Homework 7 = Higher order elliptic regularity

Functional Analysis

We say that the operator $P = P(x, \partial) = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial^{\alpha}$ is (uniformly) elliptic in $\Omega \subset \mathbb{R}^n$ if there exists $\gamma > 0$ such that

$$\left|\sum_{|\alpha|=m} a_{\alpha}(x)\xi^{\alpha}\right| \ge \gamma |\xi|^m$$

holds for all $\xi \in \mathbb{R}^n$ and all $x \in \Omega$. Here $m \geq 2$ is an integer. You are going to prove interior regularity for solutions of Pu = f. We use the notation $||u||_s$ for the norm in H^s . We use Sobolev spaces $H^s_0(\Omega)$. We recall that these can be defined for all s as the completion of $\mathcal{D}(\Omega)$ in the $||\cdot||_s$ norm. The norm is defined via Fourier transform.

1. Consider the constant coefficient case $P = \sum_{|\alpha| \le m} a_{\alpha} \partial^{\alpha}$. Assume the operator is elliptic. Prove that there exists a constant C_s (depending on s and γ) such that

$$||u||_{s} \le C_{s} (||u||_{0} + ||Pu||_{s-m})$$

holds for any $s \geq m$ and any $u \in H^s(\mathbb{R}^n)$.

Hint: Use Fourier transform and ellipticity.

2. Assume that the coefficients a_{α} are C^{∞} and P is elliptic in Ω . Let $x_0 \in \Omega$ and let $s \geq m$. There exists $\delta > 0$ and a constant C_s such that if $u \in H_0^s(B(x_0, \delta))$ then

$$||u||_{s} \leq C_{s} \left(||u||_{s-1} + ||Pu||_{s-m} \right).$$

Hint: Use the previous result and the fact $||(P(x,\partial) - P(x_0,\partial))u||_{s-m}$ can be bound by $\epsilon ||u||_s + C ||u||_{s-1}$.

3. Let $s \ge m$. There exists a constant C_s such that

$$||u||_{s} \leq C_{s} \left(||u||_{s-1} + ||Pu||_{s-m} \right)$$

holds for all $u \in H_0^s(\Omega)$.

Hint: Partition of unity $u = \sum \phi_j u$ to achieve small supports, and commutators

$$[P,\phi_j]u = P(\phi_j u) - \phi_j P u \in H_{s-m}$$

controlled by $||u||_{s-1}$.

4. Let $s \ge m, t \le s - 1$. There exists a constant C_t such that

$$||u||_{s} \le C_{t} \left(||u||_{t} + ||Pu||_{s-m} \right)$$

holds for all $u \in H_0^s(\Omega)$.

Hint:

$$||u||_{s-1} \le \epsilon ||u||_s + C_{\epsilon} ||u||_t$$

5. Let Ω be open, P elliptic of order m with C^{∞} coefficients and $s \geq m$. If

u $\in H^s_{loc}(\Omega)$ and $Pu \in H^{s-m+1}_{loc}(\Omega)$ then $u \in H^{s+1}_{loc}(\Omega)$. **Hint:** Let $\psi \in \mathcal{D}(\Omega)$. Then $\psi u \in H^s_0(\Omega)$ and $\psi Pu \in H^{s-m+1}_0(\Omega)$. Because also the commutator $P(\psi u) - \psi P(u) \in H^{s-m+1}_0(\Omega)$ it follows that $P(\psi u) \in H_0^{s-m+1}(\Omega)$. Take finite difference quotients and show, using commutators that

$$\|\frac{1}{h}\delta_h(\psi u)\|_s \le C \left[\|P(\psi u)\|_{s-m+1} + \|\psi u\|_s\right]$$

6. Let P be an uniformly elliptic operator of order m with C^{∞} coefficients in the open set $\Omega \subset \mathbb{R}^n$. Let $f \in H^t_{loc}(\Omega)$, with $t \ge 0$. If $u \in L^2_{loc}(\Omega)$ solves Pu = f in $\mathcal{D}'(\Omega)$ then $u \in H^{t+m}_{loc}(\Omega)$.