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Abstract. We consider systems of particles coupled with fluids. The parti-
cles are described by the evolution of their density, and the fluid is described
by the Navier-Stokes equations. The particles add stress to the fluid and the
fluid carries and deforms the particles. Because the particles perform rapid
random motion, we assume that the density of particles is carried by a time
average of the fluid velocity. The resulting coupled system is shown to have
smooth solutions at all values of parameters, in two spatial dimensions.
Key words Nonlinear Fokker-Planck equations, Navier-Stokes equations,
microscopic variables, Deborah number.
AMS subject classification 35Q30, 82C31, 76A05.

1 Introduction

We discuss global regularity of solutions of systems of equations describing
fluids with particle suspensions. The particles are parameterized by indepen-
dent microscopic variables m that belong to a compact, connected, smooth
Riemannian manifold M of dimension d. Derivatives with respect to the
microscopic variables are designated by the subscript g. The particles are
included in a fluid in Rn, n = 2 obeying the forced Navier-Stokes equations.

The forces exerted by the particles on the fluid are expressed through
the divergence of an added stress tensor. The added stress tensor τp(x, t) is
obtained after averaging out the microscopic variable and the Navier-Stokes
equation is macroscopic. The microscopic inclusions at time t and macro-
scopic physical location x ∈ R2 are described by the density f(x,m, t)dm
where dm is the Riemannian volume element in M . The density is nonneg-
ative, f ≥ 0 and

ρ(x, t) =

∫
M

f(x,m, t)dm ≤ 1 (1)

holds for every x, t ≥ 0.
The added stress tensor is given by an expansion

τp(x, t) =
∞∑

k=1

τ (k)(x, t) (2)

where

τ
(1)
ij (x, t) =

∫
M

γ
(1)
ij (m)f(x,m, t)dm, (3)
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τ
(2)
ij (x, t) =

∫
M

∫
M

γ
(2)
ij (m1,m2)f(x,m1, t)f(x,m2, t)dm1dm2, (4)

and, in general,

τ
(k)
ij (x, t) =∫

M×···×M

γ
(k)
ij (m1, . . . ,mk)f(x,m1, t)f(x,m2, t) · · · f(x,mk, t)dm

(5)

Expansions of this kind for the added stress tensor τp are encountered in the
polymer literature ([6]). In ([4]) it was proved that only two structure coef-

ficients in the expansion, γ
(1)
ij , γ

(2)
ij are needed in order to have energetically

balanced equations, provided certain constitutive relations are imposed. The
energy balance confers stability to certain time-independent solutions of the
equations. In this work we are interested only in general existence results,
and do not need to use special constitutive relations. We will only use the
fact that the coefficients γ

(k)
ij are smooth, time independent, x independent,

f independent. When infinitely many coefficients are present, we will use a
finiteness condition assuming that the series

∞∑
k=1

k3‖γ(k)
ij ‖Hρk (M×···×M) (6)

converges for a sequence ρk >
k+4d+6

2
.

From (1, 2, 5, 6 ) it follows that

|τp(x, t)| ≤ cρ(x, t) (7)

holds with a constant that depends only on the coefficients γ
(k)
ij . The spatial

gradients of τp are of particular importance for regularity. The fact that the

constitutive coefficients γ
(k)
ij are smooth functions of the microscopic variables

allows us to relate the size of the spatial gradients of τp to a rather coarse
average on M : differentiating (5) with respect to x it follows from (6) that

|∇xτp(x, t)| ≤ cN(x, t) (8)

holds with a constant c that depends only on the smooth coefficients γ
(k)
ij .

Here
N(x, t) = ‖R∇xf‖L2(M)
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and
R = (−∆g + I)−

s
2

with s > d
2

+ 1. The inequalities (7) and (8) are the only information con-
cerning the relationship between τp and f that we need for regularity results
in this work. We can use the detailed form (2) and the finiteness condition
(6) to deduce them, but we could just as well require them instead of (2).

The particles are carried by the fluid, agitated by thermal noise and
interact among themselves in a mean-field fashion, through potentials that
depend linearly and nonlocally on the particle density distribution f ([15]).
We assume that the fluid does not vary much in time during a characteristic
relaxation time of the particles. Mathematically, this means that the particles
are carried by a short time average of the fluid velocity. This assumption
alllows us to prove global existence of smooth solutions and to bound a priori
the size of the physical space gradients of the stresses.

The mathematical study of complex fluids is in a developing stage. Most
results are for models that are macroscopic closures, that is, in which τp
has its own macroscopic evolution, coupled with the fluid: the microscopic
variables do not appear at all. Existence theory for viscoelastic Oldroyd
models is presented in ([13]); see also ([18]) for related issues. There are
few other regularity results concerning complex fluids, including some that
retain microscopic variables. Among them are ([7], [10], [11], [14], [17]). For
Smoluchowski equations coupled with fluids, the case in which u is given by
a time independent linear Stokes equation in n = 3, M = S2 with τp given
by a relation (3) was studied in ([16]) for the case of a linear Fokker-Planck
equation and in ([4]) for general nonlinear Fokker-Planck equations.

The proofs in the present work are based on a few key facts. The first
one is that gradients of τp are bounded by N , and N is controlled linearly
by the advecting velocity, taking advantage of the a priori boundedness of ρ
in L1 ∩ L∞. This idea was used in ([4]) to prove regularity for the system of
particles coupled with the Stokes system for the fluid. The second significant
fact concerns the Navier-Stokes system driven by the divergence of bounded
stresses. We are interested in the size of the time integral of the supremum
of the norm of the gradient of velocity. This is an important nondimensional
magnitude that controls the amplification of gradients of passively advected
scalars. We prove a logarithmic bound for this amplification factor. The
strategy of proof uses a natural idea introduced in ([3]): time integration is
performed first in each wave-number shell, to take advantege of the rapid
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smoothing of small scales due to viscosity.

2 Estimates for 2-D Navier-Stokes Equations

Consider a Navier-Stokes system in R2:

∂u

∂t
+ u · ∇u−∆u+∇p = ∇ · σ,

∇ · u = 0,

u|t=0 = u0, (9)

where σ(x, t) is a symmetric two-by-two matrix that, in this section, will be
considered to be a given function. We will be interested in estimates when
σ is integrable and bounded by constants that are known a priori and are of
order one. The physical space gradients of σ are possibly large. The aim of
the bounds is to find the effect that these gradients have on the stretching
amplification term ∫ t

0

‖∇u(t)‖L∞dt.

We take smooth, divergence-free initial velocities

u(0) ∈ L2(R2) ∩W 1+k,r(R2)

with k ∈ R, k > 0, localized vorticity ω = ∇⊥ · u,

ω(0) ∈ L2(R2) ∩W k,r(R2)

with r > 2. We recall the energy estimate

sup
t≤T

‖u(t)‖2
L2 +

∫ T

0

‖∇u(t)‖2
L2dt ≤

∫ T

0

‖σ(t)‖2
L2dt+ ‖u(0)‖2

L2 (10)

and the fact that in two dimensions the vorticity obeys

∂tω + u · ∇xω −∆ω = ∇⊥
x · divxσ. (11)

Lemma 1 Let r ≥ 2. There exists a constant cr such that

sup
t≤T

‖∇u(t)‖2
Lr ≤ cr

∫ T

0

‖∇ · σ(t)‖2
Lrdt+ cr‖ω(0)‖2

Lr (12)
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holds. For r = 2 we have additionally,∫ T

0

‖∆u(t)‖2dt ≤ c2

∫ T

0

‖∇ · σ‖2
L2(dx) + ‖ω(0)‖2

L2 . (13)

Proof. We multiply (11) by ωr−1 , r ≥ 2 and integrate by parts to obtain

d

rdt
‖ω‖r

Lr +

∫
ωr−2|∇xω|2dx ≤ (r − 1)

∫
|∇xσ||∇xω|ωr−2

We use a Hölder inequality with exponents r, 2, 2r
r−2

, and then with exponents
2, 2:

d

rdt
‖ω‖r

Lr +

∫
ωr−2|∇xω|2dx

≤ (r − 1)‖∇x · σ‖Lr

(∫
ωr−2|∇xω|2dx

)1/2

‖ω‖
r−2
2

Lr dx

≤ (r − 1)2

2
‖∇x · σ‖2

Lr‖ω‖r−2
Lr +

1

2
(

∫
ωr−2|∇xω|2dx) (14)

which implies that

sup
t∈[0,T ]

‖ω(t)‖2
Lr ≤ C(r − 1)2

∫ T

0

‖∇x · σ(t)‖2
Lrdt+ ‖ω(0)‖2

Lr (15)

and thus (12) follows. In order to obtain (13) we integrate (14) in time at
r = 2.

We need a logarithmic inequality for ‖u‖L∞ . Such inequalities were first
introduced in ([1]). We will write log∗(λ) = log(2 + λ) for λ > 0. Note that
log∗(0) > 0 and log∗(λµ) ≤ log∗(λ) + log∗(µ) holds for λ ≥ 0, µ ≥ 0. We
check our inequality

‖u(t)‖L∞ ≤ Cr‖ω(t)‖L2

1 +

√√√√log∗

{(
‖ω(t)‖Lr

‖ω(t)‖L2

) r
r−2 ‖u(t)‖L2

‖ω(t)‖L2

} (16)

directly from the Biot-Savart law:

u(x, t) =
1

2π

∫
R2

(
ẑ⊥
)
ω(x− z, t)

dz

|z|
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where ẑ = z
|z| . We pick two numbers 0 < l ≤ L, take a smooth radial function

a(s) , 0 ≤ a(s) ≤ 1, that equals identically one for s ≤ 1 and identically zero
for s ≥ 2, and write

u(l)(x, t) =
1

2π

∫
|z|≤l

(
ẑ⊥
)
ω(x− z, t)

dz

|z|
,

u
(L)
(l) (x, t) =

1

2π

∫
|z|≥l

(
ẑ⊥
)
ω(x− z, t)a

(
|z|
L

)
dz

|z|
and

u(L)(x, t) =
1

2π

∫
|z|≥l

(
ẑ⊥
)
ω(x− z, t)

(
1− a

(
|z|
L

))
dz

|z|
Clearly

u = u(l) + u
(L)
(l) + u(L)

holds pointwise. It is also clear that

|u(l)(x, t)| ≤ ‖ω(t)‖Lr l
r−2

r

and that

|u(L)
(l) (x, t)| ≤ ‖ω(t)‖L2 log∗

(
2L

l

)
.

We integrate by parts in the term u(L), using ω = ∇⊥ · u and deduce

|u(L)(x, t)| ≤ C
1

L
‖u(t)‖L2

We choose

l =

(
‖ω(t)‖L2

‖ω(t)‖Lr

) r
r−2

and

L =
‖u(t)‖L2

‖ω(t)‖L2

if, with this choice, it turns out that l < L. If not, then we still take L as
above, but we take l = L. The inequality (16) follows.

Note that (10) implies that

supt≤T ‖u(t)‖2
L2 +

∫ T

0
‖∇u(t)‖2

L2 dt ≤
≤ ‖σ‖2

L2(0,T ;L2) + ‖u0‖2
L2

(17)
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and note that (12) implies that

sup
t≤T

‖ω(t)‖Lr ≤ cr(‖∇ · σ‖L2(0,T ;Lr) + ‖ω(0)‖Lr) (18)

Finally, using (13) and (17) we can write∫ T

0

‖u(t)‖2
H2dt ≤ c(1 + T )

{
‖σ‖2

L2(0,T ;H1) + ‖u(0)‖2
H1

}
. (19)

Now we integrate the square of (16) in time, taking the supremum in
time of the logarithmic part using (18), and bounding the time integral of
the square of the gradients using (17).

Lemma 2 For r > 2 there exists a constant cr such that∫ T

0

‖u(t)‖2
L∞dt ≤ crK0 {log∗(Ωr) + log∗(Ω2) + log∗K0} (20)

holds with
K0 = ‖σ‖2

L2(0,T ;L2) + ‖u0‖2
L2 , (21)

Ωr = ‖∇ · σ‖L2(0,T ;Lr) + ‖ω(0)‖Lr (22)

and Ω2 defined like Ωr with r replaced by 2.

Theorem 1 For r > 2 there exists a constant cr such that

‖∇x∇xu‖L2(0,T ;(Lr)) ≤
cr

√
1
k
T k‖ω0‖W k,r + cr

√
K0Ωr

√
{log∗(Ωr) + log∗(Ω2) + log∗(K0)}

(23)

holds with K0, Ωr defined above in (21), (22).

Proof. We represent

∇xω(t) = T1(∇⊥
x · σ)− T2(uω) + et∆(∇xω(0)) (24)

where T1 and T2 are operators of the form

h(t) 7→ T h =

∫ t

0

e(t−s)∆∆Hh(s)ds
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with H = H(D) homogeneous of degree zero. Such operators are bounded
in Lp(dt;Lq(dx)) for 1 < p, q < ∞ by the maximal regularity of the heat
equation combined with the boundedness of the operators H in Lq spaces
(see, for example ([12])). The inequality follows then from the bound∫ T

0

‖u(t)ω(t)‖2
Lrdt ≤ crK0Ω

2
r {log∗(Ωr) + log∗(Ω2) + log∗(K0)} (25)

which, in turn, follows from (18) and (20). The requirement that ω(0) ∈ W k,r

is a sufficient condition for et∆∇xω(0) ∈ L2(0, T ;Lr).

We mention also an a priori bound for
∫ T

0
‖u‖p

L∞dt for p < 2. This is
obtained as follows: we write

ω(t) = et∆ω0+

+
t∫

0

e(t−s)∆
{
∇⊥ · divxσ(s) + ∂2∂1(u

2
2 − u2

1)(s) + (∂2
2 − ∂2

1)u1u2(s)
}
ds

(26)
This follows from a well-known identity

u · ∇ω = −∂2∂1(u
2
2 − u2

1)− (∂2
2 − ∂2

1)u1u2

An easy calculation verifies this after one writes u1 = −∂2ψ, u2 = ∂1ψ,
ω = ∆ψ. From (26) we get, for any 1 < p, q <∞

‖ω‖Lp(0,t;Lq) ≤ Cpq(t) + Cpq‖σ‖Lp(0,t;Lq) + Cpq‖u‖2
L2p(0,t;L2q) (27)

We know however from (17) that

‖u‖L∞(0,t;L2) ≤ K0

with K0 defined in (21) and

‖u‖L2(0,t;Lr) ≤ Cr

a priori, for any r < ∞, with K0, Cr independent of t ∈ [0, T ]. (These
constants may depend on T because the norm of σ in L2 may depend on T ).
Then, by interpolation

‖u‖Lp(0,t;Lq) ≤ Cpq (28)

holds for q ≥ 2 and p < 2q
q−2

. In view of 27 we get that

‖ω‖Lp(0,t;Lq) ≤ Cpq (29)

9



holds for q ≥ 2 and p < q
q−1

. Then, taking q > 2 and using a Sobolev
embedding theorem, we obtain that∫ T

0

‖u‖p
L∞dt ≤ Cp (30)

holds a priori, for any p < 2.

For the bound for
∫ T

0
‖∇u(t)‖L∞dt we will use the Littlewood-Paley de-

composition. Let D(Ω) denote the set of C∞ functions compactly supported
in Ω. Let C be the annulus centered at 0, and with radii 1/2 and 2. There
exist two nonnegative, radial functions χ and ϕ, belonging respectively to
D(B(0, 1)) and to D(C) so that

χ(ξ) + Σj≥0ϕ(2−jξ) = 1,

and
|j − k| ≥ 2 ⇒ sup(ϕ(2−j)) ∩ sup(ϕ(2−k)) = ∅.

We denote by F the Fourier transform on R2 and let h, h̃,∆j, Sj(j ∈ N)
be defined by

h = F−1ϕ and h̃ = F−1χ,

∆ju = F−1(ϕ(2−jξ)Fu) = 22j

∫
h(2jy)u(x− y)dy,

Sju = F−1(χ(2−jξ)Fu) = 22j

∫
h̃(2jy)u(x− y)dy.

Then

u = S0u+
∑
j≥0

∆j(u)

where u ∈ S ′, the space of tempered distributions, and the equality holds in
the sense of distributions.

The well-known Bernstein inequalities (see, for instance [2]) express the
fact that ∆j is localized around the frequency 2j.
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Proposition 1 (Bernstein Inequalities) Let a, b ∈ [1,∞], j ≥ 0. There
exists constants c, independent of a, b, j such that the following hold:

‖∆je
t∆u‖La ≤ ce−t22(j−1)‖∆ju‖La , (31)

‖∆jf‖L∞ ≤ c‖f‖L∞ , (32)

and, in two space dimensions:

‖Sjf‖L∞ ≤ c
(
‖f‖L2 +

√
j‖∇f‖L2

)
(33)

and

‖∆j∂
αu‖La ≤ c2j|α|+2j(1/b−1/a)‖∆ju‖Lb (34)

where |α| is the length of the multiindex α.

The Littlewood-Paley decomposition is best suited for Besov spaces Bs
p,q de-

fined by requiring the sequence 2sj‖∆j(u)‖Lp to belong to `q and by requiring
S0(u) to be in Lp. L2 based Sobolev space norms can be computed in terms
of the Littlewood-Paley decomposition:

‖u‖2
Hs ∼ ‖S0(u)‖2

L2 +
∑
j≥0

22sj‖∆ju‖2
L2

where ∼ means equivalence of norms. However, the norm we are interested
in is the L1(0, T ;W 1,∞) norm. The Cs norms can be computed as

‖u‖Cs ∼ ‖S0(u)‖Cs + sup
j≥0

2js‖∆j(u)‖L∞

but only if s is not an integer. In order to obtain L∞ bounds for the gradient
we will have to resort to the inequality:

‖∇u‖L∞ ≤ ‖S0(∇u)‖L∞ +
∑
j≥0

‖∆j(∇u)‖L∞ .

This inequality reflects the embedding B0
∞,1 ⊂ L∞, which is a strict inclusion.

The advantage of using this sum (the norm in B0
∞,1) is that we can commute

time integration and summation, while time integration and supremum do
not commute in general.
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Theorem 2 Let u be a solution of the 2D Navier-Stokes system (9), with
divergence-free initial data u0 ∈ W 1,2(R2) ∩W 1,r(R2). Let T > 0 and let the
forces ∇ · σ obey

σ ∈ L1(0, T ;L∞(R2)) ∩ L2(0, T ;L2(R2))

and
∇ · σ ∈ L1(0, T ;Lr(R2)) ∩ L2(0, T ;L2(R2))

with r > 2. There exists a constant c depending on r such that, for every
ε > 0 ∫ T

0
‖∇u‖L∞dt ≤ c

√
T‖u(0)‖H1+

+cK
(1)
2 T + cK

(1)
∞ log∗

(
B

(1)
r

ε

)
+

+c(1 + T )‖u‖2
L2(0,T ;H1) log∗

(
(1+T )

n
‖σ‖2

L2(0,T ;H1)
+‖u(0)‖2

H1

o
ε

) (35)

holds, where
K(p)

r = ‖σ‖Lp(0,T ;Lr) (36)

and
B(p)

r = ‖∇ · σ‖Lp(0,T ;Lr). (37)

Consequently, in view of (17) and (35) above∫ T

0

‖∇u(t)‖L∞dt ≤ c(1+T )2K log∗

{
B(1)

r + ‖σ‖2
L2(0,T ;H1) + ‖u(0)‖2

H1

}
(38)

with K = K0+K
(1)
∞ +K

(1)
2 +‖u(0)‖H1 depending on norms of σ and the initial

velocity, but not on gradients of σ, and only the argument of the logarithm
depending on norms of the gradients of σ.

Remark. The bound is in fact for the stronger norm of u in the inhomoge-
neous space L1(0, T ;B1

∞,1).

Proof. We start with the Duhamel formula for the gradient of solutions of
(9)

∇u = et∆∇u0 +
∫ t

0
e(t−s)∆∆H(D)(u(s)⊗ u(s))ds

−
∫ t

0
e(t−s)∆∆H(D)(σ(s))ds

(39)
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The homogeneous operator H(D) is given by

H(D)(u⊗ u)ij = Rj(δil +RiRl)Rk(uluk) (40)

with Rj = ∂j(−∆)−
1
2 Riesz transforms. The strategy is based on an idea

of Chemin and Masmoudi ([3]) to take the time integral first, for each wave
number shell. They did not use information about derivatives of σ, and
therefore obtained only bounds for supq≥1

∫ T

0
‖∆q∇u‖L∞ds. We will use the

gradients of σ to bound the high frequencies and will sum in q in order to
estimate ‖∇u‖L1((0,t);L∞). Also, we use somewhat different estimates than
them for the individual shell contributions, but like them, we take advantage
of a time integration at each shell. We treat separately the contributions
coming from σ and those coming from u⊗ u:

∇u = F + U + et∆∇u0

where

F (t) = −
∫ t

0

e(t−s)∆∆H(D)(σ(s))ds. (41)

and

U(t) =

∫ t

0

e(t−s)∆∆H(D)((u⊗ u)(s))ds. (42)

Clearly ∫ T

0

‖S0F (t)‖L∞dt ≤ cK
(1)
2 T (43)

is true using for instance ‖S0(F (t))‖L∞(dx) ≤ ‖(I − ∆)S0(F (t))‖L2(dx). We
take q ≥ 0 and apply ∆q:

‖∆qF (t)‖L∞ ≤
∫ t

0

e−(t−s)22(q−1)

22q‖σ(s)‖L∞ds (44)

Integrating on [0, T ] and changing order of integration we obtain∫ T

0

‖∆qF (t)‖L∞dt ≤
∫ T

0

‖σ(s)‖L∞(

∫ T

s

e−(t−s)22(q−1)

22qdt)ds

≤ c

∫ T

0

‖σ(s)‖L∞ds. (45)

We bound the same quantity differently, with large q in mind, and use
∇σ ∈ Lr with r > 2:
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‖∆qF (t)‖L∞ ≤ c

∫ t

0

e−22(q−1)(t−s)2q(1+2/r)‖∇ · σ‖Lrds (46)

We integrate on [0, T ] and change the order of integration as above, to obtain

∫ T

0

‖∆qF (t)‖L∞dt ≤
∫ T

0

‖∇ · σ(s)‖Lr(

∫ T

s

e−22(q−1)(t−s)2q(1+2/r)dt)ds

≤ c

2q(1−2/r)

∫ T

0

‖∇ · σ(s)‖Lrds (47)

Using (43), (45) to estimate the small wave numbers in F and (47) to
estimate the high ones, we obtain

∫ T

0
‖F (t)‖L∞dt ≤∫ T

0

[
‖S0F (t)‖L∞ +

∑
0≤q≤M ‖∆qF (t)‖L∞ +

∑
q>M ‖∆qF (t)‖L∞

]
dt

≤ cK
(1)
2 T + cM

∫ T

0
‖σ(s)‖L∞ds+ c

2M(1/2−1/r)

∫ T

0
‖∇ · σ(s)‖Lrds.

(48)

Then, choosing M

M = cr log∗

(
c
∫ T

0
‖∇ · σ(s)‖Lrds

ε

)
(49)

we obtain ∫ T

0

‖F (t)‖L∞dt ≤ cK
(1)
2 T + cK(1)

∞ log∗

(
B

(1)
r

ε

)
+ ε (50)

with K
(1)
r defined in (36) and B

(1)
r defined in (37).

Remark. We do not need to integrate the term F in time, if σ is bounded:
we can obtain a pointwise logarithmic bound for F (t) in terms of B

(p)
r with

p > 2r
r−2

. Indeed, from (44) we have

‖∆qF (t)‖L∞ ≤ c‖σ‖L∞(dtdx) (51)

and from (46) we obtain

‖∆qF (t)‖L∞ ≤ c2−2q( r−2
2r

− 1
p
)‖∇ · σ‖Lp(0,T ;Lr) (52)
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Summing (51) from q = 0 to q = M , summing (52) from q = M to infinity
and choosing M appropriately, we obtain

sup
t≤T

‖F (t)‖L∞ ≤ C
√
K0T + cK(∞)

∞ log∗

(
B

(p)
r

K
(∞)
∞

)
(53)

with
K(∞)
∞ = ‖σ‖L∞(0,T ;L∞). (54)

This bound can be used to reprove the global existence of the Stokes system
coupled with nonlinear Fokker Planck equations.

We split the nonlinear term
U(t) = S2(U)(t) + V (t) (55)

with
S2(U) = S0(U) + ∆1(U) + ∆2(U), (56)

and
V (t) =

∑
q≥3

∆q(U) (57)

Clearly ∫ T

0

‖S2(U)‖L∞dt ≤ cT‖u‖2
L2(0,T ;H1). (58)

For the nonlinear term V we use Bony’s decomposition (see for instance [2])
into commensurate and incommensurate frequencies:

V (t) = C(t) + I(t) (59)

with

C(t) =
∑
q≥3

∫ t

0

e(t−s)∆∆H(D)∆q

 ∑
|p−p′|≤2

∆p(u(s))⊗∆p′(u(s))

 ds (60)

and

I(t) =
∑
q≥3

∫ t

0

e(t−s)∆∆H(D)∆q

 ∑
|p−p′|≥3

∆p(u)⊗∆p′(u)

 ds (61)
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In the decomposition above we made the convention that the indices p, p′

run from −1 to infinity and when p = −1 instead of ∆p we have S0, and of
course, the same thing for p′.

We start by treating the term C(t). Because the range of q is q ≥ 3 it
follows that the range of p, p′ is p ≥ 1, p′ ≥ 1. Then we estimate inside the
integral

‖∆q((∆pu(s))⊗ (∆p′(u(s)))‖L∞ ≤ c22q‖∆q((∆pu(s))⊗ (∆p′(u(s)))‖L1

≤ c2(2q−2p)‖∇∆pu(s)‖L2‖∇∆p′u(s)‖L2

Clearly at least one of p, p′, say p, satisfies p ≥ q−2. Now, because |p−p′| ≤ 2,
it follows that p′ = p + j, j ∈ [−2, 2] and therefore, changing the order of
summation in (60)

‖C(t)‖L∞ ≤
∑2

j=−2

∑∞
p=1 c

∫ t

0
‖∆p∇u(s)‖L2‖∆p+j∇u(s)‖L2

×
{∑p+2

q=3 e
−22(q−1)(t−s)22q22(q−p)

}
ds

Integrating in t and changing order of integration we obtain∫ T

0
‖C(t)‖L∞dt ≤

c
∑2

j=−2

∑∞
p=1

∫ T

0
‖∆p(∇u(s))‖L2‖∆p+j(∇u(s))‖L2

∑p+2
q=3 22(q−p)ds

≤ c
∑2

j=−2

∫ T

0

∑∞
p=1 ‖∆p(∇u(s))‖L2‖∆p+j(∇u(s))‖L2ds.

We have obtained thus∫ T

0

‖C(t)‖L∞dt ≤ c‖u‖2
L2(0,T ;H1). (62)

We turn now to the term I(t) of (61). This term is made up of two sums,

I(t) = I1(t) + I2(t)

I1(t) =
∑

q≥3

∫ t

0
e(t−s)∆∆H(D)∆q

(∑
p≥p′+3 ∆p(u(s))⊗∆p′(u(s))

)
ds

I2(t) =
∑

q≥3

∫ t

0
e(t−s)∆∆H(D)∆q

(∑
p′≥p+3 ∆p(u(s))⊗∆p′(u(s))

)
ds

(63)
We will treat I1 because the treatment of I2 is the same, mutatis mutandis.
Because p ≥ p′ +3 it follows that, in order to have a nonzero contribution at
q, the index p must belong to [q − 2, q + 2], i.e., p = q + j with j ∈ [−2, 2].
Then we can write

I1(t) =
2∑

j=−2

∑
q≥3

∫ t

0

e(t−s)∆∆H(D)∆q(Jq(s))ds (64)
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with
Jq(s) = ∆q+j(u(s))⊗ Sq+j−3(u(s)). (65)

For q ≤M we estimate

‖∆q(Jq(s))‖L∞ ≤ c‖Sq+j−3(u(s))‖L∞‖∆q+j(u(s))‖L∞

≤ c
[
‖u(s)‖L2 +

√
M + 2‖∇u(s)‖L2

]
‖∆q+j(u(s))‖L∞

(66)

where we used (33):

‖Sq+j(u(s))‖L∞ ≤ c
(
‖u(s)‖L2 +

√
q + j‖∇u(s)‖L2

)
. (67)

Using Bernstein’s inequality ‖∆q+ju(s)‖L∞ ≤ c‖∆q+j∇u(s)‖L2 we obtain

‖∆q(Jq(s))‖L∞ ≤ c
(
‖u(s)‖L2 +

√
M + 2‖∇u(s)‖L2

)
‖∆q+j∇(u(s))‖L2

(68)
For q ≥M we estimate

‖∆q(Jq(s))‖L∞ ≤ c (‖u(s)‖L2 + ‖∆u(s)‖L2) 2−q‖∆q+j∆(u(s))‖L2 (69)

We write ∫ T

0

‖I1(t)‖L∞dt ≤ A+B

with

A = c
2∑

j=−2

M∑
q=3

∫ T

0

‖∆q(Jq(s))‖L∞

(∫ T

s

22qe−(t−s)22(q−1)

dt

)
ds

and

B = c

2∑
j=−2

∞∑
q=M

∫ T

0

‖∆q(Jq(s))‖L∞

(∫ T

s

22qe−(t−s)22(q−1)

dt

)
ds

We use (68) for A:

A ≤ c
∫ T

0

(
‖u(s)‖L2 +

√
M + 2‖∇u(s)‖L2

) (∑M
q=3 ‖∆q+j∇u(s)‖L2

)
ds

≤ c
∫ T

0

(
‖u(s)‖L2 +

√
M + 2‖∇u(s)‖L2

) (√
M‖∇u(s)‖L2

)
ds.

We have therefore
A ≤ cM‖u‖2

L2(0,T ;H1). (70)
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We use (69) for B:

B ≤ c

∫ T

0

(‖u(s)‖L2 + ‖∆u(s)‖L2)
∑
q≥M

(
2−q‖∆q+j∆(u(s))‖L2

)
ds

and therefore

B ≤ c2−M

∫ T

0

‖u(s)‖2
H2ds = c2−M

∫ T

0

‖u(t)‖2
H2dt.

In view of (19)

B ≤ c2−M(1 + T )
{
‖σ‖2

L2(0,T ;H1) + ‖u(0)‖2
H1

}
. (71)

For any ε > 0, we choose

M = log∗

c(1 + T )
[
‖σ‖2

L2(0,T ;H1) + ‖u(0)‖2
H1

]
ε


and we obtain from (70) and (71)∫ T

0
‖I(t)‖L∞dt ≤

≤ c‖u‖2
L2(0,T ;H1) log∗

(
c(1+T )

n
‖σ‖2

L2(0,T ;H1)
+‖u(0)‖2

H1

o
ε

)
(72)

The sum of the inequalities (50), (58), (62), (72) and a straighforward esti-
mate for the linear term carrying the initial data give the inequality (35) of
the theorem.

3 Coupled Nonlinear Fokker-Planck and

Navier-Stokes Systems in 2D

We consider now the coupling between fluid and particles. The evolution of
the density f is governed by a nonlinear Fokker-Planck equation

∂tf + v̄ · ∇xf + divg(Gf) =
1

τ
∆gf (73)
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The coefficient τ > 0 is the time scale associated with the particles. The
microscopic variables m are non-dimensional. The tensor G is made of two
parts,

G = ∇gU +W. (74)

The (0, 1) tensor fieldW is obtained from the macroscopic gradient of velocity
in a linear smooth fashion, given locally as

W (x,m, t) = (Wα(x,m, t))α=1,...,d =

(
n∑

i,j=1

cijα (m)
∂v̄i

∂xj

(x, t)

)
α=1,...,d.

(75)

The smooth coefficients cijα (m) do not depend on the solution, time or x

and, like the coefficients γ
(k)
ij , they are a constitutive part of the model. The

potential U is given by

U(x,m, t) =
b

τ
(Kf) (x,m, t) (76)

where b is a nondimensional measure of the intensity of the inter-particles
interaction. The nonlocal microscopic interaction potential

(Kf) (x,m, t) =

∫
M

K(m, q)f(x, q, t)dq (77)

is given by an integral operator with kernel K(m, q) which is a smooth, time
independent, x independent, symmetric function K : M ×M → R ([15]).
The Navier-Stokes equations are

∂tv + v · ∇xv +∇xp = ν∆xv +∇x · τp (78)

with ∇x ·v = 0. The added stresses are given by the relations (2), with (5, 6).
The added stresses are proportional to kT (where k is Botzmann’s constant
and T is temperature) and have units of energy per unit mass. The density
of the fluid is normalized to one. The particles are advected by

v̄(x, t) =
1

τ

∫ t

(t−τ)+

v(x, s)ds (79)

We rescale the Navier-Stokes equations using the length scale λ =
√

ντ
δ

and
the time scale λ2ν−1 = τ

δ
, where δ is the Deborah number, the ratio between
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the relaxation time scale of the particles and the macroscopic (observation)
advective time. We set

v(x, t) = δ
λ

τ
u

(
x

λ
,
tδ

τ

)
and we arrive at (9) with

σ =
τ

δν
τp. (80)

The Fokker-Planck equation becomes

(∂t + ū · ∇x) f + divg(Gf) =
1

δ
∆gf (81)

with

ū(x, t) =
1

δ

∫ t

(t−δ)+

u(x, s)ds, (82)

and (74) with

W (x,m, t) = (Wα(x,m, t))α=1,...,d =

(
n∑

i,j=1

cijα (m)
∂ūi

∂xj

(x, t)

)
α=1,...,d.

(83)

and

U(x,m, t) =
b

δ
(Kf) (x,m, t) (84)

The forces applied by the particles are obtained after f is integrated
along with smooth coefficients γ

(k)
ij on M in order to produce σ. Therefore,

only very weak regularity of f with respect to the microscopic variables m
is sufficient to control σ. In order to take advantage of this, we consider the
L2(M) selfadjoint pseudodifferential operator

R = (−∆g + I)−
s
2 (85)

with s > d
2

+ 1. We will use the following properties of R:

[R,∇x] = 0, (86)

R∇g : L1(M) → L2(M) is bounded, (87)

R∇g : L2(M) → L∞(M) is bounded, (88)
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[∇gc, R
−1] : Hs(M) → L2(M) is bounded, (89)

for any smooth function c : M → R, and

R : L2(M) → Hs(M) is bounded. (90)

We differentiate (81) with respect to x, apply R, multiply by R∇xf and
integrate on M . Let us denote by

N(x, t)2 =

∫
M

|R∇xf(x,m, t)|2 dm (91)

the square of the L2 norm of R∇xf on M . The following lemma was proved
in ([4]):

Lemma 3 Let ū(x, t) be a smooth, divergence-free function and let f solve
(81). There exists an absolute constant c > 0 (depending only on dimensions
of space, the coefficients cijα and M , but not on ū, f , δ) so that

(∂t + ū · ∇x)N ≤ c(|∇xū|+
1

δ
)N + c|∇x∇xū| (92)

holds pointwise in (x, t).

The proof is given below in the Appendix for completeness. It works inde-
pendently of the dimension n of the variables x. The equation obeyed by
ρ =

∫
M
fdm is

(∂t + ū · ∇x)ρ = 0. (93)

We will take initial densities that obey

0 ≤ ρ(x, 0) ≤ 1.

Therefore
0 ≤ ρ(x, t) ≤ 1 (94)

continues to be true and, in view of (7) and the fact that ū is divergence free,
it follows from (93) that

‖σ(t)‖Lr ≤ cr (95)

holds if we assume (as we do) that ρ(x, 0) ∈ L1(R2). The inequalities (7)
and (8) use only the smoothness of the coefficients γ, the relations (2, 5),
the condition (6) and (1), and therefore they hold throughout the evolution.
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We know thus that σ is bounded in L∞ and that K
(p)
r (in (36)) are bounded

a priori. (We also know that
∫ T

0
‖u(t)‖L∞dt is bounded a priori (see (30)).

This implies that the support of ρ, if initially compact, would expand only a
finite amount in finite time. We do not use this for the proof, but obviously
this is a physically important a priori quantitative information.)

Theorem 3 Consider the coupled Fokker-Planck and Navier-Stokes system
(73), (78) with arbitrary parameters ν, τ, b > 0. Assume that the initial
velocity v(0) is divergence-free and smooth, v(0) ∈ W 1+k,r(R2)∩L2(R2) with
k ∈ R, k > 0 and r > 2. Assume that the initial distribution of particles
f(x,m, 0) is non-negative, smooth, in the sense that

N(x, 0) = ‖∇xf(x, ·, 0)‖H−s(M) ∈ Lr(R2) ∩ L2(R2)

for some s ∈ R, and localized, in the sense that

ρ(x, 0) =

∫
M

f(x,m, 0)dm

obeys 0 ≤ ρ(x, 0) ≤ 1 and ρ(·, 0) ∈ L1(R2). Then the solution of the system
(73, 78) exists for all time and is smooth. In particular, the norms of

v ∈ L∞(dt;W 1,r(R2)) ∩ L2(dt;W 2,r(R2)),

f ∈ L∞(dt;W 1,r(dx;H−s(M))).

can be bounded a priori in terms of the initial data, for arbitrary large finite
intervals of time [0, T ].

Remark. The theorem implies that the important stretching magnitude∫ T

0

‖∇v‖L∞dt

is bounded a priori in terms of the initial data.
Proof. Let T > 0 be given. The sort time existence of solutions and the
uniqueness of the solutions can be obtained following classical methods of
proof. Let

n(t) = ‖∇xσ‖2
Lr + ‖σ‖2

H1 , (96)

B(t) =

∫ t

0

‖∇xσ‖2
Lrdt+

∫ t

0

‖σ‖2
H1dt, (97)
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g(t) = ‖∇ū(t)‖L∞ , (98)

γ(t) = sup
0≤s≤t

g(s), (99)

and
G(t) = ‖∇x∇xū(t)‖2

Lr + ‖ū(t)‖2
H2 . (100)

Using (92) we have
dn

dt
≤ cg(t)n(t) + cG(t) (101)

Integrating on (0, t)

n(t) ≤ n(0) + cγ(t)B(t) + c

∫ t

0

G(s)ds (102)

In view of (35) we have

cγ(t) ≤ C0 {1 + log∗(B(t))} (103)

with C0 a constant depending on T and the initial data. In view of (19) and
(23) we know ∫ t

0

G(s)ds ≤ C1 {1 +B(t) log∗B(t)} (104)

with C1 a constant. Note that

n(t) =
d

dt
B(t) (105)

Thus, from (102), (103) and (104) we deduce

d

dt
B(t) ≤ C2 {1 +B(t) log∗B(t)} (106)

holds with C2 a constant that depends on T and the values ‖ω(0)‖W k,r ,
‖ω(0)‖L2 , ‖u(0)‖L2 and n(0). This produces a pointwise-in-time a priori
finite bound for B(t) on the interval [0, T ], and retracing our steps, via (104)
and (102), on n(t). Once the forces in the two-dimensional Navier-Stokes
equations are known to be thus bounded, it follows (from (35)–but also much
easier, from energy estimates) that the solution of the Navier-Stokes equation
is smooth as stated.
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4 Appendix: Proof of Lemma 3

The evolution equation of N is

1

2
(∂t + ū · ∇x)N

2 = −D + I + II + III + IV (107)

with

D = ε

∫
M

|∇gR∇xf |2 dm (108)

I = −∂ūj

∂xk

∫
M

(
R
∂f

∂xj

)(
R
∂f

∂xk

)
dm (109)

II = −
2∑

α=1

(∇x
∂ūi

∂xj

)

∫
M

(Rdivg(c
ij
α f))(∇xRf)dm, (110)

III = −
2∑

α=1

∂ūi

∂xj

∫
M

(Rdivg(c
ij
α∇xf))(R∇xf)dm, (111)

and

IV = − b
δ

∫
M

Rdivg(∇x {f∇g(Kf)})R∇xfdm. (112)

Now we start estimating these terms. We will use repeatedly (1) and
(94). In view of the fact that D ≥ 0, we may discard this term. Clearly

|I| ≤ c|∇xū|N2. (113)

In order to bound II we use (87) to bound

‖R∇g(c
ij
α f)‖L2(M) ≤ c‖f‖L1(M) = c

so that we have
|II| ≤ c |∇x∇xū|N. (114)

In order to bound III we need to use the commutator carefully. We start by
writing

Rdivg(c
ij
α∇xf) = Rdivg(c

ij
αR

−1R∇xf) =

divg(c
ij
αR∇xf) +

[
Rdivgc

ij
α , R

−1
]
R∇xf.
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The second term obeys

‖
[
Rdivgc

ij
α , R

−1
]
R∇xf‖L2(M) ≤ cN

because, in view of (89) and (90) one has that[
Rdivgc

ij
α , R

−1
]

: L2(M) → L2(M) is bounded.

The first term needs to be integrated against R∇xf and integration by parts
gives ∫

M

(divg(c
ij
αR∇xf))R∇xfdm =

1

2

∫
M

(divgc
ij
α )|R∇xf |2dm.

We obtain thus
|III| ≤ c |∇xū|N2 (115)

The term IV is split in two terms, IV = A+B

A = − b
δ

∫
M

Rdivg({(∇xf)∇g(Kf)})R∇xfdm (116)

and

B = − b
δ

∫
M

Rdivg({f∇g(K∇xf)})R∇xfdm. (117)

The (0, 1) tensor Φ(x,m, t) = (∇gKf)(x,m, t) is smooth in m for fixed x, t
and

‖Φ(x, ·, t)‖W s,∞(M) ≤ cs

holds for any s, with cs depending only on the kernel K. We write the term
A

A = − b
δ

∫
M

Rdivg({(∇xf)Φ})R∇xfdm

= b
δ

∫
M

R−1(R∇xf){Φ · ∇gR
2∇xf))dm

= − b
2δ

∫
M

divg {Φ} |R∇xf |2 dm+ b
δ

∫
M

(R∇xf) [R−1,Φ∇g]R(R∇xf)dm.

In view of (89), (90), the operator[
R−1,Φ∇g

]
R : L2(M) → L2(M)
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is bounded with norm bounded by an a priori constant. It follows that

|A| ≤ cb

δ
N2(x, t)

holds. The term B is easier to bound, because

(K∇xf)(x,m, t) =

∫
M

R−1K(m,n)R∇xf(x, n, t)dn

and thus
‖(∇gK∇xf)(x, ·, t)‖L∞(M) ≤ cN(x, t).

Using (87) it follows that

|B| ≤ cb

δ
N2(x, t)

and consequently

|IV | ≤ cb

δ
N2(x, t). (118)

Putting together the inequalities (113), (114), (115) and (118) we finished
the proof of the lemma.
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