1 Schauder fixed point

Warning: Brouwer’s Thm is false in infinite dimensions. Example: $\ell_2(\mathbb{N})$, with unit closed ball B. Then

$$f : B \to \partial B, \quad f(x) = (\|x\|^2 - 1, x_1, x_2, \ldots)$$

is continuous, and if it had a fixed point, the fixed point equations would be $x_1 = 0, x_2 = x_1, \ldots, x_{n+1} = x_n$, so the fixed point would be 0, but it had to have norm equal to 1.

Definition 1. A continuous function $F : S \subset X \to X$, where X is a Banach space, is compact if it maps bounded closed sets to relatively compact sets (sets whose closure is compact).

Theorem 1. Let $f : S \to X$ where S is closed and bounded in the Banach space X. Then f is compact iff it is a uniform limit of continuous finite range maps.

Proof. If f is compact then $K = \overline{f(S)}$ is compact. Given $\epsilon > 0$ there exist $x_1, \ldots, x_{j(\epsilon)} \in K$ such that the balls B_i of centers x_i and radii ϵ cover K. Let ψ_i be a partition of unity for K subordinated to the cover, i.e $\psi_i \geq 0$ is supported in B_i and $\sum_i \psi_i = 1$ on K. Let

$$f_\epsilon(x) = \sum_{i=1}^{j(\epsilon)} \psi_i(f(x))x_i$$

Then $f_\epsilon(x)$ belongs to the convex hull of x_i and

$$\|f(x) - f_\epsilon(x)\| \leq \sum_{i=1}^{j(\epsilon)} \psi_i(f(x))\|f(x) - x_i\| \leq \epsilon$$

The argument in the other direction is an exercise.
Theorem 2. (Schauder fixed point). Let \(S \) be a closed, convex, bounded subset of a Banach space \(X \), and let \(f : S \to S \) be a compact map. Then \(f \) has a fixed point.

Proof. Consider \(f_\epsilon(x) \) defined above, and let \(X_\epsilon \) be the finite dimensional linear spaced spanned by \(x_i, i = 1, \ldots, j(\epsilon) \). Since \(S \) is convex and \(f_\epsilon(S) \) is contained in the convex hull of \(f(S) \) we have \(f_\epsilon : S \to S \cap X_\epsilon \). Therefore \(f_\epsilon \) maps the closed bounded set \(S \cap X_\epsilon \) to itself. This is a subset of \(X_\epsilon \) so we may apply the finite dimensional Brouwer fixed point theorem, and find \(x_\epsilon \in S \cap X_\epsilon \) such that \(x_\epsilon = f_\epsilon(x_\epsilon) \). Now \(f_\epsilon(x_\epsilon) \) has a convergent subsequence by the relative compactness of \(f(S) \). Passing to the limit and using \(x_\epsilon - f(x_\epsilon) = f_\epsilon(x_\epsilon) - f(x_\epsilon) \), we finish the proof.

2 Leray-Schauder Degree

If \(X \) is a Banach space and \(\phi = I - K \) where \(K : \overline{\Omega} \to X \) is a compact transformation, then we the image under \(\phi(S) \) of a closed bounded set is closed. Indeed, if \(y_n = \phi(x_n) \) with \(x_n \in S \) converges to \(y \in X \) then, because \(S \) is bounded and \(K \) is compact we may extract a subsequence, relabeled \(x_n \), such that \(Kx_n \to z \), and then \(x_n = \phi(x_n) + Kx_n \) converges to \(x = y + Kz \). By continuity, \(y = x - Kz \).

If \(y_0 \notin \phi(\partial\Omega) \), then it is at positive distance \(\delta \) from \(\partial\Omega \). We take an \(\epsilon \)-approximation \(K_\epsilon \) of \(K \) with range in \(X_\epsilon \), a finite dimensional subspace of \(X \) such that \(y_0 \in X_\epsilon \). If \(\epsilon \leq \frac{\delta}{2} \) then \(y_0 \notin \phi_\epsilon(\partial\Omega) \) where \(\phi_\epsilon = I - K_\epsilon \). We consider

\[
\phi_\epsilon|_{X_\epsilon \cap \overline{\Omega}} : X_\epsilon \cap \overline{\Omega} \to X_\epsilon
\]

Definition 2.

\[
\deg(\phi, \Omega, y_0) = \deg(\phi_\epsilon|_{X_\epsilon \cap \overline{\Omega}}, \Omega \cap X_\epsilon, y_0)
\]

This is well defined by the last proposition in the chapter on finite dimensional degree. That means that we may change the finite dimensional space \(X_\epsilon \), and we may also change the finite range approximation \(K_\epsilon \). This follows by first placing both approximation ranges in a common (larger) finite dimensional space, and the using homotopy.

We note that if \(y_0 \notin \phi(\overline{\Omega}) \) then \(\deg(\phi, \Omega, y_0) = 0 \). All results in the chapter on finite dimensional degree are valid. In particular \(\deg(\phi, \Omega, y_0) \)
depends only on the homotopy class of \(\phi : \partial \Omega \to X \setminus \{ y_0 \} \), where the homotopy is of the form \(\phi_t = I - K_t \), with \(K_t \) continuous in \(t \in [0, 1] \) and compact for each \(t \). In particular, the image of an open set under a one-to-one map \(\phi = I - K \) is open.

3 First elementary applications

First, an application of Schauder’s fixed point theorem. Let \(K(s, t) \) be a continuous function and let

\[
Ku(s) = \int_0^1 K(s, t)f(t, u(t))dt
\]

where \(f : [0, 1] \times \mathbb{R} \to \mathbb{R} \) is continuous and bounded. Taking \(X = C([0, 1]) \) we have that \(K \) is a compact map on any ball \(\|u\| \leq R \). By the Schauder fixed point, there exists \(u \) continuous, such that

\[
u(s) = Ku(s).
\]

Indeed we want to find \(R \) such that \(K \) maps the ball of radius \(R \) into itself. Now, let \(M = \sup |f| \) and \(L = \sup |K| \). The range of \(K \) obeys \(\|Ku\| \leq ML \), so that if we take \(R \geq ML \) we are done.

We recall from functional analysis that if \(K \) is a linear compact operator then \(I - K \) is Fredholm of index zero. That is, range is closed, of finite codimension, kernel is finite dimensional, and

\[
dim \ker(I - K) = \text{codim} \text{Range} \ (I - K).
\]

We recall here also \(P(x, D) \) linear elliptic operators in Sobolev spaces and Hölder spaces, and embedding theorems.

Now an application involving elliptic operators. Let \(P = P(x, \partial) \) be an elliptic operator of order \(m \)

\[
P(x, D)u = \sum_{|\alpha| \leq m} a_\alpha(x) \partial^\alpha u
\]

with principal symbol

\[
p_m(x, \xi) = \sum_{|\alpha| = m} a_\alpha \xi^\alpha
\]
that does not vanish for \(x \in \overline{\Omega} \) and \(\xi \in \mathbb{R}^n \setminus \{0\} \). We consider boundary conditions on \(\partial \Omega \) that are good: \(Bu = 0 \) on \(\partial \Omega \) imply that the \(P : X \to Y \) is a Fredholm operator (kernel finite dimensional, closed range with finite dimensional codimension. In many cases the index of \(P \) is zero, i.e. the dimension of the kernel equals the dimension of the coimage. Examples are the Laplacian with Neumann or Dirichlet BC.

Now we consider a sublinear function \(g(x, \partial^\alpha u) \) with \(|\alpha| \leq m - 1 \), satisfying

\[
|g(x, \partial^\alpha u)| \leq C(1 + \sum_{|\alpha|\leq 1} |\partial^\alpha u|)^r
\]

with \(r < 1 \), uniformly for \(x \in \overline{\Omega} \) and arbitrary entries \(\partial^\alpha u \in \mathbb{R}^M \) where \(M \) is the number of such things. We consider the equation

\[
P(x, D)u = g(x, \partial^\alpha u)
\]

with boundary conditions \(Bu = 0 \). We assume that the index of \(P \) is zero and \(P \) is injective. Then there exists a \(C^\infty(\overline{\Omega}) \) solution. (Assuming the boundary, and all coefficients are smooth all the way to the boundary).

The idea of the proof is to take \(I - P^{-1}g(x, \partial^\alpha u) \) and apply degree theory. We may choose the space \(X = C^{m-1}(\overline{\Omega}) \cap \{ Bu = 0 \} \).

The steps of the proof are instructive. First we establish a priori estimates. For example, we can look at \(W^{m,p}(\Omega) \), \(p > n \), and assuming a solution, obtain uniform bounds

\[
\|u\|_{m,p} \leq C_{m,p}
\]

with constant independent of anything. This comes from \(r < 1 \) and ellipticity. We could have had a fully nonlinear equation here (right hand side depending on all \(m \) derivatives). Then we show that this means that solutions have to belong to a fixed ball of \(X \). This uses Sobolev embedding and \(p > n \) and the fact that the right hand side sees \(m - 1 \) derivatives only. Then we take a strictly larger ball \(B \subset X \). There are no solution on the boundary of this ball. Also, by embeddings, \(K(u) = P^{-1}g(x, \partial^\alpha u) \) is compact (because its range is bounded in the Hölder space \(C^{m-1,\gamma}(\Omega) \), with \(\gamma = 1 - \frac{n}{p} \). By homotopy to \(I \) vis \(I - tK \), the degree \(\deg(I - K, B, 0) = 1 \), and therefore there is a solution. Smoothness follows by bootstrapping.

This was sublinear, but set the stage. Here is a semilinear example that is not trivial: the existence of steady solutions of Navier-Stokes equations with arbitrary forcing in both 2 and 3 dimensions.
The equation
\[Au + B(u, u) = f \]
where \(A \) is the Stokes operator and \(B(u, v) = \mathbb{P}(u \cdot \nabla v) \) has solutions \(u \in V \) for any \(f \in L^2(\Omega)^d \) with \(\mathbb{P}f = f \).

Here \(\Omega \) is an open bounded set with smooth boundary, \(d = 2, 3 \) and \(\mathbb{P} \) is the projector on divergence-free functions in \(L^2 \). We recall notations: \(V \) is the closure of the space of divergence-free \(C^\infty_0(\Omega) \) vectors in the topology of \(H^1(\Omega)^d \), \(d = 2, 3 \). The Stokes operator is \(A = -\mathbb{P}\Delta \) with domain \(\mathcal{D}(A) = V \cap H^2(\Omega)^d \).

The function
\[K(u) = A^{-1}B(u, u) : V \to V \]
is compact. This follows because \(A^{-\frac{3}{2}}B(u, u) \) is continuous
\[\|A^{-\frac{3}{2}}B(u, v)\|_V \leq C\|u\|_V\|v\|_V \]
(see [2]). For any \(t \in [0, 1] \), the equation
\[u + tK(u) = tA^{-1}f \]
has no solutions on the boundary of the ball \(B_R = \{ u \mid \|u\|_V < R \} \) for \(R > \|A^{-1}f\|_V \). Indeed, any solution in \(V \) obeys
\[\|u\|^2_V = t\langle A^{-1}f, u \rangle_V. \]
Therefore, \(\phi(u) = u + K(u) - A^{-1}f \) obeys \(\text{deg}(\phi, B_R, 0) = 1 \) and the equation has solution in \(B_R \).

Finally, for a quasilinear example: Damped and driven Euler equations in 2D.

Consider a bounded domain \(\Omega \subset \mathbb{R}^2 \). Consider a time independent force \(F \in H^1(\Omega) \) and a positive constant \(\gamma > 0 \). Then there exist \(H^1(\Omega) \) solutions of the damped Euler equations
\[\gamma u + u \cdot \nabla u + \nabla p = F, \quad \text{div} \, u = 0 \]
in \(\Omega \) with \(u \cdot n = 0 \) on \(\partial\Omega \).

The proof starts by adding artificial viscosity, thus producing a semilinear equation. We take the vorticity-stream formulation of the equation, \(\omega = \Delta \psi \), \(u = \nabla^\perp \psi \). The vorticity equation is
\[\gamma \omega + u \cdot \nabla \omega = f \]
with $f = \nabla^\perp \cdot F$. This we want to solve in L^2. We take first $\nu > 0$ and seek solutions of

\[- \nu \Delta \omega + \gamma \omega + u \cdot \nabla \omega = f\]

with the artificial boundary condition $\omega = 0$ at $\partial \Omega$. We should think of this as being

\[\nu \Delta^2 \psi + \gamma (-\Delta \psi) + J(\psi, \Delta \psi) = f\]

where $J(f, g) = \partial_1 f \partial_2 g - \partial_2 f \partial_1 g$ is the Poisson bracket. The boundary conditions are $\psi = \Delta \psi = 0$ at $\partial \Omega$. (These are “good”).

We start by showing there exist solutions at fixed ν. Then we pass to the limit as $\nu \to 0$. At fixed ν.

References
