Homework $6=$ Mazur separation thm script and applications

Functional Analysis

We recall the real Hahn-Banach theorem: If X a real vector space and p : $X \rightarrow \mathbb{R}_{+}$satisfies

$$
\begin{aligned}
& \text { (i) } \quad p(x+y) \leq p(x)+p(y) \quad \forall x, y \in X, \\
& \text { (ii) } p(t x)=\operatorname{tp}(x) \quad \forall t>0, x \in X
\end{aligned}
$$

then any real linear map $L: F \rightarrow \mathbb{R}$, defined on a linear subspace F of X and satisfying

$$
L(f) \leq p(f), \quad \forall f \in F
$$

has a linear extension $\widetilde{L}: X \rightarrow \mathbb{R}$ satisfying

$$
\widetilde{L}(x) \leq p(x) \quad \forall x \in X
$$

1. The Mazur separation theorem is the following: Let X be a complex locally convex space. Let C be a closed convex subset $C \subset X$, and let $x_{0} \notin C$. Then there exists a continuous linear functional $F: X \rightarrow \mathbb{C}$ such that

$$
\sup _{x \in C} \operatorname{Re}(F(x))<\operatorname{Re}\left(F\left(x_{0}\right)\right) .
$$

You are going to prove this by proving the following statements.
(a) WLOG $0 \in C$.
(b) Let V be an absorbing, balanced, convex neighborhood of 0 in X such that $V+x_{0} \cap C=\emptyset$. Let $A=C+\frac{V}{2}$ and let p_{A} be the Minkowski functional

$$
p_{A}(x)=\inf \{t>0 \mid x \in t A\}
$$

associated to A. Prove that p_{A} exists, and satisfies the conditions of the real Hahn-Banach thm.
(c) Show that $p\left(x_{0}+z\right) \geq 1$ for all $z \in \frac{V}{2}$. (Use the fact that A is starshaped i.e. $t A \subset A$ for any $t \in[0,1]$, and consequently that $p_{A}^{-1}([0,1)) \subset A$.)
(d) Let \widetilde{L} be a real linear extension to X (which obviously is a real vector space as well) of the real linear map

$$
L: \mathbb{R} x_{0} \rightarrow \mathbb{R}, \quad L\left(t x_{0}\right)=t p_{A}\left(x_{0}\right)
$$

which obeys

$$
\widetilde{L}(x) \leq p_{A}(x) \quad \forall x \in X
$$

Define $F: X \rightarrow \mathbb{C}$ by

$$
F(x)=\widetilde{L}(x)-i \widetilde{L}(i x)
$$

Show that F is (complex) linear, that

$$
\operatorname{Re}(F(x)) \leq p_{A}(x) \quad \forall x \in X,
$$

and

$$
\sup _{x \in C} \operatorname{Re}(F(x)) \leq 1
$$

(e) Prove that F is continuous. Use, for instance, $K=c o\left(\cup_{|z| \leq 1} z C\right)$, the convex hull of $\cup_{|z| \leq 1} z C$ and the associated Minkowski functional p_{B} of the convex, balanced, absorbing open set

$$
B=K+\frac{V}{2}
$$

(f) Prove that $\operatorname{Re}\left(F\left(x_{0}\right)\right)>1$.
2. Let $C \subset X, X$ locally convex space. Assume that C is convex and closed. Then it is weakly closed (i.e. it is closed in the locally convex topology on X generated by X^{*}, the linear continuous functionals on X.)
3. Let X be a Banach space and let x_{n} be a sequence which converges weakly to x. Prove that there exists a squence of convex combinations of the x_{n}, $y_{n}=\sum_{j=1}^{n} \alpha_{j}^{(n)} x_{j}, \sum_{j=1}^{n} \alpha_{j}^{(n)}=1, \alpha_{j}^{(n)} \geq 0$ that converges in norm to x.

