2) . (wl,—we) . (—wl,—wé)
have the same image under 52 s -850 the mapping is gt least four~to-cne
rather than two-to—one. It is apparent from this that something of the
preceeding theorem can be salvaged in the reducible case, the map merely
being some higher-order covering with further singularities.possible; but
this topic will not be pursued further here.

If the lattice subgroup _E is enlarged by adjoining the additicnal
transformation T : w + ~w , there results an extended group E; containing
_£ as a subgroup of index two. The extended group z. of analytic
gutomorphisms of r® is of course no longer Abelian. The mapping

o8_1

[52] - T8 4+ p then induces a one-to-one analytic mapping from the

~ g—
guotient space Eg/L to the subvariety K < P2 1 « One might expect

that this would be & biholomorphic mapping between the natural quotient
space Eg/I and the prejective algebraic subvariety K , but to make

sense of that statement something must be said about the analytic structure
of the quotient variety Eg{z.. Aside from the 228 branch points, each
of which wili be a fixed point for some transformation in I » the quotient
space Eg/z has the natural structure of a complex manifold, with the
coordinates in [® as local coordinates on Eg/I_. The condition that
the mapping [@2] be locally bihelomorphic is then Jjust that the Jacobian

matrix of this mapping from an open subset of the space of g complex

variables be a maximal rank, namely g ; the image is then locally a
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submanifold of Pzg_l , and the mapping locally biholomorphic. At any
fixed point of the group I; the situation is rather more complicated, for
the quotient space Eg/z_ cannot be a complex manifold but must have an
isolated singularity there whenever g > 1 . To see that, it is enough
Just to consider the origin 0 e ré , which is a fixed point for the
mapping T : w + =w 3 it is easy to see that all fixed points are locally
the same as this one. The complement of the origin in a ball about 0O is
naturally mapped as a two-sheeted unbranched covering of the complement of
the image of 0 in the quotient space Eg/I_, and since the complement

of the origin in a ball in t®  is simply connected for g > 1 it

follows that the fundamental group of the complement of the image of the
origin in the quotient space Eg/z is Z/2 whenever g > 1 ; thus the
quotient space is not even topclogically a manifold at any fixed point
whenever g > 1 . If the analytic structure of the quotient space Eg/f
near any fixed point is defined to be that of the image subvariety In

g ~
RE -1 then there is a well defined complex structure on Eg/L at all

points and the mapping [52] will be locally and hence also globally
biholemorphic. There are other ways to impose an analytic structure at the
singularities, but then verifying that the mapping is locally biholomorphic
there is a prohblem; that is merely avoided by the choice made here, and
will not be examined further. With this understanding, the mapping
{§2] : Eg/§;+ K is biholomorphic as a consequence of the following
result.

Theorem 14, If { segg describes a complex torus J for which the

4

&
theta locus © is irreducible then the mapping [@2] T+t isa

=

nonsingular holomorphic mapping at all points of J other than those of
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order two, so the image K = {EE(J)] is a projective algebraic variety

that for g > 1 has singularities precisely at the images of the 22g

points of order two.

Proof. Consider a point ¥ E 8 , and for convenience relabel the

component functions of the vector 62 as fO’fl"'°’fG where G =28 -1

and fo{wb) # 0 . These functions describe the mapping [52] in terms of
homogenecus coordinates in EG , but to examine the singularities of this
mapping it is really necessary to introduce suitable inhomogeneous local
coordinates near [@2(wo)] . Clearly it is possible to choose such
coordinates sc that the mapping [éb] is described by the coordinate
functions hl""’hG where h, = fi/fO . The mapping [521 is singular
at Yy precisely when the Jacobian matrix ahifawh has rank < g at

Yy o hence precisely when there exist complex numbers Cl""’cg not all

zero such that

ah,

0= f 1% awj (w5
=38 e.f (w )2 1r (w.) jfi (w ) - £, (W ) = °°0 (W )]
J1730 0 00 ama 0 j
-1, & Ty
= fo(wo) [} 5 B (wb) + e, fi(wo)]

J=1 J
for 1= 1,...,G , where here

af

— (w ) o

) -1
°o = ~folv) ™ I5a oy B

0

or equivalently where cq is determined by the condition that



of

g 0 =
=1 © ew (wg) * e fo(wo) 0 .

Thus after introducing the new constant cy the condition that ['62] be

singular at vy

all zero such that

is just that there exist some constants 2 e ,C not

CO,Cl, g

af,
g -—]; = i =
(2} <, fi(wo) + zj=1 ey an. (WO) 0 for i=0,1,eee,G ,
or equivalently such that
3 log f.

(27) 2 (wo) =0 for i=0,1,004,G .

Z,j =1 j BWJ.
Here f, are simply some basis for the space I‘(F,e) , and it was noted
earlier as a consequence of Theorem 7 that it is always possible to choose
a basis of the form fi(w) =elw+ 1) 0 (w - -ri) for some suitable points
T, € 18 ; it is thus evident that this singularity condition (2') can be
rewritten in the form

(3) ¢, +):,jl .jawj loglo(w + t)0({w - 1)] = 0 for w=1w, andall 7.

It

dlog o(w) _ -1 36(w}
(L) hiw) = Jl e awj {(+w) EJ -1 aw; s

then condition {3) in turn is just that



(5) CO + h(wb + 1) + h(wc - 1) =0 for all T e¢ e .

Now h 1is clearly a meromorphic functicn on i , with singularities at
most simple poles at points of the theta locus g , an irreducible
subvariety of J . If it really has such singularities then it follows
immediately from (5) that 2 + WO =12 - W, , hence from Theorem 9 that

EVO g L; thus Vo must be a half period as desired. On the other hand if

h is sctually holomorphic then it follows from (k) and the functional

equﬁtion of the theta function that
6 hiw+ p+ Qq) = h - 2ni §8  c.q.
(6) (w+ p+ Qq) (w) mi ):le 39

for all vectors p , q € EZg, so that the partial derivatives ah/awj are

[-invariant holomorphic functions and hence constants; thus h mnust be a

—

linear function, say hiw) = ao + Xj aj Wj = ao + ta.-w +» The functional

equation {6) then has the form

-2ni ta LI |

n

1:'a, . (p+ Qq)

for all p , q € zzg. For g=0 , p= 6§, it fellows that aj =0 , s0

J
that actuslly a = 0 ; but then for q = 63 it must be the case that
cj =0 for all j , a contradiction. Therefore h cannot really be

holomorphic, so the only singularities of [52] are Jﬁst the half-periods,
and that is enough to complepe the proof.

The image K = [62{J)1 is thus an algeﬁraic subvariety of dimension
g in the complex projective space of dimension o& _ 1 , and is

biholomorphically equivalent to the quotient space Eg/I with the
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analytic structure as discussed. This subvariety is often called the

Wirtinger variety associated with the torus J , or in the spacial case

g =2 the Kummer surface associated with J . The algebraic surfaces of

this type were investigated by Kummer from another point of view, and have
been the subject of rather extensive enquiry even since. The
parameterization by theta functions was di;covered by Klein. The treatment
of the general case as here is due to Wirtinger. For later use it is worth
stating explicitly here a simple consequence of one of the observations
made in the course of the proof of the preceding theorem. As a notational
convenience let Bjﬁe(w) = 3'52(w)/3wj.

Corollary If the theta locus:g is irreducible then the g+l vectors
gz(w), Blﬁe(w),..., Bgﬁg(w) are linearly dependent precisely when w is a
point of order two in the teorus J.

Proof The points of order two on J are precisely the singular points
of the mapping [@2], as a conseguence of the theorem. On the other hand,
in the course of the proof it was demonstrated that these singular points
could also be characterized as the points v, E J for which there are some
constants ¢y not all zerc such that (2) holds. The desired result is an
immediate consequence of these observations.

As the image of the irreducible complex manifeold J, the Wirtinger
variety K is an irreducible holomorphic and hence irreducible algebraic
variety. It has precisely 22g isolated singularities, the images of the
2%%oints of order two on J, and 1s otherwise everywhere regular. The

projective embedding being that determined by the vector space F(EE)
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spanned by the second order theta functioms, it is evident thet the linear
hyper-surfaces on K (the intersections of K with linear hyperplanes in
projective space) are the images in K of the zero loci in J of sections
in r(ge). The interesection of the g-dimensional variety X with g

generic hyper-planes will be a set of d distinct points, where d 1s the
degree of the subvariety K. To-calculate this, observe that J is & two-
sheeted cover of X, so that the intersection of the zerc loci of g

generic sections of P(EE) in J will be 24 distinct peints. This

number in turn is just the topological intersection number of the divisors

of g sections of P(EE), or equivalently the exterior product of the

dual cohomology classes evaluated on the fundamental class of J . Thus

od = 2 78 @z az. B
[5@ Tjmyomy ndzgeg)
= o8 IJ ) d.z‘j A dz‘j A .../\dzj A dzj
1 g+l g 28

=4
2% .« g! IJ dzg A Az g A e Nz A Gy,

2Bgr

I

with the orientation conventions adopted here. Thus K 1is an algebraic
subvariety of degree

(1) a = 2870

g
The polynomials in P2 -1 vanishing on K correspond precisely to the
polynomial identities among the basic second order theta functions forming

the components of the mapping [52] .



It is perhaps worth looking briefly at the simplest two cases. First for
g =1 the mapping [@2] . J + PY is a two—to-one mapping with branch
points at the four half-periods; this 1s the familiar representation

of an elliptic curve as a two-sheeted branched covering of the Riemann
sphere Pl with four branch points. Next for g = 2 the mapping

3
[§2] : T+ P

is a two-to-one mapping from J to a quartic surface K
in P> with 16 branch points; the surface K is Kummer' s quartic

surface associated with J .



