Borcherds products learning seminar

Working syllabus • Winter 2016

Speakers are encouraged to write up their talks. These will be put on the webpage.

1. Broad goals

- (1) Cover ideas of [Br], skipping gory calculations. (1+8 lectures)
- (2) Discuss Kudla–Millson theory and its relation to Borcherds products [BF]. (2+3 lectures)

2. Suggested lectures

2.1. February 5: The big picture (Brandon).

2.2. February 12: Lattice model of the Weil representation for $Mp_2(\mathbb{R})$ (Cameron).

- (a) Explain the Weil representation for $\mathrm{Mp}_2(\mathbb{R})$ described in §1.1 of [Br]. In the literature, this is sometimes called the lattice model of the Weil representation. Mention that there is a Weil representation for $\mathrm{Mp}_{2n}(\mathbb{R})$ and that this is one of the key ingredients to defining the theta lift.
- (b) The Weil representation for $\operatorname{Mp}_2(\mathbb{R})$ attached to (L/L',q) induces an action of $\operatorname{Mp}_2(\mathbb{R})$ on the space of functions $f \colon \mathbb{H} \to \mathbb{C}[L/L']$. This leads to the definition of a vector-valued modular form for $\operatorname{Mp}_2(\mathbb{R})$.
- (c) Discuss vector-valued modular forms \longleftrightarrow modular forms?
- (d) Reference: §1.1 of [Br]

2.3. February 15: Holomorphic and non-holomorphic Poincaré series (Cameron).

This is a special time: 3-4pm, Monday, February 15. Location TBA.

- (a) Construct Poincaré series and Eisenstein series in the space of vector-valued modular forms.
- (b) Construct Maass-Poincaré series (non-holomorphic analogue of the classical Poincaré series).
- (c) Reference: §1.2, 1.3 of [Br].

2.4. February 19: The regularized theta lift (Charlotte).

- (a) Discuss classical theta lift, focusing on the dual reductive pair $(SL_2, O(2, l))$. Reference: Kudla, D. Prasad expository papers, etc.
- (b) Discuss the Harvey-Moore regularized theta lift obtained by integrating a Poincaré series against a Siegel theta function to get Φ_m (real analytic outside H(m)). Reference: §2 of [Br].
- (c) Discuss relation between Harvey–Moore and original definition of the Borcherds lift. Reference: original constructions in [B1], but maybe a comparison is in [B2].

2.5. February 26: Applications and connections to algebraic geometry (Igor).

2.6. March 18: Borcherds products (Jeff).

- (a) Construct the splitting $\Phi_m(Z) = \psi_m(Z) + \eta_m(Z)$, where $\eta_m(Z)$ is real analytic, and $-\frac{1}{4}\psi_m(Z)$ is the logarithm of the absolute value of a holomorphic function $\Psi_m(Z)$ whose divisor is H(m).
- (b) Discuss relation to Heegner divisors.
- (c) Borcherds product expansion of $\Psi(Z)$.
- (d) Reference: §3 of [Br]

2.7. March 25: Examples of Borcherds products.

(a) Reference: §3 of [Br]

2.8. April 1: Heegner divisors and automorphic forms.

- (a) Φ_m is an eigenfunction of the O(2,l)-invariant Laplace operator Ω
- (b) "Any automorphic form whose divisor is a linear combination of Heegner divisors is given by the regularized theta lift of a (possibly non-holomorphic) Masss form with singularity at ∞ " (Theorem 4.22)
- (c) Reference: §4 of [Br]

2.9. April 8: Chern classes of Heegner divisors (Kartik).

- (a) Construct the map ϑ . This is a generalization of the Doi–Nagunuma map?
- (b) Mention Kudla-Millson map. (Adjoint to ϑ ? In correct formulation, yes!)
- (c) Reference: §5.1 of [Br]

2.10. April 15: Every Heegner divisor can be realized in a Borcherds product.

- (a) Discuss Theorem 5.11 (compare to Theorem 4.22) from the geometric viewpoint.
- (b) Reference: §5.2 of [Br] + some earlier sections

References

- [B1] Borcherds, Richard. Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products. Inventiones, 1995.
- [B2] Borcherds, Richard. Automorphic forms with singularities on Grassmannians. Inventiones, 1998.
- [Br] Brunier, Jan Hendrik. Borcherds products on O(2,l) and Chern classes of Heegner divisors. 2000.
- [BF] Brunier and Funke. Two geometric theta lifts. Duke, 2004.