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1 Introduction

This is a write-up of a talk I gave for the Lie Theory PROMYS counselor seminar. What we will
do here is to classify all finite-dimensional representations of sl(2,C) := {A∈ gl(2,C) : tr(A) = 0}
and to explicitly give a transversal for the isomorphism classes of these representations.

Recall from the first few lectures that the representation theory of compact groups strongly
resembles that of finite groups—the existence of the Haar measure allows us to replace the sum-
mations we see in the character theory of finite groups with integration with respect to the Haar
measure. This allows us to make sense of Maschke’s theorem of the semisimplicity of C[G]
modules when G is a compact group. (Here, C[G] is the group algebra.) Explicitly, this means
that for any C[G] module V (that is, any complex representation V of G), if W is a nontrivial
submodule of V , there exists a submodule U such that V ∼=W ⊕U . Therefore to understand
the (finite-dimensional) representation theory of G, it suffices to understand the irreducible rep-
resentations of G.

While the title of this talk suggests a focus on sl(2,C), our actual starting point is the com-
pact three-dimensional real Lie group SU(2) := {A ∈ GL(2,C) : AA∗ = 1, det(A) = 1}, where
A∗ denotes the conjugate transpose of A. We will compute the Lie algebra su(2) of SU(2),
complexify su(2) to get sl(2,C), the Lie algebra of SL(2,C), and since we may pass easily be-
tween the Lie group picture and the Lie algebra picture in this case, the problem of classify-
ing all finite-dimensional irreducible representations of SU(2) is the same problem as classify-
ing all finite-dimensional representations of sl(2,C). For convenience of notation, we will write
sl(2) := sl(2,C).

We will construct a transversal for the irreducible representations of sl(2) by considering the
complex vector spaces of homogenous polynomials of degree n in x and y. With this explicit
construction, we will be able to talk about the representation theory of this semisimple Lie al-
gebra in extremely concrete terms, while simultaneously introducing the language of Lie theory.
In this jargon, what we will do in the following lecture is to prove that every finite-dimensional
representation of sl(2) is a highest weight module of weight n ∈ N ∪ {0}, and that for every
n ∈N∪ {0}, there exists a unique (up to isomorphism) finite-dimensional representation of sl(2)
of weight n. It will turn out that the highest weight module of weight n has dimension n+ 1 as
a complex vector space.

2 SU(2), su(2), SL(2), and sl(2)

Recall that
SU(2) := {A∈GL(2,C) : AA∗ = 1, det(A) = 1},
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where A∗ denotes the conjugate transpose of A. In other terms, SU(2) is the set of area-preserving
(and orientation-preserving) linear transformations that preserve a Hermitian form.

Remark. SU(2) is only a real Lie group. In particular, it has no complex manifold structure!
Hence su(2) is only a real Lie algebra (and again, in particular, is not a complex vector space). ♦

The Lie algebra su(2) of the compact real Lie group SU(2) is

su(2) := {A∈ gl(2,C) : A+A∗ = 0, tr(A) = 0}. (1)

One may check explicitly that this is indeed the Lie algebra of SU(2). Indeed, first recall that for
any Lie group G and its Lie algebra g, we have that g is the tangent space of G at the identity and
that we have a surjective map

exp : g→G, A 7→ exp(A).

Hence for any A∈ su(2), we have exp(tA) ∈ SU(2) for any t ∈R. That is,

exp(tA)exp(tA)∗ = 1 and det(exp(tA)) = 1.

Since su(2) is the tangent space of SU(2) at the identity, then we only need to keep track of the
first-order terms. That is,

(I + tA)(I + tA)t = 1 and det(I + tA) = 1.

The first equation forces the condition that A+ A∗ = 0 and the second condition forces the
condition that tr(A) = 0. This verifies the defining conditions of su(2) as stated in Equation (1).

One may verify that an R-basis of su(2) is

X :=
�

i 0
0 −i

�

,

Y :=
�

0 i
i 0

�

, (2)

Z :=
�

0 1
−1 0

�

.

We may explicitly multiply these matrices together to better understand their relationship be-
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tween each other:

X Y =
� i 0

0 −i
��

0 i
i 0

�

=
� 0 −1

1 0

�

=−Z ,

Y X =
�

0 i
i 0

�� i 0
0 −i

�

=
� 0 1
−1 0

�

= Z ,

X Z =
� i 0

0 −i
�� 0 1
−1 0

�

=
�

0 i
i 0

�

= Y,

ZX =
� 0 1
−1 0

�� i 0
0 −i

�

=
�

0 −i
−i 0

�

=−Y,

Y Z =
�

0 i
i 0

�� 0 1
−1 0

�

=
�−i 0

0 i

�

=−X ,

ZY =
� 0 1
−1 0

��

0 i
i 0

�

=
� i 0

0 −i
�

=X .

Notice also that
X 2 = Y 2 = Z2 =−1.

Hence we have

Y X =−X Y = Z ,

X Z =−ZX = Y,

ZY =−Y Z =X .

Notice the resemblence to the pure quaternions Hp := {i x + j y + k z : i , j , k ∈ R}. In fact, if
we consider Hp as a three-dimensional Lie algebra with the Lie bracket [a, b] = ab − ba for
a, b ∈Hp , then

su(2)→Hp ,

X 7→ i

Z 7→ j

Y 7→ k

explicitly defines an isomorphism of Lie algebras.
One may check that

su(2) =
§�

i x −β
β −i x

�

: x ∈R, β ∈C
ª

.

In a computation similar to that of Equation (1), we may check that

sl(2) = {A∈ gl(2,C) : tr(A) = 0}.

From this, we may check that
sl(2) = su(2)⊕ i su(2). (3)
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Therefore the following map of Lie algebras is an isomorphism:

su(2)⊗RC→ sl(2)

A⊗λ 7→ λA.

From here on, we will primarily work with the Lie algebra sl(2). We will also work with the
following standard basis of sl(2):

h :=
�

1 0
0 −1

�

,

e :=
�

0 0
1 0

�

, (4)

f :=
�

0 1
0 0

�

.

Recalling that the Lie bracket is defined to be

[A,B] =AB −BA,

we may compute the Lie bracket of h, e , f by computing the matrix products. We then obtain
the Lie bracket relations

[h, e] =−2e ,

[h, f ] = 2 f , (5)

[e , f ] =−h.

The element h is chosen because it is diagonal, and the elements e and f are chosen because
they are, as shown in Equation (5), eigenvectors of the adjoint action of h on sl(2).

Definition 1. Let V be a representation of sl(2). If x ∈V satisfies

h · x = λx

for some λ ∈ C, then we will say that x is a weight vector of weight λ or an element of weight λ.
The subspace of weight vectors of weight λ is called the weight space of λ.

In this language, we say that e is an element of weight −2 and f is an element of weight 2.
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3 Derived Representations

To get started, we must first make precise what it means to pass from the world of Lie groups to
the world of Lie algebras. Let G be a Lie group and g its Lie algebra. Recall that g is the tangent
space of G at the identity and that the exponential map is a surjective map g→G. This motivates
the following definition.

Definition 2. Let V be a set with a smooth G-action. Then the corresponding derived action of
g on V is defined to be

X · v :=
d

d t
(exp(tX ) · v)

�

�

�

�

t=0
, (6)

where X ∈ g and v ∈V .

Remark. The term “derived action” is nonstandard. ♦

Remark. One may check that Equation (6) indeed defines a Lie algebra action. That is, for
X ,Y ∈ g,

[X ,Y ] · v =X (Y · v)−Y (X · v).

This is a straightforward verification. ♦

In the case that V is a complex vector space, Definition 2 allows us to obtain a representation
of g from a representation of G. This representation is called the derived representation.

In the next couple of sections, we will compute the derived action for different representa-
tions of SL(2).

4 The Derived Standard Representation

The most natural thing for SL(2) to act on is C2. Indeed, it acts on C2 by matrix multiplication:

A · (x, y) :=A
� x

y
�

, where A∈ SL(2), (x, y) ∈C2. (7)

Using the formula in Equation (6), we may compute the induced derived representation of sl(2).
For X ∈ sl(2),

X · v =
d

d t
(exp(tX ) · v)

�

�

�

�

t=0

=
d

d t
(exp(tX )v)

�

�

�

�

t=0

=
d

d t

 

v + tX v +
t 2

2
X 2v + · · ·

!

�

�

�

�

t=0

=X v.
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So the derived standard representation is given by matrix multiplication. This seems quite reason-
able: the Lie algebra representation induced by the standard Lie group representation is exactly
the standard Lie algebra representation.

5 Homogeneous Polynomials in Two Variables

What else can SL(2) act on naturally? Well, in the standard representation, we had SL(2) act on
(x, y) ∈ C2 via matrix multiplication. The next natural thing we can let SL(2) act on is C[x, y].
Define the action to be

A · f (x, y) := f (A−1 · (x, y)), where A∈ SL(2) and f ∈C[x, y]. (8)

Here, A−1 · (x, y) denotes the action of A−1 on (x, y) in the standard representation described in
Section 7. It is a direct computation to check that Equation (8) defines a group action.

We would now like to compute the induced derived action. To understand how sl(2) acts on
C[x, y], it is sufficient to understand how sl(2) acts on a monomial xk yn−k . Furthermore, since
we know that e , f , h as defined in Equation (4) defines a basis of sl(2), it is sufficient to compoute
the derived action of e , f and h on xk yn−k . Using the formula in Equation (6) again, we have

e · xk yn−k =
d

d t

�

exp(t e) · xk yn−k
�

�

�

�

�

t=0

=
d

d t

�
�

1 0
t 1
�

· xk yn−k
�

�

�

�

�

t=0

=
d

d t

�

xk (−x t + y)n−k
�

�

�

�

�

t=0

= (xk )(n− k)(−x)(−x t + y)n−k−1
�

�

�

�

t=0

=−(n− k)xk+1yn−(k+1).

Hence as an operator on C[x, y], e =
�

0 0
1 0
�

acts as −x d
d y . From a very similar computation, we

obtain that as an operator on C[x, y], f =
�

0 1
0 0
�

acts as −y d
d x . From the Lie bracket relations in

Equation (5), we know that
h = [ f , e] = f e − e f ,

so h =
� 1 0

0 −1
�

acts on C[x, y] by

y
d

d x
x

d

d y
− x

d

d y
y

d

d x
= y x

d

d x

d

d y
+ y

d

d y
− xy

d

d y

d

d x
− x

d

d x
= y

d

d y
− x

d

d x
.
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We may think of sl(2) as the operator algebra generated by the above operators on the polynomial
ring C[x, y]. That is,

e =−x
d

d y

f =−y
d

d x
(9)

h = y
d

d y
− x

d

d x
.

A key observation is that each of these operators sends a monomial of degree n to another
monomial of degree n. In particular, this means that we may decompose C[x, y] into complex
vector spaces of homogenous polynomials. Let

Vn := {degree-n homogeneous polynomials in x and y} ⊆C[x, y].

It is clear that the degree n monomials xk yn−k for k = 0, . . . , n form a basis of Vn . Hence

dim(Vn) = n+ 1.

Since Vn is preserved by the action of e , f , and h, we know that it must be invariant under the
action of sl(2). Hence Vn is an (n+ 1)-dimensional representation of sl(2).

6 Finite-dimensional Irreducible Representations of sl(2)

In this section, we will analyze the structure of the sl(2)-module Vn . For convenience, let us
write

wk := xk yn−k . (10)

Then from the equations in (9), we have

e wk = (n− k)wk+1,

f wk = kwk−1, (11)

hwk =
�

y
d

d y
− x

d

d x

�

wk

= y(n− k)(xk yn−k−1)− x(k)(xk−1yn−k )

= (n− 2k)wk .

From this, we see that e and f operate by shifting the weight spaces around. This can be seen in
the above explicit computation, but this in fact follows from the Lie bracket operations of sl(2).
The following proposition highlights the important ideas in this phenomenon.
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Proposition 3. Let V be a representation of sl(2). If w ∈V is an element of weight λ ∈C, then

(i) e w is an element of weight λ− 2, and

(ii) f w is an element of weight λ+ 2.

Proof. We have
he w = [h, e]w + e hw =−2e w + e hw = (λ− 2)e w,

which proves (i) and

h f w = [h, f ]w + f hw = 2 f w + 2 f hw = (λ+ 2) f w,

which proves (ii).

Motivated by Proposition 3, we call e a lowering operator and f a raising operator. Putting all
of this information together, we obtain the following picture of Vn :

0

w0

w1

w2

...

wn−2

wn−1

wn

0

h

h

h

h

h

h

e

e

e

e

e

e

f

f

f

f

f

f

Figure 1: Ladder Operators on Vn

This picture is one that shows up everywhere in the representation theory of Lie algebras. In
sl(2), the picture is simple and clear, and one can really see explicitly how everything fits together.
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At the same time, sl(2) is complicated enough that its story strongly resembles the story of g for
any (semisimple) Lie algebra g.

From the picture, we may prove that Vn is irreducible.

Remark. This is a miraculous thing that it is so easy to prove the irreducibility of these represen-
tations. Indeed, in the Lie group setting, some analytic work must be done if one would want to
proceed via checking that the inner product of the character of Vn with itself is 1. ♦

Proposition 4. Vn is irreducible as a sl(2)-representation.

Proof. Let W ⊂ Vn be a nonzero sl(2)-invariant subspace of Vn . Pick a nonzero vector w ∈W
and write

w = α0w0+α1w0+ · · ·+αn wn , for αi ∈C.

Let k be the greatest i such that αi 6= 0. Then

f k w = cαk wk ,

for some nonzero constant c . (One may compute that c = k!.) But this means that wk ∈W and
from Figure 1, we can see that we must have all the wi in W since we can just apply the raising
and lowering operators f and e to wk . Therefore W =Vn , and this completes the proof that Vn
is irreducible.

The irreducibility of Vn as a SL(2)-representation (and also as a SU(2)-representation) follows
directly.

Corollary 5. Vn is irreducible as a SL(2)-representation.

7 Highest Weight Modules

So far, we have constructed an irreducible representation of sl(2) of dimension n for every n ∈N.
What is remarkable is that these turn out to be all of the representations of sl(2). In order to prove
this result, we need to introduce some new language.

Definition 6. Let V be a representation of sl(2). We say that a nonzero element v ∈ V is
primitive if it is a weight vector and if f v = 0.

Proposition 7. Every finite-dimensional representation V of sl(2) has a primitive element.

Proof. We know that there is some nonzero weight vector v ∈ V . By Proposition 3, we know
that for any nonzero weight vector v such that f v 6= 0, v and f v must be linearly independent
(as they are elements of different weights). Since V is finite-dimensional, there must exist some
k ∈N such that f k v = 0 and f k−1v 6= 0. Then f k−1v is a primitive element.
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Given an irreducible finite-dimensional representation V and a primitive element v, we may
define

w−1 := 0,

w0 := v,

wk :=
(−1)k

k!
ek w0.

The constant term of (−1)k

k! comes from the extra constants that accumulate from applying the
operator −x d

d y to our space Vn of homogeneous polynomials of degree n in x and y. These
wk ’s are defined to exactly model the wk ’s that we defined in the previous sections. Using only
Proposition 3, we may generate Figure 1 for any irreducible finite-dimensional representation V .
What remains to be shown, then, is that the highest weight of an irreducible finite-dimensional
representation V must be a natural number n.

Proposition 8. Let λ be the highest weight of an irreducible finite-dimensional sl(2)-representation
V . Then λ ∈N.

Proof. Let v ∈V be a primitive element. Necessarily v is an element of weight λ. We know that
there exists an n such that en+1v = 0 but en v 6= 0 and that the collection of e i for i = 0, . . . , n
forms a basis of V . We also know that e i v is an element of weight λ− 2i . Now, using the
commutator relation h = [ f , e] repeatedly, we have the following string of equalities:

f en+1v = [ f , e]en v + e f en v

= hen v + e f en v

= (λ− 2n)en v + e((λ− 2(n− 1))en−1v + e f en−1v)

= [(λ− 2n)+ (λ− 2(n− 1))+ · · · (λ− 2(1))(λ)] en v + en+1 f v

=



(n+ 1)λ− 2

 

n
∑

k=1

k

!

 en

= ((n+ 1)λ− n(n+ 1))en v

= (n+ 1)(λ− n)en v.

But en+1v = 0 by assumption and en 6= 0, and therefore we must have that λ= n. In particular,
this shows that if V is a representation of sl(2) of dimension n+1, it is a highest weight module of
highest weight n. If V is the trivial representation, then it has highest weight 0. This completes
the proof.

Remark. We have implicitly shown that irreducible finite-dimensional representations of the
same dimension are isomorphic as they have the same highest weight.
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8 Conclusion

What we have shown in this paper is the following. In Section 7, we showed that every finite-
dimensional representation of sl(2) is a highest weight module of weight λ and that λ ∈N. Since
we have also shown that the highest weight of an irreducible representation uniquely determines
the representation (up to isomorphism).

In Sections 5 and 6, we constructed a representation of dimension n for every n ∈ N. In
our construction, we also had that these were highest weight modules of highest weight n − 1,
though we did not say it in this language. Therefore, the complex vector spaces of homogenous
polynomials of degree n in x and y, which we denoted by Vn , exactly form a transversal for the
isomorphism classes of the finite-dimensional irreducible representations of sl(2)! So we have
completed our goal!
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