## Chern classes of Heegner divisors

Lecture 11 • Speaker: Kartik Prasanna • Notes by: Charlotte Chan • April 1, 2016

This is a write-up of a very nice talk given by Kartik Prasanna. The purpose of this talk is to explain Chapter 5 of [Br] and explain the motivation behind [Br].

We are interested in studying cycles on Shimura varieties attached to orthogonal groups O(V), where V is a quadratic space over  $\mathbb{Q}$  with form Q of signature (2, n). (More generally, we can consider, for example, a quadratic space over a totally real field F that has signature (2, n) at  $\infty_1$  and is definite at all other infinite places.) Then, via the embeddings  $O(2, l) \hookrightarrow O(2, l)$ , the Heegner divisors will give rise to cycles of every codimension in the Shimura variety for O(2, n).

Pick a lattice  $L \subseteq V$ . For simplicity, we assume L is unimodular. Let  $\Gamma(L) \subset \mathrm{O}(V)$  be the stabilizer of L in  $\mathrm{O}(V)$ ; this is a discrete subgroup. Recall that we have an n-dimensional symmetric space  $\mathbb H$  associated to L and that the quotient  $X_L = \mathbb H/\Gamma(L)$  is a connected component of the orthogonal Shimura variety. Recall also that for each negative integer m such that  $m \in Q(V)$ , we have an associated Heegner divisor  $H(m) \in \mathrm{CH}^1(X_L)$ . Once and for all, set  $\kappa := 1 + n/2 > 0$  and  $k := 2 - \kappa = 1 - n/2 < 2$ . Then the Borcherds lift in [B2] is a given by a map

$$M_k^!(\operatorname{SL}_2\mathbb{Z}) \longrightarrow \{\text{mero aut form for }\Gamma(L)\}$$

$$f \longmapsto \Psi_f$$

where  $M_k^!(\operatorname{SL}_2\mathbb{Z})$  denotes the space of weakly holomorphic modular forms of weight k (i.e. f may have poles at the cusps but is otherwise holomorphic). Writing

$$f = \sum_{n \gg -\infty} c(n)q^n,$$

we get a meromorphic automorphic form  $\Psi_f$  of weight c(0)/2 with divisor

$$\operatorname{div} \Psi_f = \sum_{m < 0} c(m) H(m).$$

This is the Borcherds lift. Note that to define the Borcherds lift, we need to assume that  $c(m) \in \mathbb{Z}$  for m < 0. We also remark that the divisors H(m) were defined as divisors on  $\mathbb{H}$  and were later shown to be  $\Gamma(L)$ -invariant. Hence the Heegner divisors H(m) can be viewed as divisors on the quotient  $X_L$ .

Remark 1. What do we mean by an automorphic form? We can think of an automorphic form as a section of an automorphic vector bundle on  $X_L$ . The Shimura variety  $X_L$  carries a family a Hodge structures of weight 2 with Hodge numbers  $h^{2,0} = 1$ ,  $h^{1,1} = n$ ,  $h^{0,2} = 1$ . There is an automorphic line bundle  $\omega$  over  $X_L$  that corresponds to taking the first step in the Hodge filtration, and the Borcherds lift  $\Psi_f$  is a section of  $\omega^{\otimes c(0)/2}$ .

The following result of Borcherds gives a criterion for what can appear as the principal part of a weakly holomorphic modular form. (Note that the stated result below is a simplification of the general statement, which does not require L to be unimodular.)

**Theorem 1.** There exists an  $f \in M_k^!(\operatorname{SL}_2\mathbb{Z})$  with principal part  $\sum_{-\infty \ll n < 0} c(n)q^n$  if and only if  $\sum_{n < 0} c(n)a(-n) = 0$  for all cusp forms  $\sum_{n > 0} a(n)q^n \in \mathcal{S}_{\kappa}(\operatorname{SL}_2\mathbb{Z})$ .

**Example 2.** Consider the special case when  $L = H \oplus H$  is the sum of two copies of the hyperbolic plane. Then  $V = L \otimes \mathbb{R}$  has signature (2,2) and we have  $\kappa = 2$  and k = 0. The group SO(V) is (roughly)  $SL_2 \times SL_2$  and so the associated symmetric space is (roughly) a product of two copies of the upper-half plane  $\mathfrak{h}$ . Consider the modular j-function

$$j(\tau) = q^{-1} + 744 + 196884q + \cdots$$

and consider the cusp form

$$f := j - 744 \in M_0^!(\operatorname{SL}_2 \mathbb{Z}).$$

Then the Borcherds lift  $\Psi_f$  is a form of weight 0 on  $\mathfrak{h} \times \mathfrak{h}$  and

$$\Psi_f(z_1, z_2) = j(z_1) - j(z_2).$$

So, the divisor is just the diagonal  $\mathfrak{h} \stackrel{\Delta}{\hookrightarrow} \mathfrak{h} \times \mathfrak{h}$ . We can say something more. Since  $\mathcal{S}_2(\operatorname{SL}_2\mathbb{Z}) = 0$ , then by Theorem 1, the principal part of a weakly holomorphic function of weight k can be anything. In particular, for any linear combination of Heegner divisors on  $\mathfrak{h} \times \mathfrak{h}$ , there exists a meromorphic automorphic form for  $\Gamma(L)$  with this specified divisor.  $\Diamond$ 

The main question that Bruinier answers in [Br] is:

Given a Heegner divisor, can one find an explicit section of the corresponding line bundle with this specified divisor?

To do this, we need to enlarge  $M_k^!(\operatorname{SL}_2\mathbb{Z})$  to the space of weakly harmonic Maass forms. This space is spanned by the Poincaré series  $F_m$  (discussed in Lectures 4 & 5), which are not weakly holomorphic. It will turn out that we can define lifts of  $F_m$  analogous to the Borcherds lifts of weakly holomorphic modular forms, and that these lifts will have divisor exactly equal to the Heegner divisor H(m). This is the construction given in [Br] (see also Lectures 6 & 7 of this seminar) and we review the construction of this lift now.

We can define a regularized theta lift (using a different regularization to the one in [B2])

$$F_m \mapsto \Phi_m$$

where  $\Phi_m$  is a  $\Gamma(L)$ -invariant function on  $\mathbb{H}$  that is real-valued and real-analytic outside H(m). As in Lecture 7, there is a decomposition

$$\Phi_m = \psi_m + \xi_m,$$

where  $\xi_m$  is real-analytic on  $\mathbb{H}$  and  $\psi_m$  has the form

$$\log |\Psi_m(z)| = -\frac{1}{4}(\psi_m(z) - C_m)$$

for some holomorphic function  $\Psi_m$  on  $\mathbb H$  and some specified constant  $C_m$ . Note however that  $\psi_m$  and  $\xi_m$  are not  $\Gamma(L)$ -invariant. We have

$$\operatorname{div}(\Psi_m) = \pi^* H(m),$$

where  $\pi: \mathbb{H} \to \mathbb{H}/\Gamma(L)$ .

**Lemma 3.** Suppose f is a meromorphic function on  $\mathbb{H}$  whose divisor is  $\pi^*H(m)$ . Let

$$J(\gamma, z) = \frac{f(\gamma z)}{f(z)}.$$

Then to give a hermitian metric on the line bundle  $\mathcal{L}(H(m))$  associated to the Heegner divisor H(m) is the same as giving a  $C^{\infty}$ -function  $h: \mathbb{H} \to \mathbb{R}^+$  satisfying

$$h(\gamma z) = |J(\gamma, z)| \cdot h(z).$$

Furthermore, a representative for  $c_1(\mathcal{L}(H(m)))$  is given by  $\partial \overline{\partial} \log |h(z)|$ .

In our situation,  $f = \Psi_m$  so that  $J(\gamma, z) = \Psi_m(\gamma z)/\Psi_m(z)$ . Hence we want to find h such that  $h(z) \cdot |\Psi_m(z)|$  is  $\Gamma(L)$ -invariant. But we already know that

$$|\Psi_m(z)| \cdot e^{-\frac{1}{4}\xi_m(z)}$$

is  $\Gamma(L)$ -invariant, and so we can take

$$h(z) = e^{-\frac{1}{4}\xi_m(z)}.$$

Now the Chern class  $c_1(\mathcal{L}(H(m)))$  is given by

$$\partial \overline{\partial} \log e^{-\frac{1}{4}\xi_m(z)} = -\frac{1}{4}\partial \overline{\partial} \xi_m(z) = -\frac{1}{4}\partial \overline{\partial} \Phi_m,$$

and  $\Phi_m$  is  $\Gamma(L)$ -invariant. So to summarize what we've done, we've explicitly constructed a section  $\Psi_m$  of the line bundle, and moreover, we know the Chern class of this line bundle is given by  $-\frac{1}{4}\partial\overline{\partial}\Phi_m$ . So  $\Phi_m$  is a Green's function for the divisor H(m).

The point of all this is that in arithmetic intersection theory, one wants to write down not only the divisor but also a Green's function. Bruinier's Borcherds lift gives rise to such a function (and we moreover know a lot of explicit information about this function: it's Fourier expansion, etc.).

Remark 2. For higher codimension, one expects that the lift should come from  $\operatorname{Sp}_{2n}(\mathbb{Z})$  for n > 1. There is very little known about how to construct the Green's functions.  $\Diamond$ 

There is another thread of this story that relates Borcherds lifts to Kudla–Millson theory. We may pick up this thread in the summer.

## References

- [B2] Borcherds, Richard. Automorphic forms with singularities on Grassmannians. Inventiones, 1998.
- [Br] Brunier, Jan Hendrik. Borcherds products on O(2, l) and Chern classes of Heegner divisors. 2000.
- [BB] Bruinier and Bundschuh. On Borcherds products associated with lattices of prime discriminant. arXiv:0309178.