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1 Introduction

In 2004 the mathematical world will mark 120 years since the advent of tur-
bulence theory ([80]). In his 1884 paper Reynolds introduced the decompo-
sition of turbulent flow into mean and fluctuation and derived the equations
that describe the interaction between them. The Reynolds equations are still
a riddle. They are based on the Navier-Stokes equations, which are a still
a mystery. The Navier-Stokes equations are a viscous regularization of the
Euler equations, which are still an enigma. Turbulence is a riddle wrapped
in a mystery inside an enigma ([11]).

Crucial for the determination of the mean in the Reynolds equation are
Reynolds stresses, which are second order moments of fluctuation. The fluc-
tuation requires information about small scales. In order to be able to com-
pute at high Reynolds numbers, in state-of-the-art engineering practice, these
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small scales are replaced by sub-grid models. “Que de choses il faut ignorer
pour ’agir’ ! ” sighed Paul Valéry ([88]). (“How many things must one ignore
in order to ’act’ ! ”) The effect of small scales on large scales is the riddle
in the Reynolds equations. In 1941 Kolmogorov ([65]) ushered in the idea of
universality of the statistical properties of small scales. This is a statement
about the asymptotics: long time averages, followed by the infinite Reynolds
number limit. This brings us to the mystery in the Navier-Stokes equations:
the infinite time behavior at finite but larger and larger Reynolds numbers.
The small Reynolds number behavior is trivial (or “direct”, to use the words
of Reynolds himself). Ruelle and Takens suggested in 1971 that determin-
istic chaos emerges at larger Reynolds numbers ([83]). The route to chaos
itself was suggested to be universal by Feigenbaum ([49]). Foias and Prodi
discussed finite dimensional determinism in the Navier-Stokes equations al-
ready in 1967 ([55]), four years after the seminal work of Lorenz ([68]). The
dynamics have indeed finite dimensional character if one confines oneself to
flows in bounded regions in two dimensions ([2], [31], [32], [34], [56], [69]). In
three dimensions, however, the long time statistics question is muddied by
the blow up problem. Leray ([67]) showed that there exist global solutions,
but such solutions may develop singularities. Do such singularities exist?
And if they do, are they relevant to turbulence? The velocities observed
in turbulent flows on Earth are bounded. If one accepts this as a physical
assumption, then, invoking classical results of Serrin ([84]), one concludes
that Navier-Stokes singularities, if they exist at all, are not relevant to tur-
bulence. The experimental evidence, so far, is of a strictly positive energy
dissipation rate 0 < ε = 〈ν|∇u|2〉, at high Reynolds numbers. This is con-
sistent with large gradients of velocity. The gradients of velocity intensify
in vortical activity. This activity consists of three mechanisms: stretching,
folding and reconnection of vortices. The stretching and folding are inviscid
mechanisms, associated with the underlying incompressible Euler equations.
The reconnection is the change of topology of the vortex field, and it is not
allowed in smooth solutions of the Euler equations. This brings us to the
enigma of the Euler equations, and it is here where it is fit we start.
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2 Euler Equations

The Euler equations of incompressible fluid mechanics present some of the
most serious challenges for the analyst. The equations are

Dtu+∇p = 0 (1)

with ∇ · u = 0. The function u = u(x, t) is the velocity of an ideal fluid
at the point x in space at the moment t in time. The fluid is assumed to
have unit density. The velocity is a three-component vector, and x lies in
three dimensional Euclidean space. The requirement that ∇ · u = 0 reflects
the incompressibility of the fluid. The material derivative (or time derivative
along particle trajectories) associated to the velocity u is

Dt = Dt(u,∇) = ∂t + u · ∇. (2)

The acceleration of a particle passing through x at time t is Dtu. The Euler
equations are an expression of Newton’s second law, F = ma, in the form
−∇p = Dtu. Thus, the only forces present in the ideal incompressible Euler
equations are the internal forces at work keeping the fluid incompressible.
These forces are not local: the pressure obeys

−∆p = ∇ · (u · ∇u) = Tr
{

(∇u)2
}

= ∂i∂j (uiuj) .

If one knows the behavior of the pressure at boundaries then the pressure
satisfies a nonlocal functional relation of the type p = F ([u⊗u]). For instance,
in the whole space, and with decaying boundary conditions

p = RiRj(uiuj)

where Ri = ∂i(−∆)−
1
2 are Riesz transforms. (We always sum repeated in-

dices, unless we specify otherwise. The pressure is defined up to a time
dependent constant; in the expression above we have made a choice of zero
average pressure.)

Differentiating the Euler equations one obtains:

DtU + U2 + Tr
{

(R⊗R)U2
}

= 0

where U = (∇u) is the matrix of derivatives. We used the specific expression
for p written above for the whole space with decaying boundary conditions.
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This equation is quadratic and it suggests the possibly of singularities in
finite time, by analogy with the ODE d

dt
U + U2 = 0 . In fact, the distorted

Euler equation
∂tU + U2 + Tr

{
(R⊗R)U2

}
= 0

does indeed blow up ([15]). The incompressibility constraint TrU = 0 is
respected by the distorted Euler equation. However, the difference between
the Eulerian time derivative ∂t and the Lagrangian time derivative Dt is
significant. One may ask whether true solutions of the Euler equations do
blow up. The answer is yes, if one allows the solutions to have infinite kinetic
energy. We will give an example in Section Three. The blow up is likely due
to the infinite supply of energy, coming from infinity. The physical question
of finite time local blow up is different, and perhaps even has a different
answer.

In order to analyze nonlinear PDEs with physical significance one must
take advantage of the basic invariances and conservation laws associated to
the equation. When properly understood, the reasons behind the conserva-
tion laws show the way to useful cancellations.

Smooth solutions of the Euler equations conserve total kinetic energy,
helicity and circulation. The total kinetic energy is proportional to the L2

norm of velocity. This is conserved for smooth flows. The Onsager conjecture
([72], [48]) states that this conservation occurs if and only if the solutions
are smoother than the velocities supporting the Kolmogorov theory, (Hölder
continuous of exponent 1/3). The “if” part was proved ([28]). The “only
if” part is difficult: there is no known notion of weak solutions dissipating
energy but with Hölder continuous velocities. The work of Robert ([81]) and
weak formulations of Brenier and of Shnirelman are relevant to this question
([85], [6]).

In order to describe the helicity and circulation we need to talk about vor-
ticity and about particle paths. The Euler equations are formally equivalent
to the requirement that two first order differential operators commute:

[Dt,Ω] = 0.

The first operator Dt = ∂t +u ·∇ is the material derivative associated to the
trajectories of u. The second operator

Ω = ω(x, t) · ∇
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is differentiation along vortex lines, the lines tangent to the vorticity field ω.
The commutation means that vortex lines are carried by the flow of u, and
is equivalent to the equation

Dtω = ω · ∇u. (3)

This is a quadratic equation because ω and u are related, ω = ∇ × u. If
boundary conditions for the divergence-free ω are known (periodic or decay
at infinity cases) then one can use the Biot-Savart law

u = K3DE ∗ ω = ∇× (−∆)−1ω (4)

coupled with (3) as an equivalent formulation of the Euler equations, the
vorticity formulation used in the numerical vortex methods of Chorin ([13],
[14]). The helicity is

h = u · ω.

The Lagrangian particle maps are

a 7→ X(a, t), X(a, 0) = a.

For fixed a, the trajectories of u obey

dX

dt
= u(X, t).

The incompressibility condition implies

det (∇aX) = 1.

The Euler equations can be described ([63], [1]) formally as Euler-Lagrange
equations resulting from the stationarity of the action∫ b

a

∫
|u(x, t)|2 dxdt

with

u(x, t) =
∂X

∂t
(A(x, t), t)

and with fixed end values at t = a, b and

A(x, t) = X−1(x, t).
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Helicity integrals ([71]) ∫
T
h(x, t)dx = c

are constants of motion, for any vortex tube T (a time evolving region whose
boundary is at each point parallel to the vorticity, ω ·N = 0 where N is the
normal to ∂T at x ∈ ∂T .) The constants c have to do with the topological
complexity of the flow.

Davydov, and Zakharov and Kuznetsov ([42], [93]) have formulated the
incompressible Euler equations as a Hamiltonian system in infinite dimen-
sions in Clebsch variables. These are a pair of active scalars θ, ϕ which are
constant on particle paths,

Dtϕ = Dtθ = 0

and also determine the velocity via

ui(x, t) = θ(x, t)
∂ϕ(x, t)

∂xi
− ∂n(x, t)

∂xi
.

The helicity constants vanish identically for flows which admit a Clebsch
variables representation. Indeed, for such flows the helicity is the divergence
of a field that is parallel to the vorticity h = −∇ · (nω). This implies that
not all flows admit a Clebsch variables representation. But if one uses more
variables, then one can represent all flows. This is done using the Weber
formula ([90]) which we derive briefly below.

In Lagrangian variables the Euler equations are

∂2Xj(a, t)

∂2t
= −∂p(X(a, t), t)

∂xj
. (5)

Multiplying this by ∂Xj(a,t)
∂ai

we obtain

∂2Xj(a, t)

∂t2
∂Xj(a, t)

∂ai
= −∂p̃(a, t)

∂ai

where p̃(a, t) = p(X(a, t), t). Forcing out a time derivative in the left-hand
side we obtain

∂

∂t

[
∂Xj(a, t)

∂t

∂Xj(a, t)

∂ai

]
= −∂q̃(a, t)

∂ai
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with

q̃(a, t) = p̃(a, t)− 1

2

∣∣∣∣∣∂X(a, t)

∂t

∣∣∣∣∣
2

Integrating in time, fixing the label a we obtain:

∂Xj(a, t)

∂t

∂Xj(a, t)

∂ai
= ui(0)(a)− ∂ñ(a, t)

∂ai

with

ñ(a, t) =
∫ t

0
q̃(a, s)ds

where

u(0)(a) =
∂X(a, 0)

∂t

is the initial velocity. We have thus:

(∇aX)∗∂tX = u(0)(a)−∇añ.

where we denote M∗ the transpose of the matrix M .
Multiplying by [(∇aX(a, t))∗]

−1
and reading at a = A(x, t) with

A(x, t) = X−1(x, t)

we obtain the Weber formula

ui(x, t) =
(
uj(0)(A(x, t))

) ∂Aj(x, t)
∂xi

− ∂n(x, t)

∂xi
.

This relationship, together with boundary conditions and the divergence-free
requirement can be written as

u = W [A, v] = P {(∇A)∗v} (6)

where P is the corresponding projector on divergence-free functions and v is
the virtual velocity

v = u(0) ◦ A.

We will consider the cases of periodic boundary conditions or whole space.
Then

P = I +R⊗R
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holds, with R the Riesz transforms. This procedure turns A into an active
scalar system 

DtA = 0,
Dtv = 0,

u = W [A, v].
(7)

Active scalars ([17]) are solutions of the passive scalar equation Dtθ = 0
which determine the velocity through a time independent, possibly non-local
equation of state u = U [θ].

Conversely, and quite generally: Start with two families of labels and
virtual velocities

A = A(x, t, λ), v(x, t, λ)

depending on a parameter λ such that

DtA = Dtv = 0

with Dt = ∂t + u · ∇x. Assume that u can be reconstructed from A, v via a
generalized Weber formula

u(x, t) =
∫
∇xA(x, t, λ)v(x, t, λ)dµ(λ)−∇xn

with some function n, and some measure dµ. Then u solves the Euler equa-
tions

∂u

∂t
+ u · ∇u+∇π = 0

where

π = Dtn+
1

2
|u|2.

Indeed, using the kinematic commutation relation

Dt∇xf = ∇xDtf − (∇xu)∗∇xf

and differentiating the generalized Weber formula we obtain:

Dtu = Dt(
∫
∇xAvdµ−∇xn) =

−
∫

((∇xu)∗∇xA)vdµ−∇x(Dtn) + (∇xu)∗∇n =

−∇x(Dtn)− (∇xu)∗
[∫

(∇xA)vdµ−∇xn
]

=
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−∇x(Dtn)− (∇xu)∗u = −∇x(π).

The circulation is the loop integral

Cγ =
∮
γ
u · dx

and the conservation of circulation is the statement that

d

dt
Cγ(t) = 0

for all loops carried by the flow. This follows from the Weber formula because

uj(X(a, t))
∂Xj

∂ai
= ui(0)(a)− ∂ñ(a, t)

∂ai
.

The important thing here is that the right hand side is the sum of a time
independent function of labels and a label gradient. Viceversa, the above
formula follows from the conservation of circulation. The Weber formula is
equivalent thus to the conservation of circulation.

Differentiating the Weber formula, one obtains

∂ui

∂xj
= Pik

(
Det

[
∂A

∂xj
;
∂A

∂xk
;ω(0)(A)

])
.

Here we used the notation

ω(0) = ∇× u(0).

Taking the antisymmetric part one obtains the Cauchy formula:

ωi =
1

2
εijk

(
Det

[
∂A

∂xj
;
∂A

∂xk
;ω(0)(A)

])
.

which we write as
ω = C[∇A, ζ] (8)

with ζ the Cauchy invariant

ζ(x, t) = ω(0) ◦ A.

Therefore the active scalar system
DtA = 0,
Dtζ = 0,

u = ∇× (−∆)−1 (C[∇A, ζ])
(9)
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is an equivalent formulation of the Euler equations, in terms of the Cauchy
invariant ζ. The purely Lagrangian formulation (5) of the Euler equations
is in phrased in terms of independent label variables (or ideal markers) a, t,
except that the pressure is obtained by solving a Poisson equation in Eule-
rian independent variables x, t. The rest of PDE formulations of the Euler
equations described above were: the Eulerian velocity formulation (1), the
Eulerian vorticity formulation (3), the Eulerian-Lagrangian virtual velocity
formulation (7) and the Eulerian-Lagrangian Cauchy invariant formulation
(9). The Eulerian-Lagrangian equations are written in Eulerian coordinates
x, t, in what physicists call “laboratory frame”. The physical meaning of the
dependent variables is Lagrangian.

The classical local existence results for Euler equations can be proved in
either purely Lagrangian formulation ([45]), in Eulerian formulation ([70]) or
in Eulerian-Lagrangian formulation ([19]). For instance one has

Theorem 1 ([19]) Let α > 0, and let u0 be a divergence free C1,α periodic
function of three variables. There exists a time interval [0, T ] and a unique
C([0, T ];C1,α) spatially periodic function `(x, t) such that

A(x, t) = x+ `(x, t)

solves the active scalar system formulation of the Euler equations,

∂A

∂t
+ u · ∇A = 0,

u = P {(∇A(x, t))∗u0(A(x, t))}

with initial datum A(x, 0) = x.

A similar result holds in the whole space, with decay requirements for the
vorticity. As an application, let us consider rotating three dimensional in-
compressible Euler equations

∂tu+ u · ∇u+∇π + 2Ωe3 × u = 0.

The Weber formula for relative velocity is:

u(x, t) = P(∂iA
m(x, t)um0 (A(x, t), t))

+ΩP {(ẑ;A(x, t), ∂iA(x, t))− (ẑ;x; ei)} .
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Here Ω is the constant angular velocity (not ω ·∇ ), and ei form the canonical
basis of R3. We consider the Lagrangian paths X(a, t) associated to the
relative velocity u, and their inverses A(x, t) = X−1(x, t), obeying

(∂t + u · ∇)A = 0.

As a consequence of the Cauchy formula for the total vorticity ω+ 2Ωe3 one
can prove that the direct Lagrangian displacement

λ(a, t) = X(a, t)− a

obeys a time independent differential equation. The Cauchy formula for the
total vorticity (the vorticity in a non-rotating frame) follows from differen-
tiation of the Weber formula above and is the same as in the non-rotating
case

ω + 2Ωe3 = C[∇A, ζ + 2Ωe3]

Composing with X the right hand side is

C[∇A, ζ + 2Ωe3] ◦X =
(
ω(0) + 2Ωe3

)
· ∇aX.

Rearranging the Cauchy formula we obtain

∂a3λ(a, t) +
1

2
ρ0(a)ξ0(a) · ∇aλ(a, t) =

=
1

2
(ρt(a)ξ(a, t)− ρ0(a)ξ(a, 0))

where

ρt(a) =
|ω(X(a, t), t)|

Ω

is the local Rossby number and ξ = ω
|ω| is the unit vector of relative vorticity

direction. This fact explains directly (∂a3λ = O(ρ)) the fact that strong
rotation inhibits vertical transport ([24]). In particular, one can prove rather
easily

Theorem 2 Let u0 ∈ Hs(T3), s > 5
2

and let T > 0 be small enough . For
each Ω, consider the inverse and direct Lagrangian displacements

`(x, t) = A(x, t)− x
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and
λ(a1, a2, a3, t) = X(a1, a2, a3, t)− (a1, a2, a3).

They obey
‖∂x3`(·, t)‖L∞(dx) ≤ Cρ

and
‖∂a3λ(·, t)‖L∞(da) ≤ Cρ

with ρ = Ω−1 sup0≤t≤T ‖ω(·, t)‖L∞(dx).
Let Ωj → ∞ be an arbitrary sequence and let Xj(a1, a2, a3, t) denote the

Lagrangian paths associated to Ωj. Then, there exists a subsequence (denoted
for convenience by the same letter j) an invertible map X(a1, a2, a3, t), and
a periodic function of two variables λ(a1, a2, t) such that

lim
j→∞

Xj(a1, a2, a3, t) = X(a1, a2, a3, t)

holds uniformly in a, t and

X(a1, a2, a3) = (a1, a2, a3) + λ(a1, a2, t)

This represents a nonlinear Taylor-Proudman theorem in the presence of in-
ertia. It also implies, at positive Rossby number, that the vertical transport,
in a relative vorticity turnover time is of the order of the local Rossby num-
ber. The nonlinear Taylor Proudman statement and derivation of effective
equations are usually addressed via analysis of resonant interactions ([46],
[3]).

3 An Infinite Energy Blow Up Example

A classical stagnation point ansatz for the solution of the Euler equations
was shown to lead to blow up in three dimensions by J.T. Stuart ([87]), and
two dimensions by Childress, Iearly, Spiegel and Young ( [12]). A new ansatz,
and numerics for the singularity are due to Gibbon and Ohkitani ([76]). The
ansatz requires infinite energy, separation of variables, and demands the three
dimensional velocity in the form

u(x, y, z, t) = (u(x, y, t), zγ(x, y, t))
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with γ(x, y, t) and u(x, y, t) = (u1(x, y, t), u2(x, y, t)) periodic functions of
two variables with fundamental domain Q. The divergence-free condition for
u becomes the two dimensional

∇ · u = −γ.

The Euler equations respect this ansatz and the dynamics reduce to a pair
of equations, one for the vorticity in the vertical direction

ω3(x, y, t) =
∂u2(x, y, t)

∂x
− ∂u1(x, y, t)

∂y
,

and one for the variable γ which represents the vertical derivative of the
vertical component of velocity. The velocity is recovered using constitutive
equations for a stream function ψ and a potential h. This entire system is

∂tω3 + u · ∇ω3 = γω3.
∂γ
∂t

+ u · ∇γ = −γ2 + 2
|Q|
∫
Q γ

2(x, t)dx

u = ∇⊥ψ +∇h
−∆h = γ,
−∆ψ = ω3.

The two dynamical equations for (ω3, γ) coupled with the constitutive equa-
tions for u form the nonlocal Riccati system. This blows up from all nontrivial
initial data:

Theorem 3 ([18]) Consider the nonlocal conservative Riccati system. For
any smooth, mean zero initial data γ0 6= 0, ω0, the solution becomes infinite
in finite time. Both the maximum and the minimum values of the component
γ of the solution diverge to plus infinity and respectively to negative infinity
at the blow up time.

One can determine explicitly the blow up time and the form of γ on char-
acteristics, without having to actually integrate the characteristic equations,
which may be rather difficult. The solution is given on characteristics X(a, t)
in terms of the initial data γ(x, 0) = γ0(x) by

γ(X(a, t), t) = α(τ(t))

(
γ0(a)

1 + τ(t)γ0(a)
− φ(τ(t))

)
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where

φ(τ) =

{∫
Q

γ0(a)

(1 + τγ0(a))2
da

}{∫
Q

1

1 + τγ0(a)
da

}−1

,

α(τ) =

{
1

|Q|

∫
Q

1

1 + τγ0(a)
da

}−2

and
dτ

dt
= α(τ), τ(0) = 0.

The function τ(t) can also be obtained implicitly from

t =

(
1

|Q|

)2 ∫
Q

∫
Q

1

γ0(a)− γ0(b)
log

(
1 + τγ0(a)

1 + τγ0(b)

)
dadb.

The blow up time t = T∗ is given by

T∗ =
1

|Q|2
∫ ∫ 1

γ0(a)− γ0(b)
log

(
γ0(a)−m0

γ0(b)−m0

)
dadb

where
m0 = min

Q
γ0(a) < 0.

The Jacobian J(a, t) = Det
{
∂X(a,t)
∂a

}
is given by

J(a, t) =
1

1 + τ(t)γ0(a)

{
1

|Q|

∫
Q

da

1 + τ(t)γ0(a)

}−1

Because the Jacobian can be found explicitly, one can get some of the Eu-
lerian information as well: integrals of powers of γ can be computed. The
moments of γ are given by ∫

Q
(γ(x, t))pdx =

(α(τ))p
∫
Q

{
γ0(a)

1 + τ(t)γ0(a)
− φ(τ(t))

}p
J(a, t)da.

The proof of these facts is based on several auxilliary constructions. Let
φ solve

∂τφ+ v · ∇φ = −φ2
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together with

∇ · v(x, τ) = −φ(x, τ) +
1

|Q|

∫
Q
φ(x, τ)dx.

We take the curl ζ = ∂v2

∂x
− ∂v1

∂y
and demand that

∂τζ + v · ∇ζ =

(
φ− 3

|Q|

∫
Q
φ(x, τ)dx

)
ζ.

Note that this is a linear equation when φ is known, which allows a bootstrap
argument to guarantee that the construction does not breakdown before the
blow up time derived below. Passing to characteristics

dY

dτ
= v(Y, τ)

we integrate and obtain

φ(Y (a, τ), τ) =
φ0(a)

1 + τφ0(a)

valid as long
inf
a∈Q

(1 + τφ0(a)) > 0.

We need to compute

φ(τ) =
1

|Q|

∫
Q
φ(x, τ)dx.

The Jacobian

J(a, τ) = Det

{
∂Y

∂a

}
obeys

dJ

dτ
= −h(a, τ)J(a, τ)

where
h(a, τ) = φ(Y (a, τ), τ)− φ(τ).

Initially the Jacobian equals to one, so

J(a, τ) = e−
∫ τ

0
h(a,s)ds.
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Consequently

J(a, τ) = e
∫ τ

0
φ(s)ds exp (−

∫ τ

0

d

ds
log(1 + sφ0(a))ds)

and thus

J(a, τ) = e
∫ τ

0
φ(s)ds 1

1 + τφ0(a)
.

The map a 7→ Y (a, τ) is one and onto. Changing variables one has∫
Q
φ(x, τ)dx =

∫
Q
φ(Y (a, τ), t)J(a, τ)da

and therefore

φ(τ) = e
∫ τ

0
φ(s)ds 1

|Q|

∫
Q

φ0(a)

(1 + τφ0(a))2
da.

Consequently
d

dτ
e−
∫ τ

0
φ(s)ds =

d

dτ

1

|Q|

∫
Q

1

1 + τφ0(a)
da.

Because both sides at τ = 0 equal one, we have

e−
∫ τ

0
φ(s)ds =

1

|Q|

∫
Q

1

1 + τφ0(a)
da

and

φ(τ) =

{∫
Q

φ0(a)

(1 + τφ0(a))2
da

}{∫
Q

1

1 + τφ0(a)
da

}−1

.

Note that the function δ(x, τ) = φ(x, τ)− φ(τ)obeys

∂δ

∂τ
+ v · ∇δ = −δ2 + 2

1

|Q|

∫
Q
δ2dx− 2φδ.

We consider now the function

σ(x, τ) = e2
∫ τ

0
φ(s)dsδ(x, τ)

and the velocity

U(x, τ) = e2
∫ τ

0
φ(s)dsv(x, τ).

Multiplying the equation of δ by e4
∫ τ

0
φ(s)ds we obtain

e2
∫ τ

0
φ(s)ds∂σ

∂τ
+ U · ∇σ = −σ2 +

2

|Q|

∫
σ2dx.
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Note that
∇ · U = −σ.

Now we change the time scale. We define a new time t by the equation

dt

dτ
= e−2

∫ τ
0
φ(s)ds,

t(0) = 0, and new variables

γ(x, t) = σ(x, τ)

and
u(x, t) = U(x, τ).

Now γ solves the nonlocal conservative Riccati equation

∂γ

∂t
+ u · ∇γ = −γ2 +

2

|Q|

∫
γ2dx

with periodic boundary conditions,

u = (−∆)−1
[
∇⊥ω +∇γ

]
and

∂ω

∂t
+ u · ∇ω = γω

The initial data are
γ0(x) = δ0(x) = φ0(x)

and

t =

(
1

|Q|

)2 ∫
Q

∫
Q

1

φ0(a)− φ0(b)
log

1 + τφ0(a)

1 + τφ0(b)
dadb.

Note that the characteristic system

dX

dt
= u(X, t)

is solved by
X(a, t) = Y (a, τ)

This implies the relationship

γ(X(a, t), t) = α(τ)

(
φ0(a)

1 + τφ0(a)
− φ(τ)

)

17



α(τ) = e2
∫ τ

0
φ(s)ds.

If the initial smooth function γ0(a) = φ0(a), of mean zero has minimum
m0 < 0, then the blow up time is

τ∗ = − 1

m0

Lets consider now a simple example, in order to determine the blow up
asymptotics. Let φ0 attain the minimum m0 at a0, and assume locally that

φ0(a) ≥ m0 + C|a− a0|2

for 0 ≤ |a− a0| ≤ r. Then it follows that the integral

1

|Q|

∫ da

ε2 + φ0(a)−m0

behaves like

1

|Q|

∫ da

ε2 + φ0(a)−m0

∼ log


√

1 +
(
Cr

ε

)2


for small ε. Taking

ε2 =
1

τ
− 1

τ∗

it follows that

e−
∫ τ

0
φ(s)ds ∼ log

{√
1 +

C

τ∗ − τ

}
and for small (τ∗ − τ)

1

|Q|

∫
Q

φ0(a)

(1 + τφ0(a))2
da ∼ − C

τ∗ − τ

and thus t(τ) has a finite limit t→ T∗ as τ → τ∗. The average φ(τ) diverges
to negative infinity,

φ(τ) ∼ − C

τ∗ − τ

[
log

{√
1 +

C

τ∗ − τ

}]−1

.
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The prefactor α becomes vanishingly small

α(τ) ∼ (log(τ∗ − τ))−2

and so

γ(X(a, t), t) ∼ (log(τ∗ − τ))−2

(
φ0(a)

1 + τφ0(a)
− φ(τ)

)
.

If φ0(a) > 0 then the first term in the brackets does not blow up and γ
diverges to plus infinity. If the label is chosen at the minimum, or nearby,
then the first term in the brackets dominates and the blow up is to negative
infinity, as expected from the ODE. From

(α(τ))−1dτ = dt

it follows that the asymptotic behavior of the blow up in t follows from the
one in τ :

T∗ − t ∼ (τ∗ − τ)
(

1 + log
(

1

τ∗ − τ

))2

4 Navier-Stokes Equations

The Navier-Stokes equations are

Dνu+∇p = 0, (10)

together with the incompressibility condition ∇ · u = 0. The operator Dν

Dν = Dν(u,∇) = ∂t + u · ∇ − ν∆ (11)

describes advection with velocity u and diffusion with kinematic viscosity ν >
0. When ν = 0 we recover formally the Euler equations (1), and Dν |ν=0 = Dt.
The vorticity ω = ∇× u obeys an equation similar to (3):

Dνω = ω · ∇u. (12)

The Eulerian-Lagrangian equations (7) and (9) have also viscous counterparts
([20]). The equation corresponding to (7) is

DνA = 0,
Dνv = 2νC∇v,
u = W [A, v]

(13)
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The u = W [A, v] is the Weber formula (6), same as in the case of ν = 0. The
right hand side of (13) is given terms of the connection coefficients

Cm
k;i =

(
(∇A)−1

)
ji

(∂j∂kA
m) .

The detailed form of virtual velocity equation in (13) is

Dνvi = 2νCm
k;i∂kvm.

The connection coefficients are related to the Christoffel coefficients of the
flat Riemannian connection in R3 computed using the change of variables
a = A(x, t):

Cm
k;i(x, t) = −Γmji(A(x, t))

∂Aj(x, t)

∂xk

The equation Dν(u,∇)A = 0 describes advection and diffusion of labels. Use
of traditional (DtA = 0) Lagrangian variables when ν > 0 would introduce
third order derivatives of A in the viscous evolution of the Cauchy invariant,
making the equations ill posed: the passive characteristics of u are not enough
to reconstruct the dynamics.

The diffusion of labels is a consequence of the physically natural idea of
adding Brownian motion to the Lagrangian flow. Indeed, if u(X(a, t), t) is
known, and if

dX(a, t) = u(X(a, t), t)dt+
√

2νdW (t), X(a, 0) = a,

with W (t) standard independent Brownian motions in each component, and
if

Prob {X(a, t) ∈ dx} = ρ(x, t; a)dx

then the expected value of the back to labels map

A(x, t) =
∫
ρ(x, t; a)ada

solves
Dν(u,∇)A = 0.

In addition to being well posed, the Eulerian-Lagrangian viscous equations
are capable of describing vortex reconnection. We associate to the virtual
velocity v the Eulerian-Lagrangian curl of v

ζ = ∇A × v (14)
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where
∇A
i =

(
(∇A)−1

)
ji
∂j

is the pull back of the Eulerian gradient. The viscous analogue of the
Eulerian-Lagrangian Cauchy invariant active scalar system (9) is

DνA = 0,
Dνζ

q = 2νGqk
p ∂kζ

p + νT qp ζ
p,

u = ∇× (−∆)−1 (C[∇A, ζ])
(15)

The Cauchy transformation

C[∇A, ζ] = (det(∇A))(∇A)−1ζ.

is the same as the one used in the Euler equations, (8). The specific form of
the two terms on the right hand side of the Cauchy invariant’s evolution are

Gqk
p = δqpC

m
k;m − C

q
k;p, (16)

and
T qp = εqjiεrmpC

m
k;iC

r
k;j. (17)

The system (13) is equivalent to the Navier-Stokes system. When ν = 0
the system reduces to (7). The system (15) is equivalent to the Navier-Stokes
system, and reduces to (9) when ν = 0.

The pair (A, v) formed by the diffusive inverse Lagrangian map and the
virtual velocity are akin to charts in a manifold. They are a convenient rep-
resentation of the dynamics of u for some time. When the representation
becomes inconvenient, then one has to change the chart. This may (and
will) happen if ∇A becomes non-invertible. Likewise, the pair (A, ζ) formed
with the “back-to-labels” map A and the diffusive Cauchy invariant ζ are
convenient charts. In order to clarify this statement let us introduce the ter-
minology of “group expansion” for the procedure of resetting. More precisely,
the group expansion for (13) is defined as follows. Given a time interval [0, T ]
we consider resetting times

0 = t0 < t1 < . . . < tn . . . ≤ T.

On each interval [ti, ti+1], i = 0, . . .we solve the system (13):
Dν(u,∇)A = 0,

Dν(u,∇)v = 2νC∇v,
u = P ((∇A)∗v) .
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with resetting values{
A(x, ti) = x,

v(x, ti + 0) = ((∇A)∗v)(x, ti − 0).

We require the strong resetting criterion that ∇` = (∇A)−I must be smaller
than a preassigned value ε in an analytic norm: ∃λ such that for all i ≥ 1
and all t ∈ [ti, ti+1] one has∫

eλ|k|
∣∣∣ ̂̀(k)

∣∣∣ dk ≤ ε < 1.

If there exists N such that T =
∑N
i=0(ti+1 − ti) then we say that the group

expansion converges on [0, T ]. A group expansion of (15) is defined similarly.
The resetting conditions are{

A(x, ti) = x,
ζ(x, ti + 0) = C[(∇A))(x, ti − 0), ζ(x, ti − 0)].

The strong analytic resetting criterion is the same. The first interval of time
[0, t1) is special. The initial value for v is u0 (the initial datum for the Navier-
Stokes solution), and the initial value for ζ is ω0, the corresponding vorticity.
The local time existence is used to guarantee invertibility of the matrix ∇A
on [0, t1) and Gevrey regularity ([57]) to pass from moderately smooth initial
data to Gevrey class regular solutions. Note that the resetting data are such
that both u and ω are time continuous.

Theorem 4 ([21]) Let u0 ∈ H1(R3) be divergence-free. Let T > 0. Assume
that the solution of the Navier-Stokes equations with initial datum u0 obeys
sup0≤t≤T ‖ω(·, t)‖L2(dx) <∞. Then there exists λ > 0 so that, for any ε > 0,
there exists τ > 0 such that both group expansions converge on [0, T ] and the
resetting intervals can be chosen to have any length up to τ , ti+1− ti ∈ [0, τ ].
The velocity u, solution of the Navier-Stokes equation with initial datum u0,
obeys the Weber formula (6). The vorticity ω = ∇ × u obeys the Cauchy
formula (8).

Conversely, if one group expansion converges, then so does the other,
using the same resetting times. The Weber and Cauchy formulas apply
and reconstruct the solution of the Navier-Stokes equation. The enstrophy
is bounded sup0≤t≤T ‖ω(·, t)‖L2(dx) < ∞, and the Navier-Stokes solution is
smooth.
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The quantity λ can be estimated explicitly in terms of the bound of en-
strophy, time T , and kinematic viscosity ν. Then τ is proportional to ε, with a
coefficient of proportionality that depends on the bound on enstrophy, time
T and ν. The converse statement, that if the group expansion converges,
then the enstrophy is bounded, follows from the fact that there are finitely
many resettings. Indeed, the Cauchy formula and the near identity bound
on ∇A imply a doubling condition on the enstrophy on each interval. It is
well-known that the condition regarding the boundedness of the enstrophy
implies regularity of the Navier-Stokes solution. Our definition of conver-
gent group expansion is very demanding, and it is justified by the fact that
once the enstrophy is bounded, one could mathematically demand analytic
norms. But the physical resetting criterion is the invertibility of the ma-
trix ∇A. The Euler equations require no resetting as long as the solution is
smooth. The Navier-Stokes equations, at least numerically, require numerous
and frequent resettings. There is a deep connection between these resetting
times and vortex reconnection ([74], [75]). In the Euler equation, as long
as the solution is smooth, the Cauchy invariant obeys ζ(x, t) = ω(0)(A(x, t))
with ω(0) = ω0, the initial vorticity. The topology of vortex lines is frozen
in time. In the Navier-Stokes system the topology changes. This is the
phenomenon of vortex reconnection. There is ample numerical and physi-
cal evidence for this phenomenon. In the more complex, but similar case
of magneto-hydrodynamics, magnetic reconnection occurs, and has powerful
physical implications. Vortex reconnection is a dynamical dissipative pro-
cess. The solutions of the Navier-Stokes equations obey a space time average
bound ([16], [21])

T∫
0

∫
R3

|ω(x, t)|
∣∣∣∣∣∇x

(
ω(x, t)

|ω(x, t)|

)∣∣∣∣∣
2

dxdt ≤ 1

2
ν−2

∫
R3

|u0(x, t)|2dx.

This bound is consistent with the numerically observed fact that the region of
high vorticity is made up of relatively straight vortex filaments (low curvature
of vortex lines) separated by distances that vanish with viscosity. The process
by which this separation is achieved is vortex reconnection. When vortex
lines are locally aligned, a geometric depletion of nonlinearity occurs, and the
local production of enstrophy drops. Actually, the Navier-Stokes equations
have global smooth solutions if the vorticity direction field ω

|ω| is Lipschitz

continuous ([29]) in regions of high vorticity. So, vortex reconnection is a
regularizing mechanism.
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In the case of the Navier-Stokes system the virtual velocity and the
Cauchy invariant in an expansion can be computed using the back to la-
bels map A, but unlike the case of the Euler equations, they are no longer
frozen in time: they diffuse. Let us recall that, using the smooth change
of variables a = A(x, t) (at each fixed time t) we compute the Euclidean
Riemannian metric by

gij(a, t) = (∂kA
i)(∂kA

j)(x, t) (18)

The equations for the virtual velocity and for the Cauchy invariant can be
solved by following the path A, i.e., by seeking

v(x, t) = υ(A(x, t), t),
ζ(x, t) = ξ(A(x, t), t)

(19)

The equations for υ and ξ become purely diffusive. Using DνA = 0, the
operator Dν becomes

Dν(f ◦ A) =
(
(∂t − νgij∂i∂j)f

)
◦ A (20)

The equation for υ follows from (13):

∂tυi = νgmn∂m∂nυi − 2νV mj
i ∂mυj (21)

with
V mj
i = gmkΓjik

The derivatives are with respect to the Cartesian coordinates a. The equation
reduces to ∂tυ = 0 when ν = 0, and in that case we recover υ = u(0), the
time independent initial velocity. For ν > 0 the system is parabolic and well
posed. The equation for ξ follows from (15):

∂tξ
q = νgij∂i∂jξ

q + 2νW qk
n ∂kξ

n + νT qp ξ
p (22)

with {
W qk
n = −δqngkrΓprp + gkpΓqpn,
T qp = εqjiεrmpΓ

r
αjΓ

m
βig

αβ

Again, when ν = 0 this reduces to the invariance ∂tξ = 0. But in the
presence of ν this is a parabolic system. Both the Cauchy invariant and the
virtual velocity equations start out looking like the heat equation, because
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gmn(a, 0) = δmn and Γijk(a, 0) = 0. The equation for the determinant of ∇A
is

Dν (log(det(∇A)) = ν
{
Ci
k;sC

s
k;i

}
(23)

The initial datum vanishes. When ν = 0 we recover conservation of incom-
pressibility. In the case ν > 0 the inverse time scale in the right hand side
of this equation is significant for reconnection. Because the equation has a
maximum priciple it follows that

det(∇A)(x, t) ≥ exp
{
−ν

∫ t

ti
sup
x

{
Ci
k;sC

s
k;i

}
dσ
}

Considering
g = det(gij) (24)

where gij is the inverse of gij and observing that

g(A(x, t)) = (det(∇A))−2

we deduce that the equation (23) becomes

∂t(log(
√
g)) = νgij∂i∂j log(

√
g)− νgαβΓmαpΓ

p
βm (25)

The initial datum is zero, the equation is parabolic, has a maximum priciple
and is driven by the last term. The form (25) of the equation (23) has the
same interpretation: the connection coefficients define an inverse length scale
associated to A. The corresponding inverse time scale

ν
{
Ci
k;sC

s
k;i

}
= ν

{
gmnΓimsΓ

s
ni

}
◦ A

decides the time interval of validity of the chart A, and the time to recon-
nection. Let us denote

L = log(
√
g)

V i = gjkΓijk,
F = gjkΓijsΓ

s
ki.

The equation (25) for L can be written as

∂tL = νgij∂i∂jL− νF.

We will make use now of a few well-known facts from Riemannian geometry.
The first fact is

∂j log(
√
g) = Γmjm. (26)
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The second fact is the vanishing of the curvature of the Euclidean Riemannian
connection in R3

∂kΓ
i
ql + ΓipkΓ

p
ql = ∂lΓ

i
qk + ΓiplΓ

p
qk. (27)

The third fact is that the connection is compatible with the metric

∂ig
jk + Γjipg

pk + Γkipg
jp = 0. (28)

Taking the sum i = l in (27) we deduce that

ΓipkΓ
p
qi = ∂iΓ

i
qk − ∂kΓiqi + ΓipiΓ

p
qk.

Using (26) and multiplying by gkq we deduce

F = −gij∂i∂jL+ V j∂jL+ gαβ∂iΓ
i
αβ.

But, using (28) we deduce

gαβ∂iΓ
i
αβ = 2F − V i∂iL+ divV

with

divV =
1
√
g
∂i
(√

gV i
)
.

Therefore
gij∂i∂jL− F = divV, (29)

and we obtained an alternative form of (25):

∂t
√
g = ν∂i

(√
ggαβΓiαβ

)
. (30)

Let us introduce now

f q =
1
√
g
ξq. (31)

Writing ξ =
√
gf in (22) and using (30) it follows that

∂tf
q = νgαβ∂α∂βf

q + νDqk
n ∂kf

n + νF q
p f

p (32)

with
Dqk
n = 2gkpΓqpn

and
F q
p = T qp + 2gkjΓqjp∂kL+ δqpg

αβ
(
ΓiαjΓ

j
βi − ΓiαiΓ

j
βj

)
.
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In the derivation of the last expression we used the fact that
√
g = eL and

the equation (29). Let us note here what happens in two spatial dimensions.
In that case A3 = x3, Γ3

ij = 0, and f 1 = f 2 = 0. Then the free term F 3
3 in

(32) vanishes because T 3
3 cancels the δ3

3 term. The rest of the terms involve
Γ3
ij and vanish. The equation becomes thus the scalar equation

∂tf
3 = νgαβ∂α∂βf

3

which means that
ω3 = f 3 ◦ A.

Because the rest of components are zero, this means that in two dimensions
ω = f ◦ A. This represents the solution of the two dimensional vorticity
equation

Dνω = 0

as it is readily seen from (20). The three dimensional situation is more
complicated, f obeys the nontrivial well posed parabolic system (32), and
the Cauchy formula in terms of f reads

ω = (∇A)−1 (f ◦ A) . (33)

The function f ◦ A = (det(∇A)) ζ deserves just as much the name “Cauchy
invariant” as does ζ = ∇A × v. In the inviscid case these functions coincide,
of course. The Eulerian evolution equation of ζ̃ = (det(∇A))ζ is similar
to (15). There are two more important objects to consider, in the viscous
context: circulation, and helicity. We note that the Weber formula implies
that

udx− vdA = −dn

and therefore ∮
γ◦A

udx =
∮
γ
υda (34)

holds for any closed loop γ. Similarly, in view of the Cauchy formula one has
that the helicity obeys

h = u · ω = v · ζ̃ −∇ · (nω)

So, if T ◦ A is a vortex tube, then∫
T◦A

hdx =
∫
T◦A

v · ζ̃dx =
∫
T
υ · ξda. (35)
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The metric coefficients gij determine the connection coefficients, as it is
well known. But they do not determine their own evolution as they change
under the Navier-Stokes equations. (The evolution equation of gij involves
∇u and ∇A). It is therefore remarkable that the virtual velocity, Cauchy
invariant and volume element evolve according to equations that do not in-
volve explicitly the velocity, once one computes in a diffusive Lagrangian
frame. This justifies the following terminology: we will say that a function
f is diffusively Lagrangian under the Navier-Stokes flow if f ◦ A obeys an
evolution equation with coefficients determined locally by the Euclidean Rie-
mannian metric induced by the change of variables A. Thus, for instance,
the metric itself is not diffusively Lagrangian. The previous calculations can
be summarized thus:

Theorem 5 The virtual velocity v, the Cauchy invariant ζ and the Jacobian
determinant det(∇A) associated to solutions of the Navier-Stokes equations
are diffusively Lagrangian.

5 Approximations

We will describe here approximations of the Navier-Stokes (and Euler) equa-
tions. These approximations are partial differential equations with globally
smooth solutions. We’ll consider a mollifier: an approximation of the iden-
tity obtained by convolution with a smooth function which decays enough at
infinity, is positive and has integral equal to one. The mollified u is denoted
[u]:

[u]δ = δ−3
∫

R3
J
(
x− y
δ

)
u(y)dy = Jδ(−i∇)u = Jδu = [u]

The length scale δ > 0 is fixed in this section. In order to recover the original
equations one must pass to the limit δ → 0. The first approximation concerns
the Eulerian velocity formulation (10), and is due to Leray ([67]):

∂tu+ [u] · ∇u− ν∆u+∇p = 0 (36)

together with ∇ · u = 0. The Eulerian vorticity formulation (12) has an
approximation which corresponds to Chorin’s vortex methods ([13]):

∂tω + [u] · ω − ν∆ω = ω · ∇[u] (37)
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with u calculated from ω using ω = ∇× u. This relationship can be written
as

[u] = Jδ
(
∇× (−∆)−1

)
ω.

The virtual velocity active scalar system (13) has an approximation
Dν([u],∇)A = 0,

Dν([u],∇)v = 2νC∇v,
u = W [A, v].

(38)

The relationship determining the advecting velocity is thus

[u] = JδW [A, v]

with W [A, v] the same Weber formula (6). The Cauchy invariant active scalar
system (15) is approximated in a similar manner

Dν([u],∇)A = 0,
Dν([u],∇)ζq = 2νGqk

p ∂kζ
p + νT qp ζ

p,
u = ∇× (−∆)−1 (C[∇A, ζ])

(39)

The Cauchy formula (8) is the same, and the diffusive Lagrangian terms Gqk
p

and T qp are given by the same expressions (16), (17) as in the Navier-Stokes
case. In fact, the approximations of both group expansions are defined in
exactly the same way: one respects the constitutive laws relating virtual
velocity or Cauchy invariant to velocity, and the same resetting rules. One
modifies the advecting velocity: Dν is replaced by Dν([u],∇).

All four approximations are done by mollifying, but they are not equiva-
lent. The Leray approximate equation (36) has the same energy balance as
the Navier-Stokes equation,

d

2dt

∫
|u|2dx+ ν

∫
|∇u|2dx = 0

but, when one sets ν = 0 the circulation integrals are not conserved. The vor-
ticity approximation conserves circulation, but has different energy structure
(the integrals of u · [u] decay). The approximations of the active scalar sys-
tems provide convergent group expansions for the vorticity approximation,
not the Leray approximation.
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Theorem 6 Consider u0 ∈ H1(R3), divergence free, and let T > 0, ν > 0,
δ > 0 be fixed. Consider a fixed smooth, normalized mollifier J . Then
the group expansions of (38) and (39) converge on [0, T ]. The Cauchy for-
mula (8) gives the solution of the approximate vorticity equation (37). The
virtual velocity, Cauchy invariant, and Jacobian determinant are diffusively
Lagrangian: they solve the evolution equations (21, 22, 25 (or 30)) with
coefficients determined locally from the Euclidean Riemannian metric, in co-
ordinates a = A(x, t) computed in the expansion.

The proof starts by verifying that there exists τ > 0 so that both expansions
converge with resetting times ti+1 − ti ≥ τ . This is straightforward, but
rather technical. Then one considers the variable

w = (∇A)∗v.

It follows from (38) that w obeys the equation

Dν([u],∇)w + (∇[u])∗w = 0.

This equation is an approximation of yet another formulation of the Navier-
Stokes equations ([66], [78], [82]) used in numerical simulations ([7], [8]), and
related to the alpha model ([52], [59]). Taking the curl of this equation it
follows that b = ∇× w solves

Dν([u],∇)b = b · ∇[u]

The resetting conditions are such that both w and b are continuous in time.
The Weber formula implies that the advecting velocity [u] is given by [u] =
JδPw, and hence it is continuous in time. It follows that the b solves the
equation (37) for all t ∈ [0, T ]. The initial datum for b is ω0, so it follows that
b = ω for all t. But the Cauchy formula holds for b, and that finishes the
proof. The fact that the Cauchy formula holds for b is kinematic: Indeed,
if A, v solve any virtual velocity system (38) with some smooth advecting
velocity [u], then the Eulerian curl b of (∇A)∗v is related to the Lagrangian
curl ζ of v by the Cauchy formula (8).

6 The QG Equation

Two dimensional fluid equations can be described as active scalars

(∂t + u · ∇)θ + cΛαθ = f
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with an incompressible velocity given in terms of a stream function

u = ∇⊥ψ =

(
−∂2ψ
∂1ψ

)
computed in terms of θ as

ψ = Λ−βθ.

The constant c ≥ 0 and smooth time independent source term f are given.
The operator Λ = (−∆)

1
2 is defined in the whole R2 or in T2. Interesting ex-

amples are β = 2 (usual hydrodynamical stream function) with α = 2 (usual
Laplacian dissipation), and β = 1, (surface quasigeostrophic equation, QG
in short) with α = 1 (critical dissipation). We describe briefly the quasi-
geostrophic equation. When c = 0, f = 0 the equation displays a number of
interesting features shared with the three dimensional Euler equations ([17]).
In particular, the blow up of solutions with smooth initial data is a difficult
open problem ([36], [37], [40], [77]). There is additional structure: the QG
equation has global weak solutions. This has been proved by Resnick in his
thesis ([79]); a concise description of the idea can be found also in ([27]). The
dissipative system ([9], [27], [39], [61], [91], [92]) with c > 0 and α ∈ [0, 2]
has a maximum principle (again proved by Resnick, and again explained in
([27]). The critical dissipative QG equation (c = 1, f = 0, α = β = 1) with
smooth and localized initial data in R2 has the following properties: Weak
solutions in L∞(dt;L2(dx)∩L∞(dx))∩L2(dt;H

1
2 ) exist for all time. The L∞

norm is nonincreasing on solutions. The solutions are smooth (in a variety
of spaces) and unique for short time. If the initial data is small in L∞ then
the solution is smooth for all time and decays. The subcritical case ( α > 1,
more dissipation, less difficulty) has global unique smooth solutions. The
main open problems for the QG equations are: uniqueness of weak solutions,
global regularity for large data for critical and supercritical dissipation.

A nice pointwise inequality for fractional derivatives has been discovered
recently by A. Cordoba and D. Cordoba ([41]. The inequality provides an-
other proof of the maximum principle, and has independent interest. I’ll
explain it briefly below. One starts with the Poisson kernel

P (z, t) = cn
t

(|z|2 + t2)
n+1

2

in Rn for t ≥ 0. The constant cn is normalizing:∫
Rn

P (z, t)dz = 1.
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Convolution with P (·, t) is a semigroup. The semigroup identity is

e−tΛf =
∫

Rn

P (z, t)τz(f)dz

where
(τz(f))(x) = f(x− z).

and Λ is the Zygmund operator,

Λ = (−∆)
1
2 .

The quickest way to check the semigroup identity is by taking the Fourier
transform, P̂ (ξ, t) = e−t|ξ|. If f is in the domain of the generator of a semi-
group then

−Λf = lim
t↓0

t−1
(
e−tΛ − I

)
f

and consequently

−Λf = lim
t↓0

∫
Rn

t−1P (z, t)δz(f)dz

where
δz(f)(x) = f(x− z)− f(x).

If the function f is smooth enough, then this becomes

−Λf = cn

∫
Rn

1

|z|n+1
δz(f)dz

and it makes sense as a singular integral. This was proved by A. Cordoba and
D. Cordoba in ([41]) where they discovered and used the pointwise inequality

fΛf ≥ 1

2
Λ(f 2).

This inequality is the consequence of an identity.

Proposition 1 For any two C∞0 functions f, g one has the pointwise identity

Λ(fg) = fΛg + gΛf − I2(f, g) (40)

with I2 defined by

I2(f, g) = cn

∫
Rn

1

|z|n+1
(δz(f))(δz(g))dz (41)
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The proof follows the calculation of Cordoba and Cordoba: Start with

(δz(f))2 = δz(f
2)− 2f(δz(f))

and integrate against cn|z|−n−1dz. One obtains

Λ(f 2) = 2fΛf − I2(f, f) (42)

By polarization, i.e., by appliying (42) to f replaced by f + εg, then differen-
tiating in ε and then setting ε = 0, one deduces (40), and finsihes the proof of
the proposition. We remark that one can also obtain higher order identities
in the same manner. One starts with

(δzf)m =
m∑
j=1

(−1)j
(
m
j

)
fm−jδz(f

j).

Integrating against cn|z|−n−1dz, one obtains the generalized identity

Im(f, . . . , f) =
m∑
j=1

(−1)j−1

(
m
j

)
fm−jΛ(f j) (43)

where the multilinear nonlocal integral is

Im(f, . . . , f) = cn

∫
Rn

1

|z|n+1
(δz(f))m dz. (44)

In view of the definition of Besov spaces in terms of δz ([86]) it is clear that
the multilinear operators Im are well behaved in Besov spaces. Also, for m
even Im(f, . . . , f) ≥ 0 pointwise. Thus, for instance

0 ≤ I4(f, f, f, f) = 4f 3Λf + 4fΛf 3 − 6f 2Λf 2 − Λf 4

holds pointwise.
Let us also note here that I2(f, g) gives a quick proof of an extension

([64]) of a Moser calculus inequality of Kato and Ponce ([62]):

Proposition 2 If 1 < p <∞, 1 < pi <∞, i = 1, 2 and 1
p1

+ 1
p2

= 1
p
, then

‖Λ(fg)− fΛg − gΛf‖Lp(Rn) ≤
C
{
‖f‖Lp1 (Rn)‖Λf‖Lp1 (Rn)‖g‖Lp2 (Rn)‖Λg‖Lp2 (Rn)

} 1
2

holds for all f ∈ W 1,p1, g ∈ W 1,p2.
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The proof is straightforward: In view of (40) one needs to check the
inequality for I2(f, g). We write

I2(f, g) = Jr(f, g) +Kr(f, g)

with
Jr(f, g) = cn

∫
|z|≤r
|z|−n−1(δz(f))(δz(g))dz

and Kr(f, g) the rest. We note that

‖Jr(f, g)‖Lp(Rn) ≤ Cr‖Λf‖Lp1 (Rn)‖Λg‖Lp2 (Rn)

and
‖Kr(f, g)‖Lp(Rn) ≤ Cr−1‖f‖Lp1 (Rn)‖g‖Lp2 (Rn)

with C depending on n, p1 and p2 only. These inequalities follow from the
elementary

‖δzf‖Lp(Rn) ≤ |z|‖∇f‖Lp(Rn)

and the boundedness of Riesz transforms in Lp. Optimizing in r we obtain
the desired result. It is quite obvious also that

‖Jr(f, g)‖Lp(Rn) ≤ Crs1+s2−1‖f‖Bs1,∞p1
‖g‖Bs2,∞p2

holds for any 0 ≤ s1 < 1, 0 ≤ s2 < 1, s1 + s2 > 1. Here we used

‖f‖Bs,∞p = ‖f‖Lp(Rn) + sup |z|−s‖δzf‖Lp(Rn)

Consequently
‖I2(f, g)‖Lp(Rn) ≤ C‖f‖Bs1,∞p1

‖g‖Bs2,∞p2
(45)

holds.

Proposition 3 Consider F , a convex C2 function of one variable. Assume
that the function f is smooth and bounded. Then

F ′(f)Λf ≥ Λ(F (f)) (46)

holds pointwise. In particular, if F (0) = 0 and f ∈ C∞0∫
Rn
F ′(f)Λfdx ≥ 0.
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Indeed
F (β)− F (α)− F ′(α) (β − α) ≥ 0

holds for all α, β. We substitute β = f(x − z), α = f(x) and integrate
against cn|z|−n−1dz. Note that F (f(x)) is bounded because F is continuous
and thus bounded on the range of f . The inequality

D2m =
∫
f 2m−1Λfdx ≥ 0

implies that the L2m norms do not increase on solutions of the critical dissi-
pative QG equation, and the maximum principle follows.

7 Dissipation and Spectra

Turbulence theory concerns itself with statistical properties of fluids. Some
of the objects encountered in turbulence theory are the mean velocity 〈u〉,
Eulerian velocity fluctuation v = u−〈u〉, energy dissipation rate ν〈|∇u|2〉, ve-
locity correlation functions 〈δyv⊗v〉, velocity structure functions 〈δyv⊗δyv〉,
higher order structure functions, 〈δy1v ⊗ · · · δymv〉. We use the notation
δyu = u(x− y)− u(x). The operation 〈· · ·〉 is ensemble average, a functional
integral. The Navier-Stokes equations represent the underlying dynamics.
A mathematical framework related to the Navier-Stokes equations has been
developed ([60], [51], [89]), but the mathematical advance has been slow.
Not complexity but rather simplicity is the essence of the difficulty: turbu-
lent flows obey nontrivial statistical laws. Among these laws, the law for
wall bounded flows ([5]), and for scaling of Nusselt number with Rayleigh
number in Rayleigh-Bénard turbulence in Helium ([73]) are major examples.
A celebrated physical theoretical prediction concerning universality in tur-
bulence, is due to Kolmogorov ([65],[58]). One of the simplest and most
important question in turbulence is: how much energy is dissipated by the
flow. This question is of major importance for engineering applications be-
cause the energy disspated by turbulence is transferred to objects immersed
in it. Mathematically, the question is about the long time average of certain
integrals, low order (first and second) moments of the velocity and velocity
gradients in forced flows. There is a rigorous mathematical method ([25],
[26], [35], [43]) to obtain bounds for these bulk quantities, and make contact
with experiments in convection and shear dominated turbulence.

35



The Kolmogorov 2/3 law for homogeneous turbulence is

S2(r) ∼ (εr)
2
3

with
S2(r) = 〈(δru)2〉

the second order longitudinal structure function and with

ε = ν〈|∇u|2〉

the energy dissipation rate. The law is meant to hold asymptotically, for large
Reynolds numbers, and for r in a range of scales, [L, k−1

d ], called the inertial
range. The energy dissipation rate ε per unit mass has dimension of energy
per time, cm2sec−3. The Kolmogorov law follows from dimensional analysis
if one postulates that in the inertial range the (second order) statistics of the
flow depend only on the parameter ε, because the typical longitudinal velocity
fluctuations over a distance r should be an expression with units of cmsec−1

and such an expression is (εr)
1
3 . The energy spectrum for homogeneous

turbulence is

E(k) =
1

2

∫
|ξ|=k

〈|û(ξ, t)|2〉dS(ξ)

with û the spatial Fourier transform. The Kolmogorov-Obukhov energy spec-
trum law is

E(k) ∼ ε
2
3k−

5
3

The asymptotic equality takes place for k ∈ [k0, kd] where

kd = ν−
3
4 ε

1
4

is the dissipation wave number, and k0 is the integral scale. The interval
[k0, kd] is the inertial range. The statements about asymptotic equality refer

to the high Reynolds number limit, k
5
3 ε−

2
3E(k) → C, as Re → ∞. The

Reynolds number is

Re =
UL

ν
=
{
〈|u|2〉

} 1
2 (k0ν)−1

where U2 = 〈|u|2〉, L = k−1
0 . The physical intuition is the following: energy

is put into the system at large scales L = k−1
0 . This energy is transferred to
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small scales without loss, in a statistically selfsimilar manner. At scale k (in
wave number space) the only allowed external parameter is ε. The energy
spectrum has dimension of energy per wave number, because the energy
spectrum is the integrand in the one dimensional integral

E =
∫ ∞

0
E(k)dk.

Thus E(k) is measured in cm3sec−2. The wave number is measured in cm−1.

A time scale formed with ε and k is tk = ε−
1
3k−

2
3 . This is the time of transfer

of energy at wave-number scale k. Using this time scale and the length scale
k−1 one arrives at the expression E(k) ∼ k−3ε

2
3k

4
3 , the Kolmogorov-Obukhov

spectrum. The spectrum can be derived also from the 2/3 law.
The dissipation of the energy occurs at a dissipation scale kd. This is an

inverse length scale formed using only the kinematic viscosity (measured in
cm2sec−1) and ε.

The fact that Laplacian dissipation and no other should be used to study
turbulence acquires a physical justification: the Kolmogorov dissipation scale
is based on the Laplacian, and it is observed experimentally quite convinc-
ingly.

Let us describe in more mathematical terms the issues. We start with the
dissipation law. The Kolmogorov theory predicts that the energy dissipation
is

ε ∼ U3

L
.

The first difficulty one encounters is due to the need to solve three dimen-
sional Navier-Stokes equations. The second difficulty concerns the ensemble
average: one needs homogeneity (translation invariance of the statistics) and
bounded solutions. One way out of this is to take a set of bounded solutions
and perform a well defined operation M that is manifestly translation invari-
ant, normalized and positivity preserving ([30]). This gives upper bounds for
energy dissipation, and structure functions of order one and two in the whole
space. Assuming scaling M((δru)2) ∼ rs we proved in ([30]) that s ≥ 2/3. In
([30]) the body forced were assumed to be uniformly bounded, but not uni-
formly square integrable. If the body forces are uniformly square integrable,
for instance in bounded domains, then an idea of Foias ([50]) can be used
to bound the dissipation without assuming that the velocities are bounded.
An upper bound on dissipation in bounded domains, exploiting this idea is
given in ([44]).
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I will explain the idea below in the whole space, with square integrable
forces. Consider solutions of Leray regularized solutions of Navier-Stokes
equations in R3,

Dν([u],∇)u+∇p = f, ∇ · u = 0,

with smooth, time independent, deterministic divergence-free body forces f ,

f(x) =
∫

R3

e2πiξ·xf̂(ξ)dξ

with f̂ supported in |ξ| ≤ k0. We consider a long time average MT .

1

T

T∫
0

h(·, t)dt = MT (h)

We define the averaging procedure to be

〈h(x, t)〉 = k3
0 lim sup

T→∞
MT

∫
R3

h(x, t)dx

We set
U2 = 〈|u|2〉, F 2 = 〈|f |2〉,

and
L−1 = ‖∇f‖L∞F−1.

Note that L−1 ≤ 2πk0. The energy dissipation of the Leray regularized
solution ν〈|∇u|2〉 is bounded uniformly, independently of the regularization.
The upper bound is:

ε ≤ U3

L
+
√
ε
√
ν
U

L

This implies, of course,

ε ≤ U3

L
+
νU2

4L2
+

√
νU

2L

√
νU2

L2
+

4U3

L

and consequently
lim sup

Re→∞
εLU−3 ≤ 1.
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For the proof one applies first MT and obtains

fi = ∂jMT ([u]jui) + ∂iMTp− ν∆MTu+MTut

because MTf = f . One then takes the scalar product with f .∫
R3

|f |2dx = −
∫

R3

(∂jfi)MT ([u]jui)dx

+ν
∫

R3

∇f · ∇MT (u)dx+
1

T
(
∫

R3

f · (u(·, T )− u(·, 0))dx.

Then we deduce

‖f‖2
L2 ≤ ‖∇f‖L∞MT (‖u‖2

L2) + ν
∫

R3

|∇f | |∇MTu| dx+O(
1

T
).

We did use the fact that the mollifier is normalized, so ‖[u]‖2
L2 ≤ ‖u‖2

L2 . But

|∇MTu|2 ≤MT |∇u|2

Multiplying by k3
0, dividing by F it follows that:

F ≤ 1

L
k3

0MT (|u|2) +
ν

L

√
k3

0MT‖∇u‖2
L2 +O(

1

T
)

and letting T →∞

F ≤ U2

L
+
√
ν
√
ε/L+O(

1

T
).

But
ε ≤ FU

follows immediatly from the energy balance, and that concludes the proof of
the upper bound. We have therefore

Theorem 7 Consider solutions of Leray’s approximation

Dν([u],∇)u+∇p = f, ∇ · u = 0

in R3 with divergence-free, time independent body forces with Fourier trans-
form supported in |ξ| ≤ k0. Let

ε = lim sup
T→∞

1

T

T∫
0

ν‖∇u(·, t)‖2dt,
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U2 = lim sup
T→∞

1

T

T∫
0

‖u(·, t)‖2dt,

F 2 = ‖f(·)‖2,

where ‖h‖2 = k3
0

∫
|h|2dx is normalized L2 norm. Let also

L−1 =
‖∇f‖L∞

F

define a length scale associated to the forcing and

Re =
UL

ν

be the Reynolds number. Then

ε ≤ U3

L

(
1 +Re−

1
2 +

3

4
Re−1

)
holds, uniformly for all mollifiers, L2(R3) initial data and f with the required
properties.

The normalization k3
0 for volume is arbitrary: any other normalization works

and does not change the inequality. The uniformity with respect to mollifiers
implies that the result holds for suitable weak solutions of the Navier-Stokes
equations. The problem of a lower bound is outstanding, and open. When
one replaces [u] by the Bessel potential (I − α2∆)−1u one obtains the Leray
alpha model ([10]).

In order to describe in more detail the issues concerning the spectrum it is
convenient to phrase them using a Littlewood-Paley decomposition of func-
tions in Rd. This employs a nonnegative, nonincreasing, radially symmetric
function

φ(0)(k) = φ(0)(|k|)

with properties φ(0)(k) = 1, k ≤ 5
8
k0, φ(0)(k) = 0, k ≥ 3

4
k0. The positive

number k0 is a wavenumber unit; it allows to make dimensionally correct
statements. One sets

φ(n)(k) = φ(2−nk), ψ(0)(k) = φ(1)(k)− φ(0)(k)
ψ(n)(k) = ψ(0)(2

−nk), n ∈ Z.
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The properties
ψ(n)(k) = 1, for k ∈ 2nk0[3

4
, 5

4
],

ψ(n)(k) = 0, for k /∈ 2nk0[5
8
, 3

2
]

follow from construction. The Littlewood-Paley operators S(m) and ∆n

are multiplication in Fourier representation by φ(m)(k) and, respectively by
ψ(n)(k). For any m ∈ Z, the Littlewood Paley decomposition of h is

h = S(m)h+
∑
n≥m

h(n)

and for mean zero function h that decay at infinity, S(m)h→ 0 as m→ −∞
and the Littlewood-Paley decomposition is:

h =
∞∑

n=−∞
h(n)

with
h(n) = ∆nh =

∫
Rd Ψ(n)(y)(δyh)dy.

Ψ(n)(y) =
∫
ei2πy·ξψ(n)(ξ)dξ

Ψ̂(n) = ψ(n), (δyh)(x) = h(x− y)− h(x).

∆n is a weighted sum of finite difference operators at scale 2−nk−1
0 in physical

space. For each fixed k > 0 at most three ∆n do not vanish in their Fourier
representation at ξ with k = |ξ|:

ĥ(n)(ξ) 6= 0⇒ n ∈ Ik =

{
[−1, 1] + log2

(
k

k0

)}
∩ Z.

Let us consider a slightly large set of indices

Jk =

{
[−2, 2] + log2

(
k

k0

)}
∩ Z.

If ξ is a wave number whose magnitude |ξ| is comparable to k, k
2
≤ |ξ| ≤ 2k,

then, if u(x, t) is an L2 valued function of t, one has for almost every ξ

û(ξ, t) =
∑
n∈Jk

û(n)(ξ, t)

because I|ξ| ⊂ Jk. Consequently, because Jk has at most five elements,

2

3k

2k∫
k
2

dλ
∫
|ξ|=λ
|û(ξ, t)|2 dS(ξ) ≤ 10

3k

∑
n∈Jk
‖u(n)(·, t)‖2

L2(Rd).
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Viceversa, because the functions ψ(n), n ∈ Jk are non-negative, bounded by
1, and supported in [ 5

32
k, 6k] one has also

1

k

∑
n∈Jk
‖u(n)(·, t)‖2

L2(Rd) ≤
5

k

∫ 6k

5k
32

(∫
|ξ|=λ
|û(ξ, t)|2dS(ξ)

)
dλ

Most of the experimental evidence on E(k) is plotted on a log-log scale.
So, for the purpose of estimating exponents in a power law, and in view of
the above inequalities, we found it reasonable to consider ([22], [23], [38]) an
average of the spectrum, defined as follows. One defines the Littlewood-Paley
spectrum of the function u(x, t) to be

ELP (k) =
1

k

∑
n∈Jk

lim sup
T→∞

1

T

T∫
0

‖u(n)(·, t)‖2
L2(Rd)dt.

From the definition and the considerations above it follows that

cELP (k) ≤ 3

2k

2k∫
k
2

E(λ)dλ ≤ CELP (k)

holds for all k > 0, with c, C positive constants depending only on the
choice of Littlewood-Paley template function φ(0). We will consider the Leray
approximation again in R3. Then the components obey

Dν([u],∇)u(n) +∇p(n) = Wn + f(n) (47)

where p(n) = ∆np, are the Littlewood-Paley components of the pressure,
f(n) = ∆nf , are the components of the force and

Wn(x, t) =∫
R3

Ψ(n) (y) ∂yj (δy([u]j)(x, t)δy(u)(x, t)) dy.

The 4/5 law of isotropic homogeneous turbulence

S3(r) ∼ εr

where S3 = 〈(δru)3〉 is the third order longitudinal structure function. The
4/5 law would follow from the Navier-Stokes equations if assumptions of
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isotropic, homogeneous, stationary statistics could be applied. The natural
mathematical assumption associated to the law is that

ε̂ = lim sup
T→∞

1

T

T∫
0

‖u(·, t)‖3

B
1
3 ,∞
3

dt <∞.

The Besov space L3
loc,unif (dt)(B

1
3
,∞

3 ) is thus a natural space for a Kolmogorov
theory. (It is also the natural space for the Onsager conjecture, ([28]). The
uniform bound assumed above is used for the inequality

lim sup
T→∞

k3
0

T

T∫
0

∫
R3

|δyu(x, t)|3dxdt ≤ ε̂|y|

Armed with this inequality, one obtains a bound on the energy production
in the Littlewood-Paley spectrum. Indeed,

Wn(x, t)u(n)(x, t) = −
∫

R3

∫
R3

{
∂yjΨ(n)(y)Ψ(n)(z)

}
{δy[uj]δyuiδzui} (x, t)dydz

and therefore
〈Wnu(n)〉 ≤ CΨε̂

with
CΨ =

∫
R3

∫
R3
|y|

2
3 |z|

1
3 Ψ(0)(y)Ψ(0)(z)dydz

Considering f̂(ξ) supported in |ξ| ≤ k0 then, f(n) = 0 for n ≥ 1 and the
balance

ε(n) = 〈ν|u(n)|2〉 = 〈Wnu(n)〉

follows. This implies

Theorem 8 Consider smooth, time independent divergence free forces with
Fourier transform supported in |ξ| ≤ k0. Consider solutions of the Leray
approximation

Dν([u],∇)u+∇p = f, ∇ · u = 0,

with square integrable initial data. Then

ε(n) ≤ CΨε̂
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holds for n ≥ 1. Also
ELP (k) ≤ βaε

2
3k−

5
3

holds for k ∈ [akd, kd], with k0

kd
≤ a ≤ 1 and with

βa = CΨa
− 4

3 ε̂(ε)−1

Consequently

1

k

2k∫
k
2

E(λ)dλ ≤ γaε
2
3k−

5
3

holds with γa = Cβa.

This result contains an unconditional statement. For each fixed mollifier Jδ,
the Leray system has global smooth solutions and ε̂ is finite. The bound on
the spectrum depends on the mollifier through ε̂. But even if we make the
assumption that ε̂ is bounded independently of δ, we still have a result only
in a limited range of physical scales.

Similar results can be obtained for two dimensional turbulence. In two
dimensions there is no need to consider approximations, because solutions
are well behaved. But the range limitations are still there. The spectrum
suggested for the direct cascade is the 2D Kraichnan spectrum:

E(k) = Cη
2
3k−3.

with η = 〈ν|∇ω|2〉, the rate of dissipation of enstrophy. The dissipative cutoff
scale is the wave number kη formed with ν and η:

kη = ν−
1
2η

1
6

Bounds on the spectrum for two dimensional turbulence have been addressed
by Foias and collaborators ([33], [53], [54]). The result of ([22]) is

Theorem 9 Consider two dimensional incompressible Navier-Stokes equa-
tions

Dνu+∇p = f

with time independent, divergence-free forces whose Fourier transform is sup-
ported in |ξ| ≤ k0. For any k0

kη
≤ a ≤ 1 there exists a constant Ca such that
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the Litlewood-Paley energy spectrum of solutions of two dimensional forced
Navier-Stokes equations obeys the bound

ELP (k) ≤ Cak
−3

for k ∈ [akη, kη]. Consequently

1

k

2k∫
k
2

E(λ)dλ ≤ C̃ak
−3

holds with C̃a = CCa.

The range of physical space scales is again bounded. The mathematical
reason for this limitation is the fact that one uses −ν∆ and one has to let
ν → 0. The technical tools we have at this moment do not allow us to
rigorously obtain an effective nonzero eddy diffusivity to replace kinematic
viscosity. When the model allows a non-vanishing positive linear operator
then the scale limitation is no longer present. This is the case if one uses the
forced surface quasigeostrophic model for the inverse cascade, appropriate for
boundary forced rotating geophysical systems. One obtains ([23]) a spectrum
consistent with the spectrum

E(k) ∼ k−2, k ≤ kf .

obtained in Swinney’s lab ([4]):

Theorem 10 Consider the QG equation

∂tθ + u · ∇θ + cΛθ = f

in R2, with u = c1R
⊥θ, with deterministic forcing f with Fourier transform

supported in |ξ| ≤ kf , and with L2 initial data. Then

ELP (k) ≤ Ck−2

holds for weak solutions solutions of QG, for all k < kf .
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