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This is a write-up of a very nice talk given by Luis Garcia. The abstract of the talk is:

We will review work of Borcherds and Bruinier using regularised theta lifts for
the pair (SL2,O(V )) to construct Green currents for special divisors on some
Shimura varieties. Then we will explain how to construct other interesting
currents on X using the dual pair (Sp4,O(V )). We will show that one obtains
currents in the image of the regulator map of a certain motivic complex of
X. Finally, we will describe how an argument using the Siegel-Weil formula
allows to relate the values of these currents to the product of a special value
of an L-function and a period on a certain subgroup of Sp4.

Any errors in the notes are introduced by me in the preparation of these notes.
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1. Motivation

Let X be a smooth projective surface over Q and consider the higher Chow group

CH2(X, 1) := Z2(X, 1)/B2(X, 1),

where

Z2(X, 1) :=
{∑

ni(Ci, fi) : ni ∈ Q, Ci ⊂ X, dimCi = 1,

fi ∈ Q(Ci)
×,
∑

div(fi) = 0 ∈ Z2(X)
}
,

B2(X, 1) := {tame symbols}.

Example 1. We give an example of an element of Z2(X, 1). Let C be a curve and consider
X = C × C. Pick P,Q ∈ C satisfying n(P −Q) = div(f) for some n ∈ Q and f ∈ Q(C)×.
We can construct a cycle

∆P,Q = (∆, f)− (C × {P}, f)− ({Q} × C, f).

From this, it is easy to see that
∑

div(fi) = 0, and thus the above cycle is an element in
Z2(X, 1). ♦

We can define a subgroup

CH2(X, 1)Z := Im(CH2(X , 1)→ CH2(X, 1)) ⊂ CH2(X, 1),

where X is a “nice” model of X over SpecZ.
1
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There is a very interesting map called the regulator map:

reg : CH2(X, 1)→ (H1,1(XC)+)∨∑
ni(Ci, fi) 7→

(
α 7→ 1

2πi

∑
ni
∫
Ci
α · log |fi|

)
.

Note that this regulator map is well-defined because of the imposed
∑

div(fi) = 0 condition.
Here, H1,1(XC) denotes the subgroup of H2(XC,C) consisting of harmonic forms of type
(1, 1).

Recall also the usual cycle class map:

d : Z1(X)/ ∼hom → (H1,1(XC)+)∨,∑
niCi 7→

(
α 7→ 1

2πi

∑
ni
∫
Ci
α
)

Now define

r := reg |CH2(X,1)Z
⊕ d : CH2(X, 1)Z ⊕ Z1(X)/ ∼hom→ (H1,1(XC)+)∨.

Conjecture 2 (Beilinson–Tate). (1) Im(r) is a Q-lattice in (H1,1(XC)+)∨

(2) det(Im(r)) = L∗(H2(X)(1), 0) ·B, where B is a Q-structure coming from differential
forms “defined over Q”

(3) − ordL(H2(X)(1), 1) = dimZ1(X)/ ∼hom

The notation L∗ denotes the first nonzero term in the Taylor series.
Very little is known about this conjecture. A case when this is known is the following.

Let C = X0(N) and take P,Q to be cusps of X0(N).

Theorem 3 (Manin–Drinfeld). n(P − Q) = div(fP,Q) for some n ∈ N and fP,Q ∈
Q(X0(N))×.

Now we can consider the surface X = C × C and the divisor ∆P,Q as in Example 1. To
see if this is nontrivial, we can try to compute its image under the regulator map.

The interesting part of H1,1(XC)+ is the subgroup coming from cusp forms:⊕
f1,f2∈S2(Γ0(N))

H1,1(XC)+(f1, f2) ⊂ H1,1(XC)+,

where each summand is generated by the (1, 1)-form ω1,1 := f1(z1)dz1 ∧ f2(z2) dz̄2.
Say f1, f2 are normalized newforms. Then there are two cases, and these two cases behave

in very different ways:

(1) f1 = f2. Then for ∆ ∈ Z1(X)/ ∼hom,

(∆, ω1,2) :=

∫
∆
ω1,2 = ∗ · (f1, f1) > 0,

where the righthand form is the Petersson inner product. Also, L(f1 × f2, s) has a
pole at s = 1. (Can think of this L-function as the Rankin–Selberg L-function.)

(2) f1 6= f2. Then the trick in (1) doesn’t work since (f1, f2) = 0, so pairings like
(∆, ω1,2) won’t tell us when ∆ is nontrivial.

We instead appeal to the Beilinson–Tate conjecture. The L function L(f1 × f2, s)
has a pole at s = 1, so the conjecture predicts that there exists some cycle Z ∈
CH2(X, 1)Z such that reg(Z)(ω1,2) := (Z, ω1,2) 6= 0. When we take Z = ∆P,Q and

reg(∆P,Q)(ω1,2) =

∫
X0(N)

f1(z)f2(z) log |fP,Q(z)|.
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It turns out that we can compute the righthand side!! The reason is that in the case
X = C × C, we have the Kronecker limit formula, which says:

log |fP,Q| = EP,Q(z, s)|s=0,

where EP,Q(z, s) is an Eisenstein series. Then by a Rankin–Selberg-type argument,
we have

reg(∆P,Q(ω1,2)) =

∫
X0(N)

f1(z)f2(z)EP,Q(z, s)|s=0 = ∗ · L∗(f1 × f2, 0),

where the ∗ factor is an easy constant. This is one of the examples Beilinson gives
in the original paper to support the Conjecture.

The problem with this approach is that this essentially only works for X = X0(N)×X0(N)
and a handful of other examples as there is no known analogue of the Kronecker limit formula
in general. This leads to the following question:

Can one use Borcherds lifts (wherein by construction one gets an expression
of the form log | − |) to compute the regulator map in other settings?

2. Theta correspondences for (Sp,O) pairs

Let F be a totally real field and denote by Fv its v-adic completion. For simplicity, we
set F = Q.

We first recall the construction of theta correspondences for dual reductive pairs of the
form (Sp,O). This was discussed in Lectures 2, 3, and 6. The following is a slightly different
exposition.

Let (V,Q) be a quadratic vector space over Q of even dimension. For n ∈ N, denote by
S(V (A)n) =

⊗′ S(V (Qv)
n) the corresponding Schwartz space. Let OV be the orthogonal

group of (V,Q). We have an action of OV (A) on S(V (A)n) via

ω(h)ϕ(v) := ϕ(h−1v)

that extends to an action of Sp2n(A)×OV (A) on S(V (A)n). These are the actions induced by
pulling back the Weil representation of Mp(V (A)2n) on S(V (A)n) to the subgroup Sp2n×OV .

We have a theta functional that intertwines the Sp2n(A)×OV (A) actions:

θ : S(V (A)n)→ C∞(Sp2nQ\ Sp2n(A)×OV (Q)\OV (A))

ϕ 7→
(

(g, h) 7→ θ(g, h;ϕ) :=
∑

v∈V (Q)n ω(g, h) · ϕ(v)
)
.

By integrating against θ, we obtain a map

A0(Sp2n)⊗ S(V (A)n)→ A(OV ), f ⊗ ϕ 7→ θ(f ;ϕ),

where A0(Sp2n) denotes the space of cusp forms on Sp2n(A) and A(OV ) denotes the space
of automorphic forms on OV (A). (Note that θ(f ;ϕ) might not be a cusp form! We will
come back to this comment later.)

Now given an automorphic representation π ⊂ A0(Sp2n), we can define its theta lift

θ(π) := 〈θ(f, ϕ) : f ∈ π, ϕ ∈ S(V (A)n)〉.
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By appealing to the Rallis inner product formula, one can prove the following basic global
result: If θ(π) is cuspidal, then for f = ⊗vfv, ϕ = ⊗vϕv, we have

||θ(f ;ϕ)||2 = ∗ · ||f ||2 · LS(π, std, s0) ·
∏
v

Zv(fv, ϕv).

Now we specialize to the situation where we take (V,Q) to be the 4-dimensional quadratic
space defined by V = B an indefinite quaternion algebra over Q with quadratic form given
by the reduced norm on B. (For F totally real, we take B to be indefinite at exactly one
infinite place so that XB is a curve.) Then we have

GSO(V ) ∼= (B× ×B×)/Q×.

This isomorphism can be realized by B× acting on V = B by left and right multiplication.
It follows then that an automorphic representation π of GSO(V ) is of the form π = π1 � π2,
where πi is an automorphic representation of B(A)× with compatible central characters (i.e.,
ω(π1) · ω(π2) = 1).

Let XB be a full level Shimura curve and consider the surface X = XB × XB. Pick
fi ∈ πKi , where K is a maximal compact subgroup of B(A)×. Then π = π1 � π2 has two
different behaviors:

(1) We have π2
∼= π∨1 if and only if L(π1 ⊗ π2, s) has a pole at s = 1. This happens if

and only if π = θ(Π) for some Π ⊂ A0(GL2). In other words, in this situation, π
can be realized the theta lift of a cuspidal representation of GSp2.

(2) Conversely, we have π2 6∼= π∨1 if and only if L(π1 ⊗ π2, s) has no pole at s = 1. This
happens if and only if π = θ(Π), where Π ⊂ A0(GSp4). In other words, in this
situation, π can be realized as the theta lift of a cuspidal representation of GSp4.

Remark 1. It is natural to ask what happens if we consider the theta correspondence for
(Sp2n,O(4)), where n > 2. On the level of representations (i.e. by considering unique
irreducible subquotient of the π-isotypic component of the Weil representation, where π is
an irreducible representation of one of the groups), we obtain a correspondence

{reps coming from Eis series of Sp2n} ←→ {cuspidal reps of O(4)}.
We can only define the theta lift for cusp forms (otherwise the theta integral may not
converge), and so while we can define the O(4) Sp2n on the level of forms to obtain the
above correspondence, we cannot define Sp2n  O(4) on the level of forms. Along the same
lines, the lift of a cusp form on Sp2n to O(4) vanishes. ♦

With (2) in mind, our goal is to construct currents related to Beilinson’s regulator currents
by lifting forms of GSp4. The hope is that this will allow us to test when cycles are nonzero
in CH2(X, 1).

3. Cycles and currents

Let (V,Q) be a quadratic space of signature (N, 2) and let G = O(V,Q). We have an
associated Hermitian symmetric space D = O(N, 2)/(O(N)×O(2)) and we can realize this
space as

D = {Z ⊂ VR : dimZ = 2, Q|Z is negative definite, Z oriented}.
(In Lecture 7, we called this Gr(L), where L is an integral lattice in VR.) For v ∈ V (Q) with
Q(v) > 0, the subspace

Dv := {z ∈ D : v ⊥ z} ⊂ D
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is an analytic divisor of D.
Now let L be a lattice in V (Q) and let Γ := ΓL := stabG(L). This is a discrete subgroup

of O(VR). We then have a diagram

Dv D

X(v)L := Γv\Dv Γ\D =: XL

Example 4. Here are some possible outcomes for XL. If N = 1, we can get XL a Shimura
curve and X(v)L a CM point. If N = 2, we can get XL = XB ×XB and X(v)L is a special
divisor (coming from, for example, Hecke correspondences). ♦

Define certain cycles:

Z(v)L := [X(v)L] ∈ Z1(XL),

Z(n)L :=
∑
{v∈L,Q(v)=n}/ΓX(v)r ∈ Z1(XL).

Now consider a pair of vectors v, w ∈ V (Q) spanning a positive definite plane. Then we
have a diagram

Dv,w := Dv ∩ Dw Dv D

X(v, w)L := Γv,w\Dv,w X(v)L := Γv\Dv Γ\D =: XL

Each containment in the bottom row is of codimension 1. We can define

Z(v, w)L := [X(v, w)L] ∈ Div(X(v)L).

In 2009, Bruinier constructed Green functions on G(v, w)L for Z(v, w)L in X(v)L with
log singularities at Z(v, w)L. We would like to understand the current

[Φ(v, w)L] := G(v, w)L · δX(v)L ,

which is defined to be the linear functional on differential forms α ∈ AN−1,N−1
c (XL) given by

[Φ(v, w)L](α) =

∫
X(v)L

G(v, w)L · α.

The upshot of Bruinier’s results is that we obtain many currents of the form∑
log |ψi| · δX(vi)L

as Q-linear combinations of [Φ(v, w)L].
If for T ∈ Sym2(Z)>0 we define

[Φ(T )L] =
∑

{Q(v,w)=T, v,w∈L}/Γ

[Φ(v, w)L],

we can obtain [Φ(T )L] = GCM(Z[−n]) · δ∆ for certain choices of T , L.

Theorem 5 (Garcia). There exists a (1, 1)-form Φ(T, s)L defined over a Zariski open
U ⊂ XB ×XB such that

(1) Φ(T, s)L is locally integrable (and so [Φ(T, s)L] is defineable.)
(2) [Φ(T, s)L] admits a meromorphic continuation to s ∈ C
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(3) The constant term at s = s0 of [Φ(T, s)L] is [Φ(T )L] modulo ∂ + ∂̄.
(4) Φ(T, s) arises as a kind of regularized theta lift (MT (s), f)reg, where replace the

theta kernel with a function MT (s) : A(R)◦ ×N(Z)\N(R)→ C, where

A :=

{( a
b
a−1

b−1

)
: a, b ∈ R>0

}
, N :=

{(
12 X

12

)
: X ∈ Sym2 R

}
.

So what is the upshot? The point is that we can use this to evaluate currents: If we
specialize to the case XL = XB ×XB (where XB is the full level Shimura variety), we have

[Φ(T )](ω1,2) = ∗ · L∗(f1 × f2, 0) · CT |s=s0(MT (s), f)reg,

where CT denotes the constant term.
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