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Abstract.

We study the long time dynamics of a Smoluchowski equation arising in the mod-
eling of nematic liquid crystalline polymers. We prove uniform bounds for the long

time average of gradients of the distribution function in terms of the nondimensional
parameter characterizing the intensity of the potential. In the two dimensional case
we obtain lower and upper bounds for the number of steady states. We prove that

the system is dissipative and that the potential serves as unique determining mode
of the system.

1. Introduction. Certain descriptions of the rheology of non-Newtonian complex
fluids containing liquid crystalline polymers combine macroscopic partial differential
equations with microscopic stochastic differential equations ([9], [11], [14], [12], [7]).
A simple model of nematic liquid crystalline polymers - the rigid rod model - using
the Maier-Saupe potential, gives rise to a Smoluchowski equation for the single
particle distribution function on the unit sphere ([2], [10], [4],[13], [5]). In spite
of its simplicity, this equation exhibits nontrivial nonlinear dynamical features, in
contrast with classical Fokker-Planck equations for noninteracting particles ([8]).

We study long time properties of this equation in function of one parameter b > 0
representing the nondimensional potential intensity. We formulate the problem in n
dimensions. In the general high dimensional case we obtain bounds for the long time
average of gradients of the distribution function which are independent of initial
data. In the n = 3 case we obtain long time bounds for the mean square average of
the distribution function. The bounds are independent of initial data. In this case
we also obtain bounds for the long time average of mean square gradients of the
distribution, which again are independent of initial data. We study steady states,
and parametrize them. In general, the steady state equations reduce to finitely
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many transcendental equations for a trace-free matrix and a normalization factor.
The steady states and corresponding matrix equations have a natural covariance
with respect to conjugacy by rotation. This symmetry has to be taken into account
when counting distinct steady states. In the n = 2 case we prove that the uniform
(constant) distribution is the unique steady state when 0 < b ≤ 4. We prove
that, for b > 4 there are at least two distinct steady states. We also prove that,
for arbitrary b > 4 there are at most 2

[
b
4

]
distinct steady states ([x] denotes the

largest integer not exceeding x). We study in more detail the n = 2 dynamics. A
cancellation is used to prove that the system is dissipative in H−

1
2 (S1): all solutions

enter an absorbing ball in finite time, never to leave it again. The system has a
finite dimensional global attractor. The long time behavior of solutions can be
observed by monitoring one determining mode - the potential itself - and that can
be done by measuring the potential at one location alone. Thus, two solutions will
approach each other globally if their potentials approach each other at one fixed
angle.

2. A Smoluchowski equation. Let Sn−1 be the unit sphere in Rn. We consider
the Smoluchowski equation written in local coordinates (φ = (φ1, . . . φn−1)) as:

∂tψ =
1
√
g
∂i
(
e−V
√
ggij∂j(eV ψ)

)
(1)

The potential V is given by

V (x, t) = −bxixjSij (2)

where xi are Cartesian coordinates in Rn, i, j = 1, 2, . . . , n, and b is a positive
constant. The matrix S is determined by

Sij(t) =
∫
Sn−1

xi(φ)xj(φ)ψ(φ, t)σ(dφ)− 1
n
δij (3)

with σ(dφ) =
√
gdφ the surface area. Thus, V (x, t) is a homogeneous polynomial

of second degree, restricted to the sphere. We will focus on the examples n = 3
and n = 2. When n = 2, the unit circle has local coordinate φ ∈ [0, 2π], and
one has x1(φ) = cosφ, x2(φ) = sinφ, g11 = g = 1, ∂1 = ∂φ. When n = 3, the
coordinates on the two dimensional unit sphere are φ = (θ, ϕ), x1(θ, ϕ) = sin θ cosϕ,
x2(θ, ϕ) = sin θ sinϕ, x3(θ, ϕ) = cos θ. Recall also that

g11 = 1, g22 = (sin θ)−2, gij = 0, i 6= j

with ∂θ = ∂1 and ∂ϕ = ∂2 and that
√
g = sin θ.

The equation keeps ψ positive and normalized, if it starts so.

Theorem 2.1. Let ψ0 be a nonnegative, continuous function on Sn−1. The solu-
tions of (1) with initial data ψ(·, 0) = ψ0 exist for all nonnegative time, are smooth,
nonnegative and normalized∫

Sn−1
ψ(φ, t)σ(dφ) =

∫
Sn−1

ψ0(φ)σ(dφ) (4)

The solutions are real analytic for positive time.

The proof is elementary and will not be given here. From now on we will choose
the normalization ∫

Sn−1
ψ(φ, t)σ(dφ) = 1. (5)
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Because of this normalization it follows from the definition (3) that the matrix S
is trace-free

Tr(S(t)) = 0 (6)

and, consequently, from (2), that the quadratic polynomial V (x, t) is harmonic

∆xV (x, t) = 0. (7)

This implies that, when restricted to the unit sphere, V is an eigenfunction of the
Laplace-Beltrami operator

∆g =
1
√
g
∂i
(√
ggij∂j

)
with eigenvalue equal to −2n

∆gV = −2nV. (8)

Because of the way (2) V depends on ψ, the evolution of the quantity

P (t) = −
∫
Sn−1

V (x(φ), t)ψ(φ, t)σ(dφ) (9)

is given by
d

2dt
P = −

∫
Sn−1

V (x(φ), t)ψt(φ, t)σ(dφ)

and, using the evolution (1) and one integration by parts, one obtains

d

2dt
P (t) =

∫
Sn−1

gij∂iV (ψ∂jV + ∂jψ)σ(dφ).

Integrating by parts and using (8) we deduce

d

2dt
P (t) + 2nP =

∫
Sn−1

|∇gV |2ψ σ(dφ) (10)

where
|∇gV |2 = gij∂iV ∂jV

On the other hand, considering the (negative) Gibbs-Boltzmann entropy

E(t) =
∫
Sn−1

ψ(φ, t) log(ψ(φ, t))σ(dφ) (11)

one has, using (1) and one integration by parts

d

dt
E = −

∫
Sn−1

|∇gψ|2 ψ−1σ(dφ)−
∫
Sn−1

gij∂jV ∂iψ σ(dφ),

and using one more integration by parts and (8) one obtains

d

dt
E = −

∫
Sn−1

|∇gψ|2 ψ−1σ(dφ) + 2nP (t). (12)

Note that if the initial data ψ0 is strictly positive, then ψ remains strictly positive
for all time. Actually, in view of the inequality

−b
(

1− 1
n

)
≤ V (x, t) ≤ b

n
(13)

one can show, using the equations (1), (8) and the maximum principle that

min
φ
ψ(φ, t) ≥ e−2bt min

φ
ψ0(φ) (14)
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and thus (12) is meaningful. Also, if ψ0 is bounded above one has

sup
φ
ψ(φ, t) ≤ e2b(n−1)t sup

φ
ψ0(φ) (15)

Theorem 2.2. Let ψ0 be a continuous, strictly positive function. Let the mini-
mum and maximum of ψ0 be denoted, respectively, m0 = minφ ψ0(φ) and M0 =
maxφ ψ0(φ). Then the unique solution ψ(φ, t) of (1) with initial datum ψ0 obeys
the inequality

1
t

∫ t

0

(∫
Sn−1

|∇gψ(φ, s)|σ(dφ)
)2

ds ≤ 2nb+
1
t

log
(
M0

m0

)
(16)

for all t ≥ 0. Let now t > 0 be fixed and consider a sequence of solutions of (1)
coresponding to a sequence of parameters b→∞. Then

lim
b→∞

1
b2t

∫ t

0

∫
Sn−1

|∇gV |2 ψ σ(dφ)ds = 0 (17)

Proof. We start by noting, from (14) and (15) and (5) that

−2bt+ logm0 ≤ E(t) ≤ 2b(n− 1)t+ logM0 (18)

holds for all t ≥ 0. We take the time average of (12):

1
t

∫ t

0

∫
Sn−1

|∇gψ|2ψ−1σ(dφ)ds = 2n
1
t

∫ t

0

P (s)ds+
1
t

(E(0)− E(t)) .

Using (13), (5) and (18) we deduce

1
t

∫ t

0

∫
Sn−1

|∇gψ|2ψ−1σ(dφ)ds ≤ 2nb+
1
t

log
(
M0

m0

)
(19)

The inequality ∫
Sn−1

|∇gψ|σ(dφ) ≤

√∫
Sn−1

|∇gψ|2ψ−1σ(dφ)

follows from the normalization (5) and the Schwartz inequality by dividing and
multiplying inside the the left hand side integral by

√
ψ. The above inequality and

(19) prove (16). In order to prove (17) we integrate (10) in time from 0 to t and
divide by b2t. We use (13) to deduce that

1
b2t

∫ t

0

∫
Sn−1

|∇gV |2 ψ σ(dφ)ds = O

(
1
b

)
and thus prove (17). This ends the proof of the theorem. The relationship (17)
implies a strong constraint on moments of the solutions, in the limit of large b (for
n = 2 see (43) below).

Let us study the evolution of the L2 norm. Using the equation (1), integrating
by parts twice and using (8) we deduce

d

2dt

∫
Sn−1

|ψ(φ, t)|2 σ(dφ) +
∫
Sn−1

|∇gψ(φ, t)|2σ(dφ)

= −n
∫
Sn−1

V (x(φ), t) |ψ(φ, t)|2 σ(dφ)

Now we are going to specialize to the case n = 3. The case n = 2 will be treated
separately in the section concerning dynamics. The Gagliardo-Nirenberg-Sobolev
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inequality ([3]) for W 1,1 functions in two dimensions, together with straightforward
localization implies that there exists a constant C3 such that∫

S2
|ψ(φ)|2 σ(dφ) ≤ C3

{
1 +

(∫
S2
|∇gψ(φ)|σ(dφ)

)2
}

(20)

holds for any W 1,1(S2) function with unit L1 norm. Using this inequality we deduce

Theorem 2.3. Let n = 3, and let ψ0 be a continuous, strictly positive function.
Let the minimum and maximum of ψ0 be denoted as above, respectively, m0 =
minφ ψ0(φ) and M0 = maxφ ψ0(φ). Then the unique solution ψ(φ, t) of (1) with
initial datum ψ0 obeys the inequalities

1
t

∫ t

0

∫
S2
|ψ(φ, s)|2 σ(dφ)ds ≤ C3

[
(6b+ 1) +

1
t

log
(
M0

m0

)]
(21)

and
1
t

∫ t

0

∫
S2
|∇gψ(φ, s)|2 σ(dφ)ds ≤ 2C3b(6b+ 1)

+
1
t

[
1
2

∫
S2
|ψ0(φ)|2 σ(dφ) + 2bC3 log

(
M0

m0

)]
(22)

for all t ≥ 0 with C3 the embedding constant of (20).

Proof. The inequality (21) follows directly from (16) and (20). The inequality (13)
and the evolution equation for the L2 norm imply that

d

2dt

∫
S2
|ψ(φ, t)|2 σ(dφ) +

∫
S2
|∇gψ(φ, t)|2 σ(dφ)

≤ 2b
∫
S2
|ψ(φ, t)|2 σ(dφ) (23)

Using (20) in the right hand side of (23), integrating and applying (21) we obtain

1
2

∫
S2
|ψ(φ, t)|2 σ(dφ) +

∫ t

0

∫
S2
|∇gψ(φ, s)|2 σ(dφ)ds

≤ 1
2

∫
S2
|ψ0(φ)|2 σ(dφ) + 2bC3

[
(6b+ 1)t+ log

(
M0

m0

)]
(24)

Dividing by t and gives (22) and ends the proof.

3. Steady States. Let us consider steady states of (1). Because the matrix gij(φ)
is nonnegative, diagonal and pointwise invertible, one can prove that any time
independent solution of (1) must satisfy

eV ψ = c

for an appropriate constant c. Thus

ψ(φ) = Z−1ebS
ijxi(φ)xj(φ) (25)

We have constraints for the coefficients. Z fixes the normalization
∫
ψdσ = 1. The

matrix S is symmetric and traceless. Its eigenvalues must lie between −1/n and
(n− 1)/n. Indeed, for any unit vector v, the number

Sijvivj =
∫

(v · x(φ))2ψ(φ)dσ(φ)− 1
n
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is in the interval above. The uniform distribution is the special solution for which
the matrix S vanishes, Z is the area of Sn−1 and ψ = Z−1. In order to parametrize
all steady solutions let us consider the real valued map

(S, b) 7→ Z(S, b) (26)

defined for any real, symmetric, traceless matrix S and any positive b by the formula

Z(S, b) =
∫
Sn−1

ebS
ijxi(φ)xj(φ)dσ(φ). (27)

Let us also consider the function

ψS,b(φ) = (Z(S, b))−1eb(S
ijxi(φ)xj(φ)) (28)

associated to any real, traceless, symmetric S and b > 0. Finally, for any real,
traceless symmetric S and b > 0, denote(

Ŝ(S, b)
)ij

=
∫
Sn−1

xi(φ)xj(φ)ψS,b(φ)dσ(φ). (29)

Obviously Ŝ is a function of S and b. Actually, one can check that Z(S, b) de-
pends only on the conjugacy class OSO−1, O ∈ O(n). More specifically, if S1 =
OSO−1 then the rotation invariance of the measure on the unit sphere implies that
Z(S, b) = Z(S1, b) and therefore ψS,b(φ) = ψS1,b(Tφ) where Tφ is the angle transla-
tion associated to the rotation O, Ox(φ) = x(Tφ). The rotation invariance implies
then that Ŝ(S1, b) = O

(
Ŝ(S, b)

)
O−1.

Theorem 3.1. The steady solutions of (1) are in one-to-one correspondence with
the solutions of the implicit trancendental matrix equation

Ŝ(S, b) = S +
1
n

I (30)

where Ŝ(S, b) is associated to S and b by the formalism (27), (28), (29) above.

Note that
∂(logZ(S, b))

∂b
= Tr

(
SŜ
)

(31)

and that
∂ logZ(S, b)

∂S
= bŜ. (32)

Let us consider this problem for n = 2. We look for a symmetric, traceless matrix

S =
(
A B
B −A

)
.

To it we associate ψS,b
ψS,b(φ) = Z−1eb(Sx·x)

with x1 = cosφ, x2 = sinφ and (x · y) the usual Euclidean scalar product in R2.
Putting

bA = α, bB = β

we get
ψS,b = Z−1eα cos(2φ)+β sin(2φ).

The steady state equation

Ŝ = S +
1
2
I
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together with the normalization∫ 2π

0

ψS,b(φ)dφ = 1

translate into the four transcendental equations

α

b
+

1
2

= Z−1

∫ 2π

0

(cosφ)2eα cos(2φ)+β sin(2φ)dφ

−α
b

+
1
2

= Z−1

∫ 2π

0

(sinφ)2eα cos(2φ)+β sin(2φ)dφ,

β

b
= Z−1

∫ 2π

0

(sinφ cosφ)eα cos(2φ)+β sin(2φ)dφ

and

Z =
∫ 2π

0

eα cos(2φ)+β sin(2φ)dφ

for the unknowns α, β, Z depending on the parameter b. There are only three
independent equations, the second equation follows from the first and the last.
Elementary trigonometry brings us to

2α
b

= Z−1

∫ 2π

0

cosφ eα cosφ+β sinφdφ,

2β
b

= Z−1

∫ 2π

0

sinφ eα cosφ+β sinφdφ,

and

Z =
∫ 2π

0

eα cosφ+β sinφdφ.

Introducing now
α = r cosφ0, β = r sinφ0

and using the rotation invariance of the measure on the circle (translation invariance
of dφ), we identify φ0 as the free O(2) conjugacy parameter. The two remaining
equations are

Z(r) =
∫ 2π

0

er cosφdφ (33)

and
2r
b

= (Z(r))−1

∫ 2π

0

cosφer cosφdφ. (34)

The first of these equations, (33), can be thought of as defining the function Z(r)
for all values r ≥ 0, and the second (34) of the equations is then thought of as
selecting the appropriate number (or numbers) r corresponding to the parameter
b. These, in turn, together with the free parameter φ0, determine the matrices S,
and steady states ψ. The eigenvalues of the matrix S are

λ± = ±r
b
. (35)

The constraint that the eigenvalues of S lie in the interval [−1/n, 1− 1/n] implies
that

0 ≤ r ≤ b

2
(36)
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is the admissible range of solutions r. At r = 0, Z = 2π is the trivial (uniform
state) solution. In order to determine whether we have nontrivial solutions we note
that Z(r) is a positive function, defined for all r ∈ [0,∞).

Z(r) = 2π
∞∑
k=0

r2k2−2k 1
(k!)2

and so log(Z(r)) makes sense for r ≥ 0. Now we define, for any continuous periodic
function f(φ), a transformed function

[f ](r) = (Z(r))−1

∫ 2π

0

f(φ)er cosφdφ (37)

which is a continuous function of r ≥ 0.

Lemma 3.1. For any analytic periodic function f(φ) defined for φ ∈ [0, 2π], the
function [f ](r) defined by (37) obeys

lim
r→∞

[f ](r) = f(0).

Proof. We divide both numerator and denominator of∫ 2π

0
f(φ)er cosφdφ∫ 2π

0
er cosφdφ

by er, and then we use steepest descent: splitting∫ π

−π
f(φ)e−r(1−cosφ)dφ =

∫ ε

−ε
f(φ)e−r(1−cosφ)dφ+O(e−r/2)

we get ∫ π

−π
f(φ)e−r(1−cosφ)dφ = f(0)

√
π

r
+O(

1
r

)

and dividing by the integral corresponding to f = 1 we finish the proof of the
lemma.

The object of our interest is the function

d

dr
logZ = [cos](r).

Note that
d2

dr2
logZ = [(cos−[cos](r))2](r) > 0,

so r 7→ [cos](r) is increasing. Because [cos](0) = 0 and cos 0 = 1, it follows from
the lemma above that

0 ≤ [cos](r) ≤ 1

holds for all r ≥ 0. Introducing

H(r) =
d

dr
logZ − 2r

b
= [cos](r)− 2r

b
(38)

the equation we wish to study (34) can be written as

Z ′(r)− 2r
b
Z(r) = 0 (39)

or, equivalently, as
H(r) = 0.
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Note that, because the range of [cos] is included in the interval [0, 1], it follows
that all solutions of (39) are automatically in the required range (36). The explicit
formula

Z ′(r)− 2r
b
Z(r) = −8π

b

∞∑
k=1

(
k − b

4

)
k

(k!)2

(r
2

)2k−1

(40)

shows that there are no zeros other than r = 0 if b ≤ 4. At r = 0 we have

H ′(0) =
1
2
− 2
b

so, for b > 4 we have H ′(0) > 0. On the other hand, using the lemma

lim
r→∞

H ′(r) = −2
b

so we have at least one nontrivial solution, for b > 4.

Theorem 3.2. Let n = 2. Let N(b) denote the number of distinct steady solutions
of (1) modulo the O(2) conjugacy. Then, if b ≤ 4 then N(b) = 1. If b > 4 then
N(b) ≥ 2. For b > 4

N(b) ≤ 2
[
b

4

]
where [x] denotes the largest integer not exceeding x.

Proof. We just proved that there are at least two solutions for b > 4 and only
the trivial solution for b ≤ 4. Now we need to estimate the number of zeros of
Z ′(r)− 2r

b Z(r) for b > 4. The expression (40) shows that

Z ′(r)− 2r
b
Z(r) = P (r)−Q(r)

where P (r) is a polynomial of order 2
[
b
4

]
− 1 and

Q(r) =
8π
b

∞∑
k=[ b4 ]+1

(
k − b

4

)
k

(k!)2

(r
2

)2k−1

Differentiating m = 2
[
b
4

]
times we obtain

dm

drm

(
Z ′(r)− 2r

b
Z(r)

)
< 0

for all r > 0. This, and Rolle’s theorem, finish the proof.

4. Dynamics. The two-dimensional (n=2) time dependent problem is

∂tψ = ∂φ
(
e−V ∂φ(eV ψ)

)
with

V (φ, t) = − b
2

[cos(2(φ− ·))]

and

[f(·)] =
∫ 2π

0

f(φ)ψ(φ, t)dφ.

Thus,

V (φ, t) = − b
2

∫ 2π

0

cos(2(φ− y))ψ(y, t)dy

and the equation is
∂tψ = ∂2

φψ + ∂φ(Vφψ)
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with 2π periodic boundary conditions. Denote

ψ̂(j, t) =
∫ 2π

0

e−ijφψ(φ, t)dφ

Clearly Vφψ is a simple quadratic nonlinearity; in Fourier representation

̂∂φ(Vφψ)(j, t) =
bj

2

(
ψ̂(j − 2, t)ψ̂(2, t)− ψ̂(j + 2, t)ψ̂(−2, t)

)
Thus, the system becomes

ψ̂(0, t) = 1

and

∂tψ̂(j, t) = −j2ψ̂(j, t) +
bj

2

(
ψ̂(j − 2, t)ψ̂(2, t)− ψ̂(j + 2, t)ψ̂(−2, t)

)
Because we are interested in real solutions we have

ψ̂(−j, t) = ψ̂(j, t)∗.

Certain symmetries are preserved. Even functions satisfy

ψ̂(−j, t) = ψ̂(j, t).

This is preserved by the flow. Also, ψ̂(2k + 1, t) = 0 for all k ∈ Z if initially it is
zero. Returning to the physical space representation, we have ψ(φ, t) > 0 if initially,
ψ is probability density,

Vφφ = −4V

and V and Vφ are bounded in absolute value pointwise by b
2 and, respectively, by

b. No finite time blow up can occur, ψ is bounded pointwise by an exponential
function of time. In order to show that the system is dissipative (i.e. the phase
space explored is bounded), we denote

yk = yk(t) = ψ̂(2k, t)

From the PDE information we will use

|yk(t)| ≤ 1, y0(t) = 1.

We restrict to the symmetric case (so we take only even Fourier coefficients). This
means we are dealing with a cosine series

ψ(φ, t) =
1

2π
+

1
π

∞∑
k=1

yk(t) cos(2kφ).

The numbers yk are real and obey

y′1 = (b− 4− by2)y1 (41)

and

y′k = −4k2yk + bky1 (yk−1 − yk+1) (42)

for k ≥ 1 where y′ = dy
dt . Note that the sign of y1 does not change in the evolution.

Note also, with these symmetries in place, the steady state calculation for b > 4
has explicit coefficients yk computed inductively starting from y1 = c 6= 0 and
y2 = 1 − 4

b : yk+1 = yk−1 − 4k yk
by1

. The parameter c is then determined by the
condition that the resulting series converge. That becomes a nontrivial calculation
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in this setting, and the fact that there are at most 2
[
b
4

]
solutions is not easily seen.

In the present example the statement (17) is: for every fixed positive t,

lim
b→∞

1
t

∫ t

0

y2
1(s) (1− y2(s)) ds = 0. (43)

In order to prove dissipativity of the ODE for yk, we multiply (42) by k−1yk to
get

yk
k
y′k = −4ky2

k + by1(yk−1 − yk+1)yk, k ≥ 1,

and summing from k = 1 we deduce

d

2dt

( ∞∑
k=1

1
k
y2
k

)
= −4

∞∑
k=1

ky2
k + by2

1 .

Using |y1| ≤ 1 we obtain:

Theorem 4.1. Consider the evolution equation (1) for n=2, with positive contin-
uous initial data

ψ0(φ) =
1

2π
+
∞∑
k=1

yk(0) cos(2kφ)

Then

‖ψ(·, t)‖2
H−

1
2 (S1)

≤ b

4
+ e−8t‖ψ0‖2

H−
1
2 (S1)

(44)

and
1
t

∫ t

0

‖ψ(·, s)‖2
H

1
2 (S1)

ds ≤ b

4
+

1
2t
‖ψ0‖2

H−
1
2 (S1)

(45)

hold for all t ≥ 0. Here

‖ψ‖2Hs(S1) =
∞∑
k=1

k2sy2
k.

The theorem shows that the ball inH−
1
2 (S1) of radius

√
b centered at the uniform

state ψ = 1
2π absorbs all trajectories in finite time.

Let us consider now two solutions ψ(1)(φ, t) and ψ(2)(φ, t) which are given by
cosine series

ψ(j)(φ, t) =
1

2π
+

1
π

∞∑
k=1

y
(j)
k (t) cos(2kφ)

Let us consider their difference

ψ(φ, t) = ψ(1)(φ, t)− ψ(2)(φ, t),

and semi-sum
ψ(φ, t) =

1
2

(ψ(1)(φ, t) + ψ(2)(φ, t)).

The Fourier coefficients are denoted accordingly,

yk(t) = y
(1)
k (t)− y(2)

k (t)

and
yk(t) =

1
2

(
y

(1)
k (t) + y

(2)
k (t)

)
The equation for the difference is

y′k = −4k2yk + bky1(yk−1 − yk+1) + bky1(yk−1 − yk+1) (46)
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valid for all k ≥ 1. In the equation for k = 1 it is understood that y0 = 0 and
y0 = 1. Multiplying by 1

kyk and adding we obtain

d

2dt
‖ψ(·, t)‖2

H−
1
2 (S1)

+ 4‖ψ(·, t)‖2
H

1
2 (S1)

= by1

∞∑
k=1

(yk−1 − yk+1)yk

Using a Schwartz inequality we deduce

d

2dt
‖ψ(·, t)‖2

H−
1
2 (S1)

+ 4‖ψ(·, t)‖2
H

1
2 (S1)

≤ b|y1|‖ψ(·, t)‖
H

1
2 (S1)

√√√√ ∞∑
k=1

1
k

(yk−1 − yk+1)2

Therefore, using Young’s inequality

d

dt
‖ψ(·, t)‖2

H−
1
2 (S1)

+ ‖ψ(·, t)‖2
H

1
2 (S1)

≤ 2b2y2
1

(
1 + ‖ψ(1)(·, t)‖2

H−
1
2 (S1)

+ ‖ψ(2)(·, t)‖2
H−

1
2 (S1)

)
Using the inequality (44) we obtain

d

dt
‖ψ(·, t)‖2

H−
1
2 (S1)

+ ‖ψ(·, t)‖2
H

1
2 (S1)

≤ 2b2y2
1

(
1 +

b

2
+ e−8t‖ψ(1)

0 ‖2H− 1
2 (S1)

+ e−8t‖ψ(2)
0 ‖2H− 1

2 (S1)

)
. (47)

Theorem 4.2. Let ψ(j)(φ, t), j = 1, 2, be two solutions of (1) for n = 2. Assume
that the corresponding potentials V (1)(φ, t) and V (2)(φ, t) become close asymptoti-
cally at φ = 0:

lim
t→∞

|V (1)(0, t)− V (2)(0, t)| = 0.

Then the two solutions approach each other:

lim
t→∞

‖ψ(1)(·, t)− ψ(2)(·, t)‖
H−

1
2 (S1)

= 0

Proof. Note that

V (j)(φ, t) = − b
2
y

(j)
1 (t) cos(2φ)

and therefore the asumption implies

lim
t→∞

|y1(t)| = 0

where y1(t) is the Fourier coefficient of the difference of solutions. The conclusion
of the theorem follows then from (47).

This shows that the system has one determining mode. Using standard tools
([1]) one can prove that this system has a finite dimensional global attractor.
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