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Abstract

Detailed analyses of the Navier-Stokes equations on the basis of the Euler-Lagrangian formalism

are presented with use of numerical simulations. A singular perturbation property arising in the

limit of vanishing viscosity is one issue of this paper. By using the connection matrix, which is

related with the geometry of particle paths, we introduce “connection anomaly” for the charac-

terization of the property and confirm it numerically. As a characterization in physical space, we

show how regions with small values of a determinant of a derivative of diffusive labels are spatially

correlated with vortex structures.

Two kinds of initial conditions are examined; (i) decaying isotropic turbulence developing from a

random initial condition and (ii) the orthogonally offset two vortex tubes. For (i), it is found that

when turbulence is fully-developed, the resetting process occurs very frequently, which defines a

short time scale associated with small-scale motion. For (ii), we confirm our previous finding that

resetting of diffusive label captures successfully reconnection of vortex at higher Reynolds num-

bers. Even for this special initial condition, turbulence is developed after the phase of prominent

reconnection and frequent resettings are associated with it.

PACS numbers: 47.27.AK, 47.10.+g
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I. INTRODUCTION

One of the important properties of the the Navier-Stokes flows is that in the limit of

vanishing viscosity their behavior differ from that of corresponding Euler equations which

are known to possess a number of inviscid invariants. For example, in the inviscid case

the total kinetic energy is conserved, where as in slightly viscous Navier-Stokes flows it is

observed that the energy is dissipated at a nontrivial rate at finite time. This anomalous

behavior, finite energy dissipation in the limit of small viscosity is the fundamental premise

of Kolmogorov similarity in the theory of turbulence. As another example, it is well known

that the vortex lines are frozen in inviscid fluids, where as vortex reconnection can (and

indeed do) occur in slightly viscous fluids.

There are some previous researches regarding the difference between inviscid and viscous

fluid motion. For example, it was proved that a Navier-Stokes flow converges to the corre-

sponding Euler flow in the limit of vanishing viscosity as long as the latter flows remains

smooth [1].

Recently, a framework of the Navier-Stokes equations that is suitable for studying the-

oretically and numerically topological properties of vortex lines in viscous flow has been

developed by one of the authors [2–4]. It has been applied to numerical simulations of

the Navier-Stokes equations and its usefulness for monitoring vortex reconnection has been

established [5]. This may be regarded as the first practical use of Weber transform in vis-

cous fluids. See also an interesting generalization recently made in [6]. We will discuss some

natural questions arising out of the previous work including: is it useful to characterize fully-

developed turbulence ? In particular, is it possible to detect also an anomalous behavior on

the basis of this formalism ?

This Eulerian-Lagrangian framework is based on a generalization of Weber’s transform

(see Eqs.(4),(5) below) to a viscous fluid. It incorporates nonlocal interaction and viscous

diffusion in a multiplicative fashion. The formalism has been developed for the mathematical

theory of Navier-Stokes equations [2–4]. Nevertheless, with purely analytical methods it is

difficult to analyze long time evolution of the Navier-Stokes equations under which vortex

reconnection actually takes place.

We present here results of Eulerian-Lagrangian analyses using numerical simulations of

the Navier-Stokes equations. In a previous work it was found that this formalism captures
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vortex reconnection successfully, in the sense that frequent resetting take place when vortices

undergo reconnection.

The question we raise here is to see how this Eulerian-Lagrangian formalism characterize

fully-developed turbulence. Two cases of initial conditions will be considered; (i) Random

initial condition and (ii) orthogonally off-set vortex tubes. In (i), we mainly discuss ’connec-

tion anomaly’ (to be introduced below), which is an alternative characterization of singular

perturbative nature of developed turbulence in the Eulerian-Lagrangian formalism. Case (ii)

is a higher Reynolds number version of experiments reported before by ourselves. Estimates

of virtual velocity, derivative of A and their ν-dependence are discussed, together with the

physical meaning of Det(∇A) = 0. We will show that the connection is particularly suited

both for characterization of vortex reconnection and for singular perturbation property of

the inviscid limit of the fluid equations.

The mathematical formulation will be described In Section II and the numerical meth-

ods in Section III. Section IV is the main part of this paper, where decaying turbulence

is analyzed in some details with the Eulerian-Lagrangian formalism. In Section V, some

analyses will be presented regarding experiments on vortex reconnection at higher Reynolds

numbers. Finally, Section VI will be devoted to summary and outlook.

II. THE EULERIAN-LAGRANGIAN FORMULATION

With standard notation, the Navier-Stokes equations and the continuity equation read

∂u

∂t
+ (u · ∇)u = −∇p + ν4u, (1)

and

div u = 0, (2)

where u stands for velocity, p for pressure and ν for kinematic viscosity. Using another

dependent variable called impulse w, which is not incompressible in general, we may alter-

natively describe time evolution of the flow by the following equations

∂w

∂t
+ (u · ∇)w = −(∇u)T w + ν4w, (3)

where T denotes a matrix transpose. The usual incompressible velocity u is obtained by

solenoidal projection P of w

u = P (w). (4)
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This formalism is sometimes referred to as the impulse formalism, see e.g. [22]. There are

many references regarding the impulse formalism and its related issues. See, for example,

[7–26].

It should be noted that w can be represented in a multiplicative fashion as follows

w = (∇A)T v. (5)

In this decomposition, A denotes the diffusive Lagrangian label and v the virtual velocity,

that is, it is assumed to obey the following equations [2]

∂A

∂t
+ (u · ∇)A = ν4A. (6)

In order to be consistent with the Navier-Stokes equations, we find that v should obey

∂v

∂t
+ (u · ∇)v = 2νC : ∇v + ν4v, (7)

where the i−th component of C : ∇v is given by Cm,k;i
∂vm

∂xk

and

Cm,k;i =
∂xj

∂Ai

∂2Am

∂xj∂xk

.

The connection tensor allows a number of different interpretations. First, it is a coefficient

in the viscous diffusion term in the equation for virtual velocity. Second, it has differential

geometric meaning as a metric which relates x with a spaces. Third, it measures non-

commutativity between Eulerian and Eulerian-Lagrangian derivatives. It is important to

bear in mind that C measures non-commutativity between the Euler and Euler-Lagrange

derivatives as indicated in the commutation relation [∇i
A,∇k

E] = Cm,k;i∇
m
A . On top of

ω(x, t) = ∇× u(x, t)

we define virtual vorticity by

ζ(x, t) = ∇A × v(x, t).

A set of Equations (4,5,6,7) forms a closed system which is equivalent to the Navier-Stokes

equations. We note that ’derivatives’ with respect to A, which is a dependent variable, are

defined using (∇A)−1 and chain rule, see [2–4] for details.

Cauchy formula generalized to viscous fluids reads

ω = Det(∇A)(∇A)−1ζ. (8)
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The determinant of gradient of diffusive labels is not conserved, but it changes as

(

∂

∂t
+ u · ∇

)

Det(∇A) = νDet(∇A) (Ci,k,;jCj,k;i + ∂iCj,i,;j) , (9)

or
(

∂

∂t
+ u · ∇ − ν4

)

log(Det(∇A)) = νCi,k,;jCj,k;i. (10)

We also note that
∂

∂xi

Det(∇A) = Cj,i,;j. (11)

The choice of the variables A and v may not be unique. For example, if we take

∂A

∂t
+ (u · ∇)A = 0,

as in the standard definition of Lagrangian markers, then we have

∂v

∂t
+ (u · ∇)v = ν

(

(∇A)T
)

−1
4

(

(∇A)T v
)

However, this equation has third-order derivatives of A, but the equation for A has no

regularizing factor for it, and hence unbalanced. It may not be useful in practice.

III. NUMERICAL METHOD

Two technical points of the numerical method that should be mentioned are as follows.

As a basic equation, we have rewritten (3) as

∂w

∂t
= −∇(w · u) + u × ω + ν4w, (12)

because fast Fourier transforms can be implemented efficiently this way [29]. Another aspect

is that it is not straightforward to evolve v because C, a cubic quantity in A, is cumbersome

to handle. Instead of dealing with v directly, we have solved for displacement vector ` =

A − x, which satisfies a set of passive equations

∂`

∂t
+ (u · ∇)` = −u + ν4`. (13)

In practice, we have solve a system of equations (12) and (13) simultaneously. Once ` is

known we can compute ∇A by
∂Ai

∂xj
=

∂li
∂xj

+ δij,
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and the connection coefficients C and all other quantities of interest can be obtained a

posteori by matrix inversion.

In inviscid fluids the determinant of ∇A is unchanged and its invertibility, that is, x as a

function of a, is maintained automatically under the time evolution of the Euler equations.

In the case of viscous fluids the determinant is not preserved in general [2]. Therefore, it

is possible that it becomes zero and the matrix can become non-invertible under the time

evolution of the Navier-Stokes equations. Indeed, according to our previous report [5], this

actually takes place. In order to ensure the invertibility it is necessary to reset ` = 0 when

the determinant becomes very small. Practically, we reset

` = 0 if min
x

Det(∇A) ≤ ε,

where ε is a preassigned small parameter. Since the equation for ` is passive, the resetting

procedure does not affect the evolution of u. Also, it has been shown that qualitative

properties regarding the resetting frequency of ` are independent of ε (See [4]).

The number of FFTs needed for simulating the incompressible Navier-Stokes equations

using the vorticity formalism is 9 at each stage of Runge-Kutta scheme. The number is 13 if

the impulse formalism (which deals with compressible variables) is used. If the displacement

is simultaneously computed the number is 25, with additional 9 FFTs for the evaluation of

the Jacobian determinant.

A 2/3−dealiased pseudo-spectral method was employed under periodic boundary con-

ditions. The number of grid points used were 1283, 2563 and 5123. Time marching was

performed with a standard fourth-order Runge-Kutta scheme.

It turned out that for an accurate calculation of C we need to make the Reynolds num-

ber lower than commonly adopted to ensure the accuracy of velocity and vorticity. More

precisely, it turned out that kmax/kd ≥ 1.4 may be sufficient for resolving ω, but not for

C. In the calculations presented here we have kmax/kd ≥ 2 which ensures accuracy of both

ω and C. Here kmax is the maximum wavenumber and kd is the Kolmogorov dissipative

wavenumber.
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FIG. 1: Time evoultion of the energy disspation rate with ν = 1.5 × 10−3(solid), 2.5 ×

10−3(dashed), 4 × 10−3(dotted).

IV. DECAYING TURBULENCE

A. General properties

Before discussing the Eulerian-Lagrangian analyses we check that the turbulent flows we

will consider have standard properties.

The initial condition has an energy spectrum of the form

E(k) = ck2 exp(−k2),

where the constant c is chosen in such a way that

〈

|u|2
〉

= 1.

Numerical parameters used are summarized in Table I.

In Fig.1 we show time development of the dissipation rate of energy for three different

Reynolds numbers. For the higher Reynolds number case, the total energy becomes shows

a noticeable decay around t = 4 followed by a peak of its dissipation rate around t = 6.

In Fig.2 it is shown that Rλ is around 100 or smaller after t = 6 and the product ηkmax

is greater than 1.3, showing that the flow field is well resolved throughout the computa-

tions. The situation is even better for the lower Reynolds number case. However, as we

will see below the connection tensor C is a little bit under-resolved for the case with the
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FIG. 2: Time evoultion of the ηkd, plotted with the same line convention as in Fig.1.

highest Reynolds number. Therefore for the analysis of C, we will use the results with the

intermediate Reynolds number.

In Fig.3 the spectra of energy is shown at several different times, in which a short inertial

subrange consistent with Kolmogorov similarity law E(k) ∝ k−5/3 at t = 6. Also, the tail of

the spectra at large wavenumbers shows an exponential decay, consistent with well-resolved

numerical solutions.

We introduce a (squared) norm of ` as

E`(t) =
1

2

〈

|`|2
〉

and a (squared) norm of ∇× ` as

Q`(t) =
1

2

〈

|∇ × `|2
〉

,

where

〈 〉 ≡
1

(2π)3

∫

dx.

We show their development in Fig.4, 6, 5 for different values of ν.

The first resetting takes place at t = 1.59, independent of ν. It is of interest to note

that it is almost the same for three different values of viscosity despite the fact viscosity is

necessary for a resetting to take place. This is on the order of, but smaller than, a large-scale

eddy turn-over times T defined by

T =
2π

√

〈|u|2〉
≈ 6.28.
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FIG. 3: Time evoultion of energy sepctra, plotted with the same line convention as in Fig.1.

The resetting time interval ∆tj defined by

∆tj = tj − tj−1, for j = 1, 2, ...,

where t0 = 0 and tj is the time of j−th resetting. In the early stage, the resetting time

interval becomes shorter and shorter and it saturates around the time of maximum enstrophy

(t = 4). Then it starts to increase slowly.
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FIG. 4: Time evoultion of a (squared) norm Ql(t) of curl of displacement for ν = 1.5 × 10−3.
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FIG. 5: Time evoultion of Ql(t) for ν = 2.5 × 10−3.
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FIG. 6: Time evoultion of Ql(t) for ν = 4 × 10−3.
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FIG. 7: Resetting time intervals ∆t for ν = 1.5 × 10−3(solid), 2.5 × 10−3(dashed), and 4.0 ×

10−3(short-dashed). Also, shown is the Komogorov time scale τK for ν = 1.5×10−3(dotted), 2.5×

10−3(dash-dotted), 4 × 10−3(short-dash-dotted).

In Fig.7 we compare the resetting time ∆t with the Kolmogorov time scale τK

τK =

√

ν

εdis

.

For each Reynolds number (particularly, the two larger ones), the resetting time interval is

on the same order of Kolmogorov time scale.

In the inviscid case ν = 0 no resetting can take place, because of volume preservation

Det(∇A) = 1. If the RHS of (7) is negligible in the limit of small viscosity, then v is

constant.

While the frequent resettings allow an interpretation as manifestation of vortex recon-

nection, the first resetting is known only to be on the order of a large-scale turn-over times.

This time scale is the one by which excitation reach large wave numbers where the viscous

effects are no longer negligible. The present result indicates that the determinant hits zero

as soon as the viscous effects are important.

B. The connection tensor

We recall some basic properties of the connection matrix. Connection C has a number of

different meanings: it is a prefactor in front of a dissipative term in the equation for virtual

velocity, and it is closely related to differential geometry of transformation A(x), and finally
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FIG. 8: Time evolution of spectra of connection, plotted with the same line convention as in Fig.1.

it measures non-commutativity between Eulerian- abd A-derivatives.

In Fig.8 we show the Fourier spectrum of C averaged over its 27 components

EC(k) =
1

2

3
∑

i,j,k=1

1

27
| ˜C(k)i,j;k|

2,

where C̃i,j;k(k) is the Fourier transform of Ci,j;k(x). Their magnitude is not important

because of their linear dynamics and because of resetting. Their shape at high wavenumber
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FIG. 9: Time evoultion of some quantities related to the composition w = (∇A)T v, a(top-left):
〈

|w|2
〉

(solid circles),
〈

|v|2
〉

(open circles),
〈

|∇A|2
〉

(open circles). b(top-right): r(t), c(bottom-left):

E(t)(solid), Ev(t)(solid circles), and d(bottom-right): max |u|(solid circles), max |v|(open circles).

region is important, because a fall-off at their tail is necessary for accurate calculation of

C. From their time development we see that they are well-resolved, for the low and the

intermediate Reynolds numbers.

By applying Cauchy-Schwarz inequality to (5) we have

〈|w|〉 ≤
〈

|∇A|2
〉1/2 〈

|v|2
〉1/2

,

where the equality holds when

∂A

∂xi

= λv for all i, for some λ.

It is of interest to check how the growth of w correlated with that of ∇A and v.

In Fig.9a the time evolution of 〈|w|2〉, 〈|∇A|2〉,〈|v|2〉 is shown together with the ratio for

the case of turbulence. In Fig.9b, we plot the time evolution of

r(t) ≡
〈|w|〉

〈|∇A|2〉1/2 〈|v|2〉1/2
.
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.

Roughly, the value of r(t) is about 0.5, which means
∂A

∂xi

is neither parallel nor perpendicular

to v for all i, it fluctuates just around the mid-point in the admissible range 0 ≤ r(t) ≤ 1.

Because of frequent resetting, 〈|∇A|2〉 ≈ 3 most of the time and consequently 〈|v|2〉 tracks

〈|w|2〉 fairly well.

In Fig.9c we show time development of maxx |v| and maxx |u|. Also, we compare in

Fig.9d time development of the total energy E(t) with that of virtual velocity, that is, with

Ev(t) =
1

2

〈

|v|2
〉

.

Figure 9c shows that |v| � |u|. It should be noted that v does not grow at all in the case

of totally inviscid case, where the virtual velocity v reduces to initial velocity (constant). It

is the term 2νC : ∇v in (7) which is responsible for the growth of v. In (7), |C| becomes

so large that its viscous term remains huge in spite of small value of ν.

In Fig.10 we show the time development of several different norms of C. It shows how

rapidly |C| increases, particularly in its maximum value. Now we are in a position to

characterize anomalous nature of turbulence by studying C. Taking into account that

C has a dimension of wavenumber we introduce the following definition. By connection

anomaly we mean that for consecutive resetting times [0, T ] there exits p ≥ 1 and a constant

Ap such that

lim inf
ν→0

ν

∫ T

0

(

1

(2π)3

∫

|C|pdx

)2/p

dt > Ap > 0. (14)
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FIG. 12: Time evoultion of the determinant.

Here Ap are positive constants which depend on the threshold ε for resetting and on the

initial condition for velocity. This may be regarded as an analogue of dissipation anomaly

in conventional theory.

In Fig.11 for we show the above non-dimensional integrals characterizing connection

anomaly for each resetting time interval in the intermediate Reynolds number computation.

It should be noted that the integrals evaluated with L1, L2 and L
∞

norms appear to be

bounded from below by positive constants of order 10−1, 10−1 and 102 respectively.

In Fig.12 time development of Det(∇A) is shown, which confirms that resetting is asso-

ciated with rapid decrease in the magnitude of the determinant. At present, its form as a
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function of t is not known.

C. The determinant Det(∇A)

First, we study spatial locations of minxDet(∇A). In principle, resettings can follow

quickly each other in time, but could be brought about by distant events in space. There-

fore, it is important to examine the spatial distribution of Det(∇A). Vortex reconnection

processes in the case of turbulent flows may not be so prominent as compared with the ex-

periment using orthogonally off-set vortex tubes. But it can occur in many places from time

to time. Therefore, it is of interest to track the points of minimum Det(∇A) in time and

see how it changes in time. We note that resettings do not necessarily imply singularities

formation in some physical variables. Rather, the non-invertibility of the diffusive labels can

monitor the phenomenon of vortex reconnection.

In Fig.13, the x, y and z components of a point with minimum Det(∇A) are plotted

against time. For clarity, only a portion of time interval 5 ≤ t ≤ 7 is shown, but its

qualitative property is the same throughout the entire time interval of the computation.

Roughly speaking, the position changes in time just like a piece-wise constant function,

separated by resetting times designated by vertical dashed lines. Although there are some

cases where the positions changes in wildly (e.g. in 5.72 ≤ t ≤ 5.95), it should be noted

that the position remains almost flat between successive resetting times.

In the case of the experiment using orthogonally off-set vortex tubes the position becomes

stable (i.e. flat in the figure) only when the prominent reconnection process is taking place

(see Fig.27 below).

Secondly, we study the probability distribution of Det(∇A). We have seen that the

minimum value of the determinant becomes very small and hits zero under the time evolution

of the Navier-Stokes equations. A natural question is how we can characterize spatial regions

where the determinant is significantly smaller than 1. We examine how the determinant is

distributed in space. In Fig.14 the probability distributions of the determinant are shown

at several different times for the case of ν = 2.5 × 10−3. At early stage t = 1, it is sharply

localized around 1. After that it is spread a little for both smaller and larger determinants,

but still strongly peaked at 1. The probability distribution at t = 4 looks exceptional because

while it has a peak at 1, its tails cover a range [0, 2]. This shows that the determinants can
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be not only small but also large compared with 1. Actually, there is a resetting shortly after

at t = 4.02, the spread wings suggest that the resetting will take place soon. In a similar

plot (not shown) exactly at a resetting time t = 8.08, there are widely spread wings over

the range [0, 2]. The distribution of the determinant is highly localized at 1 for most of the

time, it is broadly distributed only just before resettings.

Thirdly, it is of interest to examine how the regions with relatively small determinant

Det(∇A) look like and to see if they are related with vortex structure or not. In Fig. 15-19

the regions with small values of determinant is shown for the case of ν = 2.5×10−3. by white

symbols together with vorticity iso-surfaces in blue for t = 1, 2, 4, 6 and t = 8.08, which is

just at a resetting. At the early stage (t = 1) when there are vorticity layers, the regions

with small determinants also take the form of layers. It should be noted that they are not

very well correlated with each other spatially. Rather, the regions with small determinants

lie between prominent vorticity layers. At t = 2 there are still vorticity layers, but the

regions with small determinants appear to be better correlated with them than t = 1. At

t = 4 some vorticity layers have rolled up into vorticity tubes. It is these vortex tubes which

show a stronger correlation with the region with small determinants. After t = 6 (after the

peak of the enstrophy) there are lots of vortex tubes and the small determinants are found

surrounding these tubes. At t = 8.08 just at a resetting, the regions with small determinants

collapse with vortex tubes almost perfectly.

We conclude that in the developed stage the regions with small determinants collapse

with or surround the high-vorticity regions. This is consistent with the idea that resetting

characterize reconnection of vortex tubes.

D. Probability distribution of connection

Now we turn our attention to another important quantity in the Eulerian-Lagrangian

framework, that is, the connection matrix C.

First, we show the probability distributions of connection matrix are plotted at several

different times in Fig.20. Most of the time, the distribution has faster-than-exponential tails

at large C, such typical examples are shown for t = 6, 7. At times just before resetting, for

example at t = 4 and 9 it decays more slowly, that is, the PDF shows a power-law behavior

as seen in Fig.21.
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Secondly, we show the joint probability distribution between connection and vorticity.

Recalling that the connection matrix measures curvature of particle paths, we study how

regions with large values of connection are correlated with those with high vorticity or with

high rate-of-strain.

In Fig.22, the joint probability distributions between vorticity and strain are plotted.

They are given here to show that they have a standard property, such as studied in [27], and

to be compared with Fig.23. Here, plotting conventions are that contours of log10 P (ω̃, S̃)

are shown with equidistant level increment =1, where ω̃ = ω/
√

〈|ω|2〉, etc.

In Fig.23, the joint probability distributions between the vorticity and the connection

matrix are plotted. Most of the times, vorticity is well correlated with relatively lower am-

plitudes of connection but it has weaker correlations with higher values of connection. Just

before the resetting (say, at t = 4), vorticity has an extremely strong correlation with lower

values of connection. The tails of connection responsible for resetting is not well correlated

vorticity. The joint probability distributions between rate-of-strain and connection have a

similar trend as above is seen (figures omitted).

V. RECONNECTION EXPERIMENTS AT HIGH REYNOLDS NUMBER

In a previous report, a flow starting from two orthogonally offset vortex tubes was in-

vestigated in [5]. That initial condition of two orthogonally placed vortex tubes, which was

originally introduced to study vortex reconnection in detail with conventional methods of

analysis, see [28]. In that work we observed that frequent resetting takes place during the

reconnection phase and that it ceases when two vortex tubes finish their reconnection pro-

cess. We recall that the identification of the reconnection based on visual inspection agrees

with systematic analysis based on the Euler-Lagrange formulation.

Here we examine a flow starting from the same initial condition but with larger Reynolds

number, Rλ ≈ 100 ( in the developed stage ) [30]. Our objective is, first of all, to see

whether small scale excitation persists after the prominent reconnection phase. Apparently,

this flow has not been examined at high Reynolds numbers previously. More specifically,

we are interested in examining spatial locations of minimum Det(∇A), and in checking

connection anomaly holds true or not. The spatial resolutions for this initial condition are

N = 256 and N = 512, see Table I.
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In Fig.24 we show the time evolution of norms of displacement E`(t) for N = 256, ν =

4× 10−3, with two different ε = 0.01, 0.001. As before, we observe frequent resetting during

the reconnection phase. More importantly, the frequent resetting apparently takes place

independently of ε.

In Fig.25, spatial location of min Det(∇A) together with iso-surfaces of high vorticity,

vortex lines. The symbol denotes a location with minimum det(∇A), which is located

between the two interacting tubes. The energy spectrum E(k) at t = 6 shows a range

E(k) ∝ k−5/3 in the N = 512 run (figure omitted).

We compare in Fig.26 norms of displacement E`(t) for two different Reynolds numbers

with the same ε. For larger Rλ, the resetting occurs more frequently and the amplitude of

displacement becomes smaller. It should be noted that in the 5123 run the frequent resetting

continues from t = 4 and onward. Recall that t = 4 is the time when vortex resettings was

observed to begin in the 2563 run. It is this time interval with frequent resettings that

we find an inertial subrange compatible with Kolmogorov similarity. The non-dimensional

integral associated with connection anomaly was also evaluated in this case in the sense that

(14) holds (figure omitted).

In Fig.27, we show spatial locations of min Det(∇A). In the time interval 3.5 ≤ t ≤

4.5 the position shows a plateau at x = π, which is the center of the domain at which

reconnection takes place. A similar behavior is also observed in 8.5 ≤ t ≤ 9.5, which suggests

that we have another reconnection in that period (confirmed by vorticity iso-surface plots).

This shows that the Eulerian-Lagrangian formalism offers an objective method for vortex

reconnection.

VI. SUMMARY AND OUTLOOK

We have presented an Eulerian-Lagrangian analysis of turbulence using two different

kinds of initial conditions; a decaying isotropic turbulence developed from a random initial

conditions and orthogonally offset vortex tubes.

Quantities that appear in the Eulerian-Lagrangian formalism are analyzed numerically

in some detail, including evolution of displacement, resetting processes, spectra of connec-

tion and virtual velocity. The connection matrix plays a key role in monitoring vortex

reconnection in an objective fashion and in characterizing the singular perturbation nature,
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“connection anomaly”, of the vanishing viscosity limit of the Navier-Stokes equations. On

the other hand, it is revealed by a series of visualizations that regions with small values

of the determinant Det(∇A) are spatially correlated with vortex structures in turbulence.

This indicates that resettings characterize small-scale excitations associated with vortex

reconnection.

As we stressed in Section IV.C, resettings do not imply singularities in physical variables.

In the case of orthogonally offset vortex tubes, we have confirmed that we have frequent

resettings during they undergo reconnection. In the case of turbulence, however, the definion

of vortex reconnection becomes ambiguous. So, care should be taken in the interpretation

of resettings. What we have shown is that also in this case resettings do occur and that the

small determinants are found to be near the vortex structures.

The present work shows that it is useful to characterize fully-developed turbulence on

the basis of the Eulerian-Lagrangian formalism. It would be of interest to look for exact

solutions of the Navier-Stokes equations which show resettings. It is also of interest to

apply the method to a flow whose topological complexity increases in time. For example,

studying the relationship between the number of stagnation points and that of resetting will

be of interest. Numerical simulations at higher spatial resolutions at 10243 are also worth

pursuing.
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FIG. 13: Spatiail location of minDet(∇A) for the case of ν = 2.5× 10−3. The vertical lines denote

each resetting.

ν N ∆t

turbulence 1 4 × 10−3 256 2 × 10−3

turbulence 2 2.5 × 10−3 256 2 × 10−3

turbulence 3 1.5 × 10−3 512 2 × 10−3

vortex 1 4. × 10−3 256 2.5 × 10−3

vortex 2 1.5 × 10−3 512 2 × 10−3

TABLE I: Numerical parameters
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FIG. 15: White symbols are placed in regions with det(∇A) < 1.03minx det(∇A) ≈ 0.980 at t = 1.

There are 76556 such points out of 2563. Iso-surfaces of vorticity are shown in blue 4
〈

|ω|2
〉

= 15.4.
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FIG. 16: White symbols are placed in regions with det(∇A) < 1.3minx det(∇A) ≈ 0.946 at t = 2.

There are 72696 such points out of 2563. Iso-surfaces of vorticity are shown in blue 4
〈

|ω|2
〉

= 36.25.
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FIG. 17: White symbols are placed in regions with det(∇A) < 11minx det(∇A) ≈ 0.954 at t = 4.

There are 93780 out of 2563. Iso-surfaces of vorticity are shown in blue
〈

|ω|2
〉

= 91.98.
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FIG. 18: White symbols are placed in regions with det(∇A) < 1.045minx det(∇A) ≈ 0.998 at

t = 6. There are 62838 out of 2563. Iso-surfaces of vorticity are shown in blue 10
〈

|ω|2
〉

= 243.0.
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FIG. 19: White symbols are placed in regions with det(∇A) < 110minx det(∇A) ≈ 7.62 × 10−3

at t = 8.08. There are 22943 such points out of 2563. Iso-surfaces of vorticity are shown in blue

|ω|2 = 250.
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