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In this paper, we will use the above change in font to distinguish between the English
word “set” and a SET in the sense of the game. This way, we will be able to easily distinguish
between, say SET theory and set theory, where the former means the math behind the game
SET and the latter means something I will not discuss here. We will the game, ask some
questions, and ultimately try to reformulate one main question into something that we
can work with using mathematical tools. Here, no prerequisites are assumed. In fact,
knowledge of how to play the game SET is not even assumed. To prove to you that I will
stay true to my word, we begin with an introduction of this (awesomely fun) game.

1 The Game of SET

In 1974, a population geneticist by the name of Marsha Jean Falco was studying epilepsy
in German shepherds. I know almost nothing about the details of the story, but her work
in looking for patterns (somehow) inspired her to invent the game SET. We now transition
abruptly into the rules of the game itself.

In SET, we use a special deck of cards. Each card is determined (uniquely!) by four
characteristics: number, color, shape, and shading. There are three possibilities in each
characteristic: 1, 2, or 3 for number; red, green, or purple for color; ovals, squiggles, or
diamonds for shape; and solid, stripe, or open for shading. Because there is a card for each
and every combination of possibilities of characteristics, we have a total of 34 = 81 cards.
To play, we start with a shuffled deck and the dealer deals 12 cards face up on the table.
Your goal, as a player, is to find a SET. Once you find one, you call it out, collect the SET
(assuming that it is a legitimate one), and the dealer deals 3 more cards. The object of
the game is to collect the most SETs.

This raises several questions. Firstly, what is a SET, anyway? We answer this with the
following definition:

Definition 1. We call a collection of three cards a SET if, within each characteristic, either
all three possibilities are exhibited or exactly one of the possibilities is exhibited.
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For example, the following three-card collections are SETs, where, because of the limi-
tations in color printing, the letters denote the colors. That is, G denotes a green card, R
denotes a red card, and P denotes a purple card.1

G R P

The above cards form a SET because they are all 2’s, all different colors, all different
shapes, and all solids.

G R P

These three are all the different numbers, all different colors, all diamonds, and all
empty. Hence they form a SET.

R R R

These three are all different numbers, all red, all squiggles, and all different shadings.
They hence form a SET. In these first three SETs, there were exactly two characteristics
whose variations were all different, and exactly two whose variations were all the same.
Please note that this is not a necessary condition. Consider the following:

P G R

Here we have a collection of three cards between which the number is all different, the
color is all different, the shape is all different, and the shading is also all different.

Brief Exercise 1. What about the following three examples? Are they SETs? Why or why
not?

1SET graphics taken (without permission) from https://www.setgame.com/images/setcards/small/
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P R G

R G P

R P G

Solution. We can check each category to see if the above three cards satisfy the requirements
for a SET. We have: all different numbers (!), all different colors (!), all different shapes (!),
and... two solids and an empty. Hence the shading is where the above fails to be a SET.
By the exact same check, we get that the second example is not a SET because of a fault
in the numbering and the third is not a SET because of a fault in the shape.
Brief Exercise 2. For a harder exercise (the solution will not be provided in here), let’s
work with a simulation of the game SET. Try finding all the sets in the following display of
cards:

R G G

R R P

G R G

P P R
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Now that we’ve gotten our hands dirty and built up some experience with SETs, we
can start asking questions beyond “SET or not?”. We saw that we could find SETs in the
previous display of 12 cards. A natural question, then, is, given any 12 cards, can we
always find a SET? The answer is no, and here’s an example:

G R R

R P G

R G G

G P R

We wouldn’t want SET to come to a standstill if such a situation arises, so in the
rulebook, we agree to deal 3 additional cards in the case that there are no sets present.
We iterate this process until a SET is found. If a SET is collected, then the dealer will deal
3 cards if and only if the number of cards displayed drops below 12. This concludes the
explanation of the rules of SET.

Notice that we have observed that we can find a collection of 12 cards that contains no
SETs. Clearly, if all 81 cards were dealt, you would be able to find at least one SET (you
would be able to find quite a few, in fact). This brings us to the first motivating question
of today’s talk: What is the minimum number of cards we need to guarantee the presence
of a SET? We will play with this question, rephrase it, reword it, and ultimately try to
make it something that we can formalize in a mathematically precise way.
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2 Pessimism and the Anti-SET

In some sense, SET is an optimistic game: our goal is to find and collect SETs. But what if
we reversed the goal? Let’s be a little pessimistic and say, instead, that we want to avoid
SETs like the plague. So instead of the question “What is the minimum number of cards
we need to guarantee a SET?”, we can coin the term “anti-SET” to mean a collection of
cards without a SET, and ask: What is the largest possible anti-SET?

We could try to brute-force this by picking cards out of the deck, but this gets hard
quite quickly. Of course, for the first few, it’s easy. For instance, any two cards form an
anti-SET of size 2. But what if we wanted to find, say, an anti-SET of size 18? Is it even
possible? Instead of trying to tackle this question head-on, let’s take a look at some simpler
cases.

Let’s first restrict our search for anti-SETs to only the striped green cards. So instead
of looking at all 81 cards, we’ll start by only looking at 9 of them. Essentially what we
are doing is considering 2 characteristics instead of all 4. (Notationally, we drop the letter
subscript as it is not necessary to distinguish between colors. This may not be worth
noting, but if this document were to be printed in color, I assure you that the cards below
would be green.)

We observe that we can pick at least of 4 cards without collecting a set. In fact, it
isn’t much harder to see that there are several ways of picking an anti-SET of size 4. The
tic-tac-toe boards below demonstrate a few ways of choosing 4 cards from the above array
of set cards. Here the entries in the tic-tac-toe board correspond directly to the above
ordering.
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X X

X X

,

X

X X

X

, X X

X X

, etc.

What if we considered one more characteristic? Instead of fixing both the color and
the shading, let’s just fix the color. So we’ll look at all the green cards. (As in the previous
case, I assure you that if this document were printed in color, the cards below would most
definitely be green. The letters to denote color are again omitted for the reason cited
previously.)

We can pick the cards as follows and get an anti-SET of size 9. (Note that this is not
the only way to pick an anti-SET of size 9.) We again use tic-tac-toe boards as a convenient
and simple illustration of our choice of cards.

X X

X X

X

X

X X

X

We observe that there is some sort of correlation between the case of fixing 2 char-
acteristics (i.e. 2 free characteristics) and the case of fixing 1 characteristic (i.e. 3 free
characteristics). We can try to extend this pattern to work for the case when we let all
four characteristics run free, that is, fix none. This would give us the entire SET deck. We
structure the array of SET cards so that we have three clumped rows of grouped colors.
That is, we write the previous formation of 27 cards down three times, with a different
color each time. (Notice that this is analogous to the way we transitioned from writing
down all the striped green cards to writing down all the green cards.) We then match the
following array of tic-tac-toe boards to the array of SET cards appropriately, and observe
that we can choose cards in the following way to get an anti-SET of size 20.
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X X

X X

X

X

X X

X

X X

X

X X

X

X

X X

X X

It is crucial to keep in mind that we haven’t said anything about what the maximum
number of cards we can collect without taking a set—all we’ve shown is that we can pick
at least 4 cards if we only consider two characteristics, at least 9 cards if we only consider
three characteristics, and at least 20 cards if we consider all four characteristics. In the
language of anti-SETs, we know that we can certainly find anti-SETs of the above sizes, but
we don’t know whether it’d be possible to find a larger one in any of these situations. So
how do we bridge this gap and show that the anti-SETs we found above are actually the
largest possible? I told you earlier that I was going to talk about the math behind SET,
so let’s do exactly that.

3 A Mathematical Perspective

We can think of a set card as a point in the 4-dimensional vector space over a field of
size 3, that is, a point in F4

3. (When you see F3, you should think of Z/3Z, or, in the
standard PROMYS notation, Z3.) So we assign every card an ordered 4-tuple (x, y, z, w)
with each coordinate entry x, y, z, w being 0, 1, or 2 (i.e. any element of F3 (think Z3)).
We do this in the following way. Recall that every card is uniquely determined by four
characteristics. We assign each characteristic a representative coordinate (which makes
sense since we have 4 characteristics) and each variation within each characteristic an
element of F3 (which makes sense since we have 3 variations within each characteristic).
The natural question to ask, then, is in this language, what is a SET?

Recall that a SET is a collection of three cards with the property that, within each
category, either all characteristics are exhibited or exactly one characteristic is exhibited.
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Now assume that you have 3 points in F4
3 that correspond to three cards in a SET. Call

these points A, B, and C. Let’s look at an arbitrary coordinate of A. Call it x. For
convenience of language, we’ll say that x is the first coordinate (we can apply the same
logic to the remaining coordinates). Since A, B, and C form a set, then we know that
either both B and C also have x as their first coordinate, or that one has entry x + 1 and
the other x + 2. This means that the the sum of the first-coordinate entries in this set is
either 3x or x + (x + 1) + (x + 2) = 3x + 3, which are both 0 in F3. What we have, then,
is that A + B + C = 0 in F4

3.
We make another observation. Since we are working in F4

3, we have that B = −2B, so
by substitution, our equation becomes A− 2B + C = 0. From this, we get A−B = B−C,
which gives us directly that A, B, and C are collinear. It is also easy to check that if A,
B, and C are collinear, then the cards corresponding to A, B, and C form a SET. Hence
we have shown that A, B, and C form a line2 in F4

3 if and only if the cards corresponding
to A, B, and C form a SET. In fact, if we had a game of SET with 5, 6, or any number of
categories, we could make the same claim, replacing F4

3 with, respectively, F5
3, F6

3, or Fd
3

where d is any number of categories.
Now let’s introduce a definition.

Definition 2. A d-cap is a subset of Fd
3 that does not contain any lines.

So remember our main goal? We wanted to know what the maximum number of
cards we could have without including a SET, or in a different phrasing, we wanted to
know the maximum size of an anti-SET. Recall that the first thing we did was restrict our
observations to only 2 categories. Then we broadened our search to 3 categories, and then
finally considered 4 categories. In the “mathier” language that we have just introduced,
our examination of the cards in these three cases translates to an examination of a 2-cap, a
3-cap, and a 4-cap, respectively. So instead of asking about the maximum size of an anti-
SET considering d categories, using our new vocabulary, we can ask the following: What is
the maximum size of a d-cap in Fd

3? Notice that with the introduction of some new words
with precise definitions, we’ve transformed a sort of vague, everyday question—What is
the minimum number of cards we need to guaranteed the presence of a SET?—into one
that we can really feel and taste and work with in a mathematically precise way.

Proposition 1. The maximum size of a 2-cap is 4.

Proof. We showed by example that it is possible to find a 2-cap of size 4. So what remains
to be shown is that it is, in fact, the maximum size of a 2-cap. Suppose that we can find
a 2-cap of size 5. Let’s call these points x1, x2, x3, x4, x5. Now, F2

3 can be decomposed
into the union of 3 parallel lines, each containing at most 2 points in the 2-cap (since
three collinear points in F2

3 comprise a line and a 2-cap contains no lines). So one line

2In this paper, I will use the word “line,” even though what I actually mean is a one-dimensional affine
subspace of F4

3.
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contains exactly one point. Call this line L∗. Without loss of generality, let us assume
that L∗ contains x5 (we can always rename things). In F2

3 there are exactly four lines that
contain x5. We know one of them—L∗—and let’s call the other three L1, L2, L3. Note that
these four lines cover all the elements in F2

3, i.e. F2
3 = L∗ ∪ (∪3

i=1Li). In particular, this
means that x1, . . . , x4 must each be in at least one of these lines. Since L∗ contains none
of these points, then they must each be in at least one of L1, L2, L3. By the pigeonhole
principle, one of these lines must contain two of x1, . . . , x4, and since this line also contains
x3, then this means that we have found a line in our supposed 2-cap of size 5. This is a
contradiction, and hence we conclude that the maximum size of a 2-cap is 4.

For the case d = 3, we make a similar argument. Recall that we showed (by example)
that it is possible to find a 3-cap of size 9. Now we proceed to argue the following proposition
by contradiction.

Proposition 2. The maximum size of a 3-cap is 9.

Proof. Suppose that there exists a 3-cap of size 10. Note that F3
3 is the union of three

parallel planes, just as F2
3 is the union of three parallel lines. Note also that the intersection

of a 3-cap with one of these planes is just a 2-cap, and by Proposition 1, we have that a
2-cap can have at most 4 points. Let P ∗ be the plane with the fewest points of the 3-cap
(keep in mind that P ∗ is a 2-cap). Then P ∗ must have 2 or 3 points. This is easy to
check by seeing that it can’t be otherwise. If P ∗ had 0 or 1 point, then our 3-cap would
only contain at most 9 points (since no plane can contain more than 4 points). If P ∗ has
4 points, then our 3-cap would contain 12 points, but we want 10 points, so that doesn’t
work either.

Now let x1, . . . , x10 be the ten points of our 3-cap and without loss of generality let
x9, x10 be the points contained in P . There are three other planes that go through x9 and
x10. Call them P1, P2, P3. Notice that these four planes cover F3, i.e. F3

3 = P ∗ ∪ (∪3
i=1Pi),

which means that x1, . . . , x7 must be contained in ∪3
i=1Pi. (Note: We exclude x8 since we

only know that P ∗ contains 2 or 3 points.) By the pigeonhole principle, we get that one of
these planes (say it’s P1) must contain 3 points of our 3-cap. But P1 also contains x9, x10,
which means it contains 5 points of F3

3. But this means that P1 is a 2-cap of size 5, which
contradicts Proposition 1. Therefore we have that the maximum size of a 3-cap is 9.

Because of the similarities between the proofs of Proposition 1 and Proposition 2, it
would seem reasonable to expect that the proof to verify that the maximum size of a 4-
cap is 20 would follow in a similar vein of thought. But in fact it doesn’t. The proof is
significantly more complicated and I will not present it here. If you are interested, please
see the reference at the end of these notes.

It turns out that this problem of finding the maximum sizes of d-caps is actually a very
hard problem that gets complicated very quickly. For the case d = 1, it is trivial, for the
case d = 2 and d = 3, we saw that it was not so difficult, but for d = 4, things get harder,
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and for d = 5, progress has only been made in recent years. This problem is so hard, in
fact, that for d = 6 and larger values of d, very little, if anything, is known about the size
of the maximal d-cap in Fd

3.
If we think back to where we began this discussion, it’s quite miraculous how far we have

come. We took the game SET—something that seemed concrete, tangible, and seemingly
innocent—and kept asking questions and rephrasing our questions until we came out with
something that we could generalize easily to more characteristics, more dimensions. And
then suddenly we were working with something significantly harder than what we began
with. It just goes to show the importance of asking the right questions, and if we do
fall upon the right question, we may end up sitting on top of some very hard, unsolved
problems.
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