Homework $7=$ Higher order elliptic regularity

Functional Analysis

We say that the operator $P=P(x, \partial)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \partial^{\alpha}$ is (uniformly) elliptic in $\Omega \subset \mathbb{R}^{n}$ if there exists $\gamma>0$ such that

$$
\left|\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}\right| \geq \gamma|\xi|^{m}
$$

holds for all $\xi \in \mathbb{R}^{n}$ and all $x \in \Omega$. Here $m \geq 2$ is an integer. You are going to prove interior regularity for solutions of $P u=f$. We use the notation $\|u\|_{s}$ for the norm in H^{s}. We use Sobolev spaces $H_{0}^{s}(\Omega)$. We recall that these can be defined for all s as the completion of $\mathcal{D}(\Omega)$ in the $\|\cdot\|_{s}$ norm. The norm is defined via Fourier transform.

1. Consider the constant coefficient case $P=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha}$. Assume the operator is elliptic. Prove that there exists a constant C_{s} (depending on s and γ) such that

$$
\|u\|_{s} \leq C_{s}\left(\|u\|_{0}+\|P u\|_{s-m}\right)
$$

holds for any $s \geq m$ and any $u \in H^{s}\left(\mathbb{R}^{n}\right)$.
Hint: Use Fourier transform and ellipticity.
2. Assume that the coefficients a_{α} are C^{∞} and P is elliptic in Ω. Let $x_{0} \in \Omega$ and let $s \geq m$. There exists $\delta>0$ and a constant C_{s} such that if $u \in H_{0}^{s}\left(B\left(x_{0}, \delta\right)\right)$ then

$$
\|u\|_{s} \leq C_{s}\left(\|u\|_{s-1}+\|P u\|_{s-m}\right) .
$$

Hint: Use the previous result and the fact $\left\|\left(P(x, \partial)-P\left(x_{0}, \partial\right)\right) u\right\|_{s-m}$ can be bound by $\epsilon\|u\|_{s}+C\|u\|_{s-1}$.
3. Let $s \geq m$. There exists a constant C_{s} such that

$$
\|u\|_{s} \leq C_{s}\left(\|u\|_{s-1}+\|P u\|_{s-m}\right)
$$

holds for all $u \in H_{0}^{s}(\Omega)$.
Hint: Partition of unity $u=\sum \phi_{j} u$ to achieve small supports, and commutators

$$
\left[P, \phi_{j}\right] u=P\left(\phi_{j} u\right)-\phi_{j} P u \in H_{s-m}
$$

controlled by $\|u\|_{s-1}$.
4. Let $s \geq m, t \leq s-1$. There exists a constant C_{t} such that

$$
\|u\|_{s} \leq C_{t}\left(\|u\|_{t}+\|P u\|_{s-m}\right)
$$

holds for all $u \in H_{0}^{s}(\Omega)$.
Hint:

$$
\|u\|_{s-1} \leq \epsilon\|u\|_{s}+C_{\epsilon}\|u\|_{t}
$$

5. Let Ω be open, P elliptic of order m with C^{∞} coefficients and $s \geq m$. If $u \in H_{l o c}^{s}(\Omega)$ and $P u \in H_{l o c}^{s-m+1}(\Omega)$ then $u \in H_{l o c}^{s+1}(\Omega)$.

Hint: Let $\psi \in \mathcal{D}(\Omega)$. Then $\psi u \in H_{0}^{s}(\Omega)$ and $\psi P u \in H_{0}^{s-m+1}(\Omega)$. Because also the commutator $P(\psi u)-\psi P(u) \in H_{0}^{s-m+1}(\Omega)$ it follows that $P(\psi u) \in H_{0}^{s-m+1}(\Omega)$. Take finite difference quotients and show, using commutators that

$$
\left\|\frac{1}{h} \delta_{h}(\psi u)\right\|_{s} \leq C\left[\|P(\psi u)\|_{s-m+1}+\|\psi u\|_{s}\right]
$$

6. Let P be an uniformly elliptic operator of order m with C^{∞} coefficients in the open set $\Omega \subset \mathbb{R}^{n}$. Let $f \in H_{l o c}^{t}(\Omega)$, with $t \geq 0$. If $u \in L_{l o c}^{2}(\Omega)$ solves $P u=f$ in $\mathcal{D}^{\prime}(\Omega)$ then $u \in H_{l o c}^{t+m}(\Omega)$.
