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The purpose of this brief note is to present an infinite dimensional family
of exact solutions of the incompressible three-dimensional Euler equations

∂tu + u · ∇u +∇p = 0, ∇ · u = 0. (1)

The solutions we present have infinite kinetic energy and blow up in finite
time. Blow up of other similar infinite energy solutions of Euler equations has
been proved before ([1], [2]). The particular type of solution we will describe
was proposed in ([3]). The Eulerian-Lagrangian approach we take ([4]) is not
restricted to this particular case, but exact integration of the equations is.
We will consider a two dimensional basic square Q of side L. The particular
form of the solutions ([3]) is

u(x, y, z, t) = (u(x, y, t), zγ(x, y, t)) (2)

where the scalar valued function γ is periodic in both spatial variables with
period L and the two dimensional vector u(x, y, t) = (u1(x, y, t), u2(x, y, t))
is also periodic with the same period. The associated two dimensional curl
is

ω(x, y, t) =
∂u2(x, y, t)

∂x
− ∂u1(x, y, t)

∂y
. (3)

This represents the vertical (third) component of the vorticity ∇× u of the
Euler system and, using the ansatz (2) it follows from the familiar three
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dimensional vorticity equation that the equation

∂tω + u · ∇ω = γω (4)

should be satisfied for the recipe to succeed. On the other hand, one can
easily check that the vertical component of the velocity zγ(x, y, t) solves the
vertical component of the Euler equations if γ solves the non-local Riccati
equation

∂γ

∂t
+ u · ∇γ = −γ2 + I(t) (5)

with I(t) a time dependent constant. The divergence-free condition for u
becomes

∇ · u = −γ. (6)

Because of the spatial periodicity of u one must make sure that∫
Q
γ(x, t)dx = 0 (7)

holds throughout the evolution. This can be done provided the constant I(t)
is given by

I(t) =
2

|Q|

∫
Q
γ2(x, t)dx (8)

where
|Q| =

∫
Q
dx = L2.

The velocity is determined from ω and γ using a stream function ψ(x, y, t)
and a potential h(x, y, t) by

u = ∇⊥ψ +∇h (9)

−∆h = γ, (10)

−∆ψ = ω (11)

with periodic boundary conditions.
The ansatz u(x, y, z, t) = (u(x, y, t), zγ(x, y, t)) associates to solutions of

the system (4, 5, 8, 9, 10, 11) in d = 2 velocities u that obey the incompress-
ible three dimensional Euler equations ([3], [5]). The divergence condition (6)
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follows from (9, 10). The compatibility condition
∫
Q ωdx = 0 is maintained

throughout the evolution because of (4, 6). We consider initial data

γ(x, y, 0) = γ0(x, y), ω(x, y, 0) = ω0(x, y) (12)

that are smooth and have mean zero
∫
Q γ0dx =

∫
Q ω0dx = 0. The solutions

of the system above have local existence and the velocity is as smooth as the
initial data are, as long as

∫ T
0 supx |γ(x, t)|dt is finite ([6]; the result follows

along the lines of the proof of the well-known result ([7])). We will consider
the characteristics

dX

dt
= u(X, t) (13)

and denoting X(a, t) the characteristic that starts at t = 0 from a, X(a, 0) =
a, we note that, prior to blow up the map a 7→ X(a, t) is one-to-one and
onto as a map from T2 = R2/LZ2 to itself. The injectivity follows from the
uniqueness of solutions of ordinary differential equations. The surjectivity
can be proved by reversing time on characteristics, which can be done as
long as the velocity is smooth. Our result is an explicit formula for γ on
characteristics

γ(x, t) = α(τ(t))

{
γ0(A(x, t))

1 + τ(t)γ0(A(x, t))
− φ(τ(t))

}
(14)

where A(x, t) is the inverse of X(a, t) (the “back-to-labels” map) and the
functions τ(t), α(τ) and φ(τ) are computed from the initial datum γ0. More
precisely we show

Theorem 1 Consider the nonlocal conservative Riccati system (4, 5, 8, 9,
10, 11). There exist smooth, mean zero initial data for which the solution
becomes in�nite in �nite time. Both the maximum and the minimum values
of the solution γ diverge, to plus in�nity and respectively to negative in�nity
at the blow up time. There is no initial datum for which only the minimum
diverges. The general solution is given on characteristics in terms of the
initial data γ(x, 0) = γ0(x) by (see (24))

γ(X(a, t), t) = α(τ(t))

(
γ0(a)

1 + τ(t)γ0(a)
− φ(τ(t))

)
where

φ(τ) =

{∫
Q

γ0(a)

(1 + τγ0(a))2
da

}{∫
Q

1

1 + τγ0(a)
da

}−1

,

3



α(τ) =

{
1

|Q|

∫
Q

1

1 + τγ0(a)
da

}−2

and
dτ

dt
= α(τ), τ(0) = 0.

The function τ(t) can be obtained from

t =

(
1

|Q|

)2 ∫
Q

∫
Q

1

γ0(a)− γ0(b)
log

(
1 + τγ0(a)

1 + τγ0(b)

)
dadb.

The Jacobian J(a, t) = Det
{
∂X(a,t)
∂a

}
is given by

J(a, t) =
1

1 + τ(t)γ0(a)

{
1

|Q|

∫
Q

da

1 + τ(t)γ0(a)

}−1

The moments of γ are given by∫
Q

(γ(x, t))pdx = (α(τ))p
∫
Q

{
γ0(a)

1 + τ(t)γ0(a)
− φ(τ(t))

}p
J(a, t)da.

The blow up time t = T∗ is given by

T∗ =
1

|Q|2
∫ ∫ 1

γ0(a)− γ0(b)
log

(
γ0(a)−m0

γ0(b)−m0

)
dadb

where
m0 = min

Q
γ0(a) < 0.

We note that the curl ω plays a secondary role in this calculation and in
the blow up. Indeed, the same formula and blow up occurs if ω0 = 0, or if
the curl ω was smooth and computed in a different fashion than via (4).

1 Solving on characteristics

We will solve now the nonlocal Riccati equation on characteristics. We start
with an auxiliary problem. Let φ solve

∂τφ+ v · ∇φ = −φ2
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together with

∇ · v(x, τ) = −φ(x, τ) +
1

|Q|

∫
Q
φ(x, τ)dx.

We will consider initial data that are smooth, periodic and have zero mean,∫
Q
φ0(x)dx = 0.

We will also assume that the curl ζ = ∂v2

∂x
− ∂v1

∂y
obeys

∂τζ + v · ∇ζ =

(
φ− 3

|Q|

∫
Q
φ(x, τ)dx

)
ζ.

Passing to characteristics
dY

dτ
= v(Y, τ) (15)

we integrate and obtain

φ(Y (a, τ), τ) =
φ0(a)

1 + τφ0(a)

valid as long
inf
a∈Q

(1 + τφ0(a)) > 0.

We need to compute

φ(τ) =
1

|Q|

∫
Q
φ(x, τ)dx.

The Jacobian

J(a, τ) = Det

{
∂Y

∂a

}
obeys

dJ

dτ
= −h(a, τ)J(a, τ)

where
h(a, τ) = φ(Y (a, τ), τ)− φ(τ).

Initially the Jacobian equals to one, so

J(a, τ) = e−
∫ τ

0
h(a,s)ds.
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So

J(a, τ) = e
∫ τ

0
φ(s)ds exp (−

∫ τ

0

d

ds
log(1 + sφ0(a))ds)

and thus

J(a, τ) = e
∫ τ

0
φ(s)ds 1

1 + τφ0(a)
.

The map a 7→ Y (a, τ) is one and onto. The change of variables formula gives∫
Q
φ(x, τ)dx =

∫
Q
φ(Y (a, τ), t)J(a, τ)da

and therefore

φ(τ) = e
∫ τ

0
φ(s)ds 1

|Q|

∫
Q

φ0(a)

(1 + τφ0(a))2
da. (16)

Consequently
d

dτ
e−
∫ τ

0
φ(s)ds =

d

dτ

1

|Q|

∫
Q

1

1 + τφ0(a)
da.

Because both sides at τ = 0 equal one, we have

e−
∫ τ

0
φ(s)ds =

1

|Q|

∫
Q

1

1 + τφ0(a)
da (17)

and, using (16),

φ(τ) =

{∫
Q

φ0(a)

(1 + τφ0(a))2
da

}{∫
Q

1

1 + τφ0(a)
da

}−1

(18)

Note that the function δ(x, τ) = φ(x, τ)− φ(τ) obeys

∂δ

∂τ
+ v · ∇δ = −δ2 + 2

1

|Q|

∫
Q
δ2dx− 2φδ.

We consider now the function

σ(x, τ) = e2
∫ τ

0
φ(s)dsδ(x, τ)

and the velocity

U(x, τ) = e2
∫ τ

0
φ(s)dsv(x, τ).
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Multiplying the equation of δ by e4
∫ τ

0
φ(s)ds we obtain

e2
∫ τ

0
φ(s)ds∂σ

∂τ
+ U · ∇σ = −σ2 +

2

|Q|

∫
σ2dx.

Note that
∇ · U = −σ.

Now we change the time scale. We define a new time t by the equation

dt

dτ
= e−2

∫ τ
0
φ(s)ds, (19)

t(0) = 0, and new variables

γ(x, t) = σ(x, τ)

and
u(x, t) = U(x, τ).

Now γ solves the nonlocal conservative Riccati equation

∂γ

∂t
+ u · ∇γ = −γ2 +

2

|Q|

∫
γ2dx (20)

with periodic boundary conditions,

u = (−∆)−1
[
∇⊥ω +∇γ

]
(21)

and
∂ω

∂t
+ u · ∇ω = γω (22)

The initial data are given by

γ0(x) = δ0(x) = φ0(x).

Using (17) and integrating the equation (19) we see that the time change is
given by the formula

t =

(
1

|Q|

)2 ∫
Q

∫
Q

1

φ0(a)− φ0(b)
log

1 + τφ0(a)

1 + τφ0(b)
dadb (23)
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Note that the characteristic system

dX

dt
= u(X, t)

is solved by
X(a, t) = Y (a, τ)

where Y solves the system (15). This implies the formula

γ(X(a, t), t) = α(τ)

(
φ0(a)

1 + τφ0(a)
− φ(τ)

)
(24)

with
α(τ) = e2

∫ τ
0
φ(s)ds. (25)

In view of (17), (18), (23), we have obtained a complete description of the
general solution in terms of the initial data.

2 Blow up

Consider an initial smooth function γ0(a) = φ0(a) and assume that it has
mean zero and that its minimum is m0 < 0. As it is evident from the explicit
formula the blow up time for φ(Y (a, τ), τ) is

τ∗ = − 1

m0

and φ(Y (a, τ), τ) diverges to negative infinity for some a, and not at all for
others. This of course does not necessarily mean that γ blows up in the same
fashion. Let us discuss the simplest case, in which the minimum is attained
at a finite number of locations a0, and near these locations, the function φ0

has non-vanishing second derivatives, so that locally

φ0(a) ≥ m0 + C|a− a0|2

for 0 ≤ |a− a0| ≤ r. Then it follows that the integral

1

|Q|

∫ da

ε2 + φ0(a)−m0
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behaves like

1

|Q|

∫ da

ε2 + φ0(a)−m0

∼ log


√

1 +
(
Cr

ε

)2


for small ε. Taking

ε2 =
1

τ
− 1

τ∗

we deduce that, for these kinds of initial data

e−
∫ τ

0
φ(s)ds ∼ log

{√
1 +

C

τ∗ − τ

}
.

For the same kind of functions and small (τ∗ − τ), the integral

1

|Q|

∫
Q

φ0(a)

(1 + τφ0(a))2
da ∼ − C

τ∗ − τ

and t(τ) has a finite limit t → T∗ as τ → τ∗. The average φ(τ) diverges to
negative infinity,

φ(τ) ∼ − C

τ∗ − τ

[
log

{√
1 +

C

τ∗ − τ

}]−1

.

The prefactor α becomes vanishingly small

α(τ) ∼ (log(τ∗ − τ))−2

and (24) becomes

γ(X(a, t), t) ∼ (log(τ∗ − τ))−2

(
φ0(a)

1 + τφ0(a)
− φ(τ)

)
.

If the label is chosen so that φ0(a) > 0 then the first term in the brackets
does not blow up and γ diverges to plus infinity. If the label is chosen at the
minimum, or nearby, then the first term in the brackets dominates and the
blow up is to negative infinity, as expected from the ODE. From the equation
(19)

(α(τ))−1dτ = dt
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it follows that

T∗ − t ∼ (τ∗ − τ)
(

1 + log
(

1

τ∗ − τ

))2

and the asymptotic behavior of the blow up in t follows from the one in τ .
We end by addressing a question that was at some point raised by numerical
simulations: can there be a one-sided blow up? From the representation (24)
of the solution it follows that

M(t) ≥ −φ(τ)e2
∫ τ

0
φ(s)ds

holds for M(t) = supx γ(x, t). If one would assume that, up to the putative
blow up

M(t) ≤ C

with some fixed constant C, then it would follow that

− d

dτ
e2
∫ τ

0
φ(s)ds ≤ 2C

and integrating between τ and τ∗ that

e2
∫ τ

0
φ(s)ds ≤ 2C(τ∗ − τ).

This in turn would imply that T∗ = ∞ and therefore no blow up for γ can
occur in finite t. So the answer is that for no initial datum can there exist a
one sided blow up for γ.
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