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Lecture 0 2

Introduction: Why These Notes Exist

These are notes that I will be typing up over the course of the Fall 2010 semester. They are
based off the reading course given by Dr. Pter Hermann through the Budapest Semesters in
Mathematics program. Additional comments have been added by me for my own benefit, as I am
writing this for the sole purpose of learning the material better. For this course, the textbook for
reading and reference will be Martin Isaacs’ Character Theory of Finite Groups. We will cover
about half of the book over the course of this semester. It is (according to Professor Hermann) a
readable book, so it would be appropriate for this (planned-to-be) reading course.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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1. Lecture: 10 September 2010

This first lecture will be an approach from an elementary perspective, That is, we will not use
the language of modules during this discussion.

We begin by defining a representation. We will give two definitions: one from the perspective of
a finite vector space V over C and one from the perspective of Cn. We will denote these (A) and
(B), respectively, and throughout this lecture, we will give different approaches to the theory. (It
may seem that these two approaches are equivalent, but what is worth noting is the (A) gives the
theory in a basis-free way, whereas (B) gives the theory in a way that seems natural and tangible
by way of linear algebra.)

Definition 1.1. A representation is a homomorphism f : G → GL(V ) (resp. f : G → GLn(C))
where V is a finite vector space over C.

In this course, we will only examine the case when G is finite. Now consider the notion of an
invariant subspace, which leads naturally into the notion of an irreducible representation.

Definition 1.2. A G-invariant subspace in V is a subspace W ≤ V (resp. W ≤ Cn) such that,
for all g, W is f(g)-invariant (resp. W is invariant under the action of elements of GLn(C) defined
by matrix multiplication).

Definition 1.3. A representation f (resp. f̃) is irreducible if only 0 and V (resp. 0 and Cn) are
the only invariant subspaces V (resp. Cn).

We now look at the notion of a (direct) sum of representations.

Definition 1.4. (A) If f1 : G→ GL(V1) and f2 : G→ GL(V2) are two representations, then the
direct sum of f1 and f2 gives rise to a representation f : G→ GL(V1 ⊕ V2).

(B) If f̃1 : G → GLn1(C) and f̃2 : G → GLn2(C) are two representations, then the direct sum
of f̃1 and f̃2 gives rise to a representation f̃ : G→ GLn1+n2(C) that sends g 7→

(
f̃1(g) 0

0 f̃2(g)

)
.

But how does this relate to the notion of irreducible representations? We first need a notion of
equivalence between representations, and then we move into Maschke’s theorem.

Definition 1.5. (A) For f1, f2 defined as before, we say that they are equivalent, denoted f1 ∼ f2
if there exists a linear isomorphism β : V1 → V2 such that, for any g ∈ G, v ∈ V1, we have
(vf2(g))β = (vβ)f1(g). (The notation vf(g) denotes the action of f(g) on v. So in words, this says
that if we act by f2(g) first and then by β, we get the same thing as if we act by β first and then
by f1(g).) So f1(g) ◦ β = β ◦ f2(g), or, f2(g) = β−1 ◦ f1(g) ◦ β.

(B) For f̃1, f̃2 defined as before, we say that they are equivalent, denoted f̃1 ∼ f̃2 if there
exists an invertible matrix M ∈ Cn2×n1 such that, for any g ∈ G, f̃1(g)M = Mf̃2(g), or, f̃2(g) =
M−1f̃1(g)M . (Notice that the invertibility of M implies that n2 = n1.)

Recall from linear algebra the notion of a projection map.

Definition 1.6. A map π ∈ Hom(V ) is a projection if π2 = π. (So π|Imπ = idImπ.)

Notice that π has the following property:

Lemma 1.1. If π ∈ Hom(V ) is a projection, then V = kerπ ⊕ π(V ).

Proof. Assume c ∈ kerπ ∩ π(V ). c ∈ kerπ implies that π(c) = 0 while c ∈ π(V ) implies π(c) = c,
so c = 0. �

Now we can state Maschke’s theorem.

Theorem 1.1. (Maschke) Every representation is equivalent to a direct sum of (finitely many)
irreducible representations.

Proof. (via (A)) Let W be an invariant subspace in V with respect to the representation f : G→
GL(V ). We want to show that there exists a U ≤ V such that V = W ⊕ U , where U is also
invariant. We see that this is true by first considering a projection π with π(V ) = W . (We can
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construct such a π by decomposing V = W ⊕ U ′, where π acts trivially on W and then kills U ′.
Keep in mind that U ′ must not necessarily be invariant.) Now we define a new function, π∗ and
prove that it is a projection. Let

π∗ =
1
|G|

∑
g∈G

f−1(g)πf(g).

Looking at this, we can see that if w ∈ W , then π∗(w) = w, so W ⊆ π∗(W ). We also have that
π∗(W ) ⊆ W . Now let U = kerπ∗. What remains to be shown is that U is invariant. Pick h ∈ G.
Then f−1(h)π∗f(h) = 1

|G|
∑
g∈G f

−1(h)f−1(g)πf(g)f(g) = π∗. Hence π∗f(h) = f(h)π∗. This
means that, for u ∈ U , we have π∗f(h)(u) = f(h)(π∗(u)) = f(h)(0) = 0, so U is invariant. This
completes the proof as we have found an invariant U such that W = V ⊕ U . �

Remark. It is worth noting that Maschke’s Theorem certainly holds for all vector spaces. How-
ever, if we consider a general F [G]-module, it holds only for finite groups G and fields F whose
characteristic does not divide G. Since we are only dealing with finite groups G and the field C
right now, we need not worry about the instances when the theorem fails.

Theorem 1.2. (Schur’s Lemma) (1) Let f1 : G→ GLn1(C) and f2 : G→ GLn1(C) be irreducible
representations, and let M ∈ Cn2×n1 be such that Mf1(g) = f2(g)M. If f1 6∼ f2, then M = 0. (2)
Let f : G→ GLn(C) be an irredicible representation. If M ∈ Cn×n is such that Mf(g) = f(g)M
then M = λIn. (Note that we do not require M to be invertible.)

Proof of (1). kerM is invariant w.r.t. f1 since z ∈ kerM ⇒ Mz = 0 ⇒ f2(g)Mz = 0 ⇒
Mf1(g)z = 0. Also ImM is invariant w.r.t. f2 since y ∈ ImM ⇒ y = Mx for some x ∈ Cn2×n1 ⇒
f2(g)Mx = Mf1(g)x ∈ ImM . This means that kerM and ImM are both trivial. If M 6= 0, then
n1 = n2. If n1 6= n2, then M = 0. This completes the proof. �

Proof of (2). There is some nonzero vector v ∈ Cn×n such thatMv = λv, λ ∈ C. LetM1 = M−λI.
M1 still has the property that, for all g ∈ G, M1f(g) = f(g)M1. The proof of (1) shows that
kerM1 and ImM1 are invariant. By construction, v ∈ kerM1. Since f is irreducible, then it must
be that M1 = 0. Hence M = λIn. �

This was the end of the first lecture. Some vague ideas for homework were thrown out, including
the suggestion to read Chapter 1 of the text (module approach), try the exercises from Chapter
1, and look at Chapter 2.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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2. Lecture: 17 September 2010

In this lecture, we continue with the elementary approach to introducing some fundamental
concepts of representation theory. We will take f1, f2, f to be irreducible representations of some
given group G and call each of their characters χ1, χ2, χ, respectively.

We begin by defining a “sandwich” matrix:

M :=
∑
g∈G

f2(g−1)Af1(g), for A ∈ Cn2×n1 .

Notice that M satisfies Mf1(g) = f2(g)M. This is a straightforward check. Pick any h ∈ G.
then

f2(h−1)Mf1(h) = f2(h−1)
(∑
g∈G

f2(g−1)Af1(g)
)
f1(h)

=
∑
g∈G

f2((gh)−1)Af1(gh) = M.

In particular, we will investigate the case when A = Ei,j . We take a slight detour here to discuss
notation. We will write Ei,j to denote the n× n matrix with a 1 in the ith row, jth column and
0’s elsewhere. For any matrix D, we will write Di,j to mean the entry in the ith row, jth column
of D. Returning to the subject matter at hand, we can write out the definition of M and then
apply properties of linear algebra, and we get the following string of equalities:

Mk,l =
∑
g∈G

(f2(g−1)Ei,jf1(g))k,l =
∑
g∈G

n2∑
t=1

f2(g−1)k,t(Ei,jf1(g))t,l

=
∑
g∈G

n2∑
t=1

f2(g−1)k,t ·
n1∑
p=1

Ei,jt,pf1(g)p,l

=
∑
g∈G

n2∑
t=1

n1∑
p=1

f2(g−1)k,tf1(g)p,lδi,tδj,p

=
∑
g∈G

f2(g−1)k,if1(g)j,l.

From this result and also Schur’s lemma, we can conclude that

0 =
∑
g∈G

f2(g−1)k,if1(g)j,l for all (appropriate) k, l.

Furthermore, notice that if M =
∑
g∈G f(g−1)Ei,jf(g), then, again by Schur’s lemma, we have

M = λI so

λδk,l = Mk,l =
∑
g∈G

f(g−1)k,if(g)j,l for all (appropriate) k, l.

Let us now introduce the notion of character.

Definition 2.1. The character of a representation f for G is a function χ : G → C defined as
χ(g) := Tr(f(g)). Here, we would say that χ is the character of G afforded by f .

Notice that by definition, and by recalling from linear algebra that Tr(A) = Tr(B−1AB), the
character χ is a class function, i.e. it is constant on each conjugacy class of G, i.e. for g1, g2 ∈ G,
g1 ∼ g2 ⇒ f(g1) ∼ f(g2). It is clear that we lose a lot of information by only considering the
trace of the matrix corresponding to a given representation. Nevertheless, it turns out that the
character of a representation still carries a lot of information about the group G. For instance, for
some special small groups, it can tell us the size of all the conjugacy classes. It turns out that we
can also compute λ from the character, where λ is the complex constant satisfying M = λI where

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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M is the sandwich matrix corresponding to some matrix. We begin by investigating the following:∑
g∈G

χ2(g−1)χ1(g) =
∑
g∈G

(
n2∑
k=1

(f2(g−1))k,k
n1∑
l=1

(f1(g))l,l

)
=
∑
k,l

∑
g∈G

f2(g−1)k,kf1(g)l,l.

Using our previous calculation of Mk,l, where M is the n × n sandwich matrix corresponding to
Ek,l, we get that ∑

g∈G
χ2(g−1)χ1(g) =

{ ∑
k,l λδk,l if f1 ∼ f2

0 otherwise.

Say we take f1 ∼ f2. Then for the λ in the above identity,

λI = M =
∑
g∈G

f2(g−1)Ek,lf1(g).

Taking the trace of both sides and dividing by n, we get

λ =
1
n

Tr(λI) =
1
n

Tr

∑
g∈G

f2(g−1)Ek,lf1(g)


=

1
n

∑
g∈G

Tr(f2(g−1)Ek,lf1(g)) =
|G|
n
δk,l.

This may seem strange at first, as we have found that λ depends on the choice of i, j, but this
is fine. See, λ is completely dependent on the choice of M , and M is completely dependent on the
choice of i, j since it is the sandwich matrix corresponding to Ei,j . So, in fact, it is quite normal
(expected, even!) that λ depends on i, j. Now, combining these results, we have (supposedly)
hence proved the following result.

Theorem 2.1. For irreducible representations f1, f2 of G with characters χ1, χ2, respectively, we
have ∑

g∈G
χ2(g−1)χ1(g) =

{
|G| if f1 ∼ f2
0 if f1 6∼ f2

Proof. It is clear that the sum is 0 if f1 6∼ f2. For the case when f1 ∼ f2, from the previous
results, we have ∑

g∈G
χ1(g−1)χ2(g) =

∑
k,l

λδk,l =
∑
k,l

|G|
n
δ2k,l = |G|,

as desired. �

We have the following proposition, which will allow us to write
∑
g∈G χ2(g−1)χ1(g) in a cleaner

way.

Theorem 2.2. For any character χ of f , an irreducible representation of G, χ(g−1) = χ(g).

This gives us a relationship between characters of irreducible representations that we can for-
malize by introducing a notion of an inner product on these characters.

Definition 2.2. Let χi, χi be the characters of G afforded by f1, f2, respectively. We define the
inner product 〈χi, χj〉 in the following way:

〈χi, χj〉 =
1
|G|

∑
g∈G

χ2(g)χ1(g).

From the above definition and Theorem 2.2, we see that the set of characters of irreducible
representations of G forms an orthonormal set. From this, it is not so difficult to see that the
equivalence of characters directly corresponds with the equivalence of representations. We consider
the case of irreducible representations f1, f2 first.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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Theorem 2.3. f1 ∼ f2 ⇐⇒ χ1 = χ2.

Proof. If f1 ∼ f2, then there is an invertible matrix T such that f1 = T−1f2T . Pick an element
g ∈ G. Then, χ1(g) = Tr(f(g)) = Tr(T−1f2(g)T ) = Tr(f2(g)) = χ2(g). So χ1 = χ2. Conversely,
assume χ1 = χ2. Then 〈χ1, χ2〉 = 1

|G|
∑
g∈G χ2(g)χ1(g) = 1

|G|
∑
g∈G |χ2|2 > 0. So in particular,∑

g∈G χ2(g)χ1(g) 6= 0, so f1 ∼ f2. �

Now we can generalize to any two representations h1, h2, not necessarily irreducible, and their
characters ψ1, ψ2, respectively.

Theorem 2.4. h1 ∼ h2 ⇐⇒ ψ1 = ψ2.

Proof. (⇒) is obvious. For (⇐), we can write ψ1 =
∑t
i=1miχi and ψ2 =

∑t
i=1 qiχi. Pick an

arbitrary irreducible character χk. Since ψ1 = ψ2, then certainly 〈ψ1, χk〉 = 〈ψ2, χk〉. So mk = qk.
This holds for every k = 1, . . . , t, so by the previous result, we have that h1, h2 have the same
number of each irreducible submodule and hence they must be equivalent representations. �

Amazingly enough, it turns out that the set of characters of irreducible representations of G not
only forms an orthonormal set, but it forms an orthonormal basis of the space of class functions of
G! For ease, we introduce some notation. We will write Irr(G) to mean the set of all irreducible
characters of G and cf(G) to mean the inner product space of class functions of G. We summarize
by asserting the following.

Theorem 2.5. Irr(G) is an orthonormal basis of cf(G).

THERE ARE STILL SOME THINGS TO BE DONE TO THESE NOTES: We need to prove
Theorem 2.2, which I don’t know how to do it yet.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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3. Lecture: 24 September 2010

We continue our discussion of basic representation and character theory from an elementary
perspective. This will conclude this approach; in future weeks, we will use the language of modules
and more sophisticated algebra to discuss the theory.

Recall that cf(G) = {f : G → C | for all x, y ∈ G, f(y−1xy) = f(x).}. Clearly, this forms a
vector space over C. It has dimension equal to the number of conjugacy classes of G (i.e. the class
number of G). In fact, this is not only a vector space but it’s an inner product space! We can
define the inner product in the same way that we defined the inner product on characters of G.
That is, if f1, f2 ∈ cf(G), then

[f1, f2] :=
1
|G|

∑
g∈G

f1(g)f2(g).

Recall from last lecture that we found that the irreducible characters of G formed an orthonormal
set, since for any χ1, χ2 ∈ Irr(G), we had

[χ1, χ2] =
{

1 if χ1 = χ2

0 otherwise.

In the previous notes, we ended with Theorem 2.5, the statement that Irr(G) is a basis of cf(G).
Our main goal will be to prove this statement, also defining and introducing some things along
the way. Now, notice that Theorem 2.5 is equivalent to saying that we cannot find an f ∈ cf(G)
that is linearly independent to every element of Irr(G). This, in turn, is equivalent to the below
statement:

Theorem 3.1. Let f ∈ cf(G) be a such that [f, χ] = 0 for all χ ∈ Irr(G). Then f = 0.

Proof. Given a character χ ∈ Irr(G), let X : G→ GLn(C) be the representation of G that affords
χ. Let us define the following n× n matrix:

Mf :=
∑
g∈G

f(g)X(g).

Notice that X(h−1)MfX(h) = Mf , so we can apply Schur’s lemma to Mf and get that Mf = λI
for some λ ∈ C. Computing λ, we get

λ =
1
n

Tr(Mf ) =
1
n

∑
g∈G

f(g) Tr(X(g)) =
1
n

∑
g∈G

f(g)χ(g) =
|G|
n

[f, χ] = 0.

Hence we can conclude that for each irreducible representation X, the corresponding Mf = 0. This
implies that Mf with respect to an arbitrary representation Y can be defined similarly and in fact
Mf = 0 once again. (This follows from our previous argument since Mf is similar to a matrix
in block form with each block identically 0.) We would like to somehow conclude from here that
f = 0, but we don’t have enough quite yet. We take a break from the proof here to discuss some
theory and return to this proof at the end of the lecture.

If we define the action by G on GLn(C) by multiplication by some group element, then the
resulting representation is called the regular representation of G. Since multiplication by some
group element simply permutes all the group elements (as seen in a Cayley table), Mf with respect
to the regular representation will be a permutation matrix.

Now let Ω be a set of size n. Then if π is a permutation on Ω, the corresponding matrix P is
defined to be

Pi,j =
{

1 if j = iπ

0 otherwise.
In fact, these matrices are multiplicative! We see this in the following way.

Let π, ν be permutations on Ω with corresponding matrices Pπ, Pν . Then we claim that Pπν =
Pπ · Pν . (Note that functions are applied on the right. That is, when we write πν, we mean “do
π first and then do ν.”) On the left side, the k, lth entry will be 1 when l = kπν , by definition
of the permutation matrix. On the right side, the k, lth entry will be

∑n
i=1(Pπ)k,i) · (Pν)i,l. Now

Representation Theory of Finite Groups Professor: Dr. Peter Hermann



Lecture 3 9

(Pπ)k,i = 1 when i = kπ and (Pν)i,l = 1 when l = iν , so it follows that the sum is 1 when l = kπν

and 0 otherwise. It follows then that Pπν = Pπ · Pν .
From this, we see that multiplication by the permutation action on Ω corresponds to multi-

plication by the permutation matrix. In this way, we see that if G = Ω, then the action of G
of multiplication by some group element can be equivalently viewed as the multiplication of a
permutation matrix defined in the way we chose the map π → Pπ. Hence we get the following
definition.

Definition 3.1. The regular representation R of G is the representation defined by the action
of G by multiplication by some group element, i.e. G acts on GL|G|(C) by multiplication by a
permutation matrix. So the representation R : G → GL|G|(C) is defined by g 7→ R(g), where
(R(g))h,t = 1 if and only if t = hg, where h, g, t ∈ G. (R(g) is 0 elsewhere.)

We now return to the proof of Theorem 3.1.

Proof of Theorem 3.1 continued. We ended before with the comment that Mf , defined with re-
spect to any representation, gives Mf = 0. In particular, we can define Mf with respect to the
regular representation R. Since 0 = Mf , then certainly 0 = e ·Mf , where e is the row vector with
a 1 in the e-corresponding slot. Then we have

0 = e ·Mf = e ·
∑
g∈G

f(g)R(g) =
∑
g∈G

f(g) · e ·R(g).

Now, e ·R(g) picks out the e-corresponding row of R(g), which has a 1 in the g-corresponding slot
and 0’s elsewhere. Since {e ·R(g) | g ∈ G} forms a linearly independent set, then it must follow
that f(g) = 0 for all g ∈ G. Therefore f = 0, as desired. �

This concludes today’s lecture. The remaining time was spent discussing problems from Chapter
2 of Isaacs’ book. Problem 2.1 and 2.6 were submitted and all the assigned Chapter 2 problems
will be due next Friday. The problems are: 2.1, 2.6, 2.8, 2.9, 2.10 (more combinatorial), 2.13
(hard), 2.16, 2.17.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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4. Lecture: 1 October 2010

This lecture covers the first half of Chapter 3 of Isaacs’ book and also brings in a small bit
of Chapter 2. More importantly, by the end of this lecture, we will have (basically) proved
Burnside’s paqb theorem. So essentially, we are building up the machinery to the result. We begin
by discussing algebraic integers.

Fact. A complex number α is an algebraic integer if Z[α] is a finitely generated additive abelian
group.

Proof. �

Now take any two algebraic integers α, β. We want to show that α ± β is again an algebraic
integer. To do this, consider Z[α, β] = {g(α, β) : g ∈ Z[x, y]}. We can show that this is a finitely
generated additive abelian group. We do this by taking a basis {αi} of Z[α] and a basis {βj} of
Z[β] and taking the products of elements in the basis, we get {αiβj}, a generating set for Z[α, β].
Since Z[α± β] is a subgroup of the finitely generated additive subgroup Z[α, β], then it must also
be finitely generated. Hence α± β is an algebraic integer.

Applying this to character theory, and remembering that χ(g) =
∑
ω for nth roots of unity ω,

we get that χ(g) is the finite sum of algebraic integers and is hence itself an algebraic integer. This
is certainly an important result, but the main thing that we are interested in is the fact that for
χ ∈ Irr(G), a ∈ G, a ∈ K, where K is the conjugacy class containing a, then χ(a)|K|

χ(e) is an algebraic
integer! This is not at all obvious, and the rest of this lecture will be dedicated to proving and
analyzing the consequences of this fact.

Consider the set C[G] = {
∑
g∈G αg · g | αg ∈ C}. This is a C-vector space! It is also a ring,

with addition defined in the standard vector space way, and multiplication defined in the most
natural way possible, i.e.(∑

g∈G
αg · g

)(∑
h∈G

βh · h
)

=
∑
c∈G

γc · c, where γc :=
∑
gh=c

αgβh.

So we have that C[G] is a C-vector space and also a ring, and to finish our verification that
C[G] is a group algebra, we only have left to show that for any a, b ∈ C[G], λ ∈ C, we have
λ · (ab) = (λ · a) · b = a · (λ · b), which is obvious by definition.

Now consider X : G → GLn(C), an irreducible representation of G. We extend X linearly and
construct X̂ : C[G]→Mn(C), an algebra homomorphism. To be more explicit, we construct X̂ by

X̂
(∑
g∈G

αg · g
)

:=
∑
g∈G

αg · X(g),

and from here we see that it is straightforward to verify that X̂ is an algebra homomorphism.
We are interested (don’t ask me why) in the center of our group algebra. We denote this by

Z(C[G]). It is easy to check that Z(C[G]) is a subalgebra of C[G]. Since it is a subalgebra, then
the fact that it is a subring and also a subspace comes for free.

Now take any element z ∈ Z(C[G]). Then zg = gz for all g ∈ G, since we can view each group
element as a special element of the group algebra. This means that g−1zg = z for all g ∈ G. We can
write z =

∑
a∈G αa · a, and conjugating by a group element g, we get g−1zg =

∑
a∈G αa · g−1ag,

and since z = g−1zg, then equating both sides gives us that αa = αg−1ag for all g, a ∈ G.
This means that the coefficient of g in our expression for z is constant on each conjugacy class,
and hence we can write the sum as

∑
K γK · (

∑
k∈K k), where the sum runs through all the

conjugacy classes K of G. Let ωK =
∑
k∈K k. This is called a class sum and the set of class

sums forms a linearly independent set of pairwise disjoint sums. Now, since Z(C[G]) is also a ring,
then it is closed under multiplication, so ωK · ωL =

∑
M rM · ωM for some rM ∈ C. But if we

think about this more carefully, we notice that rM counts the number of ways we can choose an
element of K and an element of L and get a product in M , so in fact rM ∈ N. More precisely,
rM = {(k, l) : m = kl, k ∈ K, l ∈ L}.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann
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Now, X̂ is an algebra homomorphism that preserves commutativity, so X̂(ωK) commutes with
X(g) for all g ∈ G. By Schur’s lemma, then, we have that X̂(ωK) = λK · I. From this, we can get
compute λK :

λK =
1
n

Tr(λKI) =
1
n

X̂(ωK) =
1
n
χ(K)|K| = χ(K)|K|

χ(e)
.

X̂ is an algebra homomorphism, X̂(ωK) · X̂(ωL) =
∑
M rM · X̂(ωM ), and expanding the equality on

each side, we get λKλLI = (
∑
M rM · λM )I, which gives us that λKλL =

∑
M rM,K,LλM , where

here we wrote rM = rM,K,L to emphasize that this value depends on the choice of the conjugacy
classes K,L.

Let K be a fixed conjugacy class and let L run over all conjugacy classes to get a homogeneous
system of equations, each of the form

0 =
∑
M

(rM,K,L − δM,LλK)λM ,

where this equation follows directly from the previous equation after moving all expressions to one
side. Since not all λM can be zero, then this system has a nontrivial solution, which means that
if A is the matrix corresponding to this system, det(A) = 0. Since A = (rM,K,L − δM,LλK) is an
m×m matrix where m is the number of conjugacy classes of G, then det(A) is a monic polynomial
over λK and the fact that det(A) = 0 means that λK is a root of this monic polynomial with
integer coefficients. Hence λK is an algebraic integer, so λK = χ(K)|K|

χ(e) is an algebraic integer.
Hence we have proved the following theorem

Theorem 4.1. Let χ ∈ Irr(G) and let K be a conjugacy class of G. Then χ(K)|K|
χ(e) is an algebraic

integer.

From this, the following (surprising!) theorem is an easy consequence

Theorem 4.2. Let χ ∈ Irr(G) and let K be a conjugacy class of G with g ∈ K. Assume that
(χ(1), |K|) = 1. Then χ(g)

χ(e) is an algebraic integer.

Proof. Apply the Fundamental Theorem of Arithmetic, i.e. (a, c) = 1, c
∣∣ ab ⇒ c

∣∣ b. Or alterna-
tively, solve the appropriate linear Diophantine equation. �

It seems strange that this result comes as such an easy consequence of our development of this
theory, but in what we will in fact see is that (χ(1), |K|) = 1 is a very strong assumption and
that the conclusion χ(1)

∣∣χ(a) is very restrictive. Writing χ(a) as a sum of roots of unity and
examining the quotient of χ(a) and χ(1), we get

γ :=
χ(a)
χ(e)

=
ε1 + · · ·+ εn

n
⇒ |γ| ≤ 1.

Let θ be a primitive root of unity and consider the number field Q(θ). Then γ ∈ Q(θ) and
γσ ∈ Q(θ) for any σ ∈ Gal(Q(θ)/Q). Also, |γσ| ≤ 1. Now consider the polynomial∏

σ∈Gal(Q(θ)/Q)

(x− γσ) ∈ Q[x].

Since the image of an algebraic integer under a field automorphism is again an algebraic integer,
then the above polynomial must have coefficients in Z. In particular, the product of all Galois
conjugates of γ is an algebraic integer; i.e. ∏

σ∈Gal(Q(θ)/Q)

γσ ∈ Z.

Since this product has norm at most 1, then this product is either 0, 1, or −1. If it is 0, then
γ = 0. If γ = 1, then all the roots of unity εi must be equal. This would meant that X(a) = ε1I,
where X is the representation that affords χ, and hence X(a) ∈ Z(=(X)). In particular, this means
that if G is simple, then a = e.
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It in fact turns out that this is most of the work we have to do in order to prove Burnside’s paqb

theorem. This was not done in class, but I may add it to these notes. Recommended homework:
Almost all the problems are good here. Professor Hermann also has a particular liking towards
3.11.
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5. Lecture: 8 October 2010

We will skip Chapter 4 for now, perhaps returning to it later, and proceed to Chapter 5 of
Isaacs’ book, which introduces the concept of induced characters. We begin with a definition.

Definition 5.1. Let H ≤ G and consider a homomorphism f : H → C. Define a function
f̂ : G→ C such that

f̂(g) :=
{
f(g) if g ∈ H
0 otherwise.

Now define a function fG : G→ C to be

fG(g) :=
1
|H|

∑
x∈G

f̂(x−1gx).

Then fG is the induced function from H to G.

It is easy to see that induction is linear. Also, by definition of the induced function fG, we can
see that regardless of our choice of f , fG is a class function of G. But what we are concerned
about is the case when f is a class function of H, and after the following theorem, we will focus
our attention on the case when f is a character of H.

Theorem 5.1. (Frobenius Reciprocity) Consider H ≤ G. Let f : H → C is a class function on
H and ψ : G→ C be a class function on G. Then

[fG, ψ] = [f, ψH ]H .

Proof. This is a straightforward proof. We start with the left side and get a sequence of equalities
terminating with the right side.

[fG, ψ] =
1
|G|

∑
x∈G

fG(x) · ψ(x) =
1
|G|

∑
x∈G

 1
|H|

∑
y∈G

f̂(y−1xy)

 · ψ(x)

=
1
|G|

1
|H|

∑
y∈G

∑
x∈G

f̂(y−1xy) · ψ(x) =
1
|G|

1
|H|

∑
y∈G

∑
x∈G

f̂(x) · ψ(x)(1)

=
1
|H|

∑
x∈G

f̂(x) · ψ(x) =
1
|H|

∑
x∈H

f(x) · ψH(x) = [f, ψH ]H ,

where the middle equality in (1) holds by noticing that we have f̂(y−1xy) · ψ(x) = f̂(y−1xy) ·
ψ(y−1xy) since ψ is a class function, and then changing the variable to give simply f̂(x) · ψ(x)
since x ranges over all elements of G. The equalities above prove the theorem. �

As promised, we will now examine the induction from a character of H to a character of G.

Theorem 5.2. Let σ be a (possibly reducible) character of H. Then σG is a character of G.
(Here we use the same notation as has been introduced.)

Proof. It is clear that σG ∈ cf(G). Since Irr(G) is an orthonormal basis for the space of class
functions, then we can write σG =

∑
χ∈Irr(G) λχ · χ, where λχ ∈ Z. We can use the Frobenius

reciprocity to compute λχ:
λχ = [χ, σG] = [χH , σ]H ,

which are all non-negative integers since χH and σ are characters of H. �

It would be nice if the induction of an irreducible character of H turned out to be an irreducible
character of G, but unfortunately, this is not true. The inverse, however, holds.

Theorem 5.3. Let σ be a character of H. If σG ∈ Irr(G), then σ ∈ Irr(H).

Proof. �
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It is not clear at this point what motivated the Frobenius reciprocity law, but one suspicion
is that we can use the Frobenius reciprocity to prove that the Frobenius kernel is a subgroup of
a Frobenius group. We will prove this. The first question, then, is to ask, what is a Frobenius
group?

Definition 5.2. A group G ≤ Sn is called a Frobenius group if (i) G is transitive, (ii) for all
non-identity a ∈ G, a doesn’t have 2 fixed points, (iii) G is not regular. (In Wikipedia’s words, a
Frobenius group is a “transitive permutation group on a finite set, such that no non-trivial element
fixes more than one point and some non-trivial element fixes a point.”)

These conditions are extremely restrictive. G acts on some finite set. Call it A and let its
elements be indexed as i = 1, . . . n. Then if we let H := G1, the stabilizer of 1, then for all i ≤ n,
we have Gi ∼ H. This is since G is transitive, and so for every i ∈ A, there is an x ∈ G such that
i = 1x. Hence we have

Gi = G1x = x−1G1x = x−1Hx,

which verifies the claim that Gi ∼ H. It is necessary that H is a proper subgroup of G since G is
transitive, and we also have that no two stabilizers have a nontrivial intersection. If we take some
a ∈ G\H, and consider an element g ∈ H ∩ a−1Ha, then g fixes 1 ∈ A and also 1a ∈ A, so it must
be the identity. From this analysis, we can write down an equivalent definition of a Frobenius
group (the verification that this definition implies the first definition is not hard).

Definition 5.3. A group G is called a Frobenius group if there exists a nontrivial H � G such
that for all a ∈ G\H, H ∩ a−1Ha = 1G.

We call H the Frobenius complement and it turns out to be unique up to conjugation. Now
say we take all the distinct conjugates of the Frobenius complement H. If we take the union of all
of these subgroups, what do we have left? In general, if G is finite, then G 6= ∪ conjugates of H.
Define a set F such that 1G ∈ F and

G = (F\1) ∪ (conjugates of H).

We call F the Frobenius kernel and it turns out that F is a normal subgroup of G! You would
think that normality is the surprising part, but in fact, if we can prove that F is a subgroup of
G, normality comes for free (since the union of conjugates of H is invariant under conjugation, F
must also be invariant under conjugation and hence normal). So in fact, it is amazing that F is a
subgroup at all!

There is no known character-free proof that the Frobenius kernel is a subgroup, and most
purely group-theoretic proofs of special cases are very complicated. We will prove here, using
character theory, that the Frobenius kernel is a subgroup by proving that it is the union of kernels
of characters (so normality comes for free in the proof also, not only in the construction).

Theorem 5.4. The Frobenius kernel is a normal subgroup of a Frobenius group.

Proof. Let H be the Frobenius component of G and F the Frobenius kernel. Take a class function
f : H → C with f(1) = 0. Then

fG(g) =
1
|H|

∑
x∈G

f̂(x−1gx) =
{

0 if g ∈ F
f(g) if 1 6= g ∈ x−1Hx, x ∈ G

Hence we have (fG)H = f . Now let us consider a nontrivial irreducible character σ ∈ Irr(H).
Define a function

fσ := σ(1) · 1H − σ.
Notice that fσ is a character of H (and hence automatically a class function) and fσ(1) = 0. This
means that if we induct on fσ from H to G, we have (fGσ )H = fσ and fGσ vanishes outside H.
Since induction is linear, we can write

fGσ =
∑

χ∈Irr(G)

λχχ, λχ ∈ Z.

We want to show that λχ ≥ 0 for all χ ∈ Irr(G), thereby showing that fGσ is a character of G.
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Let’s first look at the easiest case possible. When χ = 1G, Frobenius reciprocity gives us

[1G, fGσ ] = [1H , fσ]H = [1H , σ(1) · 1H − σ] = [1H , σ(1) · 1H ]− [1H , σ] = σ(1)− 0 = σ(1).

This is the coefficient of the trivial character when we write fGσ as a linear combination of irre-
ducible characters. Hence we have

fGσ = σ(1) · 1G + · · · ⇒ [fGσ , f
G
σ ] = σ(1)2 + · · ·

On the other hand, we can compute the inner product fGσ , f
G
σ ] a different way:

[fGσ , f
G
σ ] = [(fGσ )H , fσ] = [fσ, fσ] = σ(1)2 + 1.

Hence fGσ = σ(1) · 1G ±χσ, where χσ ∈ Irr(G). (Here, we write the subscript σ to remind us that
the choice of this character depends on the choice of σ.) Since fσ(G) = |G : H|fσ(1) = 0, then we
must have the case of subtraction, i.e.

fGσ = σ(1) · 1G − χσ.
Now consider some a ∈ F . Then since a is outside H and fGσ vanishes outside H, then by

substitution, we have σ(1)− χσ(a) = 0, so χσ(a) = σ(1) = χσ(1). In particular, this implies that
a ∈ ker(χa), so F ⊆ ker(χσ) C G, and since σ was chosen arbitrarily, then necessarily we have
F ⊆ ∩σ∈Irr(H)

σ 6=1H

kerχσ. To prove the reverse inclusion, consider x ∈ ∩σ kerχσ, x 6= F . Without loss

of generality, assume x ∈ H. Then since (fGσ )H = fσ, we have

fσ(x) = fGσ (x) = σ(1)− χσ(x) = σ(1)− χσ(1) = σ(1)− σ(1) = 0.

But by definition, fσ(x) = σ(1)− σ(x), so x ∈ ker(σ) for each σ ∈ Irr(H). This forces x = 1, but
1 ∈ F , so this is a contradiction. Hence we can conclude that

F = ∩σ∈Irr(H)
σ 6=1H

kerχσ CG.

�

This completes our discussion of Frobenius and also completes this lecture. The contents of
Isaacs’ Chapter 5 are continued in Chapter 7. We will do Chapter 6, which involves the splitting
of a character and the restriction of a character to a normal subgroup. As a comment, Problem
5.19 is a particularly interesting one from this chapter.
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6. Lecture: 15 October 2010

I was really confused by Professor Hermann’s lecture for the first half, so I am instead going to
write some notes on some of the important parts of Chapter 5 of Isaacs’ book.

Towards the end of lecture, we started Chapter 6.
We introduce a definition:

Definition 6.1. Let ϕ be a class function of H, and let g ∈ G. We define ϕg ∈ cf(H) such that
ϕg(h) := ϕ(hg

−1
) = ϕ(ghg−1).
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7. Lecture: 29 October 2010

We continue again in Chapter 6 of Isaacs’ book. Recall Clifford’s theorem.

Theorem 7.1 (Clifford). Let H CG and let χ ∈ IrrG. Let ϑ be an irreducible constituent of χH
and suppose ϑ = ϑ1, ϑ2, . . . , ϑt are the distinct conjugates of ϑ in G. Then we have

χH = e

t∑
i=1

ϑi,

where e = [χH , ϑ].

Now let T := {g ∈ G : ϑg = ϑ}. Notice we have H ≤ T ≤ G. Furthermore, |G : T | = t, where t
is as in the statement of Clifford’s theorem; i.e. t is the number of distinct conjugates of ϑ. Now
let’s define two sets:

A := {ψ ∈ Irr(T ) : ϑ ⊆ ψH}, B := {χ ∈ Irr(G) : ϑ ⊆ χH}.

We have a bijection between these two maps defined by induction. Formalizing this and also
stating some other properties, we have

a) For all ψ ∈ A,ψG ∈ Irr(G)
b) For all ψ ∈ A,ψG ∈ B, so that we have a bijection between the sets A and B.
c) If ψG = χ, then χ is the unique constituent of χT in A.
d) If ψG = χ, then [ψH , ϑ] = [χH , ϑ].

Proof. There was a bit of a confusing proof here that I didn’t quite understand. I should fill this
in later. �

Several corollaries follow from the above discussion.

Corollary 7.1. If χ is a primitive irreducible character of G, and N CG, then χN = eϑ for some
ϑ ∈ Irr(N).

Corollary 7.2. Let χ be a primitive, faithful irreducible character of G. If A is an abelian normal
subgroup of G, then A ≤ Z(G).

Corollary 7.3. If G is a nilpotent group, then G is an M -group.

We now stray slightly away from the main topic and prove the following group-theoretic propo-
sition.

Proposition 7.1. Let G be a nilpotent group. Then there exists a self-centralizing abelian normal
subgroup. That is, there exists a normal subgroup ACG such that A = CG(A).

Proof. Let A be a maximal normal abelian subgroup of G. Suppose CG(A) 
 A. Then C :=
CG(A) C G. Let G := G/A,C := C/A C G. We know from our supposition that C is nontrivial,
so there exists a subgroup D ≤ C such that D C G such that D is cyclic. (Notice that D is any
cyclic subgroup of C ∩ Z(G).) By construction, D = D/A nontrivial, and D C G. We know that
A ≤ Z(D), so D/Z(D) is cyclic. Hence D is abelian. This contradicts the maximality of A, and
the desired result follows. �

Now we return to character theory.
Let χ ∈ Irr(G) be such that χ = ψG for some ψ ∈ Irr(H), H ≤ G. Let H be minimal. Then

ψ is primitive, and this induces a character ψ on the quotient group H := H/ kerψ. All abelian
normal subgroups of H are in Z(H) so there exists a self-centralizing normalizing subgroup in H.
Therefore ψ is a linear character, and hence ψ is linear.

We have a divisibility property generalizing the previous relation that χ(1)
∣∣ [G : Z(χ)].

Proposition 7.2. Let ACG, A abelian. Then for all χ ∈ Irr(G), we have χ(1)
∣∣ [G : A].
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Proof. Let χ ∈ Irr(G). If λ ∈ Irr(A) is a constituent of χA, then λ is linear. With respect to λ,
we have A ≤ T ≤ G. Therefore χ = ψG for some ψ ∈ Irr(T ) and λ ⊆ ψA. Here, we have ψA = eλ,
so A ≤ Z(ψ), which implies that ψ(1)

∣∣ |T : Z(ψ)|
∣∣ |T : A|. Therefore χ(1) = ψ(1)|G : T |

∣∣ |G : A|,
as desired. �

This concludes this lecture. Next week, we will discuss extendibility from a normal group to
the whole group, which is somehow connected to the characters of normal subgroups that are G-
invariant. We will finish Chapter 6 and then go back to discuss Chapter 4. The suggested exercises
of Chapter 6 (considering how much material we have covered thus far) are the following: 6.1, 6.2,
6.4.
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8. Lecture: 5 November 2010

We continue in our discussion of Chapter 6. For reference, we will discuss Theorems 6.16 - 6.18.

Theorem 8.1. Let NCG, and let ϕ, ϑ ∈ Irr(N) be invariant in G. Assume also that ϕϑ ∈ Irr(N)
and that ϕ = χN for some χ ∈ Irr(G). Let S := {β ∈ Irr(G) : [ϕG, β] 6= 0},T := {ψ ∈ Irr(G) :
[(ϕϑ)G, ψ] 6= 0}. Then β 7→ βχ defines a bijection of S onto T .

Proof. We have that (ϕG)N is a multiple of ϕ and comparing degrees, we get (ϕG)N = |G : N |ϕ.
Then (ϕGχ)N is a scalar multiple of ϕϑ, so (ϕGχ)N = |G : N |ϕϑ. Now let

ϕG =
∑
β∈S

nββ, where nβ > 0, nβ ∈ Z.

Taking the inner product of this character with itself, we have∑
β∈S

n2
β = [ϕG, ϕG] = [(ϕG)N , ϕ] = |G : N |[ϕ,ϕ].

Multiplying by χ, we have ϕGχ =
∑
β∈S nββχ, so

[ϕGχ, ϕGχ] =
∑

β1,β2,∈S

nβ1nβ2 [β1χ, β2χ] =
∑
β∈S

n2
β [βχ, βχ] +

∑
β1 6=β2

nβ1nβ2 [β1χ, β2χ].

On the other hand, we have [(ϕϑ)G, (ϕϑ)G] = |G : N | = [ϕG, ϕG], and since ϕGχ = (ϕϑ)G, then
we can conclude∑
β∈S

n2
β = [ϕG, ϕG] = [(ϕϑ)G, (ϕϑ)G] = [ϕGχ, ϕGχ] =

∑
β∈S

n2
β [βχ, βχ] +

∑
β1 6=β2

nβ1nβ2 [β1χ, β2χ].

It follows that nβ = 1 for all β ∈ S and that [β1χ, β2χ] if and only if β1 = β2, and so β 7→ βχ is
indeed a bijection and takes S into T . �

The main purpose of this theorem is to prove the following result, which is a special case of the
above.

Corollary 8.1. Let N C G and let χ ∈ Irr(G) be such that χN = ϑ ∈ Irr(N). Then the char-
acters βχ for β ∈ Irr(G/N) are irreducible, distinct for distinct β and are all of the irreducible
constituents of ϑG.

Proof. We take Theorem 8.1 for the case when ϕ = 1N . �

One of the many useful applications of Clifford theory is in the study of characters (and hence
representations) of solvable groups. We first introduce a definition.

Definition 8.1. A normal series is a chain of subgroups 1 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nk = G
such that NiCG for all i = 1, . . . , k. A chief series is a normal series with the additional property
that the quotient Ni+1/Ni is characteristically simple. This quotient is called the chief factor.

Recall from algebra that if C ≤ G is characteristic in N CG, then C CG. However, C CN CG
does not necessarily imply that C CG. Hence characteristicness (i.e. invariance under the action
of Aut(G)) is stronger than normality. Note also that all the chief factors of a group G are abelian
if and only if G is solvable. Another fact from algebra is the following: If each chief factor of G has
prime order, then G is supersolvable. (Recall that G is supersolvable if each quotient group in its
derived series is cyclic, and since groups of prime order are necessarily cyclic, then this follows.)
Since finite nilpotent groups are supersolvable, then we have also connected nilpotence to this
situation.

Now using this new language, we can prove the following theorem that is very useful in the case
of solvable groups because of the note above. According to Isaacs, it is called the “going down”
theorem.

Theorem 8.2. Let K/L be an abelian chief factor of G. Let ϑ ∈ Irr(K) be G-invariant. Then
one of the following holds:
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a) ϑL ∈ Irr(L);
b) ϑL = eϕ for some ϕ ∈ Irr(L) and e2 = |K : L|;
c) ϑL =

∑t
i=1 ϕi where ϕ ∈ Irr(L) are distinct and t = |K : L|.

Proof. Take some ϕ ∈ Irr(L) such that ϕ ⊆ ϑL and define T := IG(ϕ). Notice that the index
|G : T | is the number of distinct conjugates of ϕ under the action of G. We have

0 6= [ϕ, ϑL] = [ϕg, ϑgL] = [ϕg, ϑL],

so if ϕ is a constituent of ϑL, then all its conjugates ϕg are also. Now the number of distinct
conjugates is the index |K : T ∩K|, so this index is the same as |G : T |. Hence KT = G. (This
is a special case of the following fact: If G acts on A and H ≤ G acts transitively on A, then
G = HGα, where Gα is the stabilizer for α ∈ G, a group element chosen arbitrarily.)

Now, K ∩T CT and so T ≤ NG(K ∩T ). Also, K ∩T CK so K ≤ NG(K ∩T ). Then taking the
images under the quotient map with kernel L, we have K ∩ T/LCK/L. Since K/L is an abelian
chief factor, then it follows here that K ∩ T is K or L.

If K ∩ T = K, then ϑL = eϕ for some e. Let λ ∈ Irr(K/L). This is a linear character so
λϑ ∈ Irr(K), and by looking at the degree, (λϑ)L = ϑL = eϕ. If λ1ϑ 6= λ2ϑ for all λ1 6= λ2, then
e|K : L|ϑ(1) ≤ ϕK(1) = |K : L|ϕ(1). Hence e2ϕ(1) = eϑ(1) ≤ ϕ(1), and therefore e = 1. So a)
holds. If λ1ϑ are not pairwise distinct, then there exists λ 6= µ ∈ Irr(K/L) such that λϑ = µϑ.
We have L ≤ U := ker(λµ) � K. Now, ϑ vanishes outside U (since λϑ − µϑ = 0), and since ϑ is
G-invariant, then it vanishes outside Ug. Hence ϑ vanishes outside the intersection ∩g∈GUg, but
this is just L so ϑ|K\L = 0. By a previous proposition (2.29 in Isaacs),

[ϑL, ϑL] = |K : L|[ϑ, ϑ] = |K : L|.
But since ϑL = eϕ, then [ϑL, ϑL] = e2, and hence b) holds. If K ∩ T = L, then ϑL =

∑t
i=1 ϕi,

and so c) holds. �

This concludes today’s lecture. We will continue with Chapter 6 next lecture, which will be a
make-up class on Monday morning.

Representation Theory of Finite Groups Professor: Dr. Peter Hermann



Lecture 9 21

9. Lecture: 8 November 2010

We continue to discuss Chapter 6. Last time, we finished with a theorem classifying the restric-
tion of a K-character to a subgroup L, where K/L is an abelian chief factor of G. Following this
theorem, we have several corollaries.

Proposition 9.1. Let N CG with |G : N | = p, a prime. Suppose χ ∈ Irr(G). Then either
a) χN is irreducible or
b) χN =

∑p
i=1 ϑi, where ϑi are distinct and irreducible.

Proof. The condition that |G : N | = p gives us that G/N is abelian and that there are no normal
subgroups between N and G. Hence we can apply Theorem 8.2, taking K = G,L = N . Clearly
p is not a square, and hence the second conclusion of that theorem does not apply. The result
follows. �

Proposition 9.2. Let N CG and suppose |G : N | = p, a prime. Let ϑ ∈ Irr(N) be invariant in
G. Then ϑ is extendible to G.

Proof. Let χ ∈ Irr(G). By Clifford’s theorem, χN = eϑ for some e. Since ϑ is invariant in G, then
b) from the previous proposition cannot hold. So we must have e = 1. �

Now we will move on to discuss M -groups. As a side note... something interesting about M -
groups is that there is no characterization of them outside of character theory! Now for some new
terms.

Definition 9.1. Let NCG and let χ ∈ Irr(G). Then χ is a relative M -character with respect to N
if there exists a subgroup H with N ≤ H ≤ G and ψ ∈ Irr(H) such that ψG = χ and χN ∈ Irr(N).
(Note here that the requirement that χN is irreducible is what makes this a meaningful definition.
Without this, all characters would be relative M -characters!) If every χ ∈ Irr(G) is a relative
M -character with respect to N , then G is a relative M -group with respect to N .

Remark (Taken from Isaacs). Note that χ ∈ Irr(G) is a relative M -character with respect to 1 if
and only if it is a monomial character, and G is a relative M -group with respect to 2 if and only
if it is an M -group. Also, it is clear that if G is a relative M -group with respect to N , then G/N
is an M -group.

Theorem 9.1. Suppose NCG and G/N is solvable. Suppose, furthermore, that every chief factor
of every subgroup of G/N has nonsquare order. Then G is a relative M -group with respect to N .

Proof. Consider χ ∈ Irr(G). If χN is irreducible, then we’re done. Now let K C G be such that
N ≤ K and K is the minimal subgroup such that χK ∈ Irr(K). Then there exists and L ≥ N such
that K/L is a chief factor. By the hypothesis of the theorem, K/L is abelian with nonsquare order.
This means, by Theorem 8.2 that either (χK)L ∈ Irr(L) or that χL =

∑t
i=1 ϕi, ϕ ∈ Irr(L), t =

|K : L|. The first case cannot happen by the minimality of K.
Let T := IG(ϕ1) ≥ L. Then χ = ψG for some ψ ∈ Irr(T ), so we can apply the above argument

replacing G with T . (Note that T < G since ϕi are distinct conjugates.) Applying induction on
|G : N |, we conclude that T is a relative M -group with respect to N and that ψ = ϑT for some
ϑ ∈ Irr(H) where n ≤ H ≤ T and ϑN ∈ Irr(N). We have χ = ψG = (ϑT )G = ϑG, and this
completes the proof. �

(This next proof caused a lot of trouble during lecture.)

Theorem 9.2. Let N C G. If all Sylow subgroups of N are abelian and G is solvable and is a
relative M -group with respect to N , then G is an M -group.

Proof. Consider χ ∈ Irr(G). Then since G is a relative M -group with respect to N , then χ must
be a relative M -character with respect to N . Now choose a subgroup H ≤ G with N ≤ H and
with the property that given any ψ ∈ Irr(H), ψN ∈ Irr(N), ψG = χ. Choose U ≤ H to be minimal
such that there exists ϑ ∈ Irr(U) with ϑH = ψ. Then ϑG = (ϑH)G = ψG = χ. We want to show
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that ϑ is linear. (Since then we’ve shown that for all χ ∈ Irr(G), there exists a linear ϑ such that
ϑG = χ, which means that every χ ∈ Irr(G) is monomial.)

Let M := U ∩ N . Then (ϑNU )H = ϑH = ψ ∈ Irr(H) and χNU is irreducible. (This last
statement holds since χN is irreducible and N ≤ NU .) This implies that ψNU = ϑNU , and hence
(ϑNU )N ∈ Irr(N). Now, (ϑM )N = (ϑU∩N )N = (ϑNU )N ∈ Irr(N), so ϑM ∈ Irr(M). By the
minimality of U , ϑ is a primitive character of U (which means, as a reminder, that there does not
exist a character ϕ such that ϕG = ϑ, where ϕ is an irreducible character of a proper subgroup of
U).

Now let K = kerϑ and let U = U/K,M = MK/K. Then ϑ is a faithful primitive character
of U . Furthermore, since M < N/K, then all the Sylow subgroups of M are abelian (since N
has this property). Let Z = Z(M) C U . So Z ≤ M . If Z < M , then pick an A ≤ M such that
A/Z is a chief factor of U (we can do this since G is solvable). Then necessarily A/Z is a p-group.
Now let P ∈ Sylp(A). Then P is abelian and also A = PZ. So A must also be abelian. By
construction, A C U , and by Corollary 6.13 in Isaacs (equivalently, Corollary 7.2 in these notes),
A ≤ Z(U) ≤ Z(M) = Z, which contradicts the assumption that A > Z.

We conclude then that Z = M , so M is abelian. We knew already that ϑM ∈ Irr(M), which
implies that ϑMK ∈ Irr(MK), so ϑMK ∈ Irr(M). Hence ϑMK is linear. We have ϑ(1) = ϑMK(1) =
1, so ϑ is a linear character. This completes the proof. �
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10. Lecture: 19 November 2010

I missed lecture on November 12 because I was ill. Theorems 6.24-6.26 were covered during
that lecture. We continue to discuss extendibility.

Theorem 10.1. Let N C G. Assume: All Sylow subgroups of N are abelian, G is solvable, and
G is an M -group with respect to N . Then G is an M -group.

Proof. Consider a character χ ∈ Irr(G). �
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