
LECTURES 4 & 5: POINCARÉ SERIES

ANDREW SNOWDEN

These are notes from my two lectures on Poincaré series from the 2016 Learning Seminar
on Borcherds products. I begin by reviewing classical Poincaré series, then redo the theory
in the vector-valued setting, and finally discuss a non-holomorphic variant.

References:

• Bruinier, Borcherds products on O(2,`) and Chern classes of Heegner divisors (Lec-
ture Notes in Math 1780). I basically cover §1.2 and §1.3 here.
• Leis, The Poincaré series (notes).

Warning: There are many formulas and computations in these notes. I have not verified
them myself, but simply copied them from the sources I used. They’re probably mostly
right, but there could be some mistakes.

1. Classical Poincaré series

Suppose we want to construct modular forms for some group Γ ⊂ SL2(R). One way to
try to construct a function with the right invariance is to start with any function and then
average it over Γ. Unfortunately, in this particular situation, such averages will usually not
converge. However, a modification of this idea works: we instead start with a function that’s
already invariant under Γ∞ (assuming ∞ is a cusp), namely an exponential function, and
then average over the cosets of Γ∞ in Γ. These averages are the Poincaré series, and they
span the space of modular (or cusp) forms. While this theory works for quite general Γ, we
only present the case of Γ = SL2(Z) here.

1.1. Notation. Before getting into things, we set some notation. We let Γ = SL2(Z) and
let Γ∞ ⊂ Γ be the subgroup of upper-triangular matrices. These groups act on the upper
half-plane h by linear fractional transformations:

γz =
az + b

cz + d
, γ =

(
a b
c d

)
.

Note that Γ∞ is the full stabilizer in Γ of the cusp ∞.
We let jγ(z) = cz + d (in the above notation) be the usual automorphy factor. For a

function f on h, we define f |kγ to be the function on h given by

(f |kγ)(z) = jγ(z)−kf(z).

This defines an action of Γ on functions, and the transformation property of modular forms
of weight k is exactly invariance under this action.

Finally, we put e(z) = e2πiz.
1
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1.2. Definition. Let k > 2 and m ≥ 0 be integers, with k even. The Poincaré series is
defined by

(1.1) Pm,k(z) =
∑

γ∈Γ∞\Γ

e(mγz)|kγ

Note that the function e(mz) is invariant under the |k aciton of Γ∞, and so the sum is
well-defined. We have a bijection

Γ∞\Γ→ {(c, d) ∈ Z2 | c ≥ 0, (c, d) = 1}
Γ∞γ 7→ ±(0, 1)γ,

where the sign is taken to make the first coordinate positive (and (0, 1) denotes a row vector).
Using this, we find

(1.2) Pm,k(z) =
∑
c,d∈Z2

c≥0,(c,d)=1

e(mγc,dz)

(cz + d)k
,

where γc,d denotes any element of Γ with bottom row (c, d). From this we see that P0,k(z)
is the usual Eisenstein series Ek(z) of weight k. Moreover, it is clear that the the terms
of Pm,k(z) are bounded (in absolute value) by those of Ek(z), and thus (appealing to the
standard convergence result for Ek) we see that the series (1.2) converges absolutely. Thus
Pm,k(z) is a well-defined holomorphic function on the upper half-plane invariant under the |k
action of Γ. Furthermore, the bound |Pm,k(z)| ≤ |Ek(z)| implies that Pm,k(z) is holomorphic
at the cusps, since the same is true for Ek(z), and so Pm,k(z) is a modular form of weight k.

1.3. Fourier expansion. Fix m and k. Being a modular form, the Poincaré series admits
a Fourier expansion:

Pm,k(z) =
∑
n≥0

ane(nz).

We now give a formula for the coefficients an. We need to introduce some auxiliary quantities.
The Kloosterman sum k(m,n, c) is defined by

k(m,n, c) =
∑

d∈(Z/cZ)×

e

(
nd+md−1

c

)
.

This is a finite sum of roots of unity. The Bessel function is defined by

Jk−1(x) =
1

2πi

∫
|z|=1

z−ke(z−z−1)x/2dz.

We let

σk−1(n) =
∑
d|n

dk−1

be the usual function, and let ζ be the Riemann zeta function. We can now give the formula:

Theorem 1.3. For m > 0 we have

an =
( n
m

)(k−1)/2
∞∑
c=1

(
2πi

c

)k
k(m,n, c)Jk−1

(
4π
√
nm

c

)
,
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while for m = 0 we have

an =
(2πi)kσk−1(n)

(k − 1)!ζ(k)
.

Proof. We just provide a sketch of the proof. Let y > 0 be a real number. We have

an =

∫ 1+iy

0+iy

Pm,k(z)e(−nz)dz

=
∑
c,d∈Z2

c≥0,(c,d)=1

∫ 1+iy

0+iy

e(mγc,dz)

(cz + d)k
e(−nz)dz

The c = 0 terms are ∑
d=±1

∫ 1+iy

0+iy

e(mz)e(−nz)dz = 2δn,m.

Write an = 2δn,m + a′n, so that a′n is the sum over c > 0. We break this sum up over cosets

mod c. Precisely, write d = d+ c` where 0 ≤ d < c is prime to c and ` ∈ Z. We have

cz + d = c(z + `) + d, γc,dz = γc,d(z + `).

Thus

a′n =
∞∑
c=1

∑
0≤d<c,
(c,d)=1

∑
`∈Z

∫ 1+iy

0+iy

e(mγc,d(z + `))

(c(z + `) + d)k
e(−nz)dz

Changing z to z − ` (and dropping the overline on d), we find

a′n =
∑
c,d

∑
`∈Z

∫ `+1+iy

`+iy

e(mγc,dz)

(cz + d)k
e(−nz)dz

a′n =
∑
c,d

∫ ∞+iy

−∞+iy

e(mγc,dz)

(cz + d)k
e(−nz)dz

Next, we have

(cz + d)k = ck(z + d
c
)k, γc,dz =

a

c
− 1

c2(z + d
c
)
.

We change z to z − d
c

in the integral, to obtain

a′n =
∞∑
c=1

∑
d∈(Z/cZ)×

∫ ∞+iy

−∞+iy

e(ma
c
− m

c2z
)

ckzk
e(−nz + nd

c
)dz

=
∞∑
c=1

c−k

 ∑
d∈(Z/cZ)×

e(ma
c

)e(nd
c

)

∫ ∞+iy

−∞+iy

z−ke(− m
c2z
− nz)dz

Note that in the first sum, a is the inverse of d modulo c. Thus this sum is simply k(m,n, c).
If m > 0 then, after some manipulation, the integral turns into the Bessel function and other
factors. [What happened to the δn,m in the formula for an?] If m = 0 then the integral is
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easy to evaluate using the residue theorem, and one reaches the final formula by applying
the identity

∞∑
c=1

k(0, n, c)

ck
=

(
−2πi

n

)k−1
σk−1(n)

ζ(k)
.

[This doesn’t seem quite right...] �

Corollary 1.4. For m > 0 the series Pm,k is a cusp form.

Proof. It is clear from the formulas that an = 0 if m > 0. �

Corollary 1.5. We have Pm,k = 0 for all m > 0 if k ∈ {4, 6, 8, 10}.

Proof. There are no non-zero cusp forms for Γ for these weights. �

Remark 1.6. This vanishing is not at all clear from the definition of Pm,k or the formula
for its Fourier coefficients. Apparently, it is a difficult problem in general to determine when
Poincaré series vanish identically. �

1.4. Petersson inner product. Let f and g be weight k modular forms, at least one of
which is cuspidal. Recall that their Petersson inner product is defined by

(f, g) =

∫
Γ\h

f(z)g(z)yk−2dxdy.

The factor yk−2 ensures that this is well-defined, i.e., independent of the choice of fundamen-
tal domain. The Petersson inner product defines a non-degenerate hermitian inner product
on the space Sk(Γ) of cusp forms of weight k. The following result describes how it interacts
with Poincaré series

Theorem 1.7. Let f be a cusp form of weight k. Then

(f, Pm,k) =
Γ(k − 1)

(4πm)k−1
am(f),

where Γ is the usual Γ-function and am(f) denotes the mth Fourier coefficient of f .

Proof. We have

(f, Pm,k) =

∫
Γ\h

ykf(z)
∑

γ∈Γ∞\Γ

(
jγ(z)

)−k
e(mγz)

dxdy

y2

We now make use of the identity

Im(γz) =
Im(z)

|jγ(z)|2

to obtain

(f, Pm,k) =

∫
Γ\h

∑
γ∈Γ∞\Γ

Im(γz)kf(γz)e(mγz)
dxdy

y2
.

Note that the measure dxdy
y2

is invariant under the action of Γ. We can therefore “unfold”

the integral to obtain

(f, Pm,k) =

∫
Γ∞\h

yk−2f(z)e(mz)dxdy.
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Now, the action of Γ∞ on h is generated by the translation z 7→ z + 1, and so has for a
fundamental domain the region defined by 0 ≤ x ≤ 1. We thus find

(f, Pm,k) =

∫ ∞
0

∫ 1

0

yk−2f(x+ iy)e−2πimx−2πmydxdy.

Write f(z) =
∑

n≥0 ane(nz) with an = an(f). Then we obtain

(f, Pm,k) =
∑
n≥0

an

∫ ∞
0

∫ 1

0

yk−2e2πi(n−m)xe−2π(n+m)ydxdy.

The x-integral is δn,m and the y-integral (for n = m) is Γ(k − 1)(4πm)−(k−1). This gives the
stated formula. �

Corollary 1.8. The series Pm,k with m > 0 span the space Sk(Γ) of cusp forms.

Proof. Suppose f ∈ Sk(Γ) is orthogonal to all of the Pm,k. Then am(f) = 0 for all m > 0 by
the Theorem, and so f = 0. The non-degeneracy of the inner product thus implies that the
Pm,k span. �

Example 1.9 (k = 12). Let ∆(z) be the modular discriminant, the unique normalized cusp
form of weight 12. We have

∆(z) = q
∏
n≥1

(1− e(nz))24 =
∑
n≥1

τ(n)e(nz),

where τ(n) is the customary notation for the nth Fourier coefficient. (The function τ is
called the Ramanujan function.) From the Theorem, we find

(∆, Pm,12) =
10!τ(m)

(4πm)11

Since S12(Γ) is 1-dimensional, Pm,12 is a scalar multiple of ∆. We find

Pm,12(z) =
10! · τ(m)

(2πm)11 · (∆,∆)
·∆(z).

In particular, we find Pm,12 = 0 if and only if τ(m) = 0. Lehmer conjectured τ(m) 6= 0 for
all m ≥ 1. This has been verified for all m up to about 1024, but has not been proved. �

2. Vector-valued Poincaré series

We now give variants of the constructions and results from the previous section in the
vector-valued setting. The proofs are exactly the same, so we omit them.

2.1. Notation. We let Γ and Γ∞ be as before, though we now write M for a typical element

of Γ. We let Γ̃ be the metaplectic cover of Γ. Its elements are pairs (M,φ) where M ∈ Γ

and φ is a continuous square-root of the automorphy factor jγ on h. We let Γ̃∞ ⊂ Γ̃ be the
subgroup consisting of elements of the form (M, 1) with M ∈ Γ∞. We put

T =

((
1 1
0 1

)
, 1

)
, Z =

((
−1 0
0 −1

)
, i

)
.

The element Z generates the center of Γ̃ and {1, Z2} = ker(Γ̃→ Γ).
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Fix an even lattice L of signature (b+, b−). We assume (b+, b−) is of the form (2, `),
(1, `− 1), or (0, `− 2). We let q(x) = 1

2
〈x, x〉 be the quadratic form. We put κ = 1 + `

2
. This

will be the weight of the modular forms we produce.

Let L′ be the dual lattice and let ρ be the Weil representation of Γ̃ on the group algebra
C[L′/L]. For γ ∈ L′/L we let eγ be the corresponding basis vector in the group algebra, and
put eγ(τ) = e(τ) · eγ.

For a function f : h → C[L′/L] and (M,φ) ∈ Γ̃, we define f |∗κ(M,φ) to be the function
defined by

(f |∗κ(M,φ)) (τ) = φ(τ)−2kρ∗(M,φ)−1f(Mτ).

Here ρ∗(M,φ) is just the complex conjugate of the matrix ρ(M,φ), since the Weil represen-
tation is unitary and the standard basis is orthonormal. The transformation law for a weight

κ vector-valued modular form is exactly invariance under the the |∗κ action of Γ̃.

Remark 2.1. (1) The assumption on the signature of L does not seem to be used. (2) The
weight κ of the form is derived from the signature of the lattice, but this seems unnecessary.
That is, it seems that one can fix the lattice L and then work with arbitrary choices of κ. �

2.2. Definition (m positive). Fix β ∈ L′/L and m ∈ Q positive such that m+ q(β) ∈ Z.
Then eβ(mτ) is invariant under |∗κT . Indeed, we have ρ∗(T )−1eβ = e(q(β))eβ [is this right,
or should it be e(−q(β))?], and so

eβ(mτ)|∗κT = ρ∗(T )−1eβe(m(τ + 1)) = e(q(β) +m)eβe(mτ) = eβ(τ),

as e(q(β) +m) = 1 since q(β) +m is an integer. We define the Poincaré series by

PL
β,m(τ) = 1

2

∑
(M,φ)∈Γ̃∞\Γ̃

eβ(mτ)|∗κ(M,φ).

The sum is well-defined since eβ(mτ) is invariant under |∗κT . One easily sees that this defines
a weight κ vector-valued modular form. We often drop the L from the notation.

2.3. Fourier expansion. We have a Fourier expansion

Pβ,m(τ) =
∑

γ∈L′/L

∑
n>0,

n+q(γ)∈Z

pβ,m(γ, n)eγ(nτ).

Define the generalized Kloosterman sum by

H∗c (β,m, γ, n) =
e−iπ sgn(c)κ/2

|c|
∑

M∈Γ∞\Γ/Γ∞

ρβ,γ(γ̃)e

(
ma+ nd

c

)
, M =

(
a b
c d

)
.

Here γ̃ denotes a lift of γ to Γ̃ and ρβ,γ(M̃) denotes the entry of the matrix ρ(M̃) in row
β and column γ. As previously mentioned, Γ∞\Γ is in bijection with relatively prime pairs
(c, d) with c ≥ 0. Since c is fixed, summing over M ∈ Γ∞\Γ/Γ∞ is the same as summing
over d ∈ (Z/cZ)×, and then a is just d−1.

Theorem 2.2. We have

pβ,m(γ, n) = δm,n(δβ,γ + δ−β,γ) + 2π
( n
m

)(κ−1)/2 ∑
c∈Z\{0}

H∗c (β,m, γ, n)Jk−1

(
4π
√
mn
|c|

)
,

where Jk−1 is the Bessel function used previously.
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2.4. Petersson inner product. Let 〈, 〉 be the Hermitian inner product on C[L′/L] for
which the basis vectors eγ are orthonormal. We then define the Petersson inner product
of weight κ vector-valued modular forms f and g (at least one of which is cuspidal) by

(f, g) =

∫
Γ\h
〈f(τ), g(τ)〉yκ−2dxdy.

This defines a non-degenerate hermitian form on the space of cusp forms Sκ,L. We have:

Theorem 2.3. Let f ∈ Sκ,L be a cusp form and let c(β,m) denote its Fourier coefficients.
Then

(f, Pm,β) = 2
Γ(κ− 1)

(4πm)κ−1
c(β,m).

Corollary 2.4. The series Pm,β with m > 0 and β ∈ L′/L span Sκ,L.

2.5. Eisenstein series (m = 0). As we have seen, the Poincaré series with m > 0 span the
space of cusp forms. We’d like to be able ot span all modular forms by including the Poincaré
series at m = 0, as in the classical case. However, there is an issue here: the function eβ(mτ)
is only invariant under |∗κT if q(β) + m ∈ Z. Thus we can only hope to define the Poincaré
series at m = 0 under the assumption q(β) ∈ Z. However, this turns out to be enough.

We now give some details. Fix β ∈ L′/L with q(β) ∈ Z. We define the Eisenstein series
by

EL
β (τ) = 1

2

∑
(M,φ)∈Γ̃∞\Γ̃

eβ|∗κ(M,φ).

Here eβ denotes the constant function h→ C[L′/L] with value eβ. This is easily seen to be
a modular form. It is a theorem that the Eβ and Pm,β span the space Mκ,L of all modular
forms.

Consider the Fourier expansion of Eβ:

Eβ(τ) =
∑

γ∈L′/L

∑
n≥0

q(γ)+n∈Z

qβ(γ, n)eγ(ntau).

We have
qβ(γ, 0) = δβ,γ + δ−β,γ

and, for n > 0,

qβ(γ, n) =
(2π)κnκ−1

Γ(κ)

∑
c∈Z\{0}

|c|1−κH∗c (β, 0, γ, n).

It is a theorem that this quantity is in fact a rational number.

Remark 2.5. It is not difficult to see that Eβ = E−β. It is a theorem that there are no
other linear dependencies among the Eisenstein series. Thus the dimension of the space of
Eisenstein series (i.e., the dimension of the complement of Sκ,L in Mκ,L) is equal to

#{β ∈ L′/L | 2β = 0, q(β) ∈ Z}+ 1
2
#{β ∈ L′/L | 2β 6= 0, q(β) ∈ Z}. �

3. Non-holomorphic vector-valued Poincaré series

We now give one more variant of the Poincaré series: non-holomorphic series of negative
weight. We only do the vector-valued theory, though there is a simpler scalar theory (and
perhaps it would have been good to do this first for pedagogical reasons).
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3.1. Notation. We fix an even lattice L as before, with the same assumptions on the sig-
nature. We now let k = 1 − `

2
, which will be the weight of our forms. For a function

f : h→ C[L′/L], we put

(f |k(M,φ))(τ) = φ(τ)−2kρ(M,φ)−1f(Mτ)

We let

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
be the weight k Laplacian. It satisfies

∆k(f |k(M,φ)) = (∆kf)|k(M,φ).

We let Mν,µ(z) and Wν,µ(z) be the Whittaker functions. They span the space of solutions
of the Whittaker differential equation

d2w

dz2
+

(
−1

4
+
ν

z
− µ2 − 1/4

z2

)
w = 0

and are distinguished from each other by different asymptotic behavior at 0 and ∞. For
s ∈ C and y > 0 we put

Ms(y) = y−k/2M−k/2,s−1/2(y),

and for s ∈ C and y ∈ R \ {0} we put

Ws(y) = |y|−k/2Wk sgn(y)/2,s−1/2(|y|).

3.2. Definition. Fix β ∈ L′/L and m ∈ Q negative such that m+ q(β) ∈ Z. The function

Ms(−4πmy)eβ(mx)

is invariant under |kT (same calculation as previous section, theMs factor is irrelevant) and
an eigenfunction of ∆k of eigenvalue s(1 − s) + (k2 − 2k)/4 (this is where the Ms factor is
important). We define the Poincaré series by

Fβ,m(τ, s) =
1

2Γ(2s)

∑
(M,φ)∈Γ̃∞\Γ̃

(Ms(−4πmy)eβ(mx))|k(M,φ),

for Re(s) > 1. This is invariant under the |k action of Γ̃ and an eigenfunction for ∆k of
eigenvalue s(1− s) + (k2 − 2k)/4. Since it is an eigenfunction of ∆k, it is real-analytic in τ .
It is holomorphic in s.

3.3. Fourier expansion. Since Fβ,m(τ, s) is invariant under x 7→ x+ 1, it admits a Fourier
expansion

Fβ,m(τ, s) =
∑

γ∈L′/L

∑
n+q(γ)∈Z

c(γ, n, y)eγ(nx).

Note that the coefficients depend on y, and we have eγ(nx) instead of eγ(nτ).
Bruinier gives a formula for the Fourier coefficients. It is quite involved, taking an entire

page to state fully. It again uses generalized Kloosterman sums and (different) Bessel func-
tions, and now also involves the Whittaker function Ws(y). When s = 1− k/2 the formula
simplifies somewhat, but is still more complicated than I want to try to reproduce here! The
important point seems to be that it has the following form:

Fβ,m(τ, s) = eβ(mτ) + e−β(mτ) + (bounded as τ →∞).
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(Recall that m < 0, so e(mτ) is not bounded as τ → ∞.) Using this, Bruinier obtains the
following result:

Theorem 3.1. Let f be a vector-valued modular form of weight k that is holomorphic on h
and meromorphic at ∞ (or “nearly holomorphic” in Bruinier’s terminology). Then f is a
linear combination of the series Fβ,m(τ, 1− k/2) with m < 0.

Proof. The idea of the proof seems to be the following. By the previous formula for the
first terms in the Fourier expansion of Fβ,m, one can conconct a linear combination g of the
Fβ,m’s that has the same principal part of f . (“Principal part” meaning “negative terms in
Laurent expansion.”) The difference f − g is then killed by ∆k (since s = 1−k/2), invariant

under the |k action of Γ̃, and bounded as τ → ∞, and therefore vanishes by some sort of
maximum modulus principal. �
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