Homework $5=$ unbounded operators script

Functional Analysis

Definitions Let $T: \mathcal{D}(T) \subset H \rightarrow H$ be a linear operator defined on a dense linear subset $\mathcal{D}(T)$ of a Hilbert space H. We say that T is closed if the graph $G(T)=\{(x, y) \mid x \in \mathcal{D}(T), y=T x\}$ is closed in $H \times H$. We say that $S: \mathcal{D}(S) \rightarrow H$ is an extension of T and we write $T \subset S$ if $G(T) \subset G(S)$. We say that T is closeable if $\exists S, S$ closed such that $T \subset S$. If T is closeable we define \bar{T} to be the smallest closed extension of T. We define the domain $\mathcal{D}\left(T^{*}\right)$ of the adjoint T^{*} of a densely defined operator T to be the set of $y \in H$ such that the map

$$
z \in \mathcal{D}(T) \mapsto\langle T z, y\rangle
$$

is continuous. By Riesz representation (and uniqueness of the extension of linear continuous maps from dense subspaces) $T^{*} y$ is defined by the relation

$$
\langle T z, y\rangle=\left\langle z, T^{*} y\right\rangle, \quad \forall z \in \mathcal{D}(T) .
$$

1. (i) The adjoint T^{*} of the densely defined $T: \mathcal{D}(T) \rightarrow H$ is closed.
(ii) T is closeable if and only if T^{*} is densely defined, in which case $\bar{T}=T^{* *}$
Hint. Let $H \times H$ be the product Hilbert space with natural structure, let $G(T)$ denote the graph of an operator. Let \mathcal{U} be the unitary transformation $\mathcal{U}: H \times H \rightarrow H \times H$ given by $\mathcal{U}(x, y)=(-y, x)$. Prove that $\mathcal{U}\left(G(T)^{\perp}\right)=$ $G\left(T^{*}\right)$ holds for any densely defined operator T.

Definition We say that the densely defined operator T is symmetric if $T \subset$ T^{*}.
2. (i) T symmetric implies T closeable and $T \subset T^{* *} \subset T^{*}$.
(ii) If T is closed and symmetric then $T=T^{* *}$.

Definition We say that the symmetric operator T is essentially selfadjoint if \bar{T} is selfadjoint. If T is closed, then a linear space D is called a core of T if the closure of the restriction of T to D is T :

$$
\overline{T_{\mid D}}=T
$$

3. If T is essentially selfadjoint then it has a unique selfadjoint extension.
4. Let T be symmetric. The following are equivalent (TFAE):
(i) T is selfadjoint.
(ii) T is closed and both $\operatorname{ker}\left(T^{*} \pm i \mathbb{I}\right)=\{0\}$. (Both refers to the two signs).
(iii) $\operatorname{Ran}(T \pm i \mathbb{I})=H$ (both signs).

Hints. For $(i i i) \Rightarrow(i)$: for given ϕ, solve $(T-i) u=\left(T^{*}-i\right) \phi$, and use that $T+i$ is onto to deduce $T^{*}-i$ is one to one. (We will ommit \mathbb{I} from now on, so $T+i$ means $T+i \mathbb{I}$.)
5. Let T be symmetric. TFAE:
(i) T is essentially selfadjoint.
(ii) $\operatorname{ker}\left(T^{*} \pm i \mathbb{I}\right)=\{0\}$. (Both signs).
(iii) $\overline{\operatorname{Ran}(T \pm i \mathbb{I})}=H$ (both signs).
6. Let $T=-i \frac{d}{d x}$ and let $\mathcal{D}(T)=\{\phi \mid \phi \in A C([0,1]), \phi(0)=\phi(1)\}$. $(A C([0,1])$ is the space of absolutely continuous functions on $[0,1]$. We take $H=L^{2}([0,1])$. Compute the adjoint T^{*} and all selfadjoint extensions of T.
7. Let T be selfadjoint in H and let B be symmetric, defined on the same domain $\mathcal{D}(T)$ as T and obey the bound

$$
\|B x\| \leq a\|T x\|+b\|x\|
$$

with $0 \leq a<1$ and $0 \leq b<\infty$. Then $T+B$ is selfadjoint.
Hint: Take M large enough so that $a+\frac{b}{M}<1$ and use the fact that $T+i M$ has continuous inverse, and $\|(T+i M) x\|^{2}=\|T x\|^{2}+M^{2}\|x\|^{2}$ so that if $y=(T+i M) x$ then $\|T x\| \leq\|y\|$ and $\|x\| \leq M^{-1}\|y\|$.
8. Let $T=-\Delta$ be the Laplacian in \mathbb{R}^{n} with $\mathcal{D}(T)=H^{2}\left(\mathbb{R}^{n}\right)$.
(i) Prove that $-\mathcal{D}$ is selfadjoint in $H=L^{2}\left(\mathbb{R}^{n}\right)$.
(ii) Let V be a real function $V \in L^{2}\left(\mathbb{R}^{n}\right)+L^{\infty}\left(\mathbb{R}^{n}\right)$. (That means V is a sum of a bounded and a square integrable function.) Let B be the multiplication operator $B f=V f$. Prove that $-\Delta+V$ is selfadjoint. (We write with obvious abuse of notation $-\Delta+V$ for $T+B$.)

