Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation

Peter Constantin
Department of Mathematics
University of Chicago
5734 S. University Avenue
Chicago, IL 60637
E-mail: const@cs.uchicago.edu

Jiahong Wu
Department of Mathematics
Oklahoma State University
Stillwater, OK 74078
E-mail: jiahong@math.okstate.edu

Abstract

We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical $(\alpha<1 / 2)$ dissipation $(-\Delta)^{\alpha}$: If a Leray-Hopf weak solution is Hölder continuous $\theta \in C^{\delta}\left(\mathbb{R}^{2}\right)$ with $\delta>1-2 \alpha$ on the time interval $\left[t_{0}, t\right]$, then it is actually a classical solution on $\left(t_{0}, t\right]$.

AMS (MOS) Numbers: 76D03, 35Q35
Keywords: the 2D quasi-geostrophic equation, supercritical dissipation, regularity, weak solutions.

1 Introduction

We discuss the surface 2D quasi-geostrophic (QG) equation

$$
\begin{equation*}
\partial_{t} \theta+u \cdot \nabla \theta+\kappa(-\Delta)^{\alpha} \theta=0, \quad x \in \mathbb{R}^{2}, t>0 \tag{1.1}
\end{equation*}
$$

where $\alpha>0$ and $\kappa \geq 0$ are parameters, and the 2 D velocity field $u=\left(u_{1}, u_{2}\right)$ is determined from θ by the stream function ψ via the auxiliary relations

$$
\begin{equation*}
\left(u_{1}, u_{2}\right)=\left(-\partial_{x_{2}} \psi, \partial_{x_{1}} \psi\right), \quad(-\Delta)^{\frac{1}{2}} \psi=-\theta . \tag{1.2}
\end{equation*}
$$

Using the notation $\Lambda \equiv(-\Delta)^{\frac{1}{2}}$ and $\nabla^{\perp} \equiv\left(\partial_{x_{2}},-\partial_{x_{1}}\right)$, the relations in (1.2) can be combined into

$$
\begin{equation*}
u=\nabla^{\perp} \Lambda^{-1} \theta=\left(-\mathcal{R}_{2} \theta, \mathcal{R}_{1} \theta\right), \tag{1.3}
\end{equation*}
$$

where \mathcal{R}_{1} and \mathcal{R}_{2} are the usual Riesz transforms in \mathbb{R}^{2}. The 2 D QG equation with $\kappa>0$ and $\alpha=\frac{1}{2}$ arises in geophysical studies of strongly rotating fluids (see [5],[15] and references therein) while the inviscid QG equation ((1.1) with $\kappa=0$) was derived to model frontogenesis in meteorology, a formation of sharp fronts between masses of hot and cold air (see [7],[10],[15]).

The problem at the center of the mathematical theory concerning the 2-D QG equation is whether or not it has a global in time smooth solution for any prescribed smooth initial data. In the subcritical case $\alpha>\frac{1}{2}$, the dissipative QG equation has been shown to possess a unique global smooth solution for every sufficiently smooth initial data (see $[8],[16]$). In contrast, when $\alpha \leq \frac{1}{2}$, the issue of global existence and uniqueness is more difficult and has still unanswered aspects. Recently this problem has attracted a significant amount of research ([1],[2],[3],[4],[5], [6],[9], [11],[12],[13],[14],,[17],[18],[19],[20], [21],[22],[23]). In Constantin, Córdoba and $\mathrm{Wu}[6]$, we proved in the critical case ($\alpha=\frac{1}{2}$) the global existence and uniqueness of classical solutions corresponding to any initial data with L^{∞}-norm comparable to or less than the diffusion coefficient κ. In a recently posted preprint in arXiv [13], Kiselev, Nazarov and Volberg proved that smooth global solutions exist for any C^{∞} periodic initial data, by removing the L^{∞}-smallness assumption on the initial data of [6]. Caffarelli and Vasseur (arXiv reference [1]) establish the global regularity of the Leray-Hopf type weak solutions (in $L^{\infty}\left((0, \infty) ; L^{2}\right) \cap L^{2}\left((0, \infty) ; \dot{H}^{1 / 2}\right)$) of the critical 2D QG equation with $\alpha=\frac{1}{2}$ in general \mathbb{R}^{n}.

In this paper we present a regularity result of weak solutions of the dissipative QG equation with $\alpha<\frac{1}{2}$ (the supercritical case). The result asserts that if a Leray-Hopf weak solution θ of (1.1) is in the Hölder class C^{δ} with $\delta>1-2 \alpha$ on the time interval $\left[t_{0}, t\right]$, then it is actually a classical solution on $\left(t_{0}, t\right]$. The proof involves representing the functions in Hölder space in terms of the Littlewood-Paley decomposition and using Besov space techniques. When θ is in C^{δ}, it also belongs to the Besov space $\stackrel{B}{p, \infty}_{\delta(1-2 / p)}$ for any $p \geq 2$. By taking p sufficiently large, we have $\theta \in C^{\delta_{1}} \cap \stackrel{\circ}{B}_{p, \infty}^{\delta_{1}}$ for $\delta_{1}>1-2 \alpha$.

The idea is to show that $\theta \in C^{\delta_{2}} \cap \stackrel{\delta}{B}_{p, \infty}^{\delta_{2}}$ with $\delta_{2}>\delta_{1}$. Through iteration, we establish that $\theta \in C^{\gamma}$ with $\gamma>1$. Then θ becomes a classical solution.

The results of this paper can be easily extended to a more general form of the quasigeostrophic equation in which $x \in \mathbb{R}^{n}$ and u is a divergence-free vector field determined by θ through a singular integral operator.

The rest of this paper is divided into two sections. Section 2 provides the definition of Besov spaces and necessary tools. Section 3 states and proves the main result.

2 Besov spaces and related tools

This section provides the definition of Besov spaces and several related tools. We start with a some notation. Denote by $\mathcal{S}\left(\mathbb{R}^{n}\right)$ the usual Schwarz class and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ the space of tempered distributions. \widehat{f} denotes the Fourier transform of f, namely

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x
$$

The fractional Laplacian $(-\Delta)^{\alpha}$ can be defined through the Fourier transform

$$
\widehat{(-\Delta)^{\alpha}} f=|\xi|^{2 \alpha} \widehat{f}(\xi)
$$

Let

$$
\mathcal{S}_{0}=\left\{\phi \in \mathcal{S}, \int_{\mathbb{R}^{n}} \phi(x) x^{\gamma} d x=0,|\gamma|=0,1,2, \cdots\right\} .
$$

Its dual \mathcal{S}_{0}^{\prime} is given by

$$
\mathcal{S}_{0}^{\prime}=\mathcal{S}^{\prime} / \mathcal{S}_{0}^{\perp}=\mathcal{S}^{\prime} / \mathcal{P},
$$

where \mathcal{P} is the space of polynomials. In other words, two distributions in \mathcal{S}^{\prime} are identified as the same in \mathcal{S}_{0}^{\prime} if their difference is a polynomial.

It is a classical result that there exists a dyadic decomposition of \mathbb{R}^{n}, namely a sequence $\left\{\Phi_{j}\right\} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that

$$
\operatorname{supp} \widehat{\Phi}_{j} \subset A_{j}, \quad \widehat{\Phi}_{j}(\xi)=\widehat{\Phi}_{0}\left(2^{-j} \xi\right) \quad \text { or } \quad \Phi_{j}(x)=2^{j n} \Phi_{0}\left(2^{j} x\right)
$$

and

$$
\sum_{k=-\infty}^{\infty} \widehat{\Phi}_{k}(\xi)= \begin{cases}1 & \text { if } \xi \in \mathbb{R}^{n} \backslash\{0\} \\ 0 & \text { if } \xi=0\end{cases}
$$

where

$$
A_{j}=\left\{\xi \in \mathbb{R}^{n}: 2^{j-1}<|\xi|<2^{j+1}\right\} .
$$

As a consequence, for any $f \in \mathcal{S}_{0}^{\prime}$,

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \Phi_{k} * f=f \tag{2.1}
\end{equation*}
$$

For notational convenience, set

$$
\begin{equation*}
\Delta_{j} f=\Phi_{j} * f, \quad j=0, \pm 1, \pm 2, \cdots . \tag{2.2}
\end{equation*}
$$

Definition 2.1 For $s \in \mathbb{R}$ and $1 \leq p, q \leq \infty$, the homogeneous Besov space $\dot{B}_{p, q}^{s}$ is defined by

$$
\stackrel{\circ}{B}_{p, q}^{s}=\left\{f \in \mathcal{S}_{0}^{\prime}:\|f\|_{\dot{B}_{p, q}^{s}}<\infty\right\},
$$

where

$$
\|f\|_{B_{p, q}^{s}}= \begin{cases}\left(\sum_{j}\left(2^{j s}\left\|\Delta_{j} f\right\|_{L^{p}}\right)^{q}\right)^{1 / q} & \text { for } q<\infty \\ \sup _{j} 2^{j s}\left\|\Delta_{j} f\right\|_{L^{p}} & \text { for } q=\infty\end{cases}
$$

For Δ_{j} defined in (2.2) and $S_{j} \equiv \sum_{k<j} \Delta_{k}$,

$$
\Delta_{j} \Delta_{k}=0 \quad \text { if }|j-k| \geq 2 \quad \text { and } \quad \Delta_{j}\left(S_{k-1} f \Delta_{k} f\right)=0 \quad \text { if }|j-k| \geq 3 .
$$

The following proposition lists a few simple facts that we will use in the subsequent section.

Proposition 2.2 Assume that $s \in \mathbb{R}$ and $p, q \in[1, \infty]$.

1) If $1 \leq q_{1} \leq q_{2} \leq \infty$, then $\stackrel{B_{p, q_{1}}^{s}}{{ }^{\circ}}{\stackrel{\circ}{p, q_{2}}}_{s}^{\text {. }}$
2) (Besov embedding) If $1 \leq p_{1} \leq p_{2} \leq \infty$ and $s_{1}=s_{2}+n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)$, then ${\stackrel{\circ}{B_{p}}, q}_{s_{1}}^{s_{1}}\left(\mathbb{R}^{n}\right) \subset{\stackrel{\circ}{B_{p 2}}{ }_{s_{2}}^{s_{2}}\left(\mathbb{R}^{n}\right) .}^{\text {. }}$
3) If $1<p<\infty$, then

$$
\stackrel{\circ}{B}_{p, \min (p, 2)}^{s} \subset \stackrel{\circ}{W}^{s, p} \subset \stackrel{\circ}{B}_{p, \max (p, 2)}^{s}
$$

where $W^{s, p}$ denotes a standard homogeneous Sobolev space.
We will need a Bernstein type inequality for fractional derivatives.
Proposition 2.3 Let $\alpha \geq 0$. Let $1 \leq p \leq q \leq \infty$.

1) If f satisfies

$$
\operatorname{supp} \widehat{f} \subset\left\{\xi \in \mathbb{R}^{n}:|\xi| \leq K 2^{j}\right\},
$$

for some integer j and a constant $K>0$, then

$$
\left\|(-\Delta)^{\alpha} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C_{1} 2^{2 \alpha j+j n\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

2) If f satisfies

$$
\begin{equation*}
\operatorname{supp} \widehat{f} \subset\left\{\xi \in \mathbb{R}^{n}: K_{1} 2^{j} \leq|\xi| \leq K_{2} 2^{j}\right\} \tag{2.3}
\end{equation*}
$$

for some integer j and constants $0<K_{1} \leq K_{2}$, then

$$
C_{1} 2^{2 \alpha j}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\left\|(-\Delta)^{\alpha} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C_{2} 2^{2 \alpha j+j n\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)},
$$

where C_{1} and C_{2} are constants depending on α, p and q only.
The following proposition provides a lower bound for an integral that originates from the dissipative term in the process of L^{p} estimates (see [20],[4]).

Proposition 2.4 Assume either $\alpha \geq 0$ and $p=2$ or $0 \leq \alpha \leq 1$ and $2<p<\infty$. Let j be an integer and $f \in \mathcal{S}^{\prime}$. Then

$$
\int_{\mathbb{R}^{n}}\left|\Delta_{j} f\right|^{p-2} \Delta_{j} f \Lambda^{2 \alpha} \Delta_{j} f d x \geq C 2^{2 \alpha j}\left\|\Delta_{j} f\right\|_{L^{p}}^{p}
$$

for some constant C depending on n, α and p.

3 The main theorem and its proof

Theorem 3.1 Let θ be a Leray-Hopf weak solution of (1.1), namely

$$
\begin{equation*}
\theta \in L^{\infty}\left([0, \infty) ; L^{2}\left(\mathbb{R}^{2}\right)\right) \cap L^{2}\left([0, \infty) ; \stackrel{H}{H}^{\alpha}\left(\mathbb{R}^{2}\right)\right) . \tag{3.1}
\end{equation*}
$$

Let $\delta>1-2 \alpha$ and let $0<t_{0}<t<\infty$. If

$$
\begin{equation*}
\theta \in L^{\infty}\left(\left[t_{0}, t\right] ; C^{\delta}\left(\mathbb{R}^{2}\right)\right), \tag{3.2}
\end{equation*}
$$

then

$$
\theta \in C^{\infty}\left(\left(t_{0}, t\right] \times \mathbb{R}^{2}\right)
$$

Proof. First, we notice that (3.1) and (3.2) imply that

$$
\theta \in L^{\infty}\left(\left[t_{0}, t\right] ; \stackrel{\circ}{p}_{p, \infty}^{\delta_{1}}\left(\mathbb{R}^{2}\right)\right),
$$

for any $p \geq 2$ and $\delta_{1}=\delta\left(1-\frac{2}{p}\right)$. In fact, for any $\tau \in\left[t_{0}, t\right]$,

$$
\begin{aligned}
\|\theta(\cdot, \tau)\|_{B_{p, \infty}^{\delta_{1}}} & =\sup _{j} 2^{\delta_{1 j}}\left\|\Delta_{j} \theta\right\|_{L^{p}} \\
& \leq \sup _{j} 2^{\delta_{1 j}}\left\|\Delta_{j} \theta\right\|_{L^{\infty}}^{1-\frac{2}{p}}\left\|\Delta_{j} \theta\right\|_{L^{2}}^{\frac{2}{p}} \\
& \leq\|\theta(\cdot, \tau)\|_{C^{\delta}}^{1-\frac{2}{p}}\|\theta(\cdot, \tau)\|_{L^{2}}^{\frac{2}{p}} .
\end{aligned}
$$

Since $\delta>1-2 \alpha$, we have $\delta_{1}>1-2 \alpha$ when

$$
p>p_{0} \equiv \frac{2 \delta}{\delta-(1-2 \alpha)} .
$$

Next, we show that

$$
\theta \in L^{\infty}\left(\left[t_{0}, t\right] ; \stackrel{\circ}{B}_{p, \infty}^{\delta_{1}} \cap C^{\delta_{1}}\right)
$$

implies

$$
\theta(\cdot, t) \in \stackrel{\circ}{B}_{p, \infty}^{\delta_{2}} \cap C^{\delta_{2}}
$$

for some $\delta_{2}>\delta_{1}$ to be specified. Let j be an integer. Applying Δ_{j} to (1.1), we get

$$
\begin{equation*}
\partial_{t} \Delta_{j} \theta+\kappa \Lambda^{2 \alpha} \Delta_{j} \theta=-\Delta_{j}(u \cdot \nabla \theta) \tag{3.3}
\end{equation*}
$$

By Bony's notion of paraproduct,

$$
\begin{align*}
\Delta_{j}(u \cdot \nabla \theta)= & \sum_{|j-k| \leq 2} \Delta_{j}\left(S_{k-1} u \cdot \nabla \Delta_{k} \theta\right)+\sum_{|j-k| \leq 2} \Delta_{j}\left(\Delta_{k} u \cdot \nabla S_{k-1} \theta\right) \\
& +\sum_{k \geq j-1} \sum_{|k-l| \leq 1} \Delta_{j}\left(\Delta_{k} u \cdot \nabla \Delta_{l} \theta\right) \tag{3.4}
\end{align*}
$$

Multiplying (3.3) by $p\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta$, integrating with respect to x, and applying the lower bound

$$
\int_{\mathbb{R}^{d}}\left|\Delta_{j} f\right|^{p-2} \Delta_{j} f \Lambda^{2 \alpha} \Delta_{j} f d x \geq C 2^{2 \alpha j}\left\|\Delta_{j} f\right\|_{L^{p}}^{p}
$$

of Proposition 2.4, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p}+C \kappa 2^{2 \alpha j}\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p} \leq I_{1}+I_{2}+I_{3} \tag{3.5}
\end{equation*}
$$

where I_{1}, I_{2} and I_{3} are given by

$$
\begin{aligned}
& I_{1}=-p \sum_{|j-k| \leq 2} \int\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta \cdot \Delta_{j}\left(S_{k-1} u \cdot \nabla \Delta_{k} \theta\right) d x, \\
& I_{2}=-p \sum_{|j-k| \leq 2} \int\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta \cdot \Delta_{j}\left(\Delta_{k} u \cdot \nabla S_{k-1} \theta\right) d x, \\
& I_{3}=-p \sum_{k \geq j-1} \int\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta \cdot \sum_{|k-l| \leq 1} \Delta_{j}\left(\Delta_{k} u \cdot \nabla \Delta_{l} \theta\right) d x .
\end{aligned}
$$

We first bound I_{2}. By Hölder's inequality

$$
I_{2} \leq C\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}}\left\|\nabla S_{k-1} \theta\right\|_{L^{\infty}} .
$$

Applying Bernstein's inequality, we obtain

$$
\begin{aligned}
I_{2} & \leq C\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} \sum_{m \leq k-1} 2^{m}\left\|\Delta_{m} \theta\right\|_{L^{\infty}} \\
& \leq C\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} 2^{\left(1-\delta_{1}\right) k} \sum_{m \leq k-1} 2^{(m-k)\left(1-\delta_{1}\right)} 2^{m \delta_{1}}\left\|\Delta_{m} \theta\right\|_{L^{\infty}} .
\end{aligned}
$$

Thus, for $1-\delta_{1}>0$, we have

$$
I_{2} \leq C\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1}\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} 2^{\left(1-\delta_{1}\right) k}
$$

We now estimate I_{1}. The standard idea is to decompose it into three terms: one with commutator, one that becomes zero due to the divergence-free condition and the rest. That is, we rewrite I_{1} as

$$
\begin{aligned}
I_{1}= & -p \sum_{|j-k| \leq 2} \int\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta \cdot\left[\Delta_{j}, S_{k-1} u \cdot \nabla\right] \Delta_{k} \theta d x \\
& -p \int\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta \cdot\left(S_{j} u \cdot \nabla \Delta_{j} \theta\right) d x \\
& -p \sum_{|j-k| \leq 2} \int\left|\Delta_{j} \theta\right|^{p-2} \Delta_{j} \theta \cdot\left(S_{k-1} u-S_{j} u\right) \cdot \nabla \Delta_{j} \Delta_{k} \theta d x \\
= & I_{11}+I_{12}+I_{13},
\end{aligned}
$$

where we have used the simple fact that $\sum_{|k-j| \leq 2} \Delta_{k} \Delta_{j} \theta=\Delta_{j} \theta$, and the brackets [] represent the commutator, namely

$$
\left[\Delta_{j}, S_{k-1} u \cdot \nabla\right] \Delta_{k} \theta=\Delta_{j}\left(S_{k-1} u \cdot \nabla \Delta_{k} \theta\right)-S_{k-1} u \cdot \nabla \Delta_{j} \Delta_{k} \theta
$$

Since u is divergence free, I_{12} becomes zero. I_{12} can also be handled without resort to the divergence-free condition. In fact, integrating by parts in I_{12} yields

$$
I_{12}=\int\left|\Delta_{j} \theta\right|^{p} \nabla \cdot S_{j} u d x \leq\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p}\left\|\nabla \cdot S_{j} u\right\|_{L^{\infty}}
$$

By Bernstein's inequality,

$$
\begin{aligned}
\left|I_{12}\right| & \leq\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p} \sum_{m \leq j-1} 2^{m}\left\|\Delta_{m} u\right\|_{L^{\infty}} \\
& =\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p} 2^{\left(1-\delta_{1}\right) j} \sum_{m \leq j-1} 2^{\left(1-\delta_{1}\right)(m-j)} 2^{m \delta_{1}}\left\|\Delta_{m} u\right\|_{L^{\infty}} .
\end{aligned}
$$

For $1-\delta_{1}>0$,

$$
\left|I_{12}\right| \leq C\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p} 2^{\left(1-\delta_{1}\right) j}\|u\|_{C^{\delta_{1}}} \leq C\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} 2^{\left(1-2 \delta_{1}\right) j}\|\theta\|_{\tilde{B}_{p, \infty}^{\delta_{1}}}\|u\|_{C^{\delta_{1}}} .
$$

We now bound I_{11} and I_{13}. By Hölder's inequality,

$$
\left|I_{11}\right| \leq p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} \sum_{|j-k| \leq 2}\left\|\left[\Delta_{j}, S_{k-1} u \cdot \nabla\right] \Delta_{k} \theta\right\|_{L^{p}} .
$$

To bound the the commutator, we have by the definition of Δ_{j}

$$
\left[\Delta_{j}, S_{k-1} u \cdot \nabla\right] \Delta_{k} \theta=\int \Phi_{j}(x-y)\left(S_{k-1}(u)(x)-S_{k-1}(u)(y)\right) \cdot \nabla \Delta_{k} \theta(y) d y
$$

Using the fact that $\theta \in C^{\delta_{1}}$ and thus

$$
\left\|S_{k-1}(u)(x)-S_{k-1}(u)(y)\right\|_{L^{\infty}} \leq\|u\|_{C^{\delta_{1}}}|x-y|^{\delta_{1}}
$$

we obtain

$$
\left\|\left[\Delta_{j}, S_{k-1} u \cdot \nabla\right] \Delta_{k} \theta\right\|_{L^{p}} \leq 2^{-\delta_{1} j}\|u\|_{C^{\delta_{1}}} 2^{k}\left\|\Delta_{k} \theta\right\|_{L^{p}}
$$

Therefore,

$$
\left|I_{11}\right| \leq C p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} 2^{-\delta_{1} j}\|u\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2} 2^{k}\left\|\Delta_{k} \theta\right\|_{L^{p}} .
$$

The estimate for I_{13} is straightforward. By Hölder's inequality,

$$
\begin{aligned}
\left|I_{13}\right| & \leq p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} \sum_{|j-k| \leq 2}\left\|S_{k-1} u-S_{j} u\right\|_{L^{p}}\left\|\nabla \Delta_{j} \theta\right\|_{L^{\infty}} \\
& \leq C p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} 2^{\left(1-\delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} .
\end{aligned}
$$

We now bound I_{3}. By Hölder's inequality and Bernstein's inequality,

$$
\begin{align*}
\left|I_{3}\right| & \leq p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1}\left\|\Delta_{j} \nabla \cdot\left(\sum_{k \geq j-1} \sum_{|l-k| \leq 1} \Delta_{l} u \Delta_{k} \theta\right)\right\|_{L^{p}} \\
& \leq p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1} 2^{j}\|u\|_{C^{\delta_{1}}} \sum_{k \geq j-1} 2^{-\delta_{1} k}\left\|\Delta_{k} \theta\right\|_{L^{p}} . \tag{3.6}
\end{align*}
$$

Inserting the estimates for I_{1}, I_{2} and I_{3} in (3.5) and eliminating $p\left\|\Delta_{j} \theta\right\|_{L^{p}}^{p-1}$ from both sides, we get

$$
\begin{align*}
\frac{d}{d t}\left\|\Delta_{j} \theta\right\|_{L^{p}}+C \kappa 2^{2 \alpha j}\left\|\Delta_{j} \theta\right\|_{L^{p}} \leq & C 2^{\left(1-2 \delta_{1}\right) j}\|\theta\|_{\hat{B}_{p, \infty}}\|u\|_{C^{\delta_{1}}} \\
& +C 2^{-\delta_{1} j}\|u\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2} 2^{k}\left\|\Delta_{k} \theta\right\|_{L^{p}} \\
& +C\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} 2^{\left(1-\delta_{1}\right) k} \\
& +C 2^{\left(1-\delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} \\
& +C 2^{j}\|u\|_{C^{\delta_{1}}} \sum_{k \geq j-1} 2^{-\delta_{1} k}\left\|\Delta_{k} \theta\right\|_{L^{p}} \tag{3.7}
\end{align*}
$$

The terms on the right can be further bounded as follows.

$$
\begin{aligned}
C 2^{-\delta_{1} j}\|u\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2} 2^{k}\left\|\Delta_{k} \theta\right\|_{L^{p}} & =C 2^{\left(1-2 \delta_{1}\right) j}\|u\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2} 2^{\delta_{1} k}\left\|\Delta_{k} \theta\right\|_{L^{p}} 2^{(k-j)\left(1-\delta_{1}\right)} \\
& \leq C 2^{\left(1-2 \delta_{1}\right) j}\|u\|_{C^{\delta_{1}}}\|\theta\|_{\tilde{D}_{p, \infty}^{\delta_{1}}}, \\
C\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} 2^{\left(1-\delta_{1}\right) k} & =C 2^{\left(1-2 \delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2} 2^{\delta_{1} k}\left\|\Delta_{k} u\right\|_{L^{p}} 2^{(k-j)\left(1-2 \delta_{1}\right)} \\
\leq & C 2^{\left(1-2 \delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}}\|u\|_{B_{p, \infty}^{\delta_{1}},} \\
C 2^{\left(1-\delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2}\left\|\Delta_{k} u\right\|_{L^{p}} & =C 2^{\left(1-2 \delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}} \sum_{|j-k| \leq 2} 2^{\delta_{1} k}\left\|\Delta_{k} u\right\|_{L^{p}} 2^{(j-k) \delta_{1}} \\
& \leq C 2^{\left(1-2 \delta_{1}\right) j}\|\theta\|_{C^{\delta_{1}}}\|u\|_{B_{p}^{\delta_{1}, \infty}}
\end{aligned}
$$

and

$$
\begin{aligned}
C 2^{j}\|u\|_{C^{\delta_{1}}} \sum_{k \geq j-1} 2^{-\delta_{1} k}\left\|\Delta_{k} \theta\right\|_{L^{p}} & =C 2^{\left(1-2 \delta_{1}\right) j}\|u\|_{C^{\delta_{1}}} \sum_{k \geq j-1} 2^{-2 \delta_{1}(k-j)} 2^{\delta_{1} k}\left\|\Delta_{k} \theta\right\|_{L^{p}} \\
& \leq C 2^{\left(1-2 \delta_{1}\right) j}\|u\|_{C^{\delta_{1}}}\|\theta\|_{B_{p, \infty}^{\delta_{1}}} .
\end{aligned}
$$

We can write (3.7) in the following integral form

$$
\begin{aligned}
\left\|\Delta_{j} \theta(t)\right\|_{L^{p}} \leq & e^{-C \kappa 2^{2 \alpha j}\left(t-t_{0}\right)}\left\|\Delta_{j} \theta\left(t_{0}\right)\right\|_{L^{p}} \\
& +C \int_{t_{0}}^{t} e^{-C \kappa 2^{2 \alpha j}(t-s)} 2^{\left(1-2 \delta_{1}\right) j}\left(\|\theta\|_{C^{\delta_{1}}}\|u\|_{\mathcal{B}_{p, \infty}^{\delta_{1}}}+\|u\|_{C^{\delta_{1}}}\|\theta\|_{\tilde{B}_{p, \infty}^{\delta_{1}}}\right) d s .
\end{aligned}
$$

Multiplying both sides by $2^{\left(2 \alpha+2 \delta_{1}-1\right) j}$ and taking the supremum with respect to j, we get

$$
\begin{aligned}
\|\theta(t)\|_{\hat{B}_{p, \infty}^{2 \delta_{1}+2 \alpha-1}} \leq & \sup _{j}\left\{e^{-C \kappa 2^{2 \alpha j}\left(t-t_{0}\right)} 2^{\left(\delta_{1}+2 \alpha-1\right) j}\right\}\left\|\theta\left(t_{0}\right)\right\|_{\hat{B}_{p, \infty}^{\delta_{1}}} \\
& +C \kappa^{-1} \sup _{j}\left\{\left(1-e^{-C \kappa 2^{2 \alpha j}\left(t-t_{0}\right)}\right)\right\} \max _{s \in\left[t_{0}, t\right]}\|\theta(s)\|_{\tilde{B}_{p, \infty} \delta_{1}}\|\theta(s)\|_{C^{\delta_{1}}}
\end{aligned}
$$

Here we have used the fact that

$$
\|u\|_{C^{\delta_{1}}} \leq\|\theta\|_{C^{\delta_{1}}} \quad \text { and } \quad\|u\|_{B_{P_{p}, \infty}^{\delta_{1}}} \leq\|\theta\|_{\hat{B}_{p, \infty}^{\delta_{1}}}
$$

Therefore, we conclude that if

$$
\theta \in L^{\infty}\left(\left[t_{0}, t\right] ; \stackrel{B}{p, \infty}_{\delta_{1}}^{\delta_{1}} \cap C^{\delta_{1}}\right),
$$

then

$$
\begin{equation*}
\theta(\cdot, t) \in \stackrel{\circ}{B}_{p, \infty}^{2 \delta_{1}+2 \alpha-1} \tag{3.8}
\end{equation*}
$$

Since $\delta_{1}>1-2 \alpha$, we have $2 \delta_{1}+2 \alpha-1>\delta_{1}$ and thus gain regularity. In addition, according to the Besov embedding of Proposition 2.2,

$$
\stackrel{\circ}{B}_{p, \infty}^{2 \delta_{1}+2 \alpha-1} \subset \stackrel{\circ}{B}_{\infty, \infty}^{\delta_{2}}
$$

where

$$
\delta_{2}=2 \delta_{1}+2 \alpha-1-\frac{2}{p}=\delta_{1}+\left(\delta_{1}-\left(1-2 \alpha+\frac{2}{p}\right)\right)
$$

We have $\delta_{2}>\delta_{1}$ when

$$
p>p_{1} \equiv \frac{2}{\delta_{1}-(1-2 \alpha)}
$$

Noting that

$$
\stackrel{\circ}{B}_{\infty, \infty}^{\delta_{2}} \cap L^{\infty}=C^{\delta_{2}}
$$

we conclude that, for $p>\max \left\{p_{0}, p_{1}\right\}$,

$$
\theta(\cdot, t) \in \stackrel{\circ}{B_{p, \infty}^{\delta_{2}}} \cap C^{\delta_{2}}
$$

for some $\delta_{2}>\delta_{1}$. The above process can then be iterated with δ_{1} replaced by δ_{2}. A finite number of iterations allow us to obtain that

$$
\theta(\cdot, t) \in C^{\gamma}
$$

for some $\gamma>1$. The regularity in the spatial variable can then be converted into regularity in time. We have thus established that θ is a classical solution to the supercritical QG equation. Higher regularity can be proved by well-known methods.

Acknowledgment: PC was partially supported by NSF-DMS 0504213. JW thanks the Department of Mathematics at the University of Chicago for its support and hospitality.

References

[1] L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, ArXiv: Math.AP/0608447 (2006).
[2] D. Chae, On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal. 37 (2006), 1649-1656.
[3] D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasigeostrophic equations, Commun. Math. Phys. 233 (2003), 297-311.
[4] Q. Chen, C. Miao and Z. Zhang, A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation, to appear in Commun. Math. Phys..
[5] P. Constantin, Euler equations, Navier-Stokes equations and turbulence. Mathematical foundation of turbulent viscous flows, 1-43, Lecture Notes in Math., 1871, Springer, Berlin, 2006.
[6] P. Constantin, D. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 (2001), 97-107.
[7] P. Constantin, A. Majda, and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7(1994), 1495-1533.
[8] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 (1999), 937-948.
[9] A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys. 249 (2004), 511-528.
[10] I. Held, R. Pierrehumbert, S. Garner, and K. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech. 282 (1995), 1-20.
[11] N. Ju, The maximum principle and the global attractor for the dissipative 2D quasigeostrophic equations, Commun. Math. Phys. 255 (2005), 161-181.
[12] N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann. 334 (2006), 627-642.
[13] A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, ArXiv: Math.AP/0604185 (2006).
[14] F. Marchand and P.G. Lemarié-Rieusset, Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique, C. R. Math. Acad. Sci. Paris 341 (2005), 535-538.
[15] J. Pedlosky, "Geophysical fluid dynamics", Springer, New York, 1987.
[16] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.
[17] M. Schonbek and T. Schonbek, Asymptotic behavior to dissipative quasigeostrophic flows, SIAM J. Math. Anal. 35 (2003), 357-375.
[18] M. Schonbek and T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst. 13 (2005), 1277-1304.
[19] J. Wu, The quasi-geostrophic equation and its two regularizations, Commun. Partial Differential Equations 27 (2002), 1161-1181.
[20] J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal. 36 (2004/2005), 1014-1030.
[21] J. Wu, The quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity 18 (2005), 139-154.
[22] J. Wu, Solutions of the 2-D quasi-geostrophic equation in Hölder spaces, Nonlinear Analysis 62 (2005), 579-594.
[23] J. Wu, Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Analysis, in press.

