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Abstract

This is my senior honors thesis done in my final year as an undergraduate at Stanford University,
under the direction of Professor Akshay Venkatesh. We will construct the Weil representation of
SL2(R) through a natural action of the Heisenberg group Heis(R) on the space of square-integrable
complex-valued functions L 2(R), together with the celebrated Stone-von Neumann theorem of
functional analysis. Our approach will be to explicitly construct the analogous representation of
SL2(Fp) on L 2(Fq ), for p an odd prime, using the finite-field equivalents of the aforementioned
ingredients. This will allow us to separate the functional analytic complications of unitary
representation theory of Lie groups from the representation theoretic and purely algebraic ideas.
As the final arc to our triptych of stories, we will construct the Lie algebra analogue of the Weil
representation through the Heisenberg algebra. Throughout this paper, we will be as explicit
as possible while simultaneously giving motivation to our computations, allowing us to speak
of concepts concretely without sacrificing the overarching philosophy. In spite of these efforts
to make this paper self-contained, some proofs are omitted to avoid straying from the main arc
of the story of the Weil representation. We will draw upon ideas from homological algebra,
group theory, algebraic topology, functional analysis, measure theory, Lie theory, and, of course,
representation theory. What is remarkable is that this topic touches as many subject areas as this
paper will use, including number theory, harmonic analysis, topology, and physics. Because of its
place in the intersection of a multitude of different fields, the Weil representation is also known, in
the literature, as the Segal-Shale Weil representation, the metaplectic representation, the harmonic
representation, and the oscillator representation.
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Notation and Conventions

K , a field

G, a group

g, a Lie algebra

Heis(K) :=
n�

1 a b
0 1 c
0 0 1

�

: a, b , c ∈K
o

, the Heisenberg group of K

Z(G), the center of G

ψ, an irreducible character of Z(Heis(K))

L 2(K), square-integrable C-valued functions on K (see further comments on page 13)

SL2(K) :=
¦�

a b
c d

�

: a, b , c , d ∈K , ad − b c = 1
©

GL(V ), the space of invertible K -linear transformations V →V for a vector space V over
K

End(V ), the space of K -linear transformations V →V for a vector space V over K

S (R), the Schwartz space, the space of rapidly decreasing functions on R

sl2(K) :=
¦�

a b
c d

�

: a, b , c , d ∈K , a+ d = 0
©

, the Lie algebra of SL2(K)

sl(2) := sl2(R)⊗R C, the complexified Lie algebra of SL2(R)

heis(K) :=
n� 0 a c

0 0 b
0 0 0

�

: a, b , c ∈K
o

, the Heisenberg algebra of K , the Lie algebra of the

Heisenberg group Heis(K)

heis := heis(R)⊗R C, the complexified Lie algebra of Heis(K)

Isom(H ) := {φ : H →H : 〈φ(v),φ(w)〉= 〈v, w〉}, where 〈·, ·〉 is the inner product with
which H is endowed.

R+, the real numbers viewed as an additive group

Vλ, a lowest weight module of weight λ

Unless otherwise stated, all representations will be complex representations.
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1 Introduction

In this paper, we give three parallel constructions of Weil representation through the representa-
tion theory of the Heisenberg group (or, in the Lie algebra case, the Heisenberg algebra). Namely,
we construct the Weil representation for SL2(Fp), SL2(R), and for sl(2) := sl2(R)⊗R C. In each
of these cases, we begin with a Heisenberg object (Heis(Fp), Heis(R), and heis := heis(R)⊗R C,
respectively) and study its representation theory. From this, we will construct a projective repre-
sentation (of SL2(Fp ), SL2(R), and sl(2), respectively), and then lift this projective representation
to a linear representation. This resulting representation is exactly the Weil representation and has
a surprisingly significant role in many fields of mathematics, including number theory, topology,
harmonic analysis, and physics. Unless otherwise stated, all representations in our discussion are
complex representations.

We will begin by discussing the Heisenberg group

Heis(K) =















1 a c
0 1 b
0 0 1









: a, b , c ∈K







for a field K with characteristic away from 2. Section 2 is completely focused on this discussion.
We will explicitly analyze its structure as a central extension of K⊕2 by K , where K⊕2 and K are
viewed as additive groups. Hence we have a short exact sequence

0→K→Heis(K)→K⊕2→ 0. (1.1)

Writing Z = Z(Heis(K)) and Q = Heis(K)/Z , we obtain isomorphisms Z ∼= K and Q ∼= K⊕2.
Letting SL2(K) act by matrix multiplication on Q ∼= K⊕2 and trivially on Z ∼= K , we obtain an
action of SL2(K) on Heis(K). This is described explicitly by unravelling the second cohomology
class in H2(Q,Z) associated to the isomorphism class of central extensions described by (1.1).
This action of SL2(K) on Heis(K) is the first main ingredient in our construction of the Weil
representation.

The second main ingredient is the following Heisenberg representation associated to a central
character. For an irreducible character ψ : Z(Heis(K))→C, we will define a representation πψ on
the C-vector space L 2(K) by the following action on f (x) ∈L 2(K):









1 a c
0 1 b
0 0 1









· f (x) :=ψ(−b x + c) f (x − a).

In this paper, we will only discuss the specializations to K = Fp and K =R. In the former case,
L 2(K) has the obvious meaning as a p-dimensional C-vector space of C-valued functions on K ,
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and in the latter case, L 2(K) is defined to be the C-vector space of square-integrable functions on K
with respect to the Lebesgue measure. This Heisenberg representation is discussed in Section 2.3.

Given these two ingredients, the natural subsequent question is, “What happens when we
put them together?” That is, what is the relationship between the representation πψ and the
representation πψ ◦ g obtained by precomposing with the action of g ∈ SL2(K)? This is where
the story ramifies into the finite-field case and the real case.

The (complex) representation theory of Heis(Fp ) is simple. From the representation theory of
finite groups, we know that the dimension of an irreducible representation of some finite group G
must divide the order of G. Furthermore, the decomposition of the regular representation gives
us that

∑

dim(V )2 = |G|,

where V ranges over a transversal of the isomorphism classes of irreducible representations of G.
Since |Heis(Fp)|= p3, we obtain arithmetically that Heis(Fp) has p2 irreducible representations
of dimension 1 and p − 1 irreducible representations of dimension p. We in fact can say more
about the representations of Heis(Fp ):

Theorem. For a non-trivial irreducible character ψ : Z(Heis(Fp))→C, there exists a unique, up to
isomorphism, representation of Heis(Fp ) such that Z(Heis(Fp )) acts by ψ.

This is the finite-field analogue of the celebrated Stone-von Neumann theorem from functional
analysis.

It follows from the above theorem that the representation (πψ,L 2(Fp )) is irreducible and that
this representation is isomorphic to (πψ ◦ g ,L 2(Fp )) for any g ∈ SL2(Fp ). This means that there
exists an intertwining operator Φg : Heis(Fp )→GL(L 2(Fp )) =GLp (C) such that

Φg (h)πψ(h) = (πψ ◦ g )(h)Φg (h), for all h ∈H .

By Schur’s lemma, an intertwining operator between isomorphic irreducible representations is
uniquely determined up to a scalar. Hence, from the Heisenberg representation together with the
action of SL2(Fp ) on Heis(Fp ), we get the projective representation

SL2(Fp )→ PGLp (C), g 7→ [Φg ].

(The notation [Φg ]means the image of Φg with respect to the surjection GLp(C)→ PGLp(C).)
In Section 3.2, we explicitly compute this projective representation.

We would like to lift this projective representation to a linear representation. In Section 3.3,
we discuss the problem of lifting projective representations of a group G in general. This is
centered around the Schur multiplier, which is defined to be the second integral homology group
H2(G,Z), and its relation to group extensions of G by C× and H2(G,C×). In particular,

H2(G,C×)∼=Hom(H2(G,Z),C×).
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This result hinges upon the Universal Coefficient Theorem. To finish our discussion of the
finite-field model of the Weil representation, we compute the Schur multiplier of SL2(Fp) in
Section 3.4. We show that H2(SL2(Fp),Z) = 0 and hence H2(SL2(Fp),C×) = 0, which therefore
means that every extension of SL2(Fp) by C× splits. Hence the projective Weil representation
SL2(Fp )→ PGLp (C) lifts to a linear Weil representation SL2(Fp )→GLp (C).

When we pass to the real case, almost everything from the finite-field model carries over. The
exception is that we must now be more careful about the nature of the representation spaces since
all of the representations we are considering are infinite-dimensional. But because we have a solid
understanding of the finite-field case, we may separate the representation theoretic aspects of this
construction of the Weil representation from the functional analytic aspects of working with
infinite-dimensional unitary representations.

Our discussion of the representation theory of the Heisenberg group now relies on the real
Stone-von Neumann theorem, whose proof relies on functional analytic methods, rather than
dimension-counting techniques that we could use in the finite-field analogue.

Theorem. For a non-trivial irreducible character ψ : Z(Heis(R))→C, there exists a unique, up to
unitary equivalence, infinite-dimensional irreducible unitary representation of Heis(R) such that
Z(Heis(R)) acts by ψ.

We prove that the Heisenberg representation πψ defined in Section 2.3 is an irreducible
unitary representation, and from the Stone-von Neumann, together with the formulation of
Schur’s lemma for compact groups, we may construct a projective representation of SL2(R). As
in the finite-field case, this is done by mapping each g ∈ SL2(R) to the intertwining operator
between πψ and πψ ◦ g , where the latter denotes precomposition by the action of g ∈ SL2(R) on
Heis(R). In Section 4.2, we will explicitly compute these intertwining operators for a generating
set of SL2(R).

Unfortunately, unlike the case of SL2(Fp), the Schur multiplier for SL2(R) is nontrivial.
Hence not all projective representations lift to linear representations. In particular, the projective
representation obtained from the intertwiner operators of the Heisenberg representation with
the SL2(R) action on Heis(R) does not lift to a linear representation of SL2(R). In order to realize
the Weil representation as a linear representation of a group, we must pass to a double cover of
SL2(R). This is discussed in Section 4.3.

In the third and final arc of this exposition, we formulate the Weil representation construction
for the (complexified) Lie algebra of SL2(R). We will denote this by sl(2). We would like to apply
the Lie derivative to the projective representation of SL2(R) on L 2(R), but without the finite-
dimensionality to control the behavior of L 2(R), there is no reason that this representation should
be differentiable. Hence we must pass to the Schwartz spaceS (R), the space of rapidly decreasing
functions on R. On this (dense) subspace of L 2(R), we construct the Weil representation for sl(2)
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through studying the Heisenberg algebra representation, which is exactly the Lie derivation of the
Heisenberg group representation described in Section 2.3. To obtain a projective representation
from this set-up, we take the formula for the intertwining operators and apply the Lie derivative.
We then obtain the Lie algebra analogue of the construction of the projective Weil representation.

Note that the description above is exactly the Lie algebra analogue of the construction we
have explicated for SL2(Fp) and SL2(R); indeed, in Section 5 (in particular, Section 5.4), we will
essentially apply the Lie derivative to each of our steps in Section 4.

We spend the remainder of Section 5 unpacking the Weil representation by explicitly com-
puting the action of two sets of standard bases for sl(2) and describing the module structure of
the representation (it splits up into two lowest weight modules). In our analysis, we use the Weil
representation to compute the eigenvectors and eigenvalues of the Hermite operator x2− d 2

d x2 ,
which alludes to the well-known Schrödinger’s equation from quantum mechanics (see Griffiths’
An Introduction to Quantum Mechanics [Gri04]).

For further reading, learning, and discovery on topics on or related to the Weil representation,
we refer the reader to the Bibliography, wherein we give articles and books that may interest the
eager reader.
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2 The Heisenberg Group

Throughout this section, we will take K to be any field with char(K) 6= 2. The Heisenberg group
Heis(K) is defined to be

Heis(K) :=















1 a c
0 1 b
0 0 1









: a, b , c ∈K







.

The terminology of this group comes from the mathematical formulation of the Heisenberg
uncertainty principle in the context of the relationship between the behavior of an L 2 function f
and the behavior of its Fourier transform f̂ . This relationship is closely tied to the representations
of Heis(K). This will be illuminated in Sections 3 and 4.

When the field K is clear from the context, we will write:

H =Heis(K),

Z = Z(H ),

Q =H/Z .

It is easy to see that the following maps are isomorphisms:

Z =















1 0 c
0 1 0
0 0 1









: c ∈K







∼→K ,









1 0 c
0 1 0
0 0 1









7→ c , (2.1)

Q =















1 a ∗
0 1 b
0 0 1









: a, b ∈K







∼→K ⊕K =K⊕2,









1 a ∗
0 1 b
0 0 1









7→ (a, b ). (2.2)

The asterisk ∗ in
� 1 a ∗

0 1 b
0 0 1

�

means that we ignore the upper right-hand entry.

2.1 The Structure of the Heisenberg Group as a Central Extension

From group cohomology, we know that for any group G acting trivially on an additive abelian
group A, there is a bijective correspondence between the cocycle classes of the second cohomology
group H2(G,A) and the isomorphism classes of central extensions of G by A. This correspondence
is given by the following. Recall that a central extension E of G by A is a short exact sequence of
groups

0→A→ E →G→ 0,
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with the image of A being central in E . For a section σ of the surjection E →G, we may define a
function

f : G×G→A, (q , q ′) 7→ σ(q)+σ(q)−σ(qq ′). (2.3)

Recall that a 2-cocycle is a functionω : G×G→A satisfying

ω(g1, g2)+ω(g1 g2, g3) =ω(g2, g3)+ω(g1, g2 g3) (2.4)

for all g1, g2, and g3 in G. One can prove, by straighforward computation, that f is a 2-cocycle,
and that a different choice of section changes the induced 2-cocycle by a 2-coboundary. We will
leave the former of these two claims to the reader and verify the latter. Let σ ′ : G→ E be another
section and let f ′ : G×G→ E be the 2-cocycle induced by σ ′. Necessarily, for any g ∈G, σ ′(g )
and σ(g ) differ only by an element of A, and hence we have a function

φ : G→A, g 7→ σ ′(g )−σ(g ),

which gives rise to the 2-coboundary

ω : G×G→Q, (g , h) 7→φ(g )+φ(h)−φ(g h).

By construction, we have
f ′(g , h) = f (g , h)+ω(g , h),

and this completes our check. We have therefore shown that the 2-cocycle f determines a unique
cohomology class in H2(G,A).

Specializing to our case, this means that the Heisenberg group H is determined, up to isomor-
phism, by the short exact sequence

0→ Z→H →Q→ 0,

together with a 2-cocycle f : Q ×Q→ Z .

2.2 The Action of SL2(K)

We will first define the action of SL2(K) on Heis(K). After this definition, we will spend the rest
of this section motivating the formula.

For

g =
�

x11 x12
x21 x22

�

∈ SL2(K), M =









1 a c
0 1 b
0 0 1









∈Heis(K),
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define the action of g on M as

g ·A :=









1 ax11+ b x12
1
2 (ax11+ b x12)(ax21+ b x22)+ c − 1

2 ab
0 1 ax21+ b x22
0 0 1









. (2.5)

It is a straightforward (though painfully tedious) computation to check that (2.5) indeed defines
an action.

Alone, the formula in (2.5) is terribly unsatisfying. We will spend the remainder of this section
making sense of this formula and ultimately reformulate (2.5) in a more enlightening way. This
will essentially come to explicit computations in unravelling group cohomology.

From Section 2.1, the Heisenberg group H is determined, up to isomorphism, by the short
exact sequence

0→ Z→H →Q→ 0,

together with a (normalized) 2-cocycle f : Q ×Q→ Z . Recall from equations (2.1) and (2.2) that

Z ∼=K , and Q ∼=K⊕2.

It is natural to let SL2(K) act naturally (by matrix multiplication) on Q and trivially on Z . The
question now becomes: how can we extend this to an action on the Heisenberg group H ?

To do this, we will need to unravel the relationship between the the second cohomology group
H2(Q,Z) and the Heisenberg as a central extension of Q by Z .

Let us begin by picking the most naïve section of the surjection H →Q. Namely, consider

σ1 : Q→H , (a, b ) 7→









1 a 0
0 1 b
0 0 1









.

Then the induced 2-cocycle

f1 : Q ×Q→ Z , (q , q ′) 7→ σ1(q)σ1(q
′)σ1(qq ′)−1 =









1 0 ab ′

0 1 0
0 0 1









,

allows us to write H as the set σ1(Q)×Z , together with the multiplication rule

(σ1(q), z)(σ1(q
′), z ′) = (σ1(qq ′), z z ′ f1(q , q ′)).

The problem with this 2-cocycle is that it does not commute with the action of SL2(K) we
described at the beginning of this subsection. That is to say,

f1(g · q , g · q ′) 6= f1(q , q ′).
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Hence this presentation of H does not help us to describe the action of SL2(K) on H , as we wish
to do.

We would like to find a choice of section so that the induced 2-cocycle is SL2(K)-invariant. We
may view SL2(K) as

SL2(K) = {A∈GL2(K) : det(A) = 1} . (2.6)

But what is more enlightening is the equivalent description of SL2(K) as the set of all linear
transformations from K⊕2 to itself that preserve a volume form. Volume forms are alternating
bilinear forms on K⊕2 and are unique up to scalar multiples. Since the determinant is a volume
form, then we know that the form of the 2-cocycle we would like to end up with is

f2 : Q ×Q→ Z , (q , q ′) 7→C det(q , q ′) =C det

�

a a′

b b ′

�

=C (ab ′− a′b ),

for q = (a, b ), q ′ = (a′, b ′), C ∈K . We can show that this is SL2(K)-invariant using the description
of SL2(K) in (2.6). Indeed, for any g =

� x11 x12
x21 x22

�

,

f2(g · q , g · q ′) = f2
�

(ax11+ b x12,ax21+ b x22), (a
′x11+ b ′x12,a′x21+ b ′x22)

�

=C
�

(ax11+ b x12)(a
′x21+ b ′x22)− (ax21+ b x22)(a

′x11+ b ′x12)
�

=C
�

ab ′(x11x22− x12x21)− a′b (x11x22− x12x21)
�

= f2(q , q ′).

So the question we must tackle is, what is C ?
Let σ2 : Q→H be a section such that

f2(q , q ′) = σ2(q)σ2(q
′)σ2(qq ′)−1. (2.7)

Then σ2 is of the form

σ2 : Q→H , (a, b ) 7→









1 a α(a, b )
0 1 b
0 0 1









,

for some function α : Q→K . Computing the right-hand side of (2.7), we have

f2(q , q ′) =









1 a α(a, b )
0 1 b
0 0 1

















1 a′ α(a′, b ′)
0 1 b ′

0 0 1

















1 a+ a′ α(a+ a′, b + b ′)
0 1 b + b ′

0 0 1









−1

=









1 0 α(a, b )+α(a′, b ′)−α(a+ a′, b + b ′)+ ab ′

0 1 0
0 0 1









.
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Therefore we would like to know for which C can we find an α : Q→K such that

C (ab ′− a′b ) = f (q , q ′) = α(a, b )+α(a′, b ′)−α(a+ a′, b + b ′)+ ab ′.

Rearranging terms, we have

(C − 1)ab ′−C a′b = α(a, b )+α(a′, b ′)−α(a+ a′, b + b ′).

Since the right-hand side is symmetric in q = (a, b ) and q ′ = (a′, b ′), then necessarily C −1=−C ,
and therefore we conclude that C = 1

2 . One can easily compute that

α(a, b ) =
1

2
ab ,

and hence

σ2 : Q→H , (a, b ) 7→









1 a 1
2 ab

0 1 b
0 0 1









is the section that induces a 2-cocycle that is invariant under the action of SL2(K).
From the above, we may write H as the set σ2(Q)×Z , together with the multiplication rule

(σ2(q), z)(σ2(q
′), z ′) = (σ2(qq ′), z z ′ f2(q , q ′)).

Then the action of SL2(K) on H is

g · (σ2(q), z) = (σ2(g · q), z) for g ∈ SL2(K), q ∈Q, z ∈ Z . (2.8)

This is exactly the same formula as (2.5), but it is immensely more illuminating and pleasant to
look at! We have therefore completed our goal of extending the standard action on Q and the
trivial action on Z to an action on H .

Remark. We can show that f1 and f2 differ only by a 2-coboundary of Q with respect to Z . Indeed,
letting

ω : Q ×Q→ Z , (q , q ′) 7→ α(q)+α(q ′)−α(qq ′),

where, as before,

α : Q→K , (a, b ) 7→
1

2
ab ,

we have, for q = (a, b ) and q ′ = (a′, b ′),

ω(q , q ′) =
1

2
ab +

1

2
a′b ′−

1

2
(a+ a′)(b + b ′) =−

1

2
ab ′−

1

2
a′b ,

and finally,
f2(q , q ′) = f1(q , q ′)+ω(q , q ′). (2.9)

Hence what we have done here is unravel the group cohomological interpretation of the Heisen-
berg group. ♦
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2.3 The Heisenberg Representation

We will now define the representation which will be the springboard of this paper. For an
irreducible character ψ : Z(Heis(K))→C, define a representation (πψ,L 2(K)) of Heis(K) by the
following action on f (x) ∈L 2(K):









1 a c
0 1 b
0 0 1









· f (x) :=ψ(−b x + c) f (x − a). (2.10)

In particular, we have








1 a 0
0 1 0
0 0 1









· f (x) = f (x − a),









1 0 0
0 1 b
0 0 1









· f (x) =ψ(−b x) f (x), (2.11)









1 0 c
0 1 0
0 0 1









· f (x) =ψ(c) f (x).

It is straightforward to check that (2.10) defines an action. Indeed,

� 1 a c
0 1 b
0 0 1

�
��

1 a′ c ′
0 1 b ′
0 0 1

�

· f (x)
�

=
� 1 a c

0 1 b
0 0 1

�

·ψ(−b ′x + c ′) f (x − a′)

=ψ(−b x + c)ψ(−b ′(x − a)+ c ′) f (x − a′− a)

=ψ(−(b + b ′)x + c + c ′+ ab ′) f (x − (a+ a′))

=
�

1 a+a′ c+c ′+ab ′
0 1 b+b ′
0 0 1

�

· f (x)

=
�
� 1 a c

0 1 b
0 0 1

�
�

1 a′ c ′
0 1 b ′
0 0 1

��

· f (x).

Therefore the group action in (2.10) defines a representation

πψ : Heis(K)→GL(L 2(K)), A 7→ TA, (2.12)

where TA( f ) :=A · f .
Before proceeding, we need to specify what we mean by L 2(K). As we will only discuss the

cases K = Fp and K =R, we will only discuss what we mean by L 2(K) in these situations.
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• For K = Fp , L 2(K) has an obvious meaning. By definition,

L 2(K) :=
§

f : K→C :
∫

K
| f (x)|2 d x <∞

ª

, (2.13)

and for K = Fp , we take the discrete measure, and the above becomes

L 2(Fp ) =







f : Fp →C :
∑

x∈Fp

| f (x)|2 <∞







.

But since Fp is finite, then we in fact have

L 2(Fp ) = { f : Fp →C}.

This has a natural structure as a p-dimensional vector space over C.

• For K =R, to make sense of (2.13), we need to pick a measure. We will use the Lebesgue
measure; call it dµ. The measure space L 2(R) is a Hilbert space with respect to the inner
product

〈 f , g 〉 :=
∫

R
f (x)g (x)dµ. (2.14)

In this paper, when we write L 2(R), we will always mean the space of square-integrable
C-valued functions on R with respect to the Lebesgue measure. That is,

L 2(R) =
§

f : R→C :
∫

R
| f (x)|2 dµ<∞

ª

.

Remark. We will often not care about the entire space GL(L 2(R)). This space is extremely large
and is no particularly well-behaved. As our representations will be unitary representations (that
is, the action of the representation preserves a non-degenerate Hermitian form), then our group
will act by operators in

Isom(L 2(R)) :=
¦

φ : L 2(R)→L 2(R) : 〈φ( f ),φ(g )〉= 〈 f , g 〉
©

,

where the norm is the L 2 norm obtained from the inner product formula in (2.14). To discuss
unitary representations, we may replace GL(L 2(R)) with Isom(L 2(R)). ♦

Remark. It is easy to verify that the Heisenberg representation defined in equation (2.12) preserves
the L 2 inner product defined in (2.14). ♦
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3 The Finite-Field Model

In this section, we will explicitly construct the Weil representation of SL2(Fp)Fp . Modulo the
analytic problems that arise in passing from the theory of finite-dimensional representations to
the theory of infinite-dimensional unitary representations, our work in this section will extend
almost word-for-word to the construction of the Weil representation of SL2(R).

3.1 The Representation Theory of Heis(Fp)

By using arithmetic properties of the dimension of the representations of finite groups and the
fact that Heis(Fp ) is a non-abelian group of order p3, we can deduce that there are:

(a) p2 representations of dimension 1, and

(b) p − 1 representations of dimension p.

The one-dimensional representations are obtained from inflating the one-dimensional represen-
tations of Q ∼= Z/pZ⊕Z/pZ, so in particular, in these p2 representations, the center Z acts
trivially. Now let ψ be a nontrivial irreducible character of Z ∼= Z/pZ. The induced represen-
tation IndG

Z (ψ) is a representation of dimension [G : Z] = p2, and by the semisimplicity of the
group algebra C[H ] viewed as a module over itself, we know that IndG

Z (χ ) breaks up into a direct
sum of irreducible representations. By Clifford theory, all irreducible representations that occur
inside IndG

Z (ψ)must occur with the same multiplicity. From this, we know that IndG
Z (ψ) is just

p copies of some p-dimensional irreducible representation. This construction gives us p − 1
necessarily non-isomorphic representations of H , each distinguished by the action of Z = Z(H ).

The above can be summarized in the following proposition.

Proposition 3.1.

(a) The one-dimensional representations of H are obtained by inflating the linear representations
of Q =H/Z.

(b) For each nontrivial character ψ of Z = Z(H ), there exists a unique, up to isomorphism,
irreducible representation of H such that Z acts by ψ. Each of these representations is of
dimension p, and hence ρ is a p-dimensional irreducible representation of H , it is completely
determined by its restriction ρ|Z .

Remark. Proposition 3.1(b) is the finite-field equivalent of the Stone-von Neumann theorem from
functional analysis. ♦
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The relevance of the above to our discussion is the following. Since L 2(Fp ) is a p-dimensional
C-vector space, then the representation (πψ,L 2(Fp)) we defined in Section 2 is p-dimensional.

As described in (2.11), the center Z =
n�

1 0 b
0 1 0
0 0 1

�

: b ∈ Fp

o

acts nontrivially if ψ is a nontrivial

character, and hence by the proposition, necessarily πψ is irreducible.

3.2 Constructing a Map SL2(Fp)→ PGLp(C)

Now, for any g ∈ SL2(Fp ), the composition πψ ◦ g is a representation of Heis(Fp ). Since precom-
position by the action of SL2(Fp) does not change the action of Z on L 2(Fp) (since SL2(Fp) acts
trivially on Z), then by the discussion in Section 3.1, as representations, πψ ◦ g ∼=πψ. By Schur’s
lemma, AutC[H ](πψ) =C×, and hence for isomorphisms

Φ1,Φ2 : (πψ,L 2(Fp ))→ (πψ ◦ g ,L 2(Fp )),

the composition
Φ−1

1 ◦Φ2 : (πψ,L 2(Fp ))→ (πψ,L 2(Fp ))

is a C[H ]-automorphism of (πψ,L 2(Fp )), and hence

Φ−1
1 ◦Φ2 = λI , for some λ ∈C×.

So the intertwining operators Φ1 and Φ2 must only differ by a scalar, and this shows that the
intertwining operator between πψ and πψ ◦ g is uniquely defined in PGLp (C). We therefore have
a well-defined map

ρ : SL2(Fp )→ PGLp (C). (3.1)

We will ultimately show, in Section 3.5, that ρ lifts to a map eρ : SL2(Fp )→GLp (C).
We may compute explicitly the projective representation ρ : SL2(Fp)→ PGLp(C). It can be

shown that SL2(Fp ) is generated by

s :=
�

0 1
−1 0

�

and t :=
�

1 0
1 1

�

. (3.2)

(In fact, these two elements also generate SL2(Z).) We will compute the images of the two
generating elements in (3.2).

Since SL2(Fp ) acts trivially on Z = Z(H ), then all we need to do is to find a map ϕg : L 2(Fp )→

L 2(Fp ), for g = s , t , such that the following square commutes for X =
� 1 a 0

0 1 0
0 0 1

�

,
� 1 0 0

0 1 b
0 0 1

�

:
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L 2(Fp ) L 2(Fp )

L 2(Fp ) L 2(Fp )

πψ(X )

ϕgϕg

πψ(g ·X )

Recall here that ϕg is only unique up to a scalar. In the computations to come, we will compute
ϕg ∈ GLp(C), which will give us an element in PGLp(C) via the surjection in the short exact
sequence

0→C×→GLp (C)→ PGLp (C)→ 0.

For convenience, we will write

A :=









1 a 0
0 1 0
0 0 1









and B :=









1 0 0
0 1 b
0 0 1









.

We begin with computations for s =
� 0 1
−1 0

�

. In this situation,

s ·









1 a 0
0 1 0
0 0 1









=









1 0 0
0 1 −a
0 0 1









, s ·









1 0 0
0 1 b
0 0 1









=









1 b 0
0 1 0
0 0 1









.

and hence

πψ(A) : f (x) 7→ f (x − a), πψ(B) : f (x) 7→ψ(−b x) f (x) (3.3)

πψ ◦ s(A) : f (x) 7→ψ(ax) f (x), πψ ◦ s(B) : f (x) 7→ f (x − b ). (3.4)

This means that we are looking for a function ϕs : L 2(Fp)→L 2(Fp) such that multiplying by
a character gets swapped with translation. The first guess would be something analogous to the
Fourier transform, since this is the function

ˆ : L 2(R)→L 2(R), f (x) 7→ f̂ (ξ ) :=
∫ ∞

−∞
e−2πi xξ f (x)d x,

and it is easy to compute that this function satisfies the properties:

ĥ(ξ ) = e−2πi x0ξ f̂ (ξ ), where h(x) = f (x − x0), (3.5)

ĥ(ξ ) = f̂ (ξ − ξ0), where h(x) = e2πi xξ0 f (x). (3.6)
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Here, e2πi xξ =: χ (x) is a character of the real numbers viewed as an additive group, which will
denote by R+. This plays the role of ψ in our situation. To form a finite-field equivalent of the
Fourier transform, we define the following, which we will also call ˆ to emphasize the analogy
between Fp and R. Let

ˆ : L 2(Fp )→L 2(Fp ), f (x) 7→ f̂ (ξ ) :=
∑

x∈Fp

ψ(ξ x) f (x).

We will prove that this function has properties that are exactly the finite-field formulations of the
properties listed in equations (3.5) and (3.6). For h(x) = f (x − x0),

ĥ(ξ ) =
∑

x∈Fp

ψ(ξ x) f (x − x0)

=
∑

x∈Fp

ψ(ξ (x + x0)) f (x)

=ψ(ξ x0)
∑

x∈Fp

ψ(ξ x) f (x)

=ψ(ξ x0) f̂ (ξ ).

For h(x) =ψ(−ξ0x) f (x),

ĥ(ξ ) =
∑

x∈Fp

ψ(ξ x)ψ(−ξ0x) f (x)

=
∑

x∈Fp

ψ((ξ − ξ0)x) f (x)

= f̂ (ξ − ξ0).

Therefore

ĥ(ξ ) =ψ(x0ξ ) f̂ (ξ ), where h(x) = f (x − x0), (3.7)

ĥ(ξ ) = f̂ (ξ − ξ0), where h(x) =ψ(−ξ0x) f (x). (3.8)

and these are the finite-field equivalents of (3.5) and (3.6).
Looking back at equations (3.3) and (3.4), we see that we have actually found our desired

function ϕs : L 2(Fp )→L 2(Fp ). To be precise, set

ϕs : L 2(Fp )→L 2(Fp ), f (x) 7→ f̂ (x),

and then indeed, by (3.7), we have

f (x)
πψ(A)
7−−−→ f (x − a)

ϕs7−→ψ(ax) f̂ (x),

f (x)
ϕs7−→ f̂ (x)

πψ◦g (A)
7−−−−→ψ(ax) f̂ (x),
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and by (3.8), we have

f (x)
πψ(B)
7−−−→ψ(−b x) f (x)

ϕs7−→ f̂ (x − b ),

f (x)
ϕs7−→ f̂ (x)

πψ◦s(B)
7−−−−→ f̂ (x − b ).

This proves exactly what we wanted to prove, and so in fact, our first intuition of constructing
something analogous to the Fourier transform was correct!

We may also write this in terms of a matrix in GLp(C) = GL(L 2(Fp)). We will write this
matrix with respect to the basis

¦

fi (x) := δi x : i ∈ Fp

©

, where δi x =







1 if x = i ,

0 otherwise.
(3.9)

Then

ϕs =



















1 1 1 · · · 1
1 ψ(1) ψ(2) · · · ψ(p − 1)
1 ψ(1)2 ψ(2)2 · · · ψ(p − 1)2
...

...
...

. . .
...

1 ψ(1)p−1 ψ(2)p−1 · · · ψ(p − 1)p−1



















.

The determinant of φs is nonzero since φs is a Vandermonde matrix.

Remark. Note that (3.7) and (3.8) are not exactly the same as (3.5) and (3.6). Indeed, they differ by
a sign in terms of which one switches the sign in the transition between function translation and
scaling by a character. We certainly could have defined our finite-field analogue of the Fourier
transform so that the aforementioned equations agreed exactly. This would be

F.T. : L 2(Fp )→L 2(Fp ), f (x) 7→ F (ξ ) :=
∑

x∈Fp

ψ(−ξ x) f (x).

This operator gives, up to a scalar, the image of
� 0 −1

1 0

�

. ♦

Now we move to compute ϕt for t =
�

1 0
1 1
�

. In this situation,

t ·









1 a 0
0 1 0
0 0 1









=









1 a 1
2 a2

0 1 a
0 0 1









, t ·









1 0 0
0 1 b
0 0 1









=









1 0 0
0 1 b
0 0 1









.

Hence

πψ(A) : f (x) 7→ f (x − a), πψ(B) : f (x) 7→ψ(−b x) f (x), (3.10)

πψ ◦ t (A) : f (x) 7→ψ(−ax + 1
2 a2) f (x − a), πψ ◦ t (B) : f (x) 7→ψ(−b x) f (x). (3.11)
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Comparing πψ(A) and πψ ◦ t (A), we can expect to have some sort of twisting by ψ(x2). Consider

φc : L 2(Fp )→L 2(Fp ), f (x) 7→ψ(c x2) f (x).

Then we have

f (x)
πψ(A)
7−−−→ f (x − a)

φc7−→ψ(c x2) f (x − a),

f (x)
φc7−→ψ(c x2) f (x)

πψ◦t (A)
7−−−−→ψ(− 1

2 a2+ ax)ψ(c(x − a)2) f (x − a).

Equating the right-hand side of the two compositions and using the fact that ψ is a linear character
and hence a homomorphism, we get

c x2 =−
1

2
a2+ ax + c(x2− 2ax + a2).

Massaging this equation, we obtain

0=−
1

2
a2+ ax + 2c

�

−
1

2
a2+ ax

�

,

which allows us to conclude that

c =−
1

2
,

and hence
ϕt ( f (x)) =φ− 1

2
( f (x)) =ψ(− 1

2 x2) f (x).

Using the basis described in (3.9), we obtain the following matrix formulation of ϕt :

ϕ(t ) = diag

 

1,ψ

 

−
12

2

!

,ψ

 

−
22

2

!

, · · · ,ψ
 

−
(p − 1)2

2

!!

=

























1 0 0 0 · · · 0
0 ψ(− 12

2 ) 0 0 · · · 0
0 0 ψ(− 22

2 ) 0 · · · 0
0 0 0 ψ(− 32

2 ) · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · ψ(− (p−1)2

2 )
























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3.3 Lifting Projective Representations

Ultimately, we would like to lift the map ρ : SL2(Fp )→ PGLp (C) to a map eρ : SL2(Fp )→GLp (C).
In representation theory, the problem of lifting projective representations of a group G to a linear
representation of G is one that has been seriously studied in the past, and is still studied today.
The major breakthrough in this area was Schur’s work on something called the “Schur Multiplier."
To remain honest to the goal of making this paper as explicit and approachable as possible, we
will explore this topic exactly as the verb suggests: by exploration, examination, and ultimately,
discovery.

This section will have a very similar flavor to that of Section 2.1. More precisely, much of our
discussion will essentially be an unravelling of group cohomology. As this topic holds for any
group G, and nothing is gained by specifying to the case when G = SL2(Fp), we will not limit
ourselves to a specific group and instead let G be any one of your favorite groups.

Let ρ : G→ PGLn(C) be a group homomorphism. If we can lift this representation, then this
means that for any section σ : PGLn(C)→GLn(C) of the surjection GLn(C)→ PGLn(C), there
exists a function c : G×G→C× such that

L(g h) = c(g , h)L(g )L(h), for g , h ∈G, (3.12)

where L := σ ◦ρ : G→GLn(C). By this rule, we obtain

c(g1, g2 g3)L(g1)L(g2 g3) = L(g1 g2 g3) = c(g1 g2, g3)L(g1 g2)L(g3).

Expanding L(g2 g3) on the left-hand side and L(g1 g2) on the right-hand side according to (3.12),
we obtain

c(g1, g2 g3)L(g1)(c(g2, g3)L(g2)L(g3)) = c(g1 g2, g3)(c(g1, g2)L(g1)L(g2))L(g3).

Hence we may conclude that

c(g1, g2 g3)c(g2, g3) = c(g1 g2, g3)c(g1, g2).

But this is exactly the condition for a 2-cocycle of G with respect to the abelian group C× (with a
trivial group action), so indeed c is a 2-cocycle.

In the above, notice the dependence of the 2-cocycle c : G×G→C× on the choice of section
σ . For a different section σ ′ : PGLn(C)→GLn(C), we obtain a different cocycle c ′ : G×G→C×

satisfying an analogous equation to (3.12). Explicitly, we have

L′(g h) = c ′(g , h)L′(g )L′(h), for g , h ∈G, (3.13)

where L′ := σ ′ ◦ ρ. Now, since, for any g ∈ G, σ(g ) and σ ′(g ) can differ only by a (nonzero)
scalar, we may write

L′(g ) = f (g )L(g ), for some f : G→C×.
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Substituting this into (3.13), we get

f (g h)L(g h) = c ′(g , h) f (g )L(g ) f (h)L(h).

It follows from (3.12) that

c ′(g , h) = f (g h) f (g )−1 f (h)−1c(g , h).

But notice that the function

F : G×G→C×, (g , h) 7→ f (g h) f (g )−1 f (h)−1

defines a 2-coboundary of G with respect to the abelian group C× (again with a trivial group
action), and hence we have shown that changing the choice of a section of GLn(C)→ PGLn(C)
only changes the induced 2-cocycle c : G×G→ C× by a 2-coboundary. In particular, we have
shown that any lift L of G → PGLn(C) determines a unique class in the second cohomology
H2(G,C×). Because there is a bijective correspondence between H2(G,C×) and extensions of G
by C× (see Section 2.1), this means that there exists a short exact sequence

0→C×→ eG→G→ 0,

fitting in the commutative diagram

0 C× eG G 0

0 C× GLn(C) PGLn(C) 0

1C× eρ ρ (3.14)

Remark. A more algebraic way of obtaining the above commutative diagram is by taking eG to be
the pullback of ρ : G→ PGLn(C) and p : GLn(C)→ PGLn(C). Explicitly, we let

eG :=G×PGLn(C)GLn(C) = {(g ,A) ∈G×GLn(C) : ρ(g ) = p(A)} . (3.15)

Letting ep and eρ be the projection of eG onto the G component and the GLn(C) component,
respectively, we obtain the following commuting diagram:

0 ker(ep) eG G 0

0 C× GLn(C) PGLn(C) 0

ep

p
eρ ρ
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In the above, ker(ep) is taken to be the kernel of the map ep : eG → G, and the vertical map
ker(ep)→C× is the restriction of eρ. Now,

ker(ep) =
n

(g ,A) ∈ eG : g = 1
o

,

and since eG is a fibered product (see (3.15)), then this forces A∈GLn(C) to be such that the image
of A in PGLn(C) is 1. Hence we have an isomorphism

ker(ep) =
�

(g ,A) : g = 1, A= λIn , for some λ ∈C×
	

→C×, (1,λI ) 7→ λ

From the fact that eρ is the projection onto the GLn(C) component of G ×PGLn(C) GLn(C), it
follows that the vertical map ker(ep)→C× is given by (1,λ1) 7→ λ, and hence viewing ker(ep) as
C×, we obtain exactly the diagram in (5.18). ♦

Remark. The map eG→G splits if and only if the corresponding cocycle class in H2(G,C×) is the
trivial class. ♦

Returning briefly to the case when G = SL2(Fp), recall that we want to lift our projective
representation to a linear representation of G, not just to an extension of G. To prove this, it would
be sufficient to show that every extension of G by C× splits, or equivalently, H2(G,C×) = 0.

Group cohomology is a tricky thing to compute. Because of its complexity, it is good to have
multiple interpretations of the same object. We return to the case when G is any finite group to
discuss this.

We call upon the Universal Coefficient Theorem.

Theorem 3.2 (Universal Coefficient Theorem). Let A be any abelian group with a trivial G-action.
Then the following sequence is exact:

0→ Ext1(Hn−1(G,Z),A)→Hn(G,A)→Hom(Hn(G,Z),A)→ 0.

Proof. See Hatcher’s Algebraic Topology Theorem 3.2. The map Hn(G,A)→Hom(Hn(G,Z),A)
is described on page 191.

We are only concerned with the specialization of the Universal Coefficient Theorem to n = 2.
Since C× is an injective Z-module (indeed, it is a divisible group),

Ext1(H1(G,Z),C×) = 0,

and hence for A=C×, the Universal Coefficient Theorem gives us

H2(G,C×)∼=Hom(H2(G,Z),C×). (3.16)

The second homology group H2(G,Z) is called the Schur Multiplier. It is in the sense of (3.16) that
studying H2(G,Z) is “enough” to understand how to lift projective representations of G.
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Remark. Since H2(G,Z) is a finite abelian group,

Hom(H2(G,Z),C×)∼=H2(G,Z), (3.17)

and hence we may conclude that

H2(G,C×)∼=H2(G,Z). (3.18)

But the isomorphism (3.17) is highly non-canonical, which is why we have pushed this statement
to a remark. ♦

3.4 The Schur Multiplier of SL2(Fp)

The goal of this section is to prove the following theorem.

Theorem 3.3. For odd primes p, the Schur multiplier of SL2(Fp ) is trivial. That is,

H2(SL2(Fp ),Z) = 0.

This relies on a series of propositions.

Proposition 3.4. Let G be a group and H ⊆ G a subgroup with finite index in G. If [G : H] is
coprime to ` for some prime `, then the map

Hn(G,Z)`→Hn(H ,Z)`

is injective. Here, Hn(G,Z)` denotes the `-component of the finite abelian group Hn(G,Z).

Proof. We just need that the composition

Hn(G,Z)→Hn(H ,Z)→Hn(G,Z)

is the map given by multiplication by [G : H]. This can be shown by viewing homology as
the derived functor of taking coinvariants. This is done in detail in Chapter 6 of Weibel’s An
Introduction to Homological Algebra [Wei94].

We will apply Proposition 3.4 to the case when G = SL2(Fp ) and H is an `-Sylow subgroup.

Proposition 3.5. For ` an odd prime,

H2(SL2(Fp ),Z)` = 0.

We first need the following lemma.
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Lemma. For q = pn ,
|SL2(Fq )|= q(q − 1)(q + 1).

Proof of Lemma. Pick a basis v1, v2 of F⊕2
q . Let T be an element of SL2(Fq ) and assume that

T (v1) =
� x

y
�

∈ F⊕2
q .

Necessarily x and y are not both zero, since T is invertible. Furthermore, since T is invertible, the
image of v2 must be linearly independent to (x, y). There are q2− q vectors linearly independent
to (x, y). But since T ∈ SL2(Fq ), then for any vector (x ′, y ′) linearly independent to (x, y), there
exists a constant c ∈ Fq such that the transformation taking v1 7→ (x, y) and v2 7→ c(x ′, y ′) is
an element of SL2(Fq ). In this sense, picking a vector linearly independent from (x ′, y ′) only
determines the line spanned by the image of v2. The determinant condition then determines the

exact image of v2. Therefore for a given image of v1, we have p2−p
p−1 possible images of v2. Since

there are p2− 1 possible images of v1, then we obtain

|SL2(Fq )|= (p
2− 1)

 

p2− p

p − 1

!

= p(p − 1)(p + 1),

as desired.

Proof of Proposition 3.5. Since ` is an odd prime, ` divides at most one of p, p−1, and p+1, and
` is the highest power of ` that divides p(p− 1)(p+ 1). Therefore, using the lemma and Cauchy’s
theorem (if p

�

� |G|, then G has an element of order p), we may conclude that SL2(Fp) contains a
cyclic subgroup of size `. By the Sylow theorems, the `-Sylow subgroups of G are all conjugate to
each other. Hence we may conclude that an `-Sylow of SL2(Fp ) is cyclic for any odd prime `.

The integral homology of a cyclic group is easy to compute. It is left to the reader to show

Hn(Z/`Z,Z) =











Z, for n = 0

Z/`Z, for n = 1,3,5, . . .

0, for n = 2,4,6, . . .

In particular, we have
H2(Z/`Z,Z)` = 0,

and by Proposition 3.4,
H2(SL2(Fp ),Z)` = 0.

Proposition 3.6. The 2-component of the finite abelian group H2(SL2(Fp )) is trivial. That is,

H2(SL2(Fp ),Z)2 = 0.
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Proof. We omit this proof as it is tangential to the arc of the Weil representation story. For the
interested reader, see Steve Mitchell’s course notes on Equivariant Cohomology of Finite Group
Actions. In Some Background Material [Mit], he gives the proof that

H2(SL2(Fp ),F2) = 0.

It follows that the 2-component of the finite abelian group H2(SL2(Fp ),Z) is trivial.

3.5 The Weil Representation of SL2(Fp)

In the previous section, we showed

H2(SL2(Fp ),Z) = 0.

By (3.16), this means that

H2(SL2(Fp ),C
×)∼=Hom(H2(SL2(Fp ),Z),C

×) = 0.

Therefore every central extension of SL2(Fp ) by C× splits. The following proposition follows.

Proposition 3.7. Every (finite-dimensional) projective representation of SL2(Fp) lifts to a linear
representation of SL2(Fp ).

Proof. Let G = SL2(Fp ) and let ρ : G→ PGLn(C) be a group homomorphism. Then we have the
following commutative diagram:

0 C× eG G 0

0 C× GLn(C) PGLn(C) 0

p

1C× eρ ρ (3.19)

Since H2(G,C×) = 0, then p : eG → G splits. That is, there exists a group homomorphism
s : G → eG such that p ◦ s = 1G . (Note that this just means that p has a section that is also a
group homomorphism.) Then the composition eρ ◦ s : G → GLn(C) is a lift of the projective
representation G→ PGLn(C), and this completes the proof.

Remark. We may relax the hypotheses of Proposition 3.7 in several ways. First, we may replace
SL2(Fp) with any group G such that H2(G,C×) = 0. Second, the given projective representation
does not need to be finite-dimensional. In both generalizations, the same proof holds. ♦

By Proposition 3.7, the projective Weil representation of SL2(Fp ) lifts to a linear representation
of SL2(Fp). This is exactly the Weil representation of SL2(Fp), and this concludes our discussion
of the finite-field analogue of the Weil representation of SL2(R). In the sections to follow, we will
use our experience in constructing the finite-field model of the Weil representation to help guide
us in our discussion of the real case.

25



4 The Real Case

We now would like to tell the story for when K =R, using our experience with the Fp case as an
example.

As our only assumption in Section 2 was that the characteristic of our field was not 2, then the
structure of the real Heisenberg group Heis(R) is exactly the structure of the finite Heisenberg
group Heis(Fp ) for p an odd prime. In particular, from Section 2, we know, in a very explicit way,
how SL2(R) acts on Heis(R). In the following subsections, we will discuss how to make sense of
Section 3 when we replace the finite field Fp with the real numbers R.

4.1 The Representation Theory of Heis(R)

Here we will discuss the Stone-von Neumann theorem.
If (ρ1,V1) and (ρ2,V2) are unitary representations, we say that they are unitarily equivalent if

the intertwining operators between V1 and V2 are unitary. That is, if Φh satisfies

Φhρ1(h) = ρ2(h)Φh ,

then
ΦhΦ

∗
h =Φ

∗
hΦh = 1.

Theorem 4.1. For a non-trivial irreducible character ψ : Z(Heis(R))→C, there exists a unique, up
to unitary equivalence, infinite-dimensional irreducible unitary representation of Heis(R) such that
Z(Heis(R)) acts by ψ.

Proof. We refer the reader to Amritanshu Prasad’s paper An Easy Proof of the Stone-von Neumann
Theorem [Praa] for a proof.

We would like to apply the Stone-von Neumann theorem to the Heisenberg representation
(see Section 2.12). We need the following proposition.

Proposition 4.2. The Heisenberg representation πψ defined on the representation space L 2(R) is
unitary and irreducible.

Proof. To show that the Heisenberg representation is unitary, it suffices to check that

A :=









1 a 0
0 1 0
0 0 1









, B :=









1 0 0
0 1 b
0 0 1









, and C :=









1 0 c
0 1 0
0 0 1









act on L 2(R) as unitary operators. The Lebesgue measure dµ is translation in variant, so πψ(A)
is a unitary operator. An irreducible character of Z(Heis(R)) = R is of the form exp(i k x) for
some k ∈R, and since |ψ|= 1, then it follows that πψ(B) and πψ(C ) are unitary operators.
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In Section 5.3, we will prove that the derived Heisenberg algebra representation is irreducible.
It will follow that πψ is irreducible. Indeed, if πψ was not irreducible, then its derived representa-
tion must also not be irreducible, which contradicts Theorem 5.2.

This completes the proof.

Now, since SL2(R) acts trivially on the center of Heis(R), then the precomposition of πψ by
the SL2(R)-action is an irreducible representation wherein Z(Heis(R)) acts the same way in πψ
and πψ ◦ g for any g ∈ SL2(R). By Theorem 4.1, these two representations must be unitarily
equivalent. This segues nicely into the next section.

4.2 Constructing a Map SL2(R)→ PGL(L 2(R))

For any g ∈ SL2(R), the composition ρψ ◦ g is a representation of Heis(R). Since precomposition
by the action of SL2(R) does not change the action of Z on L 2(R) (indeed, SL2(R) acts trivially
on Z), then by the discussion in Section 4.1, as representations, πψ ◦ g ∼=πψ. Since Schur’s lemma
holds for compact groups, then we have, as in the finite-field case, AutC[H ](πψ) =C×. Hence if
Φ1,Φ2 are isomorphisms of the C[H]-modules πψ ◦ g and πψ, they must differ only by a scalar
multiple. Therefore we have a well-defined map

ρ : SL2(R)→ PGL(L 2(R)). (4.1)

Unlike the finite case when we could lift the obtained projective representation of SL2(Fp) to a
linear representation of SL2(Fp ), in the real case, this projective representation of SL2(R) lifts to a
linear representation of a double cover of SL2(R). We will denote this double cover of SL2(R) by
fSL2(R).

Before getting to this issue, however, we will describe explicitly the projective representation
ρ : SL2(R)→ PGL(L 2(R)).

It can be shown that SL2(R) is generated by

s :=
�

0 1
−1 0

�

, v(u) :=
�

1 0
u 1

�

, and d (t ) :=
�

t 0
0 t−1

�

. (4.2)

Remark. Note that the notation in (4.2) is non-standard. For a more standard set of generators,
see page 209 of Lang’s SL2(R) [Lan75]. ♦

We would like to find a map Φg : L 2(R)→L 2(R) for g = s , t (a), v(b ) such that the following
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square commutes for X =A,B :

L 2(R) L 2(R)

L 2(R) L 2(R)

πψ(X )

ΦgΦg

πψ(g ·X )

(4.3)

Recall that, by Schur’s lemma, Φg is only unique up to a scalar. In the following computations, we
will compute Φg ∈GL(L 2(R)), which will give us an element in PGL(L 2(R)) via the surjection
in the short exact sequence

0→C×→GL(L 2(R))→ PGL(L 2(R))→ 0.

If we look back at Section 3.2, we will see that our computations can be easily extended to the
real case. Because of this, we will focus our discussion on the R-analogues of the operators found
in Section 3.2, rather than computing everything from scratch as we did in finite-field case.

As in Section 3.2, for convenience of notation, we will write

A :=









1 a 0
0 1 0
0 0 1









and B :=









1 0 0
0 1 b
0 0 1









.

For s =
� 0 1
−1 0

�

, we are looking for a function Φs : L 2(R)→L 2(R) such that multiplying by
a character gets swapped with translation (see (3.3) and (3.4)). In the finite-field case, we discussed
the motivation from Fourier analysis, and in the real case, this motivation becomes exactly the
operator we want. Define

ˆψ : L 2(R)→L 2(R), f (x) 7→ f̂ (ξ ) :=
∫ ∞

−∞
ψ(ξ x) f (x)d x. (4.4)

We may verify that

ĥψ(ξ ) =ψ(bξ ) f f̂ψ(ξ ), where h(x) = f (x + b ), (4.5)

ĥψ(ξ ) = f̂ (ξ − a), where h(x) =ψ(ax) f (x). (4.6)

Hence
Φs : L 2(R)→L 2(R), f (x) 7→ f̂ (x). (4.7)
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The computation for v(u) =
�

1 0
u 1
�

is very similar to the case of v(1) in the finite-field case. As
none of our computations in the finite-field case relied on the fact that we were working in Fp , we
may essentially replace all instances of Fp with R. Drawing from this, we have

Φv(1) : L
2(R)→L 2(R), f (x) 7→ψ

�

−
1

2
x2
�

f (x).

Bootstrapping from this case, for u ∈R, the intertwining operator is (up to a scalar multiple, as
usual),

Φv(u) : L
2(R)→L 2(R), f (x) 7→ψ

�

−
u

2
x2
�

f (x). (4.8)

We can check (4.8) by direct computation of the compositions in the commutative square (4.3).
Since v(u) acts trivially on B and Φv(u) commutes with πψ(B), then all we have left to do is to
verify that Φv(1) intertwines the operators πψ(A) and πψ ◦ v(u)(A). From the formulas in Section
2.2 (in particular, see (2.5) and (2.8)), we have

v(u) ·A=









1 a 1
2 ua2

0 1 ua
0 0 1









.

Hence

f (x)
πψ(A)
7−→ f (x − a)

Φv(u)
7−−−→ψ

�

−
u

2
x2
�

f (x − a),

f (x)
Φv(u)
7−−−→ψ

�

−
u

2
x2
�

f (x − a)
πψ◦v(u)(A)
7−−−−−−→ψ

�

uax +
1

2
ua2
�

ψ
�

−
u

2
(x − a)2

�

f (x − a)

=ψ
�

−
u

2
x2
�

f (x − a).

For d (t ) =
�

t 0
0 t−1

�

, we have

d (t ) ·









1 a 0
0 1 0
0 0 1









=









1 at 0
0 1 0
0 0 1









, d (t ) ·









1 0 0
0 1 b
0 0 1









=









1 0 0
0 1 at−1

0 0 1









.

Hence,

πψ(A) : f (x) 7→ f (x − a), πψ(B) : f (x) 7→ψ(−b x) f (x),

πψ ◦ d (t )(A) : f (x) 7→ f (x − at ), πψ ◦ d (t )(B) : f (x) 7→ψ(−b t−1x) f (x).
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Comparing πψ(A) and the composition πψ ◦ d (t )(A), a reasonable guess is the linear operator
f (x) 7→ f (t−1x). It turns out that this operator is indeed an intertwining operator between πψ
and πψ ◦ d (t ). Set

Φd (t ) : L
2(R)→L 2(R), f (x) 7→ f (t−1x). (4.9)

With this, we may compute the compositions in the commutative square (4.3). For A=
� 1 a 0

0 1 0
0 0 1

�

,

f (x)
πψ(A)
7−−−→ f (x − a)

Φd (t )
7−−−→ f (t−1x − a),

f (x)
Φd (t )
7−−−→ f (t−1x)

πψ◦d (t )(A)
7−−−−−−→ f (t−1(x − at )) = f (t−1x − a),

and for B =
� 1 0 0

0 1 b
0 0 1

�

,

f (x)
πψ(B)
7−−−→ψ(−b x) f (x)

Φd (t )
7−−−→ψ(−b t−1x) f (t−1x),

f (x)
Φd (t )
7−−−→ f (t−1x)

πψ◦d (t )(B)
7−−−−−−→ψ(−b t−1x) f (t−1x).

In summary, quoting equations (4.7), (4.8), and (4.9), we have

Φs ( f (x)) = f̂ (x) =
∫ ∞

−∞
ψ(ξ x) f (ξ )dξ ,

Φv(u)( f (x)) =ψ
�

−
u

2
x2
�

f (x), (4.10)

Φd (t )( f (x)) = f (t−1x).

This defines a projective representation

ρ : SL2(R)→ PGL(L 2(R)), g 7→ [Φg ], (4.11)

where [Φg ] denotes the image ofΦg ∈GL(L 2(R)) under the surjection GL(L 2(R))→ PGL(L 2(R)).
This is the projective Weil representation for SL2(R). In the next section, we will discuss lifting
this projective representation to a linear representation.

4.3 The Weil Representation for fSL2(R)

Recall that in Section 3.3, we discussed the Schur multiplier and its role in lifting projective
representations. In the finite-field model, we were lucky in that the Schur multiplier of SL2(Fp)
was trivial, as we showed in Section 3.4. It followed from this fact (see Theorem 3.3) that every
central extension of SL2(Fp) by C× splits, and therefore the projective Weil representation for
SL2(Fp ) can be lifted to a linear representation of SL2(Fp ).
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In the real case—that is, in the case of SL2(R)—we are less fortunate, as the Schur multiplier
of SL2(R) is nontrivial. One proof of this nontriviality is that the projective Weil representation
defined in (4.11) and (4.10) does not lift to a linear representation of SL2(R). There are, of course,
more direct ways to see that it is nontrivial. For instance, SL2(R) is homotopy equivalent to its
maximal compact subgroup SO2(R)∼= S1, and hence π1(SL2(R))∼= Z.

So how do we obtain the linear Weil representation for SL2(R) from the projective repre-
sentation ρ described in Section 4.2? One solution is to first pass to the Lie algebra analogue of
the Weil representation by applying the Lie derivative to the projective representation ρ, and
then to exponentiate the obtained derived representation to obtain a representation of a cover
of SL2(R). The reason that we obtain a linear Lie algebra representation from applying the Lie
derivative to a projective representation is discussed in Section 5, and the Lie derivative is discussed
in detail in Section 5.1. Once we have obtained this representation of sl(2) = sl2(R)⊗R C, the
complexification of the Lie algebra of SL2(R), what we have left to do is to exponentiate the
representation.

Theorem 4.3. The Weil representation of sl(2) exponentiates to a representation of the metaplectic
group Mp2(R).

This theorem is known as the Shale-Weil theorem. For the proof, we refer the interested reader
to Lang [Lan75], Howe [How88], Weil [Wei64], and Shale [Sha62]. After we have computed the
derived Weil representation, we will give the exponentiation of this representation of sl(2). This
is given explicitly in Section 5.5.
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5 The Lie Algebra sl2(R)

An equivalent formulation of the Weil representation is through the complexified Lie algebra

sl(2) := sl2(R)⊗R C.

Recall from Section 4 that the Weil representation for SL2(R) is actually a representation of
fSL2(R), a double cover of SL2(R). In the Lie algebra case, the Weil representation is in fact defined
for sl(2) itself. There are two primary ways to see this.

(1) For a finite-dimensional C-vector space V , given a projective representation G→ PGL(V ),
we may differentiate to obtain a Lie algebra homomorphism g→ pgl(V ). But PGL and SL
have the same Lie algebra, and hence this Lie algebra homomorphism is a map g→ End(V ),
which defines a representation of the Lie algebra g.

(2) By a construction of the Weil representation through a Heisenberg algebra construction,
analogous to the constructions we have explained in detail in Sections 3 and 4, we obtain a
projective representation of sl(2). We may pull this back to a representation of a central
extension of sl(2), but because sl(2) is completely reducible, every central extension of sl(2)
splits. Therefore the projective representation of sl(2) gives rise to a linear representation of
sl(2).

The first point is presented primarily for the purpose of motivating why the Weil representa-
tion for sl(2) is an actual representation of sl(2) itself. Indeed, this first point does not literally
apply to our situation as V is infinite-dimensional in our set-up and the correct notion of “pgl(V )”
for an infinite-dimensional V will not be discussed here.

We will instead concentrate our efforts on the second point. In Sections 5.1 and 5.4, we will
discuss how to construct the Weil representation through the Heisenberg algebra by passing the
story told in Section 4 over to the Lie algebra context.

Once we have told this story, we will then turn our efforts to unpacking the structure of the
Weil representation as a sl(2)-module. This will be done in Sections 5.5 and 5.6, and will lead
nicely into Section ?? of this paper (in particular, the discussion on the connection to quantum
mechanics), wherein we will discuss the applications of the Weil representation in other fields.

5.1 The Lie Derivative

The key to passing between our SL2(R) story and our sl(2) story lies exactly in the process of
obtaining a Lie algebra action from a Lie group action. Because we will not benefit from specifying
to a specific Lie group-Lie algebra pair, our discussion in this section will be in complete generality.
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Let G be a Lie group and let g be its Lie algebra. Recall that there is a bijective correspondence
between one-parameter subgroups

αX : R→G, t 7→ exp(tX ), for X ∈ g,

and elements of g, given precisely by

g→{one-parameter subgroups of G}, X 7→ αX .

Let V be a C-vector space with a smooth (that is, differentiable) G-action. We define a g-action
on V by the formula

X · v :=
d

d t
(exp(tX ) · v)

�

�

�

�

t=0
= lim

t→0

exp(tX ) · v − v

t
. (5.1)

One may check by hand that this defines a Lie algebra action. We leave this straightforward
computation to the reader. The rule in (5.1) is known as the Lie derivative. We will use the Lie
derivative repeatedly throughout this section, in particular in Section 5.4, where we convert our
Lie group scenario to a Lie algebra scenario by obtaining the Lie algebra actions induced by our
Lie group actions.

Of course, the definition in (5.1) only makes sense if the G-action on V is smooth. That is, if
the map

G→V , g 7→ g · v, (5.2)

is smooth for all v ∈V . Suppose that we relaxed the condition that the G-action on V is smooth.
If v ∈V is a vector satisfying (5.2), then we will say that v is a smooth vector. The smooth vectors
of V clearly form a subspace of V , which we will denote by

V∞ := {v ∈V : g 7→ g · v is a smooth map G→V }.

From our discussion so far, we can already see that the subspace V∞ plays an extremely important
role in the relationship between Lie group representations and Lie algebra representations. Indeed,
the following proposition is true.

Proposition 5.1. Let V∞ be the subspace of smooth vectors of a complex G-representation V .

(i) V∞ is a dense subspace of V .

(ii) V∞ is G-invariant. It follows that V∞ is also g-invariant.

Proof. This is not a difficult proof, but it requires some set-up that strays from the arc of this
exposition. Because of this, we omit the proof and refer the reader to pages 18 and 19 of Howe
and Tan’s Non-Abelian Harmonic Analysis [HT92].

In words, Proposition 5.1 says that in passing from V to V∞, we gain a g-action without
losing the G-action. So we actually get more information when we pass to a dense subspace of V .
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5.2 The Heisenberg Algebra

In order to construct the Lie algebra analogue of the story we have told in Sections 3 and 4, we
first need to discuss the Lie algebra of the Heisenberg group. We will call it the Heisenberg algebra
and denote it by

heis(R) :=















0 a c
0 0 b
0 0 0









: a, b , c ,∈R







.

We will work with the complexified Heisenberg algebra

heis := heis(R)⊗R C.

Now we would like to understand the Heisenberg algebra equivalent of the Heisenberg
representation πψ we introduced in Section 2.3.

So far, the representation space we have been working with is the Hilbert space L 2(R). The
first question we must answer is, what is the space of smooth vectors of L 2(R) with respect to
the actions of Heis(R) and SL2(R)? The answer is the Schwartz space S (R).

Recall from equation (2.10) that the Heisenberg representation is defined to be








1 a c
0 1 b
0 0 1









· f (x) :=ψ(−b x + c) f (x − a).

The Lie algebra of the Heisenberg group is

heis(R) :=















0 a c
0 0 b
0 0 0









: a, b , c ∈R







.

We will work with the complexified Heisenberg algebra

heis := heis(R)⊗R C

Because the map

C⊕3→ heis, (a, b , c) 7→









0 a c
0 0 b
0 0 0









defines an isomorphism of vector spaces, to simplify notation, we will use the vector notation on
the left-hand side of the map to denote its image on the right-hand side.
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We have

exp









t









0 a c
0 0 b
0 0 0

















=









1 0 0
0 1 0
0 0 1









+ t









0 a c
0 0 b
0 0 0









+
t 2

2









0 0 ab
0 0 0
0 0 0









=









1 at c t + ab t 2

2
0 1 b t
0 0 1









.

Then, differentiating the representation of the Heisenberg group, we have








0 a c
0 0 b
0 0 0









· f (x) =
d

d t
exp









t









0 a c
0 0 b
0 0 0

















· f (x)
�

�

�

�

t=0

=
d

d t









1 at c t + ab t 2

2
0 1 b t
0 0 1









· f (x)
�

�

�

�

t=0

=
d

d t
ψ(−b t x + c t +

ab t 2

2
) f (x − at )

�

�

�

�

t=0

= (−aψ(−b t x + c t +
ab t 2

2
)

d

d x
f (x − at )

+ (−b x + c + ab )
d

d t
(ψ(−b t x + c t +

ab t 2

2
)) f (x − at ))

�

�

�

�

t=0

=−a
d

d x
f (x)+ (−b x + c + ab )ψ′(0) f (x).

It is a straightforward computation to check that

Lπψ : heis(R)→ End(S (R)),









0 a c
0 0 b
0 0 0









7→ −a
d

d x
− bψ′(0)x + cψ′(0),

defines a homomorphism of Lie algebras. Explicitly, this means that Lπψ is a linear map that
respects the Lie bracket

[X ,Y ] =X Y −Y X .

That is,
Lπψ([g , h]) = [Lπψ(g ),Lπψ(h)].
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Indeed,

[Lπψ(a, b , c),Lπψ(a
′, b ′, c ′)] =

�

−a
d

d x
− bψ′(0)x + cψ′(0)

��

−a′
d

d x
− b ′ψ′(0)x + c ′ψ′(0)

�

−
�

−a′
d

d x
− b ′ψ′(0)x + c ′ψ′(0)

��

−a
d

d x
− bψ′(0)x + cψ′(0)

�

= ab ′ψ′(0)
d

d x
x + a′bψ′(0)x

d

d x
− a′bψ′(0)

d

d x
x − ab ′ψ′(0)x

d

d x
= (ab ′− a′b )ψ′(0)

= Lπψ([(a, b , c), (a′, b ′, c ′)]).

Remark. The fact that Lπψ is a Lie algebra homomorphism actually comes for free, since it is the
derived representation of πψ. ♦

5.3 The Irreducibility of the Heisenberg Algebra Representation

In this section, we will prove the following theorem.

Theorem 5.2. The Heisenberg algebra representation (Lπψ,S (R)) is irreducible.

As an immediate consequence, we have the following.

Corollary 5.3. The Heisenberg representation (πψ,L 2(R)) is irreducible.

It follows directly from our discussion in Section 5.2 that the Heisenberg algebra heis is
generated, as a Lie algebra, by the operators

P :=πψ(−1,0,0) =
d

d x
,

Q :=πψ(0,−1/ψ′(0), 0) = x,

I :=πψ(0,0,1/ψ′(0)) = 1.

The Lie bracket relations are

[P,Q] = I , [P, I ] = [Q, I ] = 0.

In this proof, we will work with a different basis of heis, namely

a := P +Q,

a+ :=−P +Q, (5.3)

I := 1.
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The Lie bracket relations are then

[a,a+] = [P +Q,−P +Q] = [Q,−P]+ [P,Q] = 2,

[a, I ] = 0, (5.4)

[a+, I ] = 0.

Before proceeding with the proof of Theorem 5.2, we will analyze the operators a and a+.

5.3.1 Hermite Functions

Recall from the previous section that

a := x +
d

d x
, a+ := x −

d

d x
.

We analyze some of the basic properties of a and a+ here.

(i) Recall from equation (5.4) that
[a,a+] = 2.

(ii) Observe that
a+ = a∗, (5.5)

where a∗ denotes the adjoint of the operator a with respect to the inner product 〈 f , g 〉=
∫

R f (x)g (x)d x. Indeed,

〈a f , g 〉=
∫

R
(x f (x)− d

d x f (x))g (x)d x

=
∫

R
x f (x)g (x)− g (x) d

d x f (x)− f (x) d
d x g (x)+ f (x) d

d x g (x)d x

=
∫

R
x f (x)g (x)− d

d x f (x)g (x)+ f (x) d
d x g (x)d x

=
∫

R
f (x)a+(g (x))d x −

∫

R
d

d x f (x)g (x)d x

= 〈 f ,a+ g 〉.

(iii) Also,
[a, (a+) j ] = 2 j (a+) j−1, (5.6)
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since

[a, (a+) j ] = a(a+) j − (a+) j

= aa+(a+) j−1− (a+) j−1a+a

= [a,a+](a+) j−1+ a+[a, (a+) j−1]

= 2(a+) j−1+ a+[a, (a+) j−1]

= 2 j (a+) j−1.

Now that we have some properties of the operators a and a+ under our belt, we will construct
a basis of S (R) that behaves nicely under these operators. Let

v0 := e−x2/2.

So v0 ∈S (R) and

av0 =
�

x + d
d x

�

e−x2/2 = xe−x2/2+ e−x2/2(−x) = 0. (5.7)

Now set
v j := (a+) j v0.

Then
av j = a(a+) j v0 = [a, (a+) j ]v0+(a

+) j av0 = 2 j (a+) j−1 = 2 j v j−1. (5.8)

We may compute the inner products of the vi ’s and v j ’s. We have

〈vi , v j 〉= 2 j j !δi j
p
π. (5.9)

Indeed,

〈v0, v0〉=
∫

R
e−x2/2e−x2/2 d x =

∫

R
e−x2

d x =
p
π,

and so for i ≤ j , by repeatedly reducing the indices using (5.5), (5.7), and (5.8), we have

〈vi , v j 〉= 〈(a
+) j vi− j , v j 〉= 〈vi− j ,a j v j 〉= 〈vi− j , 2

j j !v j−1v0〉

=







2 j j !〈v0, v0〉= 2 j j !v j−1
p
π, if i = j ,

2 j j !〈vi− j−1,av0〉= 0, if i > j .

Hence from (5.9), we see that the vi ’s are orthogonal and {(2 j j !
p
π)−1/2v j } ⊆ S (R) forms an

orthonormal set.
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From the construction of the v j ’s as applying the operator a+ = x − d
d x successively to

v0 = e−x2/2, then we may write

v j = P j (x)e
−x2/2, P j (x) ∈R[x], deg(P j (x)) = j . (5.10)

In (5.10), we call v j a Hermite function and P j (x) a Hermite polynomial.

Note. We actually have an explicit formula for the Hermite polynomials. It relies on the observa-
tion that

−e x2/2 d
d x

�

e−x2/2 f (x)
�

=−e x2/2�−xe−x2/2 f (x)+ e−x2/2 d
d x f (x)

�

= a+ f (x).

Hence by induction, we have
P j (x) = (−1) j e x2 d j

d x j (e
−x2
). (5.11)

The formula in (5.11) is known as the Rodriguez Formula.

It turns out that not only do the Hermite functions form an orthogonal set in S (R), but
they form a basis of S (R) and hence of L 2(R). Here, we mean that the C-span of the Hermite
functions is dense in S (R), which is dense in L 2(R). We formulize this into a proposition.

Proposition 5.4. The Hermite functions form an orthogonal basis of S (R).

Proof. We only give an outline of a proof here. First note thatS (R) is invariant under translation
and dilation. Then we show that the R-span of the Hermite polynomials is P (R), the set of
complex polynomial functions on R, and thatP (R)e−x2/2 is dense inS (R) by Taylor polynomial
approximations.

5.3.2 The Proof of Irreducibility

Proof of Theorem 5.2. Recall from (5.3) that 1, a, and a+ form a basis of the Heisenberg algebra.
From our analysis in Section 5.3.1, we have the following picture:

0 v0 v1 v2 v3 v4 v5 · · ·

a+ a+ a+ a+ a+ a+

a a a a a a a

Figure 1: Action of a and a+ on the v j

Since the Hermite functions form an orthonormal basis of S (R), it follows from Figure 1
that the Heisenberg algebra representation on the Schwartz space S (R) is irreducible.

39



Remark. In the literature, a and a+ are called “ladder operators.” Figure 1 is exactly the motivation
for this terminology. ♦

5.4 The Lie Algebra Analogue

In this section, we will construct the Lie algebra analogue of the story we have told in Sections 3
and 4. That is, we will construct the Weil representation through an analysis of the representation
theory of the Heisenberg group, converting all of our Lie group notions into their Lie algebra
analogues via the methods discussed in Section 5.1.

Recall that in the construction of the Weil representation for SL2(R), we used the Stone-von
Neumann theorem to obtain a projective representation of SL2(R) through the intertwining
operators of πψ precomposed with the action of SL2(R) on Heis(R). Writing the condition
described in the commutative diagram in (4.3) in terms of the Lie algebras sl(2) and heis(R), we
have

Φexp(s x)πψ(exp(t y)) =πψ(exp(t y) · exp(s x)Φexp(s x), (5.12)

for s , t ∈R, x ∈ sl(2), y ∈ heis(R).

Remark. Recall that Φg for g ∈ SL2(R) is only determined up to a constant factor. In this
discussion, when we write Φg , we will mean CΦg for any C ∈C×. ♦

From the remark, we have, necessarily, Φ−1
exp(s x) =Φexp(−s x). Hence equation (5.12) becomes

Φexp(s x)πψ(exp(t y))Φexp(−s x) =πψ(exp(t y) · exp(s x)).

Differentiating both sides both with respect to s and t and evaluating at s = t = 0, we obtain

d

d s

d

d t
πψ (exp(t y) · exp(s x))

�

�

�

�

s=t=0
=

d

d s

d

d t

�

Φexp(s x)πψ(exp(t y))Φexp(−s x)

�

�

�

�

�

s=t=0

=
d

d s

�

Φexp(s x)Lπψ(y)Φexp(−s x)

�

�

�

�

�

s=0

=

 
�

d

d s
Φexp(s x)

�

Lπψ(y)Φexp(−s x)

−Φexp(s x)Lπψ(y)
d

d s
Φexp(s x)

!

�

�

�

�

s=0

= LΦx Lπψ(y)−Lπψ(y)LΦx

=
�

LΦx ,Lπψ(y)
�

.

Summarizing, we have
Lπψ(x · y) = [LΦx ,Lπψ(y)]. (5.13)
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We will show through direct computation that LΦx exists for each x ∈ sl(2). Furthermore, LΦx
is unique up to a scalar difference. Indeed, if LΦ′x also satisfies equation (5.13), then we have

[LΦx ,Lπψ(y)] = [LΦ
′
x ,Lπψ(y)].

Rearranging terms, we have

(LΦx −LΦ′x )Lπψ(y) = Lπψ(y)(LΦx −LΦ′x ),

and since πψ is irreducible, then by Schur’s lemma, we may conclude that

Lφx −LΦ′x = λI , for some λ ∈C.

We will now compute (up to a scalar difference) LΦx for x = e , f , h, where

e− =
�

0 0
1 0

�

, e+ =
�

0 1
0 0

�

, and h =
�

1 0
0 −1

�

.

We can easily write down the action of e−, e+, and h on heis, and the operators obtained after
precomposing Lπψ with each of these elements of sl(2):

e− · (a, b , c) = (0,a, 0), Lπψ ◦ e−(a, b , c) =−aψ′(0)x,

e+ · (a, b , c) = (b , 0, 0), Lπψ ◦ e+(a, b , c) =−b
d

d x
,

h · (a, b , c) = (a,−b , 0) Lπψ ◦ h(a, b , c) =−a
d

d x
+ bψ′(0)x.

Comparing the above operators to

Lπψ(a, b , c) =−a
d

d x
− bψ′(0)x + cψ′(0),

we may observe that what we are looking for are operators that:

• commute with d/d x but not with x (as in the case of e−),

• commute with x but not with d/d x (as in the case of e+), and

• swap x and d/d x (as in the case of h).
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Hence we are likely looking at d 2/d x2, x2, and x · d/d x, respectively. Computing, we get

[x2,Lπψ(a, b , c)] = 2a
d

d x
,

[d 2/d x2,Lπψ(a, b , c)] =−2bψ′(0)
d

d x
,

[x · d/d x,Lπψ(a, b , c)] = a
d

d x
− bψ′(0)x.

Note that our computations here only determine LΦg up to a constant difference. Therefore,
from the above, all we may conclude is that

LΦe− =−
1

2
x2+Ce− ,

LΦe+ =
1

2ψ′(0)

d 2

d x2
+Ce+ ,

LΦh = x
d

d x
+Ch ,

for some constants Ce− ,Ce+ ,Ch ∈C. In order to pin down these constants, we must use the Lie
bracket relations of sl(2).

The Lie bracket relations of sl(2) can be computed easily:

[e−, e+] = e−e+− e+e− =
�

0 0
1 0

��

0 1
0 0

�

−
�

0 1
0 0

��

0 0
1 0

�

=
�

−1 0
0 1

�

=−h,

[e−, h] = e−h − he− =
�

0 0
1 0

��

1 0
0 −1

�

−
�

1 0
0 −1

��

0 0
1 0

�

= 2e−,

[e+, h] = e+h − he+ =
�

0 1
0 0

��

1 0
0 −1

�

−
�

1 0
0 −1

��

0 1
0 0

�

=−2e+.

Because we would like the map sl(2)→ End(S (R))/C× defined by g 7→ LΦg to be a Lie algebra
homomorphism, then necessarily we must have, up to some scalar multiple,

�

LΦe− ,LΦe+
�

=−LΦh , (5.14)
�

LΦe− ,LΦh
�

= 2LΦe− , (5.15)
�

LΦe+ ,LΦh
�

=−2LΦe+ . (5.16)
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From (5.14), we have

LΦh =
�

LΦe+ ,LΦe−
�

=
�

x2+Ce+
�

 

d 2

d x2
+Ce−

!

−
 

d 2

d x2
+Ce−

!

�

x2+Ce+
�

=−4

�

x
d

d x
+

1

2

�

.

Therefore

Ch =
1

2
.

By similar computations, we obtain from (5.15) and (5.16) that

Ce− = 0=Ce+ .

Hence we may conclude that, up to a scalar multiple,

LΦe− =−
1

2
x2,

LΦe+ =
1

2ψ′(0)

d 2

d x2
, (5.17)

LΦh = x
d

d x
+

1

2
.

This therefore defines a projective representation

Lρ : sl(2)→ End(S (R))/C×, g 7→ [LΦg ],

where [LΦg ] denotes the equivalence class in End(S (R))/C represented by LΦg .
Now the question becomes, Can we lift this projective representation to a linear represen-

tation? The question is, of course, yes. Indeed, letting esl(2) be the pull back of Lρ : sl(2)→
End(S (R))/C and the surjection p : End(S (R))→ End(S (R))/C, we have the following com-
mutative diagram:

0 C esl(2) sl(2) 0

0 C End(S (R)) End(S (R))/C 0

p

1C ÝLρ Lρ (5.18)

From this perspective, we have a central extension of sl(2) by C, and we would like to understand
these objects. We have the following proposition.
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Proposition 5.5. Every central extension of sl(2) by C splits.

This is in fact a direct consequence of the following theorem due to Whitehead.

Theorem 5.6. If g is a semisimple Lie algebra, then every central extension of g by C splits. Equiva-
lently,

H2(g,C) = 0.

Proof. Consider the short exact sequence of Lie algebras

0→C→ e
p
→ g→ 0, (5.19)

with C central in e. The Lie algebra e can be endowed with a g structure in the following way: for
x ∈ g and y ∈ e, define the action of x on y to be

x · y := [ex, y],

where ex is any preimage of x under the surjection p. This action is well-defined since the ker(p)
is central in e.

Since g is semisimple, e splits into a direct sum of g-modules. In particular, since e contains
a copy of the trivial representation by assumption, this means that there exists a g-module
homomorphism σ : g 7→ e splitting e as g⊕C as g-modules. Explicitly, we may set

σ(x) := ex.

This is a Lie algebra homomorphism and hence necessarily σ(g) must be a Lie subalgebra of e.
Hence the central extension in (5.19) splits, and this completes the proof.

Remark. For a detailed discussion of Lie algebra cohomology, see Chapter 7 of Weibel’s An
Introduction to Homological Algebra [Wei94]. ♦

It turns out that the operators in (5.17) exactly define a lift of the projective representation
Lρ : sl(2)→ End(S (R))/C to a linear representation ÝLρ : sl(2)→ End(S (R)).

5.5 Defining the Weil Representation for sl(2)

In this section, we will define the Weil representation for an alternate basis of sl(2).
The most common choice of a standard basis for sl(2) is the one formed by the matrices

h =
�

1 0
0 −1

�

, e+ =
�

0 1
0 0

�

, and e− =
�

0 0
1 0

�

,
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which was the basis that we used in our construction of the Weil representation for sl(2) through
the Heisenberg algebra representation. In this section, we will make use of another standard basis
of sl(2). Let

¯̄k = i
�

0 −1
1 0

�

= i(e−− e+),

n+ =
1

2

��

1 0
0 −1

�

+ i
�

0 1
1 0

��

=
1

2
(h + i(e++ e−)),

n− =
1

2

��

1 0
0 −1

�

− i
�

0 1
1 0

��

=
1

2
(h − i(e++ e−)).

The reason we care about the basis {¯̄k , n+, n−} rests in the observation that

k =
�

0 −1
1 0

�

=−i ¯̄k

is the infinitesimal generator of the maximal compact subgroup SO(2,R) of SL(2,R). Now, if we
have a unitary representation, or a continuous quasisimple representation of SL(2,R), then k acts
diagonally with eigenvalues in iZ (since k generates SO(2,R)). So ¯̄k = i k must act diagonally
with eigenvalues in Z. Hence we can expect to find standard sl(2)-modules with respect to this
basis. It will turn out that, in the Weil representation, ¯̄k acts on S (R) as the Hermite operator
x2− d 2

d x2 . It is because of this that we would like to formulate the Weil representation with respect
to the basis {¯̄k , n+, n−} instead of the basis {h, e+, e−}.

We begin by defining a representationsω of sl(2) on the Schwartz space S (R) on R via the
standard basis {h, e+, e−} of sl(2). We write them as operators on functions in S (R):

ω(h) = x
d

d x
+

1

2
, (5.20)

ω(e+) =
i

2
x2, (5.21)

ω(e−) =
i

2

d 2

d x2
. (5.22)

Theorem 5.7 (Shale-Weil). The Weil representation for sl(2) exponentiates to a unitary representation
of fSL(2,R), the double cover of SL(2,R), on L 2(R).

Proof. See Section 4.3 for a discussion.

Explicitly, the fSL(2,R)-representation induced by the above sl(2)-representation is defined by

45



the following action, where f ∈L 2(R) and t ∈R:

ω(exp(t h)) f (x) = e t/2 f (e t x), (5.23)

ω(exp(t e+)) f (x) = e i t x2/2 f (x), (5.24)

ω(exp(t e−)) = convolution with 1+i
2 (πt )−1/2e i t x2/2. (5.25)

Note that the right-hand side of each equation is a one-parameter subgroup of G. To verify
the (5.23) and (5.24), we may differentiate the one-parameter subgroups and check that their
respective infinitessimal generators in sl(2) matches with the left-hand side. The final equality
is obtained from (5.24) by noticing that the one-parameter subgroup in (5.25) is the Fourier
transform of the one-parameter subgroup in (5.24).

The operator of particular interest to us is

2ω(¯̄k) = 2i(ω(e−)−ω(e+) = x2−
d 2

d x2
.

This is known as the Hermite operator. The Hermite operator has many applications in analysis as
well as physics.

Recall that in Section 5.3.1, we studied the operators

a = x +
d

d x
and a+ = x −

d

d x
.

Note that the Hermite operator is the product of these to operators; that is,

2ω(¯̄k) = aa+.

Hence our study of the operators a and a+ give us a basis of ω(¯̄k)-eigenvectors of the C-vector
space S (R).

5.6 The Module Structure of the Weil Representation

In Section 5.3.1, we studied the relationship between Hermite functions and the Heisenberg
algebra representation. The close ties between Heisenberg algebra representation and the Weil
representation for sl(2) suggest a relationship between the operators a and a+ and the Weil
representation. We write down this relationship explicitly.

From the definitions, we have

x =
1

2
(a+ a+), (5.26)

d

d x
=

1

2
(a− a+), (5.27)
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and hence we may express the Weil representation in terms of the operators a and a+:

ω(e+) =
i

8
(a+ a+)2, (5.28)

ω(e−) =
i

8
(a− a+)2, (5.29)

ω(h) =
1

4
(a2− (a+)2)+

1

2
. (5.30)

In terms of the standard basis n+, n−, ¯̄k,

ω(n+) =
1

4
(−(a+)2+ 1), (5.31)

ω(n−) =
1

4
(a2+ 1), (5.32)

ω(¯̄k) =
1

4
(aa++ a+a). (5.33)

Recall from Section 5.3.1 that we defined a basis {v j : j ∈ Z≥0} of the Schwartz space S (R)
consisting of Hermite functions. The Hermite functions are defined iteratively by setting

v0 := e−x2/2 and v j := (a+) j v0.

As we saw in Section 5.3.1, the operators a and a+ play an important role on the Hermite functions
since

av j = 2 j v j−1. (5.34)

It follows that the Hermite functions v j are eigenfunctions with respect to the operators aa+ and
a+a. The aa+-eigenvalue of v j is 2( j + 1) and the a+a-eigenvalue of v j is 2 j .

Hence from (5.33), we see that ¯̄k acts on the Hermite function v j by scalar multiplication:

ω(¯̄k)v j =
1

4
(aa++ a+a)v j =

1

4
(2( j + 1)+ 2 j ) =

�

j +
1

2

�

v j .

From (5.31) and (5.32), we see that n+ acts on the Hermite functions by sending v j to v j+2
and n− acts on the Hermite functions by sending v j to v j−2. Drawing this out in a picture similar
to Figure 1, we obtain Figure 2. This allows us to visualize the Weil representation of sl(2) in
terms of a ¯̄k-eigenbasis of S (R).
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0 v0 v1 v2 v3 v4 v5 · · ·

¯̄k ¯̄k ¯̄k ¯̄k ¯̄k ¯̄k ¯̄k

n− n− n− n− n−

n+n+n+n+n+

Figure 2: The Weil Representation

From the picture, the structure of the Weil representation (ρ,S (R)) as a sl(2)-module becomes
almost immediately clear.

Proposition 5.8. The Weil representation of sl(2) is a direct sum of two lowest weight modules:

S (R) =V1/2⊕V3/2,

where Vλ denotes a lowest weight module of lowest weight λ.

Proof. It suffices to show that the subspaces spanned by {v2 j } j∈Z≥0
and {v2 j+1} j∈Z≥0

are invariant
under the action of sl(2) and are in fact irreducible as sl(2)-modules. Indeed, the span of {v2 j } j∈Z≥0

(respectively, {v2 j+1} j∈Z≥0
) is a lowest weight modules of lowest weight 1/2 (respectively, 3/2).

From the actions of ¯̄k, n+, and n− as described in equations (5.33), (5.31), and (5.32), respec-
tively, we see that the described subspaces of S (R)must be sl(2)-invariant and must contain no
sl(2)-invariant subspaces.

We end with an illustration of the decomposition of the Weil representation into lowest weight
modules.
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0 v0 v1 v2 v3 v4 v5 · · ·

¯̄k ¯̄k ¯̄k ¯̄k ¯̄k ¯̄k ¯̄k

n− n− n− n− n−

n+n+n+n+n+

| |

0 v0 v2 v4 · · ·

¯̄k ¯̄k ¯̄k ¯̄k

n− n− n−

n+ n+ n+

⊕

0 v1 v3 v5 · · ·0

¯̄k ¯̄k ¯̄k ¯̄k

n− n− n−

n+ n+ n+

Figure 3: Decomposition of the Weil Representation into Lowest Weight Modules
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