Publications

5. P. Constantin, Blow up for a nonlocal evolution equation, MSRI report 038-84-6, July 1984.

36. P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem, Nonlinearity, 6 (1993), 393 - 415.

60. P. Constantin, A few results and open problems regarding incompressible fluids, Notices of the AMS, 42 (1995), 658-663.

61. P. Constantin and J. Wu, Vanishing viscosity limit for vortex patches, (Mittag-Leffler preprint ISSN 1103-467X, No 26 1994/95)

62. P. Constantin, C. Fefferman and A. Majda, Sufficient conditions for regularity for the 3D incompressible Euler equations, Mittag Leffler ISSN 1103-467X, No 29 1994/95.

63. P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Commun. in PDE 21 (1996), 559-571.

67. P. Constantin, Ch. Doering and E. Titi, Rigorous estimates of small scales in turbulent flows, Journal of Mathematical Physics 37 (1996) 6152-6156.

82. P. Constantin, Q. Nie, N. Schorghofer, Front formation in an active scalarequation, Physical Review E60 (1999), 2858-2863.

101. P. Constantin, I. Kevrekidis, E.S. Titi, Remarks on a Smoluchowski equation, *Discrete and Continuous Dynamical Systems*, 11 (1) (2004), 101-112.

103. P. Constantin, J. Vukadinovic, Note on the number of steady states for a 2D Smoluchowski equation, *Nonlinearity* 18 (2005), 441-443.
104. P. Constantin, E.S. Titi, J. Vukadinovic, Dissipativity and Gevrey regularity of a Smoluchowski equation, Indiana Unive. Math. J, 54 (2005), 949-969.

105. P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical foundation of turbulent viscous flows: Lectures given at the C.I.M.E. Summer School, Martina Franca, Italy. Editors: M. Cannone and T. Miyakawa, Springer Lecture Notes in Mathematics 1871 (2005), 1-43.

108. P. Constantin, B. Levant, E.S. Titi, Analytic study of shell models of turbulence, Physica D, 219 (2006) 120-141.

117. P. Constantin, B. Levant, E. Titi, Regularity of inviscid shell models of turbulence, Physical Review E 75 1 (2007) 016305.

120. P. Constantin, B. Levant, E. Titi, Regularity of inviscid shell models of turbulence, Phys. Rev E 75 (2007), no 1, 016304, 10pp.

123. P. Constantin, Euler and Navier-Stokes equations, Publ. Mat. 52 (2008), no 2., 235-265.

135. P. Constantin, PDE problems from simple to complex fluids, *Nonlinearity*, **21** (2008), no 11, T239-244.

139. P. Constantin, G. Seregin, Hölder continuity of solutions of 2D Navier-Stokes equations with singular forcing, Nonliner PDE and Related Topics, A. Arkhipova and A. Nazarov, eds, AMS (2010), 87-97.

140. P. Constantin, G. Seregin, Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker-Planck equations, DCDS-A 26 No. 4 (April 2010) 1185-1186.

143. P. Constantin, W. Sun, Remarks on Oldroyd-B and related complex fluid models, CMS, 10 No. 1, (2012), 33-73.

146. P. Constantin, V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, GAFA 22 No. 5, (2012), 1289-1321.

147. P. Constantin, M. Kliegl, Note on global regularity for 2D Oldroyd-B fluids with diffusive stress, ARMA, 206 No.3, (2012), 725-740.

165. P. Constantin, M. Coti Zelati, V. Vicol, Uniformly attracting limit sets for the critically dissipative SQG equation, Nonlinearity 29 (2016), 298-318.

