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1. The Leech lattice

A Leech lattice is a definite (we assume it is negative definite) even unimodular lattice of
rank 24 with no vectors of norm −2. There are 24 isomorphism classes of even unimodular
negative definite lattices of rank 24, the remaining 23 (called Niemeier lattices) have vectors
of norm −2. Let Λ be a Leech lattice, an even unimodular lattice of signature (1, 25)
(resp. (2, 26)) is unique up to isomorphism and it is isomorphic to the orthogonal sum
II2,26 := Λ⊕ U (resp. U ⊕ U), where U is a hyperbolic plane. Applying Milnor’s Theorem,

we see that it is also isomorphic to E⊕38 ⊕ U (resp. E⊕38 ⊕ U⊕2). We denote such a lattice
by II1,25 (resp. II2,26).
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One can construct the Leech lattice as follows. Let A be the incidence matrix of the
graph with vertices (edges) equal to the set of vertices (edges) of the icosahedron. We view
its entries as elements of the field F2 of two elements. Let J be the 12× 12-matrix with
all ones as its entries and I12 be the identity matrix. Consider the linear subspace G of
F24
2 spanned by the rows of the 12× 24 matrix [In J −A]. It defines the extended Golay

linear binary code. Let Z24 → F24
2 be the natural surjection. Let Γ be the pre-image of G in

Z24, considered as a quadratic lattice with the inner product defined by the dot-product
multiplied by 1/2. One can check that the sum of the coordinates of each vector in Γ is
divisible by 2, taking the half-sum, we obtain a homomorphism α : Γ → Z. The Leech
lattice can be defined now as a sublattice of vectors in the union of the subsets A = α−1(0)
and N = α−1 + (12 , . . . ,

1
2).

We can see the Leech lattice inside of the lattice II1,25 as follows. First we realize any
unimodular even lattice II1,n of signature (1, n) (we must have n = 8k + 1) as the set of

vectors (x0, . . . , xn−1|xn) in Z1+n with coordinates xi in 1
2Z satisfying

∑n−1
i=0 xi − xn ∈ 2Z.

We take for the inner product in Z1+n the Lorentzian dot-product x · y = xnyn −
∑n

i=0 xiyi.
For example, when n = 8, the the lattice E8 is isomorphic to the sublattice of II1,9 equal
to the orthogonal complement of the isotropic vector k = (−1, . . . ,−1|3) modulo Zk. In
the case n = 25, we take k = (0, 1, 2, . . . , 23, 24|70) to obtain that k⊥/Zk is isomorphic to
the Leech lattice.

Let U be a sublattice of II1,25 such that its orthogonal complement is isomorphic to Λ

(other possibility is that it is isomorphic to E⊕38 ). Let (f, g) be two isotropic vectors in
U with (f, g) = 1. Then the norm v2 = (v, v) of the vector r = λ + mf + ng ∈ II1,25 is
equal to λ2 + 2mn, so taking m = 1, n = −1− 1

2λ
2, we obtain v2 = −2. A vector of this

form is called a Leech root (of course, not every vector of norm −2 is a Leech root). The
vector g is denoted by ρ and is called the Weyl vector. It has the property that (w, r) = 1
for all Leech roots r. Let W be the reflection subgroup of the orthogonal group O(II1,25)

1II indicates that it is an even lattice.
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generated by reflections sr : v 7→ v + (v, r)r, where r is a Leech root. We have

O(II1,25)
′ ∼= W oA(P ),

where A(P ) is the symmetry group of a fundamental polyhedron of W . A remarkable fact
due to J. Conway is that this group is isomorphic to the group Λ o ·O(Λ), where ·O(Λ) is
the first Conway sporadic simple group isomorphic to the index 2 subgroup of the group of
automorphisms of the Leech lattice.

Let T be an even quadratic lattice of signature (2, b−) and lT be the minimal number
of generators of the discriminant group T ′/T . Applying some general techniques from the
theory of quadratic lattices (due to V. Nikulin), one obtains that L can be primitively
embedded into II2,26 provided lT ≤ 28 − rk T . In particular, if T is a sublattice of

LK3 := E⊕28 ⊕ U⊕3 isomorphic to the lattice of transcendental 2-cycles on a K3 surface,
we get lT = lT⊥ ≤ 11, so we can always primitively embed T in II2,26. The orthogonal
complement of T in II2,26 is a negative definite lattice R of rank 28− rkT .

2. Denominator of the fake Monster Lie algebra

Let

∆ = η(q)24 = q
∞∏
m=1

(1− qm)24 =
∞∑
n=1

τ(n)qn = (2π)−12g32 − 27g4

be the discriminant modular form of weight 24 with respect to the modular group Γ =
PSL(2,Z). Here g2 and g4 are modular forms of weights 4 and 6 defining a Weierstrass
equation

y2 − 4x3 + g2(τ)x+ g3(τ) = 0

of an elliptic curve C/Z+ τZ. We have g2 = 60E4, g3 = 140E6, where Ek are the Eisenstein
modular forms. The function ∆ does not vanish on the upper-half plane H and has
simple zero at the unique Γ-orbit of cusps. If M is a moduli space of some algebra-
geometrical objects and M is its some some partial compactification with normal crossing
divisorial boundary, a section of some line bundle on M that can be extended to the
compactification with simple zeros at the boundary is called a discriminant. A K3 surface
is a 2-dimensional analog of an elliptic curve. In Lecture 2 we discussed the moduli space
MK3,M parameterizing isomorphism classes of K3 surfaces X together with a primitive
embedding of a hyperbolic lattice j : M ↪→ H2(S,Z) such that j(M) contains an ample line
bundle. It is isomorphic to the orbit space

(ΩT \
⋃

β∈T−2

β⊥)/ΓT ,

where T = M⊥LK3
, Lm denotes the set of vectors in a lattice L with norm m, and ΩT =

Gr(2, TR)+ is the Grassmannian of oriented positive definite planes on TR (equipped with
a complex structure of an open subset of a quadric in P(TC)). In the notation from the
previous lectures, ⋃

β∈T−2

β⊥ = H(0,−2)
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is the Heegner divisor of discriminant (0,−2). So, a natural generalization of the modular
form ∆(τ) is a modular form on ΩT with respect to the group ΓT = Ker(O(T )′ → O(T ′/T )
which vanishes of order 1 on the Heegner divisor H(0,−2).

Unfortunately, it turns out that it is impossible to constructs a discriminant modular
form for a general lattice (even in the case when rk T = 19, rkM = 1 corresponding to a
general K3 surface with Picard group generated by an ample divisor class). A result of
Nikulin says that it is possible to do it only for a finite number of isomorphism classes of
lattices T (or M).

However, using his theory, Borcherds constructs such a discriminant modular form in the
case when M = 〈2〉. In this case the moduli space is the moduli space of K3 surfaces that
admit a degree 2 cover of the projective plane branched along a nonsingular plane curve of
degree 6. In other words, it is given by the equation

w2 + f6(x, y, z) = 0,

where f6(x, y, z) is a homogeneous polynomial of degree 6 which defines a nonsingular
plane curve of degree 6 in the projective plane P2. This equation has to be considered as a
homogeneous equation of degree 6 in the weighted projective space P(3, 1, 1, 1) (the same
as an elliptic curve z2 + f4(x, y) = 0 has to be considered as a curve of degree 4 in the
weighted projective plane P(2, 1, 1)).

First Borcherds constructs the analog of the discriminant form for the lattice T = II2,26
(although it is not known whether there are any algebraic varieties whose periods are
represented by an open subspace of ΩII2,26). Then we restrict it to the subdomain ΩT ⊂
ΩII2,26 .

Let Φ be the modular form on ΩII2,26 of weight −12 = 1− 26
2 associated to the modular

form
1

∆
= q−1 + 24 + 324q + · · · .

We know from the previous lectures that its divisor is equal to H(0,−2). In the tube domain
realization H26 corresponding to the decomposition II2,26 = U ⊕ II1,25 = U ⊕ (U ⊕Λ), it is
given by the Fourier expansion

Φ(z) = e2πi(r,z)
∏
r>0

(1− e−2πi(r,z))p24(1−
r2

2
)

=
∑
w∈W

∑
n>0

det(w)τ(n)e−2πin(w(ρ),z),

where r are positive integer linear combinations of Leech roots (positive roots) and ρ is
the Weyl vector. Also here p24(n) is the number of partitions of a number n in 24 parts
and τ(n) is the Ramanujan τ -function given by the Fourier coefficients of the discriminant
function ∆.

For any β ∈ (II2,26)−2 we denote by βT a primitive vector in T which is equal to
the projection to T of some integer multiple of β under the orthogonal decomposition
(II2,26)Q = TQ ⊕ (T⊥)Q. So, we have kβ = βT + β∗T , where β∗T ∈ T⊥. Since T⊥ is negative
definite lattice, we have (β∗T , β

∗
T ) < 0. This shows that β2T ≤ −2. Thus Φ may vanish
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on hyperplanes Hα with α ≤ −2 and not only on the discriminant hyperplanes Hα with
α2 = −2. However, assume that

T = 〈2〉⊥LK3
∼= E⊕28 ⊕ U

⊕2 ⊕ 〈−2〉.

Then we can embed T into II2,26 ∼= E⊕38 ⊕U⊕2 (such embeddings are unique up to isometry
of II2,26) as follows. We embed a generator of 〈−2〉 to a copy of E8 with orthogonal
complement isomorphic to the root lattice of type E7 with discriminant 2. We embed the
other summands of T in the natural way. Then T⊥II2,26

∼= E7. For any β ∈ (II2,26)−2 we

have kβ = βT +β∗T , where k = 1 or 2. Taking the norms, we get −2k2 = (βT , β)2 + (β∗T , β
∗
T ).

If k = 1, we get βT = β, hence β2T = −2. If k = 2, then β2T = β∗T
2 = −4, but βT + β∗T is

not divisible by 2. So, we see that the projection of β has norm −2. This shows that the
restriction of Φ vanishes only on H(0,−2).

An immediate corollary of this is that the moduli spaceMK3,〈2〉 is a quasi-affine algebraic
variety, i.e. it is a complement to a closed subset of an affine variety. In fact, the Borcherds
modular form Φ is a section of an ample line bundle on a partial compactification ΩT /ΓT of
the moduli space. One can show that some positive tensor power of the line bundle extends
to a compactification, and hence the complement of its zero becomes a hyperplane section
of a projective embedding of the compactification, hence its complement is an affine subset.
It contains the part of the boundary and the open subset isomorphic to MK3,〈2〉.

Note that, for a general T it could happen that the lattice T is contained in the orthogonal
complement in II2,26 of some vector β ∈ (II2,26)−2. Then the Borcherds discriminant form
Φ vanishes on ΩT . The construction can be modified by dividing the Fourier expansion by
some product of linear factors.

3. Applications

Our first application is related to the following problem. Since the coarse moduli space
of elliptic curves is isomorphic to the affine line, any smooth family of elliptic curves over
a complete base must be isotrivial. A natural question is:does this result extend to K3
surfaces (or abelian varieties). Let f : X → B be a smooth family of K3 surfaces over a
projective base B. Then, we can choose a relatively ample line bundle L on X such that
its restriction Lb to the fiber Xb is an ample line bundle with (Lb,Lb) = 2d. After a base
change C → B we get a morphism from C to MK3,〈2d〉 that assigns to a point c ∈ C the
isomorphism class of the fiber Xc with embedding 〈2d〉 into Pic(Xc). Since the boundary of
the period domain is of dimension ≤ 1, we may construct a family such that the image of
C misses the boundary. This will produce a smooth non-isotrivial family of K3 surfaces.

The following result was proven by R. Borcherds, L. Katzarkov, T. Pantev, and N.
Shepherd-Barron (JAG, 7 (1998)):

Theorem 1. Assume the rank ρ of the Picard group of fibers is constant. Then a smooth
family must be isotrivial.

Here is a sketch of the proof. Assume the family is not isotrivial. We have a local
coefficient system LB of rank ρ over the base whose fiber is the Picard lattice. Over
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some complex analytic base change U → B defined by the monodromy group of the local
coefficient system, it trivializes, i.e. becomes isomorphic to MU for some quadratic lattice
M . However, we can choose a basis in M such that each member is represented by a divisor
class whose irreducible components are finite covers of B. This shows that the family is
trivialized over a finite cover B′ → B. Replacing B with B′, we may assume that the family
is a family of M - lattice polarized K3 surface, and after a further base change C → B′,
we get a map C → MK3,M . Now we apply Borcherd’s construction of an automorphic
form with zeros on the Heegner divisor H(0,−2). Since it defines a section of an ample
line bundle over MK3,M , we obtain that the image of C hits it. Thus, we see a vector
δ in the orthogonal complement of the period map, it should represent a divisor class D
in the orthogonal complement of M = Pic(Xc) for the point c whose period point lies in
the hyperplane. This shows that the rank of the Picard lattice jumps, contradicting the
assumption.

Note that the assumption that the rank of the Picard lattice does not change in the family
is important. The loc.cit. paper contains several explicit examples of smooth non-isotrivial
families of K3 surfaces.
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