
Homework 5 = unbounded operators script

Functional Analysis

Definitions Let T : D(T ) ⊂ H → H be a linear operator defined on a dense
linear subset D(T ) of a Hilbert space H. We say that T is closed if the
graph G(T ) = {(x, y) | x ∈ D(T ), y = Tx} is closed in H ×H. We say that
S : D(S) → H is an extension of T and we write T ⊂ S if G(T ) ⊂ G(S).
We say that T is closeable if ∃ S, S closed such that T ⊂ S. If T is closeable
we define T to be the smallest closed extension of T . We define the domain
D(T ∗) of the adjoint T ∗ of a densely defined operator T to be the set of
y ∈ H such that the map

z ∈ D(T ) 7→ 〈Tz, y〉

is continuous. By Riesz representation (and uniqueness of the extension of
linear continuous maps from dense subspaces) T ∗y is defined by the relation

〈Tz, y〉 = 〈z, T ∗y〉, ∀ z ∈ D(T ).

1. (i) The adjoint T ∗ of the densely defined T : D(T )→ H is closed.
(ii) T is closeable if and only if T ∗ is densely defined, in which case

T = T ∗∗

Hint. Let H × H be the product Hilbert space with natural structure, let
G(T ) denote the graph of an operator. Let U be the unitary transformation
U : H × H → H × H given by U(x, y) = (−y, x). Prove that U(G(T )⊥) =
G(T ∗) holds for any densely defined operator T .

Definition We say that the densely defined operator T is symmetric if T ⊂
T ∗.

2. (i) T symmetric implies T closeable and T ⊂ T ∗∗ ⊂ T ∗.
(ii) If T is closed and symmetric then T = T ∗∗.
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Definition We say that the symmetric operator T is essentially selfadjoint
if T is selfadjoint. If T is closed, then a linear space D is called a core of T
if the closure of the restriction of T to D is T :

T|D = T

3. If T is essentially selfadjoint then it has a unique selfadjoint extension.

4. Let T be symmetric. The following are equivalent (TFAE):
(i) T is selfadjoint.
(ii) T is closed and both ker(T ∗ ± iI) = {0}. (Both refers to the two

signs).
(iii) Ran(T ± iI) = H (both signs).

Hints. For (iii)⇒ (i): for given φ, solve (T − i)u = (T ∗− i)φ, and use that
T + i is onto to deduce T ∗ − i is one to one. (We will ommit I from now on,
so T + i means T + iI.)

5. Let T be symmetric. TFAE:
(i) T is essentially selfadjoint.
(ii) ker(T ∗ ± iI) = {0}. (Both signs).
(iii) Ran(T ± iI) = H (both signs).

6. Let T = −i d
dx

and let D(T ) = {φ | φ ∈ AC([0, 1]), φ(0) = φ(1)}.
(AC([0, 1]) is the space of absolutely continuous functions on [0, 1]. We take
H = L2([0, 1]). Compute the adjoint T ∗ and all selfadjoint extensions of T .

7. Let T be selfadjoint in H and let B be symmetric, defined on the same
domain D(T ) as T and obey the bound

‖Bx‖ ≤ a‖Tx‖+ b‖x‖
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with 0 ≤ a < 1 and 0 ≤ b <∞. Then T +B is selfadjoint.
Hint: Take M large enough so that a+ b

M
< 1 and use the fact that T + iM

has continuous inverse, and ‖(T + iM)x‖2 = ‖Tx‖2 + M2‖x‖2 so that if
y = (T + iM)x then ‖Tx‖ ≤ ‖y‖ and ‖x‖ ≤M−1‖y‖.

8. Let T = −∆ be the Laplacian in Rn with D(T ) = H2(Rn).
(i) Prove that −D is selfadjoint in H = L2(Rn).
(ii) Let V be a real function V ∈ L2(Rn) + L∞(Rn). (That means V

is a sum of a bounded and a square integrable function.) Let B be the
multiplication operator Bf = V f . Prove that −∆ + V is selfadjoint. (We
write with obvious abuse of notation −∆ + V for T +B.)
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