
Dissipativity and Gevrey Regularity of a
Smoluchowski Equation

Peter Constantin ∗ Edriss S. Titi †

Jesenko Vukadinovic ‡

December 13, 2004

Abstract

We investigate a Smoluchowski equation (a nonlinear Fokker-
Planck equation on the unit sphere), which arises in modeling of col-
loidal suspensions. We prove the dissipativity of the equation in 2D
and 3D, in certain Gevrey classes of analytic functions.

MSC2000: 35Kxx, 70Kxx

1 Introduction

The Smoluchowski equation is an equation describing the temporal evolution
of the distribution ψ of directions of rod-like particles in a suspension. The
equation has the form of a Fokker-Planck equation

∂tψ=∆ψ+div(ψgradV ),
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except that it is nonlinear and it is phrased on the unit sphere (so the Lapla-
cian, divergence and gradient are suitably modified). One thinks of ψdσ as
the proportion of particles whose directions belong to the area element dσ
on the unit sphere. The equation is nonlinear because the mean field po-
tential V depends on ψ. If this dependence is linear then the equation has
an energy functional, and its steady solutions are solutions of nonlinear (and
typically non-local) equations. Historically, the steady equation arose first,
in the work of Onsager ([14]) concerning the effect of the shape of particles in
a suspension on their distribution. The time dependent kinetic theory ([7]),
and the particular type of potential (Maier-Saupe) we study in this paper
are a further development. There are relatively few rigorous mathematical
papers concerning this equation. In two previous works ([4] and [5]) mostly
questions regarding the steady states were discussed. The Smoluchowski
equation is dissipative. This means that the solutions, viewed as trajectories
in a phase space, after a transient time, enter and remain in a bounded region
of phase space. The dissipativity of the Smoluchowski equation is however
a subtle matter. The energy functional is not positive definite in general,
and it cannot be used directly. Instead, the conservation law associated to
the equation, namely the fact that

∫
ψ does not change in time, needs to

be used in order to prove dissipativity. In [4] dissipativity was proved in
2D in a weak phase space, (a phase space in which it is not clear that the
equation is well posed), using a cancellation special to 2D. The dissipativity
in three dimensions was until now an open problem. In this paper we prove
among other things dissipativity in very strong analytic spaces both in two
and three dimensions. The proof of Gevrey regularity and dissipativity in
three dimensions uses a slightly different approach than the classical method
of [9] (see also [1], [2], [8], [10] and [12]) making use of the special nature of
the Fokker-Planck nonlinearity.

2 Preliminaries

We consider the Smoluchowski equation written in local coordinates φ=
(φ1,φ2, . . . ,φn−1) on the unit sphere Sn−1 in IRn as:

∂tψ=
1
√
g
∂i
(
e−V

√
ggij∂j(e

V ψ)
)
. (2.1)
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The potential V is given by

V (x,t)=−bxixjSij(t),
Sij(t) :=

∫
Sn−1xi(φ)xj(φ)ψ(φ,t)σ(dφ)− 1

n
δij,

(2.2)

where xi are Cartesian coordinates in IRn, σ(dφ)=
√
gdφ the surface area,

and b>0 is a given parameter representing the intensity of the potential. As
a result of applying the product rule, (2.1) can be written in the form of a
Fokker-Planck equation

∂tψ+Aψ=B(ψ,V ), (2.3)

where

A=−∆g =− 1
√
g
∂i(
√
ggij∂j)

is the Laplace-Beltrami operator, and

B(ψ,V ) :=divg(ψ∇gV )=
1
√
g
∂i(
√
ggij(∂jV )ψ).

Because of the dependence of V on ψ, the Smoluchowski equation is nonlinear
(quadratic) in ψ.

Regarding the existence, uniqueness and regularity of solutions of (2.3),
it is easy to prove the following theorem (see [4], [5] for the same claim)

Theorem 1 Let ψ0 be a nonnegative continuous function on Sn−1. The
solutions of (2.3) with initial data ψ(·,0)=ψ0 exist for all nonnegative times,
are smooth, nonnegative and normalized∫

Sn−1
ψ(φ,t)σ(dφ)=

∫
Sn−1

ψ0(φ)σ(dφ).

In addition, they are analytic for all positive times.

From now on we will choose the normalization∫
Sn−1

ψ(φ,t)σ(dφ)=1.

The normalization yields that the matrix S is trace-free (Tr(S)=0), which
implies that the homogeneous quadratic polynomial V (x,t) is harmonic.
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This, in turn, implies that V , restricted to the sphere, is an eigenvector
of A corresponding to the eigenvalue 2n:

AV =2nV.

Moreover, one has the following inequality:

−b
(
1− 1

n

)
≤V (x,t)≤ b

n
.

In particular
|V (x,t)|≤ b.

The following nontrivial property of the Fokker-Planck bilinear form B will
be crucial in the sequel:

Lemma 1 For ψ,χ,V ∈D(A)

(B(ψ,V ),χ)g =
1

2

∫
Sn−1

[V (χAψ−ψAχ)−ψχAV ]σ(dφ), (2.4)

where
(u,v)g =

∫
Sn−1

uvσ(dφ)

is the scalar product on L2(Sn−1).

Proof : Assuming first that ψ,χ,V ∈C∞(Sn−1) and applying integration
by parts one has

(B(ψ),χ) =
∫
Sn−1

1
√
g
∂i(
√
ggij∂jV ψ)χ σ(dφ)

=
∫
∂i(
√
ggij∂jV ψ)χ dφn−1

= −
∫ √

ggij∂jV ψ∂iχ dφ
n−1

(
=−

∫
Sn−1

gij∂jV ψ∂iχ σ(dφ)
)

=
∫
V ∂jψ

√
ggij∂iχ dφ

n−1 +
∫
V ψ∂j(

√
ggij∂iχ) dφn−1

=
∫
Sn−1

V gij∂jψ∂iχ σ(dφ)+
∫
Sn−1

V ψ∆gχ σ(dφ)

= −
∫
Sn−1

gij∂iV ∂jψχ σ(dφ)−
∫
Sn−1

V χ∆gψ σ(dφ)+
∫
Sn−1

V ψ∆gχ σ(dφ)

=
∫
Sn−1

gij∂iV ψ∂jχ σ(dφ)+
∫
Sn−1

∆gV ψχσ(dφ)

−
∫
Sn−1

V χ∆gψ σ(dφ)+
∫
Sn−1

V ψ∆gχ σ(dφ)

= −(B(ψ),χ)+
∫
Sn−1

V (ψ∆gχ−χ∆gψ−2nψχ) σ(dφ),
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and the statement of the Lemma follows by the above and the density
of C∞(Sn−1) in D(A). A similar proof is obtained using ∇V ·g∇ω=
1/2(∆g(V ω)−ω∆gV −V∆gω) and integration by parts. 2

3 The 2D Case

When n=2, the unit circle has one local coordinate φ∈ [0,π], and x1(φ)=
cosφ, x2(φ)=sinφ, and g11 =g=1. Thus, in two dimensions, the equation
can be rewritten as

∂tψ−∂2
φψ=∂φ(∂φV ψ). (3.5)

The potential V can be written as a function of the local coordinate φ as:

V (φ)=− b
2

∫ 2π

0
cos(2(φ− φ̃))ψ(φ̃,t) dφ̃. (3.6)

In the following sections, we will use the Fourier Transform to rewrite (3.5)
as a system of ODEs for which we will prove that the solutions belong to
certain Gevrey classes, in which they dissipate, and are real-entire.

3.1 2D Smoluchowski as an infinite system of ODEs

We expand ψ in Fourier series as

ψ(φ,t)=
1

2π

∑
j∈ZZ

ψ̂(j,t)eijφ,

where

ψ̂(j,t)=
∫ 2π

0
e−ijφψ(φ,t)dφ

are the Fourier coefficients. Requiring ψ̂(−j,t)= ψ̂(j,t)∗ will insure that ψ is
a real-valued function. The system (3.5) becomes a system of ODEs

dψ̂

dt
(j,t)+j2ψ̂(j,t)=

bj

2

(
ψ̂(j−2,t)ψ̂(2,t)− ψ̂(j+2,t)ψ̂(−2,t)

)
,

and the normalization is equivalent to ψ̂(0,t)=1 in this setting.
One can easily verify that the evenness of the initial datum will be pre-

served by the flow. In terms of Fourier coefficients, this means ψ̂(−j,t)=
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ψ̂(j,t) for j∈ZZ. Moreover, ψ̂(2j+1,t)=0, for j∈ZZ is preserved by the
flow, as well. Therefore, we can restrict our study to solutions that have the
above symmetries, i.e., solutions of the form

ψ(φ,t)=
1

2π
+

1

π

∞∑
k=1

yk(t)cos(2kφ),

where

yk(t)= ψ̂(2k,t)=
∫ 2π

0
cos(2kφ)ψ(φ,t)dφ.

The normalization implies y0 =1 and |yk|≤1. Notice that for such ψ the
potential becomes

V (φ,t)=− b
2
y1(t)cos(2φ).

In this new setting, the 2D Smoluchowski equation can be written in terms
of the Fourier coefficients as an infinite system of ODEs:

y0 =1
y′k+4k2yk = bky1(yk−1−yk+1), k=1,2, . . .

(3.7)

In [4] the authors have proven that the solutions of the 2D Smoluchowski
equation with nonnegative continuous initial data of the form

ψ0(φ)=
1

2π
+

1

π

∞∑
k=1

yk(0)cos(2kφ) (3.8)

dissipate in the space H−1/2(S1) according to the inequality

‖ψ(t)‖2
H−1/2 ≤

b

4
+e−8t‖ψ0‖2

H−1/2 .

Also, the existence of one determining mode was proven: If for two solutions

lim
t→∞

|V (1)(0,t)−V (2)(0,t)|=0,

then
lim
t→∞

‖ψ(1)(t)−ψ(2)(t)‖H−1/2 =0.

By S(t) we will denote the semi-group of solution operators, i.e. ψ(t)=
S(t)ψ0. The 2D Smoluchowski equation has a compact global attractor A,
the maximal bounded set which satisfies S(t)A=A for all t∈ IR. Thanks to
the existence of one determining mode, or the Gevrey regularity which we
will prove in the next section, one can easily show that the global attractor
A is finite dimensional.
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3.2 Gevrey regularity and dissipativity in 2D

Let us denote the uniform state by ψu=1/2π. Also denote

‖ψ‖2
L2 :=π‖ψ−ψu‖2

L2(S1) =
∞∑
k=1

y2
k,

‖ψ‖2
Hs :=2−2sπ‖ψ−ψu‖2

Hs(S1) =
∞∑
k=1

k2sy2
k.

For a positive function f defined on positive integers let us define the follow-
ing classes of functions:

Hf :=

{
ψ(φ)=

1

2π
+

1

π

∞∑
k=1

yk cos(2kφ) :
∞∑
k=1

f(k)

k
y2
k<∞

}

and

Vf :=

{
ψ(φ)=

1

2π
+

1

π

∞∑
k=1

yk cos(2kφ) :
∞∑
k=1

kf(k)y2
k<∞

}
,

endowed with the ‘norms’

|ψ|f =

( ∞∑
k=1

f(k)

k
y2
k

)1/2

and ‖ψ‖f =

( ∞∑
k=1

kf(k)y2
k

)1/2

,

respectively. For f that grows at least exponentially with k it is well known
that Hf and Vf are subsets of the set of real analytic functions. Also, for
each n∈ IN there exists a combinatorial constant Mn∈ (0,∞) depending on
f , such that

‖∂nφψ‖L∞≤Mn|ψ|f , ψ∈Hf .

Theorem 2 Consider the equation (3.5) for b>4 with nonnegative con-
tinuous initial data of the form (3.8). Let h(t)=min{t,1}, and let f(k,t)=
a2kh(t), 1<a2≤1+b−1, or alternatively f(k,t)= [(k−1)!]2h(t)/b2(k−1). In ei-
ther case, a solution ψ dissipates according to the inequality

|ψ(t)|2f ≤
b+1

2
+e−4t‖ψ0‖2

H−1/2 , t≥0, (3.9)

and is real-entire for t>0. In particular, the ball of radius
√
b in Hf centered

at the uniform state ψu absorbs all trajectories in finite time.
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Proof : Multiplying (3.7) by f(k,t)yk/k and summing over k=1,2,3, . . .,
we obtain the following a priori estimate. The computations are formal, and
can be made rigorous by considering Galerkin approximations (see [3]).

d

2dt

∞∑
k=1

f(k,t)

k
y2
k −

1

2

∞∑
k=1

f ′(k,t)

k
y2
k+4

∞∑
k=1

kf(k,t)y2
k

= f(1)by2
1 +by1

∞∑
k=1

(f(k+1)−f(k))ykyk+1

≤ f(1)by2
1 +b|y1|

√√√√ ∞∑
k=1

kf(k+1)y2
k+1

√√√√ ∞∑
k=1

f(k+1)

k
y2
k.

For f(k,t)=a2kh(t), 1<a2≤1+b−1, we have f(k+1)−f(k)=(a2h(t)−1)f(k),
and

d

2dt
|ψ|2f +2‖ψ‖2

f ≤ b+1.

For

f(k,t)=

[
(k−1)!h(t)

bk−1

]2

,

one has b2f(k+1)=k2h(t)f(k)≤k2f(k), and therefore

d

2dt
|ψ|2f +2‖ψ‖2

f ≤ b.

In both cases, (3.9) follows. 2

Remark 1 Observe that from y2
k≤1, k=1,2, . . . the dissipativity follows

in Hf for any f for which

f(k)≤ [(k−1)!/bk−1]2, k=k0,k0 +1, . . . ,

for some k0∈ZZ. In particular, this is true for f(k)=a2k for any a>1.
Moreover, the dissipativity in Gevrey classes implies the dissipativity of the
solution and all its derivatives in L∞:

‖∂nφψ(t)‖2
L∞≤M2

n(b+e
−4t‖ψ0‖2

H−1/2), t>0.

In particular
sup
ψ∈A

‖∂nφψ‖L∞≤Mn

√
b,
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and
lim
t→∞

inf
ψ∈A

‖∂nφS(t)ψ0−∂nφψ‖L∞ =0.

The Fourier coefficients of the elements of the global attractor A decay ac-
cording to:

y2
k≤min

1,bk(1+b−1)−k,bk

[
bk−1

(k−1)!

]2
 .

2

Remark 2 The quotient zk =yk/y1 satisfies the following ODE:

z′k+4(k2−1)zk = bky1(zk−1−zk+1)−bzk(1−y2), k=2,3,4, . . .

and therefore

d

2dt
(z2
k)+4(k2−1)z2

k = bky1(zk−1zk−zkzk+1)−bz2
k(1−y2), k=2,3,4, . . .

As before, for the same choice of f as in Theorem 2, multiplying by f(k)zk/k
and summing over k=2,3, . . . gives the following inequality:

d

2dt

∞∑
k=2

f(k)

k
z2
k+2

∞∑
k=2

kf(k)z2
k≤ b|y2|.

In particular, |ψ(t)|2f/|V (t,0)|2 is dissipated in time, until eventually

|ψ(t)|f ≤
2√
b
|V (0,t)|, t≥T.

for some T . 2

In [4] the authors proved the existence of one determining mode. Here we
improve the result leading to the convergence in stronger norms.

Theorem 3 Let ψ(j)(φ,t), j=1,2, be two solutions of (3.7) correspond-
ing to nonnegative continuous initial data

ψ
(j)
0 (φ)=

1

2π
+

1

π

∞∑
k=1

y
(j)
k (0)cos(2kφ)
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respectively. Let V (j)(φ,t) be the corresponding potential to the solution
ψ(j)(φ,t). Assume that

lim
t→∞

|V (1)(0,t)−V (2)(0,t)|=0,

i.e.
lim
t→∞

|y(1)
1 (t)−y(2)

1 (t)|=0,

then for f(k)=a2k, 1<a2≤1+b−1

lim
t→∞

|ψ(1)(t)−ψ(2)(t)|f =0,

and for every n=0,1,2, . . .

lim
t→∞

‖∂nφψ(1)(t)−∂nφψ(2)(t)‖L∞ =0.

Proof : Let ψ=ψ(1)−ψ(2) and ψ̄= 1
2
(ψ(1) +ψ(2)). The Fourier co-

efficients are defined accordingly by yk =y
(1)
k −y(2)

k , and ȳk = 1
2
(y

(1)
k +y

(2)
k ),

k=0,1,2, . . . The equation for the difference in terms of the Fourier coeffi-
cients reads

y0 =0,
y′k+4k2yk = bkȳ1(yk−1−yk+1)+bky1(ȳk−1− ȳk+1), k=1,2, . . .

(3.10)

Multiplying (3.10) by f(k)yk/k and summing over k=1,2, . . ., we obtain

d

2dt
|ψ|2f +4‖ψ‖2

f = bȳ1

∞∑
k=1

(f(k+1)−f(k))ykyk+1 +by1

∞∑
k=1

f(k)(ȳk−1− ȳk+1)yk.

Similarly as before, and using a Schwartz inequality we obtain

d

2dt
|ψ|2f +3‖ψ‖2

f ≤ b|y1|‖ψ‖f

√√√√ ∞∑
k=1

f(k)

k
(ȳk−1− ȳk+1)2

Using Young’s inequality,

d

dt
|ψ|2f +‖ψ‖2

f ≤16b2y2
1

(
1+ |ψ(1)|2f + |ψ(2)|2f

)
.

There exists T >0 so that for t≥T

d

dt
|ψ(t)|2f +‖ψ(t)‖2

f ≤16b2y2
1(1+2b).
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Therefore y1(t)=−2
b
V (0,t)→0 when t→∞ will imply limt→∞ |ψ(t)|f =0,

and limt→∞‖∂nφψ(t)‖L∞ =0. This completes the proof. 2

The following Theorem shows that there are finite number of determining
nodes for the 2D Smoluchowski equation.

Theorem 4 There exists n=n(b), so that for any n equidistant points
φ0<φ2< ···<φn=φ0, if

ψ(1)(t,φj)−ψ(2)(t,φj)→0, j=1,2, . . . ,n,

then for every l=0,1,2, . . .

lim
t→∞

‖∂lφψ(1)(t)−∂lφψ(2)(t)‖∞=0.

Proof : Let us write the 2D Smoluchowski equation in the following
form:

∂tψ−∂2
φψ= by1∂φ(sin(2φ)ψ),

and the equation for the difference of two solutions as

∂tψ−∂2
φψ= bȳ1∂φ(sin(2φ)ψ)+by1∂φ(sin(2φ)ψ̄).

Let 0=φ0<φ2< ···<φn=2π, such that φi+1−φi=d. Multiplying the above
equation by ψ and integrating over [φi,φi+d], we obtain

d

2dt

∫ φi+d

φi

|ψ|2 +
∫ φi+d

φi

|ψφ|2− [ψφψ]φi+d
φi

= bȳ1[sin(2φ)ψ2]φi+d
φi

−bȳ1

∫ φi+d

φi

sin(2φ)ψψφ+by1

∫ φi+d

φi

∂φ(sin(2φ)ψ̄)ψ

≤ bȳ1[sin(2φ)ψ2]φi+d
φi

+b
∫ φi+d

φi

|ψψφ|+b(‖ψ̄φ‖L∞+2‖ψ̄‖L∞)
∫ φi+d

φi

|y1ψ|

≤ bȳ1[sin(2φ)ψ2]φi+d
φi

+
1

2

∫ φi+d

φi

|ψφ|2 +
b2

2

∫ φi+d

φi

|ψ|2 +b3(4M2
0 +M2

1 )
∫ φi+d

φi

|ψ|2 +
d

2
y2

1,

where the constants M0 and M1 are as in Remark 1. Observe that∫ φi+d

φi

|ψ|2≤2d2
∫ φi+d

φi

|ψφ|2 +2d|ψ(φi)|2.

Now

d

2dt

∫ φi+d

φi

|ψ|2 +

(
1

4d2
− b2(1+2M1b+8M0b)

2

)∫ φi+d

φi

|ψ|2

≤ [ψφψ]φi+d
φi

+bȳ1[sin(2φ)ψ2]φi+d
φi

+
1

2d
|ψ(φi)|2 +

d

2
y2

1
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Choosing d small enough that 1
4d2
− b2(1+2M2

1 b+8M2
0 b)

2
>2π2, we obtain

d

2dt

∫ φi+d

φi

|ψ|2 +2π2
∫ φi+d

φi

|ψ|2 ≤ [ψφψ]φi+d
φi

+bȳ1[sin(2φ)ψ2]φi+d
φi

+
1

2d
|ψ(φi)|2 +

d

2
π
∫ 2π

0
|ψ|2.

Summing the above equations for i=0,1,2, . . . ,n−1, we obtain

d

dt

∫ 2π

0
|ψ|2 +2π2

∫ 2π

0
|ψ|2≤ n

2π

n−1∑
i=0

|ψ(φi)|2.

Therefore
lim
t→∞

‖ψ(1)(t)−ψ(2)(t)‖L2 =0.

In particular y1→0, and the Theorem follows. 2

4 The 3D Case

When n=3, the local coordinates on S2 are φ=(θ,ϕ), and one has x1(θ,ϕ)=
sinθcosϕ, x2(θ,ϕ)=sinθsinϕ, and x2(θ,ϕ)=cosθ. Also, g11 =1, g22 =sin−2θ,
g12 =g21 =0, and

√
g=sinθ. In terms of the local coordinates,

Aψ=−∆gψ=−
(

1

sinθ
∂θ(sinθ ∂θψ)+

1

sin2θ
∂2
ϕψ
)
,

B(ψ)=
1

sinθ
∂θ (sinθ (∂θV )ψ)+

1

sin2θ
∂ϕ((∂ϕV )ψ),

and

V (ϕ,θ,t)=
∫ π

0

∫ 2π

0
(sinθsin θ̃cos(ϕ− ϕ̃)+cosθcos θ̃)2ψ(ϕ̃, θ̃,t) dϕ̃ dθ̃− 1

3
.

In the following section, we will use the expansion of solutions in spherical
harmonics in order to prove the regularity and dissipativity of solutions in
certain Gevrey classes.
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4.1 Spherical Harmonics

Let Pk denote the Legendre polynomial of degree k. For k=0,1,2, . . . and
j=0,±1,±2, . . . ,±k let us define

Y j
k (θ,ϕ)=Cj

ke
ijϕP j

k (cosθ),

where

Cj
k =

[
2k+1

4π

(k−|j|)!
(k+ |j|)!

]1/2

,

P j
k (x)=(1−x2)j/2

djPk
dxj

(x), j=0,1,2, . . . ,k,

and
P j
k =P−jk , j=−1,−2, . . . , −k.

The following are well known facts about the operator A=−∆g (see [13]):

1. Each Y j
k is an eigenvector of A corresponding to the eigenvalue λk =

k2 +k:
AY j

k =λkY
j
k .

2. The set {Y j
k : k=0,1,2, . . . ;j=0,±1,±2, . . . ,±k} forms an orthonormal

basis in L2(S2); in particular, for each ψ∈L2(S2) there is a represen-
tation

ψ=
∞∑
k=0

k∑
j=−k

ψjkY
j
k ,

where
ψjk =

∫
S2
ψY −jk σ(dφ).

Observe that ψ is a real-valued function if and only if ψ−jk = ψ̄jk, and
ψ is an even function in variable ϕ, if and only if ψ−jk =ψjk. For the
simplicity of notation, let us also denote Y j

k =0 and ψjk =0 for |j|>k.

3. For each k=0,1,2, . . ., we have the point-wise identity

k∑
j=−k

|Y j
k (θ,ϕ)|2 =

2k+1

4π
. (4.11)
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4. If ∫
S2
Y m
n Y

j
k Y

−β
α 6=0,

then all of the following must hold:

• β=m+j

• α≤n+k

• k≤n+α

• n≤α+k

• α+n+k is even.

4.2 Gevrey Regularity

Let (ψ,V ) be a solution of (2.3) for n=3. Let ψ=
∑∞
k=0

∑k
j=−kψ

j
kY

j
k be the

expansion of ψ in spherical harmonics. The normalization yields

ψ0
0 =

1√
4π

and

|ψjk|≤
∫
S2
ψ|Y −jk |σ(dφ)≤

√
2k+1

4π
. (4.12)

Since V is an eigenvector corresponding to the eigenvalue λ2 =6,

V =
2∑

m=−2

V mY m
2 ,

where V m=
∫
S2V Y −m2 σ(dφ). Also

|V m|≤ b
∫
S2
|Y −m2 | σ(dφ)≤ b

√
20π. (4.13)

Observe also that the equation (2.3) for n=3 preserves the evenness in ϕ.
We will only consider solutions with this symmetry, i.e. solutions for which
ψ−jk =ψjk, and V −j =V j.
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Lemma 2 Let F =f(A)=f(−∆g) and G=g(A)=g(−∆g) be two spec-
tral operators defined by

Fψ=
∞∑
k=0

f(λk)
k∑

j=−k
ψjkY

j
k ,

and

Gψ=
∞∑
k=0

g(λk)
k∑

j=−k
ψjkY

j
k ,

where f and g are positive functions defined on the set of eigenvalues of A.
Then for ψ∈D(F)∩D(G)∫

S2
V FψGψσ(dφ)=

=
2∑

m=−2

∞∑
k=0

k∑
j=−k

f(λk)g(λk)V
mψjkψ

−(m+j)
k

∫
S2
Y m

2 Y j
k Y

−(m+j)
k σ(dφ)

+
2∑

m=−2

∞∑
k=0

k∑
j=−k

[f(λk)g(λk+2)+f(λk+2)g(λk)]V
mψjkψ

−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ).

Proof : Since∫
S2
V FψGψσ(dφ)=

2∑
m=−2

∞∑
k=0

k∑
j=−k

∞∑
α=0

α∑
β=−α

V mf(λk)ψ
j
kg(λα)ψ

−β
α

∫
S2
Y m

2 Y j
k Y

−β
α σ(dφ),

and since
∫
S2Y m

2 Y j
k Y

−β
α σ(dφ) 6=0 implies β=m+j, and α=k+2, or k=α+

2, or α=k, we have∫
S2
V FψGψσ(dφ) =

2∑
m=−2

∞∑
k=0

k∑
j=−k

V mf(λk)ψ
j
kg(λk)ψ

−(m+j)
k

∫
S2
Y m

2 Y j
k Y

−(m+j)
k σ(dφ)

+
2∑

m=−2

∞∑
k=0

k∑
j=−k

V mf(λk)ψ
j
kg(λk+2)ψ

−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

+
2∑

m=−2

∞∑
α=0

α∑
β=−α

V mf(λα+2)ψ
β−m
α+2 g(λα)ψ

−β
α

∫
S2
Y m

2 Y β−m
α+2 Y −βα σ(dφ).

Since we assume that V −m=V m, and ψ−jk =ψjk,

2∑
m=−2

∞∑
α=0

α∑
β=−α

V mf(λα+2)ψ
β−m
α+2 g(λα)ψ

−β
α

∫
S2
Y m

2 Y β−m
α+2 Y −βα σ(dφ)=
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2∑
m=−2

∞∑
α=0

α∑
β=−α

V −mf(λα+2)ψ
β+m
α+2 g(λα)ψ

−β
α

∫
S2
Y −m2 Y β+m

α+2 Y −βα σ(dφ)=

2∑
m=−2

∞∑
α=0

α∑
β=−α

V mf(λα+2)ψ
−(β+m)
α+2 g(λα)ψ

β
α

∫
S2
Y m

2 Y
−(β+m)
α+2 Y β

α σ(dφ),

and the proof follows. 2

The following Lemma establishes important estimates regarding the non-
linear term, and it will be used to prove the Gevrey regularity and dissipa-
tivity of solutions that are even in the ϕ variable.

Lemma 3 Let f(λk)=a2k for a≥1, and Fψ=
∑∞
k=0f(λk)

∑k
j=−kψ

j
kY

j
k .

There exists C>0, independent of a and b, and Cb>0 depending on b only,
such that for any ψ even in ϕ, for which

∑∞
k=1k

2a2k∑k
j=−k |ψ

j
k|2<∞ we have

|(B(ψ,V ),Fψ)g|≤Ca4b

1+
∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2

+C(a4−1)b
∞∑
k=0

k2a2k
k∑

j=−k
|ψjk|2,

(4.14)
and if 1≤a4≤1+(4Cb)−1, then also

|(B(ψ,V ),Fψ)g|≤Cb+
1

2
(Aψ,Fψ).

Proof : Due to Lemma 1,

(B(ψ,V ),Fψ)g =
1

2

∫
S2
V (FψAψ−ψAFψ−6ψFψ)σ(dφ)

Therefore, by Lemma 2 and the fact that λk+2−λk =4k+6

(B(ψ,V ),Fψ)g

= −3
2∑

m=−2

∞∑
k=0

k∑
j=−k

f(λk)V
mψjkψ

−(m+j)
k

∫
S2
Y m

2 Y j
k Y

−(m+j)
k σ(dφ)

−3
2∑

m=−2

∞∑
k=0

k∑
j=−k

(f(λk)+f(λk+2))V
mψjkψ

−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

−1

2

2∑
m=−2

∞∑
k=0

k∑
j=−k

(λk+2−λk)(f(λk+2)−f(λk))V
mψjkψ

−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

= −3
2∑

m=−2

∞∑
k=0

k∑
j=−k

f(λk)V
mψjkψ

−(m+j)
k

∫
S2
Y m

2 Y j
k Y

−(m+j)
k σ(dφ)
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−6
2∑

m=−2

∞∑
k=0

k∑
j=−k

f(λk+2)V
mψjkψ

−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

−2
2∑

m=−2

∞∑
k=0

k∑
j=−k

k(f(λk+2)−f(λk))V
mψjkψ

−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

= −3a4

2π

2∑
m=−2

V mψ−m2

−3
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2kV mψjkψ
m+j
k

∫
S2
Y m

2 Y j
k Y

−(m+j)
k σ(dφ)

−6
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2k+4V mψjkψ
−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

−2(a4−1)
2∑

m=−2

∞∑
k=1

k∑
j=−k

ka2kV mψjkψ
m+j
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ).

The following estimates are obtained using (4.12), (4.11), and (4.13). We
have ∣∣∣∣∣∣−3

2∑
m=−2

∞∑
k=1

k∑
j=−k

a2kV mψjkψ
m+j
k

∫
S2
Y m

2 Y j
k Y

−(m+j)
k σ(dφ)

∣∣∣∣∣∣
≤ 15b

2∑
m=−2

∞∑
k=1

k∑
j=−k

a2k|ψjkψ
m+j
k |

∫
S2
|Y j
k Y

−(m+j)
k |σ(dφ)

≤ 15b
∞∑
k=0

(2k+1)a2k
k∑

j=−k
|ψjk|2≤60b

∞∑
k=0

ka2k
k∑

j=−k
|ψjk|2,

and ∣∣∣∣∣∣−6
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2k+4V mψjkψ
−(m+j)
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

∣∣∣∣∣∣
≤ 30b

2∑
m=−2

∞∑
k=1

k∑
j=−k

a2k+4|ψjkψ
m+j
k+2 |

∫
S2
|Y j
k Y

−(m+j)
k+2 |σ(dφ)

≤ 60b

 ∞∑
k=1

(k+2)a2k+4
k∑

j=−k
|ψjk|2 +

∞∑
k=1

(k+2)a2k+4
k∑

j=−k
|ψjk+2|2


≤ 60b(3a4 +1)

∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2,
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and also∣∣∣∣∣∣−2(a4−1)
2∑

m=−2

∞∑
k=1

k∑
j=−k

ka2kV mψjkψ
m+j
k+2

∫
S2
Y m

2 Y j
k Y

−(m+j)
k+2 σ(dφ)

∣∣∣∣∣∣
≤ 10b(a4−1)

2∑
m=−2

∞∑
k=1

k∑
j=−k

ka2k|ψjkψ
m+j
k+2 |

∫
S2
|Y j
k Y

−(m+j)
k+2 |σ(dφ)

≤ 20b(a4−1)

 ∞∑
k=1

k(k+2)a2k
k∑

j=−k
|ψjk|2 +

∞∑
k=0

k(k+2)a2k
k∑

j=−k
|ψjk+2|2


≤ 20b(a4−1)

3
∞∑
k=1

k2a2k
k∑

j=−k
|ψjk|2 +

1

a4

∞∑
k=0

(k+2)2a2k+4
k∑

j=−k
|ψjk+2|2


≤ 80b(a4−1)

∞∑
k=1

k2a2k
k∑

j=−k
|ψjk|2.

The estimate (4.14) follows. For any a, which satisfies 1≤a4≤1+(4Cb)−1,
and an integer k0 such that 4Ca4b≤k0<4Ca4b+1, and by virtue of (4.12)
one has

|(B(ψ),Fψ)g|−
1

2
(Aψ,Fψ)g ≤ Ca4b+Ca4b

∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2−

1

4

∞∑
k=1

k2a2k
k∑

j=−k
|ψjk|2

≤ Ca4b+Ca4b
∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2−Ca4b

∞∑
k=k0

ka2k
k∑

j=−k
|ψjk|2

= Ca4b+Ca4b
k0−1∑
k=1

ka2k (2k+1)2

4π
≤Cb.

2

The next Theorem is an application of Lemma 3 for the choice of a=1,
and establishes the dissipation of solutions in L2(S2).

Theorem 5 Let ψ0 be a nonnegative continuous function on S2. Then
the unique solution ψ(φ,t) of (2.3) for n=3 with initial datum ψ0 dissipates
in L2(S2) according to the inequality

‖ψ(t)‖2
L2 ≤C1b

5 +e−t‖ψ0‖L2 , t>0,

where C1 is a constant independent of b.
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Proof : Applying Lemma 3 for a=1 one obtains

d

2dt
(ψ,ψ)g+(Aψ,ψ)g =(B(ψ),ψ)g≤Cb+

1

2
(Aψ,ψ)g,

thus
d

2dt
‖ψ‖2

L2 +
1

2
‖ψ‖L2 ≤Cb.

One can easily see that Cb=C1b
5 for a constant C1 independent of b, and

the Theorem follows. 2

The following Theorem establishes the regularity and the dissipativity of
solutions in a Gevrey class. The idea of the proof is inspired by the work
of [9] and its generalization in [1], [2] and [8]. The proof presented here is
formal and can be easily made rigorous by applying the Galerkin procedure.

Theorem 6 Let ψ0 be a nonnegative continuous function on S2, and
ψ(φ,t) the unique solution of (2.3) (n=3) corresponding to that initial datum.
Let a be such that 1<a4≤min{e,1+(4Cb)−1}, and let h(t)=min{t,1}. Then

∞∑
k=1

a2kh(t)
k∑

j=−k
|ψjk|2≤4Cb+e

−t/2‖ψ0‖L2 , t≥0.

Proof : Let

F(t)ψ(t)=
∞∑
k=0

a2kh(t)
k∑

j=−k
ψjk(t)Y

j
k ,

and

F ′(t)ψ(t)=2lna h′(t)
∞∑
k=0

ka2kh(t)
k∑

j=−k
ψjk(t)Y

j
k .

Multiplying the equation (2.3) by F(t)ψ and integrating over S2 one obtains

d

2dt
(ψ,F(·)ψ)g−

1

2
(ψ,F ′(·)ψ)g+(Aψ,F(·)ψ)g =(B(ψ),F(·)ψ)g

which together with Lemma 3 yields

d

2dt

∞∑
k=0

a2kh(t)
k∑

j=−k
|ψjk|2− lna h′(t)

∞∑
k=0

ka2kh(t)
k∑

j=−k
|ψjk|2 +

1

2

∞∑
k=0

k2a2kh(t)
k∑

j=−k
|ψjk|2≤Cb,

thus
d

2dt

∞∑
k=0

a2kh(t)
k∑

j=−k
|ψjk|2 +

1

4

∞∑
k=0

k2a2kh(t)
k∑

j=−k
|ψjk|2≤Cb,

and the Theorem follows. 2
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Remark 3 As in the 2D case, the dissipativity in Gevrey classes implies
the dissipativity of ψ and its partial derivatives in L∞(S2). In particular,
the global attractor A exists in this case as well, it is finite-dimensional, and
there are constants M̃(n,b), depending on n and b only, such that

sup
ψ∈A

‖∇n
gψ‖L∞≤M̃(n,b),

and
lim
t→∞

inf
ψ∈A

‖∇n
gS(t)ψ0−∇n

gψ‖L∞ =0.

Remark 4 As a result of the Gevrey regularity one can easily prove that
the Galerkin scheme, based on the eigenfunctions of the Laplacian (in the
2D case) and the Laplace-Beltrami operator (in the 3D case) , converges
exponentially fast to the exact solution of the underlying equation (see, e.g.,
[6] and [11]).
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