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Chapter 1

Motivation

We will discuss measure theory in this course; in particular the Lebesgue mea-
sure on R and Rn. In the latter half of the course we will move to discuss some
Fourier Analysis.

For now, we give some motivation for measure theory via probability. We
consider two questions that are quite similar in nature:

1. Toss a coin infinitely many times. Is it likely that there are infinitely many
stopping points 2n after which you have n heads and n tails? (One would
think yes.)

2. Roll a 6-sided die infinitely many times. Is it likely that there are infinitely
many stopping points after which you have n 1’s, 2’s, . . . 6’s? (The answer
is no.) Is it likely that 1 never shows up? (One would think no.)

It is nontrivial to answer these questions, and in fact, it is not even clear
what the question means. How can we make precise the notion of “likelihood”?
We can first translate question 1 to a question about numbers in the interval
[0, 1).

Consider a Bernoulli sequence of heads and tails: HTHHTHHHTTTH . . .
We can assign H to 1 and T to 0 and then view this sequence as a binary
expansion of a real number in the interval [0, 1). Concretely, we can associate
to each Bernoulli sequence the number

∞∑
n=1

1
2n

{
1 if nth toss is H
0 if nth toss is T .

We have one small problem: This association is not bijective. That is, a sequence
that ends in all H’s may be associated to the same real number as one that ends
in all T ’s. To get around this issue, we can just pick the binary expansion ending
in all T ’s if we have a choice. Hence we have a bijective map

φ : [0, 1)→ Bernoulli sequences except for those ending in all H’s.
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Note that there are only countably many Bernoulli sequences ending in all H’s.
Now we can look at what subsets of [0, 1) are associated to particular coin

toss specifications. As an easy first example, we can see that the set correspond-
ing to the first toss being H is [ 12 , 1). The set corresponding to the first three
tosses being HTT is [ 12 ,

1
2 + 1

8 ). Note now that the probability of each of these
events happening is exactly the length of the corresponding interval in [0, 1). So
for the coin tosses wherein the first 100 tosses have 50 heads and 50 tails, the
corresponding set is a union of

(
100
50

)
intervals, each of length 1

2100 .
We have hence translated a question about coin tosses to a question about

the “size” of some set. In a similar way, we can translate question 2, but using
base 6 instead of base 2 in our expansion. Hence we associate each sequence of
die rolls to the real number

∞∑
n=1

1
6n


0 if die = 1
...

...

5 if die = 6.

As before, we obtain a bijective map

φ : [0, 1)→ sequences except those that end in all 6’s.

To address the second part of question 2, we can ask what the set associated to
the sequences wherein 1 never shows up looks like. What we get is a Cantor set
obtained in the following way: We start with [0, 1) and delete the first 1/6 to
illustrate all the sequences that do not start with 1. We have [1/6, 1) remaining
and we delete the first 1/62 of each remaining 1/6-length interval. So we get
5 disjoint intervals, and then in the next iteration, 25 disjoint intervals, then
125, and so forth. This is the Cantor set which is, on the one hand very small
(in terms of “length”) and on the other hand very large (in terms of number of
elements—it is uncountable!).

It is natural to ask why we would bother with Lebesgue measures, and one
place where this is very important is in integration. With Riemann integrals, we
can integrate functions that are “sufficiently nice” (i.e. there are not too many
discontinuities). But this way of integrating breaks down even for some really
simple (but highly discontinuous) functions. Consider for instance the integral∫ 1

0

χS(x)dx,

where χS is the characteristic function on S; i.e. χS(x) =

{
1 if x ∈ S
0 if x 6∈ S.

If

S = Q ∩ [0, 1], then we are in big trouble and the Riemann integral does not
exist. (The upper sum is 1 and the lower sum is 0.) Intuitively, we would expect
that the probability of “hitting” a rational is 0, and so we would like to have a
theory wherein the above integral is 0. This is another motivation for Lebesgue
theory.
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To give one last motivation, consider the space L2([0, 1]), which is defined
to be the space of functions f : [0.1]→ R such that ||f ||22 :=

∫ 1

0
|f(x)|2dx <∞.

Consider a sequence of functions f1, f2, . . . ∈ L2([0, 1]) such that ||fm−fn||2 < ε
if m,n > N(ε). A natural question to ask is: Does there exist a function f ∈
L2([0, 1]) such that limn→∞ ||f − fn||2 = 0? If so, then we have a complete
metric space, which is always nice. Lebesgue theory allows us to do this.

Now that we have (I think) sufficiently motivated the theory, we can talk
more specifically about measures. First we can ask: What do we want from a
measure? Given a set S ⊆ R, we want to build up some notion of the size (i.e.
measure) of S. Through class discussion, we have several points:

1. S = [a, b], (a, b), [a, b), or (a, b]. Want µ(S) = b− a)?

2. Translation invariance: We would like µ(S+t) = µ(S) for all t ∈ R. (Here,
S + t = {s+ t : s ∈ S}.)

3. µ(S) ≥ 0.

4. If A ⊆ B, then µ(A) ≤ µ(B).

5. Finite additivity. If A and B are disjoint, then µ(A ∪B) = µ(A) + µ(B).

6. Countable additivity. If A1, A2, . . . is a disjoint countable sequence of sets,
then

µ (∪∞n=1An) =
∞∑
n=1

µ(An).

7. All open sets should have a measure. Also, all closed sets should have a
measure.

In this way, we can sort of get a feel for what things we would want to demand
from a measure.

Now, ideally, we would like to have

(i) All subsets of R are measureable

(ii) Countable additivity

(iii) Translation invariance

(iv) µ([a, b]) = b− a

However, this does not exist. What we can do is to keep (ii), (iii), and (iv) and
restrict ourselves to a nicer (but still large) class of subsets of R. To see what we
cannot possibly satisfy all four of the above, we consider the following example.

Consider the quotient of additive groups R/Q and let S be a set of repre-
sentatives in [0, 1] for each equivalence class in R/Q. (So we partition R by the
equivalence relation ∼ defined by x ∼ y if x − y ∈ Q.) Consider the intersec-
tion Q ∩ [−1, 1]. This is a countable set, and so we can enumerate the rationals
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r1, r2, . . . . Notice that for rn 6= rm, we have (S + rn) ∩ (S + rm) = ∅. Now
consider the (countable) union

A :=
∞⋃
n=1

(S + rn).

This is a disjoint union. It is clear that A ⊆ [−1, 2]. Furthermore, for any
α ∈ [0, 1], there is a representative x ∈ S such that q := x − α ∈ Q. Also,
q ∈ [−1, 1], which means that α ∈ S + q ⊆ A. Therefore [0, 1] ⊆ A.

Now suppose that S has a measure. By translation invariance, µ(S) =
µ(S+rn) for all n ∈ N, and by countable additivity, A must also have a measure.
Since we showed above that [0, 1] ⊆ A ⊆ [−1, 2], then we know 1 ≤ µ(A) ≤ 3.
On the other hand, we have

µ(A) =
∞∑
n=1

µ(S + rn) =
∞∑
n=1

µ(S).

This is a contradiction and we have hence shown that S is unmeasurable.
In some sense, weird, unmeasurable sets like the above set exist because

there are “too many” subsets of the real numbers. There are 2R, and this is
much bigger than R!
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Chapter 2

The Notion of a Measure

Consider a set X. We want to define a measure on some collection of subsets of
X.

Definition 2.1. A ring of subsets of X is a nonempty collection R with the
properties:

(i) If A,B ∈ R, then A ∪B ∈ R .

(ii) If A,B ∈ R, then A−B := {a ∈ A, a 6∈ B} ∈ R .

From the definition, we can say more about the ring of subsets R . We have:

• ∅ ∈ R since ∅ = A−A ∈ R for A ∈ R .

• A ∩B ∈ R since A ∩B = (A ∪B)− (A−B)− (B −A).

• Finite unions of elements of R are again in R .

Closely related to a ring of subsets is the notion of an algebra of subsets,
which is a collection of sets closed under taking unions and complements. The
only difference between a ring of subsets and an algebra of subsets is that X
itself will always belong to an algebra (it is the complement of the empty set),
but it may not necessarily belong to a ring of subsets.

Definition 2.2. A function µ : R → R≥0 is additive if for A,B ∈ R such that
A ∩B = ∅, we have

µ(A ∪B) = µ(A) + µ(B).

Notice that from this definition we can say several things about additive
functions that follow immediately from the definition:

• µ(ϕ) = 0.

• If A ⊇ B and A,B ∈ R, then µ(A) ≥ µ(B).

• For A,B ∈ R, µ(A) + µ(B) = µ(A ∪B)− µ(A ∩B).

7



• For A1, . . . , An ∈ R, we have

µ(A1 ∪ · · · ∪An) = (µ(A1) + · · ·+ µ(An))− (µ(A1 ∩A2) + · · ·+ µ(An−1 ∩An))
+ (sums of measures of intersections of three sets)− · · ·

≤ µ(A1) + · · ·+ µ(An).

Example 2.3. Here is an easy example of a measure. Let X be a finite set and
let R be the collection of all subsets of X. We can let the measure be such that
µ(S) = |S|.

Example 2.4. Let X = R or Rn. Let R contain all finite intervals, i.e.
(a, b), (a, b], [a, b), [a, b]. So then we get all finite unions of intervals in R . We
denote this ring by RLeb. (Note that RLeb is not an algebra!) We define a
similar ring when X = Rn and denote it the same way. (That is, we take multi-
intervals [a1, b1] × [a2, b2] × · · · [an, bn] and take finite unions of these.) For R,
define

µ((a, b)) = b− a,

and for Rn, define

µ((a1, b1)× · · · × (an, bn)) =
n∏
j=1

(bj − aj).

Note. For a moment, we return to a general X and a general µ. We say µ is
countably additive if for A1, A2, . . . is a countable collection of mutually disjoint
elements of R with A = ∪∞n=1An ∈ R, we have

µ(A) =
∞∑
n=1

µ(An).

(Note that it may not always be that ∪∞n=1An ∈ R, and so it is important to
choose the Ai to satisfy this.) If the above holds, then µ is a measure for R .

Now we return to the example. We want to show that the µ we defined is
indeed a measure. The note tells us that we need to show that it is countably
additive.

Proposition 2.5. µ on RLeb is countably additive.

Proof. Consider A ∈ RLeb and write A = ∪∞n=1An for An ∈ RLeb with An
disjoint. We want to show that µ(A) =

∑∞
n=1 µ(An).

Since A ⊇ (A1 ∪ · · · ∪ AN ), then µ(A) ≥
∑N
n=1 µ(An), and so taking the

limit, we get µ(A) ≥
∑∞
n=1 µ(An). The reverse inequality takes a bit more

work. Notice that we can find a closed set F ⊆ A such that µ(F ) ≥ µ(A) − ε
and an open subset G ⊇ A such that µ(G) ≤ µ(A) + ε. For each An, choose an
open set Gn ⊇ An such that µ(Gn) ≤ µ(An) + ε

2n . Now, ∪Gn is an open cover
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for G. But F is closed and bounded and hence compact, and so we have a finite
subcover. So

µ(F ) ≤ µ(finite subcover) ≤
∞∑
n=1

µ(Gn) ≤ µ(An) +
ε

2n
≤
∞∑
n=1

µ(An) + ε.

But this holds for all ε, so we have µ(A) ≤
∑∞
n=1 µ(An). Since we proved first

that we had the reverse inequality, equality must hold and we have shown that
µ is countably additive.

Via the proposition, we have shown that µ is a measure. This completes our
work in this example.
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Chapter 3

The Outer Measure

In general, given a set X, a ring of subsets R, and a measure µ on R, we want
to see how far we can extend the definition of µ to a larger class of sets. For
example, in our earlier discussion, Q 6∈ RLeb, but we would like to have some
way of saying that µ(Q) = 0.

One way that we can do this is via the notion of an outer measure associated
to µ. In this way, we can extend the measure to all subsets, but the problem
is we lose countable additivity in the process. We define this outer measure,
denoted µ∗ in the following way: Take any subset A ⊆ X and cover A by a
countable union of sets in R . Look at

∑∞
n=1 µ(Rn) and take the infimum over

all coverings. Explicitly, we have

µ∗(A) = inf
∪Rn⊇A
Rn∈R

( ∞∑
n=1

µ(Rn)

)
.

If no such covering exists or if the sum does not converge, set µ∗(A) =∞.

Example 3.1. We have µ∗(Q ∩ [0, 1]) = 0: We first enumerate the rationals
r1, r2, . . . . Then we consider the union of the open intervals (r1−ε, r1 +ε), (r2−
ε
2 , r2 + ε

2 ), . . . , (rn − ε
2n , rn + ε

2n ), . . . . Actually, even simpler, we could just
consider the union of the measure-zero sets {rn} for each n.

Example 3.2. There are also uncountable sets that have measure zero. Let
A be the Cantor set, for instance. The way we construct the Cantor set is by
starting with the interval [0, 1] and successively removing the middle third of
each interval “piece.” Hence A is covered by [0, 1

3 ] ∪ [ 23 , 1] and also by [0, 1
9 ] ∪

[ 29 ,
1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1], and so forth. Hence we can say that for each n ∈ N,

µ∗(A) ≤
(

2
3

)n
,

and taking the limit to infinity, we get that µ∗(A) = 0.
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Similarly, this tells us that the outer measure of rolling a dice infinitely often
and never getting 1 is 0. This solves the problems we started with in the first
chapter.

We can ay several things about the outer measure and we collect these
thoughts into the following theorem.

Theorem 3.3. Let X be a set, R be a ring of subsets, and µ be a measure on
R .

(i) If A ⊆ B ⊆ X, then µ∗(A) ≤ µ∗(B).

(ii) For any countable collection of subsets of X, call them A1, . . . , An, . . ., we
have

µ∗(∪∞n=1An) ≤
∞∑
n=1

µ∗(An).

(iii) If A ∈ R, then µ∗(A) = µ(A).

Proof. (i) is true since cover of B is a cover of A.
To prove (ii), first notice that for each n, we can pick An,k such that

An ⊆
∞⋃
k=1

An,k and
∞∑
k=1

µ(An,k) ≤ µ∗(An) +
ε

2n
.

Then since we have

A :=
∞⋃
n=1

An ⊆
∞⋃
n=1

∞⋃
k=1

An,k,

it follows that

µ∗(A) ≤
∞∑
n=1

∞∑
k=1

µ(An,k ≤
∞∑
n=1

µ∗(An) +
ε

2n
=
∞∑
n=1

µ∗(An) + ε.

Finally for (iii), consider A ∈ R. By covering A by itself, we get µ∗(A) ≤
µ(A). For the reverse inclusion, take a countable collection of elements of R,
call them An, such that

A ⊆
∞⋃
n=1

An and
∞∑
n=1

µ(An) ≤ µ∗(A) + ε.

Out of every union of sets, we can extract a disjoint union in the following way:

• For A1, define A′1 = A1.

• For A2, define A′2 = A2 −A1.

• For A3, define A′3 = A3 − (A1 ∪A2).
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For each n, define A′′n = A′n ∩ A. Then A′′n ⊆ A′n so µ(A′′n) ≤ µ(An). Therefore
we have

µ(A) =
∞∑
n=1

µ(A′′n) ≤
∞∑
n=1

µ(An) ≤ µ∗(A) + ε.

This completes the proof.

Let us now look at the case when X = R, R = RLeb, and µ is the Lebesgue
measure. We know from the theorem that µ = µ∗ on RLeb and we know also that
µ∗ is countably subadditive. We also additionally know that µ∗((a, b)) = b− a
and µ∗(S) = µ∗(S + t). Here is a question: Can µ∗ be countably additive? If
it were, then µ∗ would be a measure, and we would have found a measure on
all subsets of X. However, we showed at the end of Chapter 1 that this was
impossible, and so µ∗ must not be countably additive. What is really surprising,
though, is that in fact µ∗ isn’t even finitely additive! Sets that illustrate this
are really weird, so we will not give an example, but the following proposition
will give us that µ∗ cannot be finitely additive.

Lemma 3.4. If µ is finitely additive and countably subadditive, then µ is count-
ably additive.

Proof. Let A1, . . . , An, . . . be a countable number of disjoint sets. By countable
subadditivity, we know already that

µ

( ∞⋃
n=1

An

)
≤
∞∑
n=1

µ(An).

On the other hand, we have

µ

( ∞⋃
n=1

An

)
≥ µ

(
N⋃
n=1

An

)
=

N∑
n=1

µ(An),

where the last equality holds by finite additivity. Taking the limit, we get

µ

( ∞⋃
n=1

An

)
≥
∞∑
n=1

µ(An),

and so equality must hold.

We want to find a nice class of subsets where the outer measure will be
countably additive. In the case of the Lebesgue measure, we are trying to
enlarge RLeb to some ring where the outer measure will become a measure. We
begin by first defining a notion of the “difference” between two sets.

Definition 3.5. For any subsets A,B ⊆ X, let d(A,B) := µ∗(S(A,B)) where
S(A,B) = (A − B) ∪ (B − A), the symmetric difference of A and B. We have
several properties that are easy to check:

• d(A,A) = 0. (Note however that d(A,B) = 0 does not mean A = B.)
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• d(A,B) = d(B,A).

• d(A,B) + d(B,C) ≥ d(A,C) (triangle inequality).

Lemma 3.6. |µ∗(A)− µ∗(B)| ≤ d(A,B).

Proof. By the triangle inequality, we have

µ∗(A) = d(A,∅) ≤ d(A,B) + d(B,∅) = d(A,B) + µ∗(B).

Reversing the roles of A and B, we get

µ∗(B) ≤ d(A,B) + µ∗(A),

which gives the two inequalities

µ∗(A)− µ∗(B) ≤ d(A,B), µ∗(B)− µ∗(A) ≤ d(A,B),

which means that
|µ∗(A)− µ∗(B)| ≤ d(A,B).

Now look at sequences of sets in R, call them {An}. We will say that An → A
if d(A,An) → 0 as n → ∞. Let MF be the collection of sets A obtained as
“limits” of sets in R. (The subscript denotes that we are taking limits of
sequences of sets of finite measure.)

Theorem 3.7. (i) MF is a ring.

(ii) If A ∈MF then µ∗(A) <∞.

(iii) µ∗ is a measure on MF .

Example 3.8. Take the case when X = R and R = RLeb . Then every set of
outer measure 0 is in MF since d(A,∅) = µ∗(A) = 0. We see just from this that
MF is HUGE! Indeed we proved already that the Cantor set has measure 0,
and so the Cantor set (cardinality R) and all its subsets (of which there are 2R)
are in MF! Note that we also get, as the contrapositive, that all nonmeasurable
sets have strictly positive outer measure.

Proof of Theorem 3.7. We first prove (ii). By Lemma 3.6, we know |µ∗(A) −
µ∗(B)| ≤ d(A,B) so if An → A, then

µ∗(A) ≤ µ∗(An) + d(A,An) <∞,

since An ∈ R and therefore must have finite measure.
To prove (i), we consider A,B ∈ MF . We want to show that A ∪ B,A −

B ∈ MF . By definition, there exists a sequence {An}n=1,2,... and a sequence
{Bn}n=1,2,... such that An → A and Bn → B. Since

((A ∪B)− (An ∪Bn)) ∪ ((An ∪Bn)− (A ∪B)) ⊆ S(A,An) ∪ S(B,Bn),
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we can take their measures and get the inequality

µ∗((A∪B)−(An∪Bn))∪((An∪Bn)−(A∪B)) ≤ µ∗(S(A,An))+µ∗(S(B,Bn)),

This proves An ∪Bn → A ∪B. Similarly, we can show that An ∩Bn → A ∩B.
Combining these two, we get An−Bn → A−B. Therefore we have shown that
A ∪ B and A − B can both be approximated by sequences of elements of R.
Therefore A ∪B,A−B ∈MF .

Finally, to complete the proof of this theorem, we need to show that µ∗ is
a measure. It is enough to show that µ∗ is finitely additive (because of Lemma
3.4). We want to show: If A,B ∈MF, then µ∗(A∪)+µ∗(A∩B) = µ∗(A)+µ∗(B).
(Then if A ∩ B = ∅, then µ∗(A ∪ B) = µ∗(A) + µ∗(B), as needed.) We can
approximate A and B by sequences {An}n=1,2,... and {Bn}n=1,2,..., respectively,
and since these sequences are in R, then we have

µ∗(An ∪Bn) + µ∗(An ∩Bn) = µ∗(An) + µ∗(Bn).

Taking the limit as n→∞, we get

µ∗(A ∪B) + µ∗(A ∩B) = µ∗(A) + µ∗(B).

Definition 3.9. We say that A is measurable if A = ∪∞n=1An with An ∈MF.
We denote the class of measurable sets by M .

Example 3.10. Let X = R, R = RLeb. Then R ∈M since R = ∪∞n=1(−n, n).

Theorem 3.11. If A ∈M , then µ∗(A) <∞ if and only if A ∈MF .

Proof. By definition, (⇐) is obvious. For the converse, let A = ∪∞n=1An where
An ∈ MF . Without loss of generality we can assume that this is a disjoint
union. By countable subadditivity, µ∗(A) ≤

∑∞
n=1 µ

∗(An). On the other hand,

µ∗(∪Nn=1An) =
N∑
n=1

µ∗(An) ≤ µ∗(An),

and so in fact we have µ∗(A) =
∑∞
n=1 µ

∗(An). We can take a sequence of
sets {∪Nn=1An}N=1,2,... ∈ MF with d(A,∪Nn=1An) → 0. Then we can find sets
BN ∈ R that are very close to ∪Nn=1An. In this way, we have approximated A
by a sequence of elements of R, which means that A ∈MF . This completes the
proof.
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Chapter 4

Borel Measurable Sets

Definition 4.1. A σ-ring is a ring which is closed under countable unions.

Example 4.2. For R, MF is not a σ-ring as it is only closed under finite unions.

Definition 4.3. A ring R is called a field (or equivalently, an algebra) ifX ∈ R .
A σ-ring R is called a σ-field (or a σ-algebra) if X ∈ R .

Theorem 4.4. M is a σ-ring.

Proof. If A1, . . . , An, . . . ∈M , then ∪∞n=1An ∈M since each An is a countable
union of elements of MF and hence the union must also be a countable union
of elements of MF . Hence if we can show that M is a ring, then we have that
it is a σ-ring.

Consider A,B ∈ M . It is clear that A ∪ B ∈ M . We want to show that
A−B ∈M . Let us first consider the case when A ∈MF (so µ∗(A) <∞). We
can write B = ∪∞n=1Bn for Bn ∈MF . Then

A− ∪∞n=1Bn = A− (A ∩ (∪∞n=1Bn)) = A− (∪∞n=1(A ∩Bn)).

We know that ∪∞n=1(A∩Bn) ∈M , and since this union is contained in A, which
has finite outer measure, then ∪∞n=1(A ∩ Bn) ∈ MF . Therefore A − B ∈ MF .
To finish, take A = ∪∞n=1An and B ∈M . Then

A−B = ∪∞n=1(An −B),

and since An − B ∈ MF, then we have written A − B as a countable union
of elements of MF and so A − B ∈ M . Therefore M is a ring and hence a
σ-ring.

Theorem 4.5. µ∗ is countably additive on M (allowing µ∗ to take the value
∞).

Proof. Let A1, . . . , An, . . . be pairwise disjoint sets in M . We want to show

µ∗(∪∞n=1An) =
∞∑
n=1

µ∗(An).
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If µ∗(A) < ∞, then this is true since in this case, A,An ∈MF and we already
know that µ∗ is countably additive on MF . If µ∗(A) =∞, then the RHS must
also be ∞ by countable subadditivity.

In the case that we have Rn with RLeb and the measure µ being the volume
of a multi-interval, then on M , µ∗ = µL, and these are called the Lebesgue
measurable sets. Notice that M is a σ-field. Furthermore, it is σ-finite.

Definition 4.6. X is called σ-finite if X = ∪∞n=1Xn with Xn ∈MF .

Theorem 4.7. All open and closed subsets of Rn are Lebesgue measurable.

Proof. It is enough to show that open sets are measurable. Look at all the
multi-intervals with rational endpoints. Call the collection of all these sets I .
There are countably many elements of I . If U is an open subset of Rn, then
consider the set

U ′ :=
⋃
I∈I
I⊆U

I.

Clearly the U ′ ⊆ U. Since U is open, then for any x ∈ U , there exists an I ∈ I
such that x ∈ I ⊆ U, which means that U ⊆ U ′. Hence U = U ′ and we have
proven that we can write any open subset of Rn as a countable union of open
multi-intervals.

Definition 4.8. Take a σ-field generated by all the open and closed subsets of
Rn. The elements of this σ-field are called the Borel measurable sets of Rn.

Remark 4.9. There are many more Lebesgue measurable sets than Borel mea-
surable sets; there are 2R Lebesgue measurable sets and R Borel measurable
sets.

Example 4.10. Is the Cantor set measurable? For every n, we have a collection
Cn consisting of 2n intervals each of length 1

3n . Then the Cantor set C is the
intersection C = ∩∞n=1Cn. This is Borel. Note, however, that there are lots of
subsets of C that are not Borel!

Theorem 4.11. Every Lebesgue measurable set A can be written as B∪E where
B is a Borel set and E is a set of measure 0.

Proof. We first prove that for any ε > 0, we can find a Borel set G with G ⊇ A
and µ∗(G−A) < ε.

Because we can take complements, we can apply the above to Ac. That is,
we can find a Borel set F with F ⊆ A and µ∗(A − F ) < ε. So for every n, we
can find a Borel set Fn ⊆ A with µ∗(A− Fn) < 1

n . Then ∪∞n=1Fn is Borel and

µ(A− ∪∞n=1Fn) ≤ µ∗(A− Fn) <
1
n
.

Hence taking B := ∪∞n=1Fn and E = A − B, we have shown that A can be
written as B ∪ E for a Borel set B and a measure 0 set E.

16



Now, it is one thing to understand proofs when they are presented, but what
is also important is to be able to detect wrong proofs. Here is a “theorem.”

Fake Theorem 4.12. If A is a set of finite outer measure, then for any ε > 0
there is a Borel set G ⊇ A such that µ∗(G−A) < ε.

Proof. We can find In ∈ RLeb such that A ⊆ ∪∞n=1In and
∑∞
n=1 µ(In) < µ∗(A)+

ε. (We may assume that In is a multi-interval.) But then ∪∞n=1In =: G is Borel,
so µ∗(G−A) < ε.

Where does this proof break down? Well, how can we conclude that µ∗(G−
A) < ε? We needed µ∗(G)− µ∗(A) = µ∗(G−A), but we don’t necessarily have
additivity, so we cannot actually conclude this. However, we can amend the
hypotheses so that the above proof works.

Theorem 4.13. If A is a measurable set, then for every ε > 0 there is a Borel
set G ⊇ A such that µ∗(G− A) < ε. Applying this result for Ac, we can find a
Borel set F with A ⊇ F and µ∗(A− F ) < ε.

Proof. We have already proven the above for when A has finite outer measure.
For the case when A has infinite outer measure, we can write A = ∪∞n=1An
where An ∈MF . We can cover each An by some Borel set Gn such that µ∗(Gn−
An) ≤ ε

2n . Then G := ∪∞n=1Gn is Borel and µ∗(G−A) < ε. This completes the
proof.
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Chapter 5

The Probability Space

Definition 5.1. A probability space is a triple (X,F , µ) where X is a set, F
is a σ-field, and µ is a measure. We normalize this space so that µ(X) = 1.

Example 5.2. (i) Let X be a finite set and let F be the power set of X
so |F | = 2|X|. Let µ be the counting measure, and since we want a
normalized measure, we have µ(A) = |A|/|X| for any A ∈ F .

(ii) Let X = [0, 1] and let F = M ∩ [0, 1]. We take µ to be the Lebesgue
measure.

We now expand upon Example 5.2(ii). We can associate a Bernoulli sequence
of coin tosses to a point in [0, 1]. We have two notions:

• The Strong Law of Large Numbers. If we toss a coin infinitely often, with
probability 1, we will get H half the time and T half the time.

• The Weak Law of Large Numbers. Given ε > 0, if N is sufficiently large,
then with probability very close to 1, afterN coin tosses, |(number of heads)−
(number of tails)| ≤ εN.

We want to find some way to make sense of what these two laws mean in a
rigorous way. The weak law is more accessible, so we work on that first.

Proof of Weak Law. The probability of tossing k heads and N−k tails satisfying
the desired inequality is 1

2n

∑
|2k−N |<2εN

(
N
k

)
. For every ε > 0, if N is sufficiently

large, then this number tends to 1. (Note that we haven’t yet proven that the
claimed probability is the actual probability.)

Now we move onto the Strong Law, which takes significantly more work to
make sense of.
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Discussion of Strong Law. Take an ω ∈ [0, 1]. Write ω = 0.b1b2 · · · where bi is
a binary digit. (So we can, for instance, associate H to 1 and T to 0.) Define

SN (omega) =
N∑
j=1

{
1 if bj = 1
−1 if bj = 0

}
.

We want to study 1
N SN (ω) and limN→∞

1
N SN (ω). We want the limit to exist

and to = 0.
But the problem is that there will definitely be cases when this limit does

not exist. So to get around that problem by considering the set

{ω ∈ [0, 1] : lim
N→∞

1
N
SN (ω) = 0} =: G .

Instead of demanding the limit to always exist and = 0, we can consider the
set where this does happen and hope that this set (namely G ) has measure 1.
It turns out that G is Borel. We can obtain this information by looking at the
complement. Define B =: G c. We want to show that B is Borel an µ(B) = 0.

We know that lim sup gives an upper bound for the limit and lim inf gives a
lower bound. Hence if we are trying to consider an ω ∈ B, then | limN→∞

SN (ω)
N | >

ε, so it is sufficient to ask that | lim supN→∞
SN (ω)
N | > ε. So for every ε > 0, we

have Bε = B+
ε ∪B−ε where

B+
ε = {ω ∈ [0, 1] : lim sup

N→∞

SN (ω)
N

> ε}

B−ε = {ω ∈ [0, 1] : lim inf
N→∞

SN (ω)
N

< −ε}.

Then

B =
∞⋃
n=1

(B+
1/n ∪B−1/n).

We want to analyze B+
1/n. If lim supN→∞

SN (ω)
N > 1

n , then this means that
SN (ω)
N > ε for infinitely many N . Hence we have

B+
1/n = {ω ∈ [0, 1] : infinitely many k with

Sk(ω)
k

>
1
n
}

=
∞⋂
l=1

( ∞⋃
k=1

{ω ∈ [0, 1] :
Sk(ω)
k

>
1
n
}

)
.

But then this is an expression of B+
1/n as a countable intersection of a countable

union of a finite union of intervals, which is Borel. Therefore B is a Borel set.
It remains to be shown that B+

1/n has measure zero.

The above argument is the content of the proof of the following more general
fact.
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Lemma 5.3 (Borel-Cantelli 1). Let (X,F , µ) be a probability space. For each
n ∈ N, we have “events” En, where En is a measurable set. Assume that∑
µ(En) <∞. Then E = {x : x ∈ En for infinitely many n} has measure zero.

Proof. We have

E =
∞⋂
l=1

( ∞⋃
k=l

Ek

)
,

and hence for any l,

µ(E) ≤ µ(∪∞k=lEk ≤
∞∑
k=l

µ(Ek),

which tends to 0 as l→∞. This completes the proof.

Discussion of Strong Law (continued). We now want to complete our discussion
of the strong law of large number by showing that B+

1/n has measure zero. Now

consider the measure of the set {ω ∈ [0, 1] : SN (ω)
N ≥ 1

n}, which we will call
µn(N). If

∑∞
N=1 µn(N) < ∞, then we can apply Borel-Cantelli (Lemma 5.3).

We have

µn(N) =
1

2N
∑

2k−N≥Nn

(
N

k

)
=

1
2N

∑
k≥N2 (1+ 1

n )

(
N

k

)
.

We want this to be very small for large N . (Note that to show that B−1/n
has measure zero, we analyze 1

2N

∑
k≤ 1

2N(1− 1
n (

(
N
k

)
, which, by the symmetry

of Pascal’s triangle, is the same sum as the rightmost expression.) We have
Stirling’s formula.

Stirling’s Formula. If N is large, then N ! ≈
√

2πN
(
N
2

)N . So we can prove
that if k = λN , then (

N

k

)
 

1√
N

(
1

λλ(1− λ)1−λ

)N
(5.1)

Alternatively, for x ≥ 1, we have

1
2N

∑
k≥N2 λ

(
N

k

)
≤ 1

2N
∑
k≥N2 k

(
N

k

)
xk

xNλ/2
≤ 1

2N

N∑
k=0

(
N

k

)
xk

xNλ/2
=
(

1 + x

2xλ/2

)N
.

If λ = 1, then 1+x
2
√
x
≥ 1. If λ > 1, we can use calculus to minimize 1+x

2xλ/2
. We

should get Equation 5.1. Intuitively, we have x = 1 + ε, and the numerator is
2 + ε and the denominator is 2(1 + λε/2) = 2 + λε, so 1+x

2xλ/2
< 1. This means(

1 + x

2xλ/2

)N
≤ c(λ)N
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for some constant c(λ) < 1, choosing x appropriately.
We wanted

∑∞
N=1 µn(N) <∞. From the above discussion, we have

∞∑
N=1

µn(N) ≤
∞∑
N=1

c(λ)N <∞.

Therefore by Borel-Cantelli, B+
1/n (and B−1/n) has measure zero, and this con-

cludes our discussion of the strong law.

Example 5.4. Random walk on Zn: Start at the origin. At each step, move
±1 in any of the n directions with equal probability. We have a theorem of
Polya.

Theorem 5.5 (Polya). With probability 1,

(a) if n ≤ 2, you will return to the origin infinitely often.

(b) if n ≥ 3, you will not return to the origin infinitely often.

To make sense of what this means, we can, as usual, associate a subset of
[0, 1] to the probability of these events. For example, for n = 3, we can work in
base 6, using each value as a different direction (up, down, north, south, east,
west).

Definition 5.6. If E1, E2 are two measurable sets in a probability space (i.e.
events), then E1, E2 are said to be independent if

µ(E1 ∩ E2) = µ(E1)µ(E2).

We can extend this definition for more sets: If E1, E2, . . . , En, . . . are events,
then they are independent if for any finite set S ⊆ N,

µ(∩s∈SEs) =
∏
s∈S µ(Es).

Lemma 5.7 (Borel-Cantelli 2). If E1, E2, . . . are independent and
∑
µ(En)

diverges, then E := {x : x ∈ En for infinitely many n} has measure 1.

Proof. If E1 and E2 are independent, then Ec
1 and Ec

2 are also independent:

µ(Ec
1)µ(Ec

2) = (1− µ(E1))(1− µ(E2)) = 1− µ(E1)− µ(E2) + µ(E1)µ(E2)
= 1− (µ(E1) + µ(E2)− µ(E1 ∩ E2)) = 1− µ(E1 ∪ E2)
= µ((E1 ∪ E2)c) = µ(Ec

1 ∩ Ec
2).

It is left as an exercise to prove that this is true for any finite collection. So we
have that Ec

n are independent. We have

E = ∩∞k=1(∪∞n=kEn), Ec = ∪∞k=1(∩∞n=kE
c
n).

It is sufficient to show that ∩∞n=kE
c
n has measure zero. Indeed we have

µ(∩∞n=kE
c
n) ≤ µ(∩ln=kE

c
n) =

∏l
n=k µ(Ec

n) =
∏l
n=k(1− µ(En))

<
∏l
n=k exp(−µ(En)) = exp(−

∑l
n=k µ(En)) < ε,

for large enough l. This completes the proof.
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Chapter 6

The Lebesgue Integral

We would now like to work towards defining some notion of integration in a
measure space (X,F , µ). Given a function f : X → R and a set E ⊆ X, we
want to have some notion of

∫
E
f dµ that satisfy some properties we would

expect:

• For some constant c,
∫
E
cf dµ = c

∫
E
f dµ.

•
∫
E
f1 + f2 dµ =

∫
E
f1 dµ+

∫
E
f2 dµ.

• For disjoint sets E1, E2,
∫
E1∪E2

f dµ =
∫
E1
f dµ+

∫
E2
f dµ.

We would like this to hold for all measurable sets E and all measurable functions
f . In the case that X = R, then this generalizes the Riemann integral. The first
thing we must do is discuss the notion of a measurable function. We consider
the measure space (X,F , µ), where F is a σ-field, and f : X → R∪ {∞,−∞}.
(We set a±∞ = ±∞, b · ∞ =∞ for b > 0, b · ∞ = −∞ for b < 0. We will not
worry about 0 · ∞ or ∞−∞.)

Theorem 6.1. The following conditions are equivalent:

(i) For all a ∈ R, {x : f(x) ∈ (a,∞)} is measurable.

(ii) For all a ∈ R, {x : f(x) ∈ [a,∞]} is measurable.

(iii) For all a ∈ R, {x : f(x) < a} is measurable.

(iv) For all a ∈ R, {x : f(x) ≤ a} is measurable.

(v) For every Borel set B of R, {x ∈ X : f(x) ∈ B} is measurable.

Definition 6.2. If any of the above conditions in Theorem 6.1 holds, then f is
called a measurable function.
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Proof. It is clear that (i) ⇔ (iv) and (ii) ⇔ (iii). To show that (i) ⇔ (ii),
notice that we can write

{x : f(x) > a} = ∪∞n=1{x : f(x) ≥ a+
1
n
},

{x : f(x) ≥ a} = ∩∞n=1{x : f(x) > a− 1
n
}.

Hence we have proven (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). It is clear that (v) implies
(i), . . . , (iv). We would like now to show (i) ⇒ (v). Let C be the collection
of all sets S ⊆ R such that {x : f(x) ∈ S} is measurable. (For example,
if f is constant, then C = 2R.) We want to show that C contains all Borel
sets. Now, we know that C contains (a,∞], [a,∞], [−∞, a), [−∞, a]. But since
functions preserve unions and intersections, if A,B ∈ C , then A− B ∈ C , and
if A1, . . . , An, . . . ∈ C , then ∪∞n=1An ∈ C . Therefore C contains all open sets,
and since Borel sets are generated by open sets, then C contains all Borel sets.
This completes the proof.

Remark 6.3. It is worth pointing out that this definition seems a bit odd. It
would seem more natural to define a measurable function as a function wherein
the preimage of any measurable set is measurable. But the problem with setting
this as the definition is that it is too restrictive and so we don’t get a nice theory
if we were to adopt this definition. We will show later in an example (Example
6.4(ix)) that weird things can happen if we take this to be the definition of a
measurable function. More specifically, we will construct a continuous function
wherein the preimage of a measurable set is not necessarily measurable.

Now we give a lot of examples of measurable functions.

Example 6.4. (i) Constant functions.

(ii) Consider f : Rn → R. If f is continuous, then f is measurable.

(iii) Let E ⊆ X and define the characteristic function of E:

χE(x) =

{
1 if x ∈ E
0 if x 6∈ E.

Then χE is measurable if E is measurable.

(iv) Simple function s. We define this to be the measurable function which
takes on finitely many real values. Let c1, . . . , cn be the distinct values of
s. Then we can look at the set Ej := {x ∈ X : s(x) = cj}. This set is
measurable. Furthermore, the Ej are pairwise disjoint and they cover X.

(v) If f1 and f2 are measurable, then so are max(f1, f2) and min(f1, f2). This
is true since we can write

{x : max(f1, f2)(x) > a} = {x : f1(x) > a} ∪ {x : f2(x) > a},
{x : min(f1, f2)(x) > a} = {x : f1(x) > a} ∩ {x : f2(x) > a}.
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(vi) If f is measurable, then f+ = max(f, 0) and f− = min(f, 0) are also
measurable.

(vii) If f1 and f2 are measurable, then f1 + f2 is measurable. This is true since
we can write

{x : f1(x) + f2(x) > a} = ∪r∈Q({x : f1(x) ≥ r} ∩ {x : f2(x) > a− r}).

In a similar way, we can also show that the (pointwise) product f1f2 is
measurable.

(viii) Consider f, g : R→ R. When is the composition f ◦ g measurable?

Let us first look at the case when f is continuous and g is measurable. We
want to know if {x : f(g(x)) > a} is measurable. Since f is continuous
and the inverse image of an open set is again open, we know that {x :
f(x) > a} =: B is Borel. Then {x : f(g(x)) > a} = {x : g(y) ∈ B}, which
measurable since g is measurable.

But from the above argument, we see that we need that intermediate
step of Borel-ness. So in general, f ◦ g may not be measurable if f is
only measurable (i.e. not continuous). In fact, even if g is continuous, the
composition might not be measurable!

(ix) Cantor’s continuous function. We define a function f : [0, 1]→ [0, 1]. For
x ∈ [0, 1], write it in its ternary expansion: x =

∑∞
n=1

an
3n , an = 0, 1, 2.

Take N to be the first time such that aN = 1, and we will let N = ∞ if
no such N exists (i.e. if x is in the Cantor set. Now define

f(x) =
N−1∑
n=1

an/2
2n

+
1

2N
.

We observe some things about f . It is constant on any interval in the
complement of the Cantor set. It is continuous (if x is very close to y,
then many ternary terms will coincide). It is increasing. Now consider the
function

g : [0, 1]→ [0, 2], g(x) = x+ f(x).

Then g is continuous and strictly increasing, and hence it is also bijective.
So we have a strictly increasing, continuous inverse g−1 : [0, 2] → [0, 1].
Now let C be the Cantor set. Then [0, 1] − C is a countable union of
intervals and f([0, 1]− C) is a countable set (it takes on countably many
values). Furthermore, g([0, 1]−C) is a Borel set of measure 1 and therefore
g(C) = [0, 2]− g([0, 1]− C) =: A is also a Borel set of measure 1. Let us
accept the following fact:

Fact. Every set of positive measure contains a nonmeasurable subset.

If U ⊆ A and U is nonmeasurable, then there exists a D ⊆ C with
g(D) = U. We had a continuous function g−1 : [0, 2] → [0, 1]. We also
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have D ⊆ C ⊆ [0, 1], a measurable set (of measure 0). The inverse image
of D is {x : g−1(x) ∈ D} = {g(x) : x ∈ D} = U. But this is a nonmea-
surable set, so we’ve shown that even for a continuous function, we can
construct something in which the inverse image of a measurable set is not
measurable! Note that this also shows that we have sets that are Lebesgue
measurable but not Borel measurable.

We can use this to find a measurable function f : R→ R and a continuous
function g : R→ R such that f ◦ g is not measurable.

(x) If f1, . . . , fn, . . . are measurable functions, then

f(x) := sup
n
fn(x),

f(x) := inf
n
fn(x),

lim sup
n

fn(x) = inf
k>1

sup
n≥k

fn(x),

lim inf
n

fn(x) = sup
k>1

inf
n≥k

fn(x),

are all measurable functions. If limn→∞ fn(x) = f(x) exists, then this is
measurable (since then lim sup = lim inf = lim if the limit exists).

Recall that our main goal for this section is to develop the notion of an
integral

∫
E
f dµ for any measurable function f over any measurable set E ⊆ X.

Recall also some desired properties that we would like:

•
∫
E
f1 + f2 dµ =

∫
E
f1 dµ+

∫
E
f2 dµ.

•
∫
E1
f dµ+

∫
E2
f dµ =

∫
E1∪E2

f dµ, for disjoint sets E1 and E2.

•
∫
E

1 dµ = µ(E).

•
∫
E
χA dµ = µ(A ∩ E).

Recall the notion of simple functions, as in Example 6.4(iv).

Definition 6.5. A function s : X → R is simple if it takes a finite number of
values. (Note that we do not allow s to evaluate to ±∞.) That is, there exist
disjoint sets E1, . . . , En such that s(x) = cj if x ∈ Ej .

If each cj ≥ 0, then s ≥ 0, and from now on, we will consider only nonnega-
tive simple functions.

Definition 6.6. For any nonnegative simple function s, we define

IE(s) :=
n∑
j=1

cjµ(E ∩ Ej).

Following convention, we will take 0 · ∞ = 0.
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We have several properties of nonnegative simple functions s and IE(s) that
come almost automatically:

• If s1 and s2 are nonnegative simple functions, then so are s1s2 and s1 +s2.

• IE(s) ≥ 0.

• For c ∈ R, IE(cs) = cIE(s).

• IE(s1 + s2) = IE(s1) + IE(s2). (Write X = E1 ∪ · · · ∪En = F1 ∪ · · · ∪ Fm
where s1(Ej) = cj and s2(Fj) = dj . Then s1 + s2 takes value ci + dj on
Ei ∩ Fj , and we have X = ∪i,j(Ei ∩ Fj).)

• If s1 ≤ s2, then IE(s1) ≤ IE(s2). (Since s2 = s1 + (s2 − s1).)

• If E ⊆ F are measurable sets, then IE(s) ≤ IF (s). (Since µ(E ∩ Ej) ≤
µ(F ∩ Fj) for all j.)

• If F1 and F2 are disjoint, then IF1(s) + IF2(s) = IF1∪F2(s). Since µ is
countably additive, then this is also countably additive, and ϕs(E) :=
IE(s) is a measure on X.

• If E has measure zero, then IE(s) = 0.

We will first deal with the theory of the integral of nonnegative functions,
and then we will later extend this to all measurable functions via the identity
f = max(f, 0) + min(f, 0) = max(f, 0)−min(−f, 0).

Definition 6.7. Let f : X → R be a nonnegative measurable function. Then
we define ∫

E

f dµ = sup
0≤s≤f

IE(s).

Note that if f is a simple function, then
∫
E
f dµ = IE(f).

We have some easily verifiable facts:

• If f1 ≤ f2, then
∫
E
f1 dµ ≤

∫
E
f2dµ. (This is true since if s ≤ f1, then

s ≤ f2.)

• If E has measure zero, then
∫
E
f dµ = 0.

• If E ⊆ F , then
∫
E
f dµ ≤

∫
F
f dµ. (For any ε > 0, we can choose a simple

function s with 0 ≤ s ≤ f so that∫
F

f dµ ≥
∫
F

s dµ ≥
∫
F

s sµ ≥
∫
E

f dµ− ε.

Hence
∫
F
f dµ ≥

∫
E
f dµ.
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Proposition 6.8 (Chebyshev’s Inequality). If
∫
E
f dµ <∞, then

µ(Ec) ≤
1
c

∫
E

f dµ, where Ec = {x ∈ E : f(x) ≥ c}.

Note that this also proves that if
∫
E
f dµ <∞, then µ{x ∈ E : f(x) =∞} = 0.

Proof.

cµ(Ec) =
∫
Ec

c dµ ≤
∫
E

f dµ.

Now we prove something more involved.

Proposition 6.9. If f ≥ 0 is measurable, then ϕ(E) =
∫
E
f dµ is a measure.

Proof. We would like to prove that ϕ is countably additive. Let E1, E2, . . . , En, . . .
be disjoint sets and set E = ∪∞n=1En. We want to show ϕ(E) =

∑∞
n=1 ϕ(En).

We begin by showing that ϕ is finitely additive, and furthermore, note that
it is enough to show that for disjoint sets E1 and E2, we have

∫
E1∪E2

f dµ =∫
E1
f dµ+

∫
E2
f dµ.

For any simple function 0 ≤ s ≤ f, we have∫
E1∪E2

f dµ ≥
∫
E1∪E2

s dµ =
∫
E1

s dµ+
∫
E2

s dµ.

Pick ε > 0 and let s1 and s2 be simple functions satisfying 0 ≤ s1, s2 ≤ f such
that ∫

E1

s1 dµ ≥
∫
E1

f dµ− ε,∫
E2

s2 dµ ≥
∫
E2

f dµ− ε,

and take s = max(s1, s2). Then we have∫
E1∪E2

f dµ ≥
∫
E1

s dµ+
∫
E2

s dµ ≥
∫
E1

f dµ+
∫
E2

f dµ− 2ε.

Since ε is chosen arbitrarily, then we in fact have the inequality∫
E1∪E2

f dµ ≥
∫
E1

f dµ+
∫
E2

f dµ.

Now we want the reverse inequality. We have∫
E1∪E2

f dµ = sup
0≤s≤f

(∫
E1∪E2

s dµ

)
1= sup

0≤s≤f

(∫
E1

s dµ+
∫
E2

s dµ

)
≤ sup

0≤s≤f

∫
E1

s dµ+ sup
0≤s≤f

∫
E2

s dµ =
∫
E1

f dµ+
∫
E2

f dµ.
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This shows that we have finite additivity. But notice also that this argument
also holds for any countable union since 1 holds by countable additivity of simple
functions. Therefore, we have countable subadditivity. Since finite additivity
and countable subadditivity give countable additivity, then this completes the
proof that ϕ is a measure.

We would now like to show that for measurable functions f and g and a
measurable set E, we have∫

E

f + g dµ =
∫
E

f dµ+
∫
E

g dµ.

This will take quite a bit of work, and we begin by proving some results about
simple functions.

Theorem 6.10. For any nonnegative measurable function f , we can find simple
functions 0 ≤ s1 ≤ s2 ≤ · · · with limn→∞ sn(x) = f(x). Furthermore, if f is
bounded, then this sequence converges uniformly.

Proof. Let f : X → R≥0 be a measurable function. We can partition R≥0 in
the following way:

n·2n−1⋃
i=1

[
i

2n
,
i+ 1
2n

]
∪ [n,∞].

For 0 ≤ i ≤ n · 2n − 1, let

Ei,n =
{
x ∈ X :

i

2n
≤ f(x) <

i+ 1
2n

}
, En·2n,n = {x : f(x) ≥ n}.

Now define the simple function sn as

sn(x) =
n·2n−1∑
i=0

(
i

2n

)
χEi,n(x) + n · χEn·2n,n(x).

It is clear that sn(x) ≤ f(x). If f(x) < n, then f(x) − 1
2n ≤ sn(x) ≤ f(x).

If f(x) < ∞, then sn → f . If f(x) = ∞, then sn → ∞ also (since then
sn = n). So limn→∞ sn(x) = f(x). Note that we have simultaneously proven
that convergence is uniform if f is bounded.

It remains to show that the sequence {sn} is bounded. We first deal with
case when x ∈ Ei,n, 0 ≤ i ≤ n · 2n − 1. In this case, we have

2i
2n+1

=
i

2n
≤ f(x) ≤ i+ 1

2n
=

2i+ 2
2n+1

.

Now, by definition,

sn+1(x) =

{
2i

2n+1 if 2i
2n+1 ≤ f(x) < 2i+1

2n+1

2i+1
2n+1 if 2i+1

2n+1 ≤ f(x) ≤ 2i+2
2n+1 .
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Hence indeed we have sn(x) ≤ sn+1(x) when x ∈ Ei,n for 0 ≤ i ≤ n · 2n − 1.
Now consider the case when x ∈ En·2n,n. We have f(x) ≥ n and

sn+1(x) =

{
n+ 1 if f(x) ≥ n+ 1
≥ n if f(x) ∈ [n, n+ 1),

where the second inequality holds since we can then divide [n, n + 1) into seg-
ments of length 1/2n+1. Therefore sn ≤ sn+1 everywhere and this proves mono-
tonicity. This completes the proof.

In summary, what we have is that if {sn} is a monotone increasing sequence
with limit f , then

lim
n→∞

∫
E

sn dµ =
∫
E

f dµ.

Note that the condition that {sn} is monotone increasing is extremely im-
portant. The following example demonstrates this.

Example 6.11. Consider for instance a sequence of functions {fn} where

fn(x) =

{
n if x ∈ [ 1

n ,
2
n )

0 otherwise.

Then limn→∞ fn(x) = 0. On the other hand,
∫ 1

0
fn dx = 1.

Let us return to the question of how to prove that
∫
E
f + g dµ =

∫
E
f dµ+∫

E
g dµ. Why should we believe that such an identity is true? One direction of

this inequality os not so hard to show. By Proposition 6.10, we know that there
exist simples

s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · ≤ f,
t1 ≤ t2 ≤ · · · ≤ tn ≤ · · · ≤ g.

Summing these strings of inequalities gives a monotone increasing sequence of
simple functions

s1 + t1 ≤ s2 + t2 ≤ · · · ≤ sn + tn ≤ · · · ≤ f + g.

This means that we can choose a simple function s with 0 ≤ s ≤ f such
that

∫
E
s dµ >

∫
E
f dµ − ε and a simple function g with 0 ≤ t ≤ g such that∫

E
t dµ >

∫
E
g dµ− ε. From this we have∫
E

f + g dµ ≥
∫
E

s+ t dµ ≥
∫
E

f dµ+
∫
E

g dµ− 2ε,

which gives
∫
E
f + g dµ ≥

∫
E
f dµ +

∫
E
g dµ. But how would we obtain the

reverse inequality? We now present a theorem that will allow us to prove that
the integral of a sum of measurable functions is the sum of the separate integrals.
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Theorem 6.12 (Monotone Convergence). If f1 ≤ f2 ≤ · ≤ fn ≤ · · · is a mono-
tone sequence of nonnegative measurable functions and f(x) = limn→∞ fn(x),
then

∫
E
f dµ = limn→∞

∫
E
fn dµ. (Note that f is automatically measurable since

it is the limit of a sequence of measurable functions.

Proof. Let s be a simple function with 0 ≤ s ≤ f. We would like to show that

lim
n→∞

∫
E

fn dµ ≥
∫
E

s dµ.

If we can do this, then we are done since we would then have

lim
n→∞

∫
E

fn dµ ≥ sup
s

∫
E

s dµ =
∫
E

f dµ,

which is exactly the inequality we need to complete the previous argument. So
now we will concentrate all of our efforts on proving this inequality.

Pick any c ∈ R with 0 < c < 1. Let En = {x ∈ E : fn(x) ≥ cs} ⊆ E. If
E ) ∪nEn, then there exists some x ∈ E such that fn(x) < cs(x) for all n. But
then we have s(x) ≤ f(x) < cs(x), and since c ∈ (0, 1), then s(x) = 0, which is
a contradiction since f is nonnegative by assumption. Hence E = ∪nEn.

For any c ∈ (0, 1) and for all n, we have∫
E

fn dµ ≥
∫
En

fn dµ ≥
∫
En

cs dµ = c

∫
En

s dµ,

and taking the limit as n→∞, we get

lim
n→∞

∫
E

fn dµ ≥ c lim
n→∞

∫
En

s dµ =
∫
E

s dµ,

where the last equality via first defining disjoint sets A1 = E1, A2 = E2 − E1,
A3 = E3 − E2, . . . , and then applying countable additivity.

What this proof gives us in particular is that if we have a monotone sequence
of simple functions

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · ≤ f,

where sn → f , which we have for any measurable function f by Proposition
6.10, then in fact ∫

f dµ = lim
n→∞

∫
sn dµ.

We can finally prove the following proposition.

Proposition 6.13. If f and g are nonnegative measurable functions, then∫
f + g dµ =

∫
f dµ+

∫
g dµ.
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Proof. By Proposition 6.10, we have simple functions

s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · ≤ f, lim
n
sn = f,

t1 ≤ t2 ≤ · · · ≤ tn ≤ · · · ≤ g, lim
n
tn = g.

Summing these, we have

s1 + t1 ≤ s2 + t2 ≤ · · · ≤ sn + tn ≤ · · · ≤ f + g, lim
n
sn + tn = f + g.

By the Monotone Convergence Theorem, we then have∫
f + g dµ = lim

n→∞

∫
sn + tn dµ

= lim
n→∞

∫
sn dµ+ lim

n→∞

∫
tn dµ

=
∫
f dµ+

∫
g dµ.

Corollary 6.14. For nonnegative measurable functions fi, we have∫ ∞∑
i=1

fi dµ =
∞∑
i=1

∫
fi dµ.

Proof. We can take g1 = f1, g2 = f1 + f2, g3 = f1 + f2 + f3, . . . , gn =
∑n
i=1 fi.

This is a monotone increasing sequence and they converge pointwise to
∑∞
i=1 fi.

Therefore by the Monotone Convergence Theorem, the result follows.

Recall Chebyshev’s Inequality: If
∫
E
f dµ <∞, then

µ(Ec) ≤
1
c

∫
E

f dµ, where Ec = {x ∈ E : f(x) ≥ c}.

In particular, this means that if
∫
X
f < ∞, then µ({x : f(x) = ∞}) = 0. We

also have the following easy corollaries:

• If
∫
X
f = 0, then f = 0 except on a set of measure zero. (For any ε > 0,

µ({x : f(x) > ε}) ≤ 1
ε

∫
X
f = 0. Since {x : f(x) > 0} = ∪∞n=1{x : f(x) ≥

1
n}, then µ({f(x) > 0}) = 0.)

• If f ≤ g and
∫
X
f =

∫
X
g, then f = g except on a set of measure zero.

Alternatively, we say that f = g almost everywhere, or in shorthand, a.e..

Example 6.15. Let E = Q∩ [0, 1]. Then
∫
[0,1]

χE = 0, and so in some sense, we
can think of χE as basically being “the same” as the function that is identically
0.

Now that we have developed the theory of the Lebesgue integral for non-
negative measurable functions, we can extend this theory to all measurable
functions.
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Definition 6.16. For a measurable function f : X → R, we define f+ :=
max(f, 0) and f− := max(−f, 0). Then f = f+ − f− and |f | = f+ + f−. We
say that f is Lebesgue integrable if one of the two equivalent statements is true:

(a)
∫
E
f+ dµ and

∫
E
f− dµ are both <∞.

(b)
∫
E
|f | dµ <∞.

(We can easily see that these two conditions are equivalent since |f | = f+ +f−.)
In this situation, we define ∫

f :=
∫
f+ −

∫
f−.

Example 6.17. Note that on unbounded sets, we may have Riemann integrable
functions that are not Lebesgue integrable. For instance, consider

∫∞
0

sin(x)
x dx.

Note. We can also make sense of complex-valued measurable functions. Take
f : X → C. We can write f(x) = u(x) + iv(x) where u and v are real valued.
Then we define ∫

E

f dµ :=
∫
E

u dµ+ i

∫
E

v dµ.

We say that f is integrable if <f and =f are both integrable. Since |<f |, |=f | ≤
|f | ≤ |<f |+|=f |, then we have that f is integrable if and only if |f | is integrable.

From the definition of
∫
f =

∫
f+−

∫
f−, for an integrable function f : X →

R, we have several immediate properties:

•
∫
E
cf dµ = c

∫
E
f dµ, for c ∈ R.

•
∫
E

(f +g) dµ =
∫
E
f dµ+

∫
E
g dµ, where g : X → R is also integrable. (We

need to be careful in the proof here since (f + g)+ 6= f+ + g+.)

• If f ≤ g, then
∫
f ≤

∫
g.

Recall the example earlier that if fn(x) =

{
n on [1/n, 2/n]
0 otherwise

, then we have

lim inf
∫
fn = 1 but

∫
lim inf fn = 0. So we see that lim inf and

∫
cannot always

be interchanged. However, Fatou’s lemma gives us an inequality comparing the
results when we first take lim inf or

∫
.

Lemma 6.18 (Fatou’s Lemma). If f1, f2, . . . is a sequence of nonnegative mea-
surable functions, then

lim inf
n→∞

∫
E

fn dµ ≥
∫
E

lim inf
n→∞

fn dµ.

Proof. By definition, we have

lim inf
n→∞

fn(x) = sup
k

inf
n≥k

fn(x) = sup
k
gk(x),
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where we define gk(x) = infn≥k fn(x). By construction, {gk} is monotone in-
creasing. By the monotone convergence theorem,∫

lim inf fn(x) dµ =
∫

lim
k→∞

gk(x) dµ = lim
k→∞

(
∫
E

gk(x) dµ).

By construction, for all n ≥ k,∫
E

gk(x) dµ ≤
∫
E

fn(x),

and so
∫
E
gk(x) dµ ≤ infn≤k(

∫
E
fn dµ). Therefore we have∫

E

lim inf fn(x) dµ = lim
k→∞

∫
E

gk(x) dµ ≤ lim inf
n→∞

∫
E

fn dµ.

Note that in the above proof, the place where we have a potential loss of
equality is in comparing

∫
E
gk dµ with

∫
E
fn dµ for n ≥ k. Note also that we

used the monotone convergence theorem, which is something that we do not
have for Riemann integrals. For instance, consider the following: Label the
elements of the set Q ∩ [0, 1] so that r1 < r2 < · · · and consider the function
fn := χ({r1, . . . , rn}). Then certainly f1 ≤ f2 ≤ · · · but limn→∞ fn is not
Riemann integrable. (It turns out that if the limit if also Riemann integrable,
then the conclusion of the monotone convergence theorem holds.)

We conclude this section with one final theorem and then we will move onto
comparing the Lebesgue integral theory we have just developed with Riemann
integration theory.

Theorem 6.19 (Lebesgue’s Dominated Convergence Theorem). If f1, . . . , fn, . . .
are measurable functions with |fn| ≤ g (fn is dominated by g),

∫
E
g dµ <∞ (g

is integrable), and limn→∞ fn = f (assuming this limits exists), then

lim
E
f dµ = lim

n→∞

∫
E

fn dµ.

Proof. We prove this theorem via two applications of Fatou’s lemma. Using the
notation as in the theorem statement, we have −g ≤ fn ≤ g. Hence {g + fn}
and {g − fn} are both sequences of nonnegative functions. Applying Fatou’s
lemma to the first sequence, we have∫
g+lim inf

n→∞

∫
fn = lim inf

n→∞

∫
(g+fn) ≥

∫
lim inf
n→∞

(g+fn) =
∫
g+
∫

lim inf
n→∞

fn.

Since
∫
g <∞, then we can cancel

∫
g on both sides of this inequality and get

lim inf
∫
E

fn ≥
∫
E

lim inf fn. (6.1)

Applying Fatou’s lemma to the second sequence, {g − fn}, we get∫
g−lim sup

n→∞

∫
fn = lim inf

n→∞

∫
(g−fn) ≥

∫
lim inf
n→∞

(g−fn) =
∫
g−
∫

lim sup fn.
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Again cancelling
∫
g on both sides, we have∫

lim sup fn ≥ lim sup
∫
fn. (6.2)

But since lim fn exists, then lim inf fn = lim fn = lim sup fn, and so combining
(6.1) and (6.2), we have

lim inf
∫
fn ≥

∫
lim fn ≥ lim sup

∫
fn.

But then lim inf ≤ lim sup, and so we must have equality. This completes the
proof.
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Chapter 7

L 1-Theory

Now we will study the space of measurable functions f : X → C such that∫
X
|f | dµ <∞. We call this space L 1(X,µ). We define

||f ||1 =
∫
X

|f | dµ.

(Recall in the previous section we defined this integral to be the sum of the
integral of the real part and the integral of the imaginary part of f .) There are
some immediate properties of || · ||1.

1. ||f ||1 ≥ 0

2. For c ∈ C, ||cf ||1 = |c| · ||f ||1.

3. ||f + g||1 ≤ ||f ||1 + ||g||1.

4. ||f ||1 = ||f ||1.

In general, a vector space with || · || satisfying the above properties is called a
normed vector space. Hence L 1(X,µ) is a normed vector space. But before we
move on, notice that we have a small problem: If ||f ||1 = 0, this only means
that f = 0 almost everywhere. Hence to get around this issue, we will identify
measurable functions f and g in L 1(X,µ) that differ only on a set of measure
0. Now, to make L 1(X,µ) into a metric space, we define

d(f, g) = ||f − g||1.

In general, a complete normed vector space is called a Banach space, so if we
can show that L 1(X,µ) is complete with respect to this notion of distance,
then we will have proved the following theorem:

Theorem 7.1. L 1(X,µ) is a Banach space.
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What we need to prove here is that every Cuachy sequence in L 1(X,µ)
converges. That is, if f1, f2, . . . is a sequence of functions in L 1(X,µ) such that
for any ε there exists an N(ε) ∈ N such that if m,n ≥ N(ε), then ||fm−fn|| < ε.
Recall that {fn} converges to f in this space if ||fn − f ||1 → 0 as n → ∞. In
fact, this limit is unique! Note however that this is not necessarily the same
as limn→∞ fn(x) = f(x) almost everywhere. For instance, recall the “bump”
example in Example 6.11. We now proceed with the proof that L 1(X,µ) is a
Banach space.

Proof. Let f1, f2, . . . be a Cauchy sequence of L 1 functions. For every r ≥ 1, we
can find an nr ∈ N such that if m,n ≥ nr, then ||fm − fn|| ≤ 1

2r . Now consider
the subsequence fn1 , fn2 , . . ., and notice that we can write this equivalently as

fn1 , fn1 + (fn2 − fn1), fn1 + (fn2 − fn1) + (fn3 − fn2), . . .

Let g1 = fn1 , g2 = fn2 − fn1 , . . . , gr = fnr − fnr−1 , . . .. Then

||g1||1 <∞, ||g2||1 <
1
2
, . . . , ||gr||1 <

1
2r
, . . .

and hence
∑∞
k=1

∫
|gk| dµ <∞. We would like to show that

∑∞
k=1 gk converges

almost everywhere. To obtain this, we prove the following lemma.

Lemma 7.2. Let g1, g2, . . . be a sequence of integrable functions such that∑∞
n=1

∫
|gn| dµ <∞. Then

1.
∑∞
n=1 gn(x) converges absolutely almost everywhere and defines an inte-

grable function.

2.
∫ ∑∞

n=1 gn dµ =
∑∞
n=1

∫
gn dµ.

Proof of Lemma. Define hn = |gn| ≥ 0. By the monotone convergence theo-
rem,

∫ ∑∞
n=1 hn =

∑∞
n=1

∫
hn <∞. This implies that

∑∞
n=1 hn(x) <∞ almost

everywhere, which means that
∑∞
n=1 gn(x) converges absolutely almost every-

where. Let H(x) =
∑∞
n=1 hn(x). This is a nonnegative integrable function and

since we have ∣∣∣∣ N∑
n=1

gn(x)
∣∣∣∣ ≤ N∑

n=1
|gn(x)| ≤ H(x)

almost everywhere and
∫
X
H dµ <∞, then by the dominated convergence the-

orem, ∫
lim
N→∞

N∑
n=1

gn(x) dx = lim
N→∞

N∑
n=1

∫
gn dµ =

∞∑
n=1

∫
gn dµ.

So we have proved that if g1, g2, . . . is a sequence of functions in L 1 and∑∞
n=1 ||gn||1 < ∞, then

∑∞
n=1 gn converges pointwise almost everywhere and

defines an L 1 functions. We return now to the proof that L 1 is complete.
We left off before the lemma with a sequence of functions g1, g2, . . . such

that ||g1||1 < ∞, ||g2||1 < 1
2 , . . . and in particular

∑∞
r=1 ||gr||1 < ∞. By the
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lemma,
∑∞
r=1 gr is convergence almost everywhere and defines an L 1 function

f :=
∑∞
r=1 gr. Note that by construction f is the a.e. limit of the subsequence

{fnr}r=1,2,.... Finally, we must check that indeed ||f − fn||1 → 0 as n → ∞.
One way to do this is to use the triangle inequality and note that ||f − fn||1 ≤
||f −fnr ||+ ||fn−fnr ||, and each summand on the right hand side tends to 0 as
n tends to infinity. Alternatively, we may use Fatou’s lemma. This completes
the proof that L 1(X,µ) is a Banach space.

In the above proof, the main idea is really the lemma, which we restate in
the following proposition.

Proposition 7.3. A normed vector space is complete if and only if every abso-
lutely summable series is summable.

37



Chapter 8

Lebesgue vs. Riemann

We mentioned in Chapter 6 an example of where dominated convergence fails.
That is, we discussed an instance of when we have a sequence of integrable
functions whose limit is Lebesgue integrable but not Riemann integrable. We
will now discuss the general situation of the relationship between Lebesgue
integration theory and Riemann integration theory.

Consider a bounded function f : [a, b]→ R. We discuss the Darboux integral
of f . Take a partition of [a, b]: P = {x0 = a < x1 < · · · < xn = b}. We define
the mesh width of P to be m(P ) = max(xi+1 − xi). Now let

L(f, P ) =
N∑
i=1

mi(xi − xi−1), mi = inf
xi−1≤x<xi

f(x),

U(f, P ) =
N∑
i=1

Mi(xi − xi−1), Mi = sup
xi−1≤x<xi

f(x),

and define

L(f) =
∫ b

a

f(x) dx = sup
P
L(f, P ),

U(f) =
∫ b

a

f(x) dx = inf
P
U(f, P ).

We say that f is Riemann integrable if L(f) = U(f).

Theorem 8.1. If f : [a, b] → R is bounded and Riemann integrable, then f is
Lebesgue integrable and ∫

[a,b]

f dµ =
∫ b

a

f(x) dx.

We first establish some terminology. We say that a partition P ′ refines a par-
tition P if P ′ contains all points in P and possibly more points. Then L(f, P ) ≤

38



L(f, P ′) and U(f, P ) ≥ U(f, P ′). Also L(f, P ) ≤ U(f, P ). Furthermore, for any
two partitions P1 and P2, L(f, P1) ≤ U(f, P2). (We can choose a partition P
that refines both P1 and P2 and get L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2).
Now we may begin the proof.

Proof. Choose partitions Pk such that

1. Pk refines Pk−1.

2. L(f, P1) ≤ L(f, P2) ≤ · · · converges to L(f) and U(f, P1) ≥ U(f, P2) ≥
· · · converges to U(f).

Let Lk be the (simple) step function associated to L(f, Pk) and Uk the (simple)
step function associated to U(f, Pk). When

L1(x) ≤ L2(x) ≤ · · · ≤ f(x) ≤ · · · ≤ U2(x) ≤ U1(x),

and hence setting L(x) = limn→∞ Ln(x) and U(x) = limn→∞ Un(x), we have
L(x) ≤ f(x) ≤ U(x). Now notice that

L(f, Pk) =
∫
Lk dµ and U(f, Pk) =

∫
Uk dµ.

By the monotone convergence theorem,∫
Ldµ = lim

n→∞

∫
Lk dµ = L(f)∫

U dµ = lim
n→∞

∫
Uk dµ = U(f).

By assumption f is Riemann integrable, and so
∫

(U−L) =
∫
U−

∫
L = 0. Since

U−L ≥ 0, then this means that U = L almost everywhere, and hence U = f = L
almost everywhere. Therefore f is measurable and Lebesgue integrable and∫
f dµ =

∫
f(x)dx.

Remark 8.2. A function is Riemann integrable if and only if the set of discon-
tinuities is of measure zero.

Recall that we had the following example to demonstrate the failure of the
dominated convergence theorem for Riemann integration theory.

Example 8.3. Let fn = χ({r1, . . . , rn}), where r1, r2, . . . is an enumeration of
the rationals in [0, 1]. Then ||fn||1 = 0. Pointwise, fn → χQ∩[0,1], but this is
not Riemann integrable. On the other hand, in L 1, fn → 0 and 0 is Riemann
integrable.

We have a better example.

Example 8.4. We construct what is known as the “fat Cantor set.”
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1. Take [0, 1], and throw away an open interval of length 1
4 centered at 1

2 .
Define

F1 = [0,
3
8

] ∪ [
5
8
, 1].

2. Now throw away an interval of length 1
16 centered at the center of each

interval. We define F2 to be the resulting union of 4 intervals.

3. Iterate this process. Then Fn is the union of 2n intervals. To get to Fn+1,
throw away intervals of length 1

4n+1 .

Now let
F =

∞⋂
n=1

Fn.

Since F is a countable intersection of closed intervals, then it too is closed and
hence it is measurable and in fact even Borel. Now consider the complement of
F in [0, 1]. We compute its measure:

µ([0, 1] \ F ) =
1
4

+
2
42

+
22

43
+ · · ·

=
1
4

(
1 +

1
2

+
1
4

+ · · ·
)

=
1
2
.

Notice that F does not contain any intervals. Now let fn = χFn , the char-
acteristic function of the set Fn ⊆ [0, 1]. This is Riemann integrable. In L 1,
χFn → χF as n→∞. In fact, we can take the Lebesgue integral of χF since it
is just a simple function. We have∫

[0,1]

χF dµ = µ(F ) =
1
2
.

Since χF is discontinuous on a set of positive measure, then it is not Riemann
integrable, and hence χFn does not converge to a Riemann integrable function.

Now we would like to discuss the fundamental theorem of calculus in the
context of Lebesgue integration theory. Recall from Riemann integration theory
the following theorem.

Theorem 8.5 (Fundamental Theorem of Calculus). 1. If
∫ x
a
f(t) dt = F (x),

then F ′(x) = f(x).

2. Also,
∫ x
a
f(t) dt = f(x)− f(a).

Note that statement 2 can fail badly. Recall the Cantor function. Write
x =

∑∞
n=1

an
3n . Let N denote the first j such that aj = 1. Now consider the

function

f(x) =
N−1∑
j=1

(aj/2)
2j

+
1

2N
.
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This function is a continuous function f : [0, 1] → [0, 1] and it is differentiable
on the complement of the cantor set with derivative identically 0. Then

0 =
∫

[0,1]

f ′ dµ 6= f(1)− f(0) = 1,

and this illustrates that indeed the assertion 2 in the Fundamental Theorem
of Calculus fails when we replace the Riemann integral with the corresponding
Lebesgue integral.

Now consider a continuous, increasing function f : [a, b] → R that is inte-
grable and almost everywhere differentiable. Then∫ x

a

f ′(t) dt =
∫ x

a

lim inf
n→∞

(f(t+ 1/n)− f(t)
1/n

)
dt

≤ lim inf
n→∞

n

(∫ x

a

(f(t+ 1/n)− f(t)) dt
)

1= lim inf
n→∞

n

(∫ x+1/n

x

f(t) dt−
∫ a+1/n

a

f(t) dt
)

= f(x)− f(a),

where equality 1 holds by a change of variable, and the final equality holds by
the continuity of f . This motivates the following theorem.

Theorem 8.6. Let f be a continuous, nondecreasing function. Then the fol-
lowing are equivalent.

1. f is absolutely continuous.

2. f is differentiable almost everywhere and
∫ x
a
f ′(t) dt = f(x)− f(a).

3. f maps sets of measure zero to sets of measure zero.

(Note that the final statement excludes functions like the Cantor function.)

Definition 8.7. A function f on [a, b] is said to be absolutely continuous if
for all ε > 0, there exists a δ > 0 such that given any disjoint segments
(α1, β1), . . . , (αn, βn) with

∑n
j=1(βj − αj) < δ, then

∑n
j=1 |f(βj)− f(αj)| < ε.

Remark 8.8. The theorem tells us that µ and ν are absolutely continuous if
and only if the sets of measure zero for µ are exactly the sets of measure zero
for ν.
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Chapter 9

Random Variables and
L p-spaces

We can make precise the notion of a random variable. Let (X,F , µ) be a
probability space, with F a σ-field. A measurable function f may be thought
of as a random variable in the following way. We can denote the expectation of
a random variable by E(f), and then

E(f) =
∫
X

f dµ.

By the linearity of the Lebesgue integral, we have E(f1 + f2) = E(f1) + E(f2).
Now let us discuss random walks in Zd. The main question here is the

following: With what probability will a random walk return to the origin? We
can make this precise by working in base (2d) to get a measure space. Consider
the following function

Xn =

{
1 at the nth step, we are back to 0
0 otherwise.

Then Pn := E(Xn) is the probability of return after n steps. Then X :=
∑∞
n=1

counts the number of returns. By the monotone convergence theorem,

E(X) =
∞∑
n=1

E(Xn) =
∞∑
n=1

Pn.

Note that Pn = 0 if n is odd. Let ρ denote the probability that the random
walk returns at least once to 0. Let ρk denote the probability that we return to
0 exactly k times. Then

ρ0 = (1− ρ), and ρk = ρk(1− ρ).
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From this, we have

E(X) =
∞∑
k=1

k · ρk(1− ρ) = ρ(1− ρ)
∞∑
k=1

kρk−1 =

{
ρ(1−ρ)
(1−ρ)2 = ρ

1−ρ if ρ < 1

∞ if ρ = 1.

Hence in the above discussion we have proven the following:

Theorem 9.1. If ρ < 1, then E(# of returns) is finite (which happens if and
only if

∑
Pn converges). If ρ = 1, then E(# of returns) is infinite (which

happens if and only if
∑
Pn diverges). So E(# of returns) =

∑∞
n=1 Pn.

Remark 9.2. This theorem is very similar to Borel-Cantelli 2, but it is slightly
nicer as we do not need the independence of the events.

There is a beautiful theorem due to Polya that says that ρ < 1 if d ≥ 3 and
ρ = 1 if d = 1, 2. We first discuss the case when d = 1. We know P2n+1 = 0.
Also, by the binomial theorem, using the largest coefficient in concludint the
following inequality, we have

P2n =
1

22b

(
2n
n

)
≥ 1

2n+ 1
.

We can do a better job of estimating this, though. Recall Stirling’s formula:

n! ≈
√

2πn
(
n

e

)n
.

Using this, we have

P2n ≈
√

2π2n
22n(
√

2πn)2

(
2n
e

)2n((
n
e

)n)2 ≈ c√
n
.

(On the right hand side, c = 1√
π
.) Hence

∑∞
n=1 P2n diverges, and this agrees

with the d = 1 case of Polya’s result.
Now consider the case d = 2. Then we have

P2n =
1

42n

n∑
k=0

(
2n
k

)(
2n− k
k

)(
2n− 2k
n− k

)
=

(2n)!(2n− 2k)!
k!k!(2n− 2k)!(n− k)!(n− k)!

=
(2n)!

(k!)2((n− k)!)2
.

Using the law of large numbers, we can see that the max is attained when k ≈ n
2 .

Furthermore, there is an interval of length ≈
√
n around n

2 where the expression
is largest, and each such k ≈

√
n

(
√
n)4
≈ 1

n3/2 . Hence the number of k is ≈
√
n,

which tends to 1
n , so again

∑
n→∞ Pn =∞. In general, Pn is about size c

nd/2
so∑

Pn <∞ if d ≥ 3.
Because of this discussion, we can now answer a question we started the

course with... namely, if we toss a coin infinitely many times, how often will we
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get exactly the same number of tails tossed as heads tossed? If we roll a die,
how often will we get exactly the same number of each number rolled? We have
shown the following sequence of equivalences:∑

E(Xn) <∞⇐⇒ E(X) <∞⇐⇒ ρ < 1.

The last condition implies that the probability of the event happening infinitely
often is 0, and hence we can conclude that the probability that there will be
infinitely many times when each number on the dice is rolled the same number
of times is 0.

Now let X be a probability space and let f : X → R be a random variable.
Then we define

µf (B) = µ(f−1(B)),

where B ⊆ R is Borel. Then µf is a measure on (R,F ), where F is the σ-field
of Borel sets. We call this the probability distribution associated to f .

We discussed earlier the Banach space (i.e. complete normed vector space)
L 1(X,µ). We may also discuss L p spaces for any p ∈ N. We define

L p(X,µ) = {f :
∫
X

|f |p dµ <∞},

and we take the norm on L p to be

||f ||p =
(∫

X

|f |p dµ
)1/p

.

As in the case of L 1, we consider functions that are equivalent almost every-
where to be the same element in L p. This makes ||f ||p = 0 if and only if
f = 0 (almost everywhere), which is the first thing we need to check in checking
that the claimed norm in fact makes L p into a normed vector space. The only
nontrivial property that we need to check is the triangle inequality,

||f + g||p ≤ ||f ||p + ||g||p,

which is also known as Minkowski’s inequality. This is actually a special case
of Holder’s inequality, which we state in the following proposition.

Proposition 9.3 (Holder’s Inequality). If p, q ≥ 1 with 1
p + 1

q = 1 and f ∈
L p(X,µ) and g ∈ L q(X,µ), then fg ∈ L 1(X,µ) and

||fg||1 =
∫
X

|fg| dµ ≤
(∫

X

|f |p dµ
)1/p(∫

X

|g|q dµ
)1/q

= ||f ||p||g||q.

In the case when p = q = 2, Holder’s inequality is just the usual Cauchy-
Schwarz inequality:

Corollary 9.4 (Cauchy-Schwarz Inequality).∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ (∫ |fg| dµ) ≤ (∫ |f |2 dµ)1/2(∫
|g|2 dµ

)1/2

.
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The proof of Holder’s Inequality is left as a homework exercise.

Theorem 9.5 (Riesz-Fischer). L p is complete.

Proof (Sketch). Recall that a normed vector space is complete if and only if
every absolutely summable series is summable. Hence we want to show that
for a sequence {fn} ⊆ L p, if

∑
||fn||p <∞, then the sequence of partial sums

FN =
∑N
n=1 fn converges in L p.

Let gk =
∑k
n=1 |fn|. (We sum |fn| pointwise to get g.) Then for all k,

||gk||p ≤
k∑

n=1
||fn||p < C.

That is, ||gk||p is uniformly bounded by C. Therefore gpk is integrable, which
means that gk is finite almost everywhere. Notice that gk is Cauchy in L p

(we can just look at the tails) and gk ≤ gk+1 ≤ · · · , and so gk(x) converges
to a function g which is finite almost everywhere. This means that FN =∑N
n=1 fn converges absolutely pointwise almost everywhere. We can then use

the dominated convergence theorem to show that FN converges pointwise almost
everywhere. This completes the proof.

For the sake of discussion, what happens to ||f ||p = (
∫
|f |p dµ)1/p as p→∞?

Well, if we had a finite list of numbers a1, . . . , an and we looked at what hap-
pened to (

∑
apn)1/p as p→∞, the largest of the an would eventually dominate.

Extending this argument, we have that ||f ||p tends to the essential supremum
of |f |, which is the supremum of |f | except on sets of measure zero. (This
essential supremum is to account for the fact that we only care about the
almost-everywhere behavior of a function.) The set L∞ is the set of all es-
sentially bounded functions, and the norm || · ||∞ on this space is the essential
supremum. One can check that this is a Banach space.

We will now focus our discussion on p = 2.
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Chapter 10

Hilbert Spaces

The theory of L p-spaces in the case that p = 2 is worth discussing in particular
because we have an extra structure, namely the inner product. For f, g ∈ L 2,
we define the inner product

〈f, g〉 :=
∫
X

fg dµ,

and this makes L 2 into an inner product space. Let us make this precise.

Definition 10.1. An inner product space is a complex vector space V with an
inner product 〈·, ·〉 : V × V → C satisfying

(i) 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉 and 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉.

(ii) 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉, for λ ∈ C.

(iii) 〈u, v〉 = 〈v, u〉.

(iv) 〈u, u〉 ≥ 0, with equality if and only if u = 0.

We can define a norm on V by ||u||2 = 〈u, u〉, and this induced norm makes V
into a normed vector space.

Proposition 10.2 (Cauchy’s Inequality). |〈u, v〉| ≤ ||u|| · ||v||.

Proof. Let λ ∈ R. Then

||λu+ v||2 = 〈λu+ v, λu+ v〉 = λ2||u||2 + 2λRe〈u, v〉+ ||v||2 ≥ 0.

This means that the discriminant is ≤ 0 and hence

4|〈u, v〉|2 − 4||u||2||v||2 ≤ 0,

and the desired result follows.
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So L 2 is an inner product space and it is complete. Hence L 2 is a Hilbert
space. (In general, a Hilbert space is a Banach space with an inner product
that induces the norm.) We will study Hilbert spaces in general and then later
return to L 2.

Let H be a Hilbert space and let φ1, φ2, . . . be orthonormal vectors. That
is, ||φn||2 = 1 and 〈φm, φn〉 = 0 if m 6= n. We first have some examples.

Example 10.3. 1. CN is a Hilbert space and example of an orthonormal
basis is (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . .

2. `2 = L 2(N, µ) where µ is the counting measure. This is the space of
sequences {a1, a2, . . .} such that

∑∞
n=1 |an|2 <∞. Then the vectors φn =

(0, 0, . . . , 0, 1, 0, . . .), where we have a 1 in the nth coordinate and 0’s
elsewhere, are orthonormal to each other.

The main question to motivate our study is the following: Can we write each
f ∈ H as a linear combination of the vectors φn? We first have some definitions.

Definition 10.4. The nth Fourier coefficient of f ∈ H is defined to be

cn(f) := 〈f, φn〉 ∈ C.

We also define a sort of “partial sum”:

SN (f, ·) :=
N∑
n=1
〈f, φn〉 · φn =

N∑
n=1

cn(f)φn.

Definition 10.5. An orthonormal system is called complete if the only vector
orthogonal to all φn is the zero vector.

Definition 10.6. A Hilbert space is called separable if a corresponding complete
orthonormal system is countable.

Let {φn} be an orthonormal system (not necessarily complete). We have

0 ≤ ||f −
N∑
n=1

cn(f)φn||2 = 〈f −
N∑
n=1

cn(f)φn, f −
N∑
n=1

cn(f)φn〉

= ||f ||2 −
N∑
n=1
〈f, cn(f)φn〉 −

N∑
n=1
〈cn(f)φn, f〉+ ||

N∑
n=1

cn(f)φn||2

= ||f ||2 − 2
N∑
n=1
|cn(f)|2 +

N∑
m,n=1

〈cm(f)φm, cn(f)φn〉

= ||f ||2 − 2
N∑
n=1
|cn(f)|2 +

N∑
n=1
|cn(f)|2 = ||f ||2 −

N∑
n=1
|cn(f)|2.

This proves Bessel’s Inequality.

Proposition 10.7 (Bessel’s Inequality). If f ∈ H, then

||f ||2 ≥
∞∑
n=1
|cn(f)|2.

In particular, cn(f)→ 0 as n→∞.
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Given all this, what can we say about the convergence of the partial sums
SN (f) = PN

n=1 cn(f)φn? Does the sequence {SN (f)} converge to some element
in H? Does it converge to f? In what sense? Since H is complete, it is enough
to show that {SN (f)} is a Cauchy sequence. That is, we want to show that

||Sn − Sm||2 → 0, as m,n→ 0.

But
∑
|cn(f)|2 <∞, and hence ||Sn−Sm||2 =

∑n
k=m+1 |ck(f)|2 → 0 as m,n→

∞. So we have shown that {SN (f)} converges in the L 2 sense. Note that this
does not mean that SN =

∑N
n=1 cn(f)φn(x) converges for a given value of x.

Suppose now that {φn} is a complete orthonormal system and suppose that
we know SN → g for g ∈ H. Then cn(f) = 〈SN , φn〉 → 〈g, φn〉 as N →∞. More
generally, if un → u and vn → v in H, then 〈un, vn〉 → 〈u, v〉 as n→∞, and this
can be easily checked by multiple applications of the triangle inequality. Now,
if g and f have the same Fourier coefficients, then all the Fourier coefficients of
the difference f − g are 0, which means that f − g = 0, where we make this last
conclusion by using the assumption that the orthonormal system is complete.
Hence in the case that {φn} is a complete orthonormal system, we have

||f ||2 =
∞∑
n=1
|cn(f)|2.

In other words, Bessel’s inequality becomes an equality.
From the above, we see that if H is a Hilbert space and {φn} is a complete

orthonormal system, then we can identify f ∈ H with the sequence of coefficients
cn(f) = 〈f, φn〉. That is, we make the identification

f → (c1(f), c2(f), . . . , cn(f), . . .),

and this gives us an identification between the Hilbert space H and `2. From
this we may conclude that every separable Hilbert space either looks like `2 or
like CN !
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Chapter 11

Classical Fourier Series

We now move on to discuss a theory known as the classical Fourier series. We
consider functions

f : [−π, π]→ C.

(Alternatively, we may think of f as being complex-valued and 2π-periodic
on R.) Identifying [−π, π] with the circle (or one-dimensional torus), we can
equivalently think of these functions as

f : T → C, where T = R/2πZ.

The space we would like to consider is

L 2(T, µ) = {f :
∫ π

−π
|f |2 dµ <∞},

where µ is the Lebesgue measure. It will turn out later that this is in fact a
Hilbert space. We have an inner product on this space:

〈·, ·〉 : L 2(T, µ)×L 2(T, µ)→ C,

(f, g) 7→
∫ π

−π
f(x)g(x) dx.

We define an orthonormal basis as follows:

φn(x) =
einx√

2π
, for n ∈ Z,

and we may check that indeed 〈φn, φn〉 = ||φn(x)||2 = 1 and 〈φm, φn〉 = 0 if
m 6= n. To compute the nth Fourier coefficient of f , we need to compute the
inner product:

cn(f) = 〈f(x), einx〉 =
1√
2π

∫ π

−π
f(x)e−inx dx =: f̂(n).
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We will use the book’s notation in this exposition (even though it might be
better notation to develop theory using functions [0, 1] → C and to use the
orthonormal basis e2πinx). The partial sums are

Sn(f, x) =
N∑

n=−N
f̂(n)

einx√
2π
.

We know from our previous discussion that SN (f, ·) → g in L 2. We would
next like to know that {φn} is complete, which will allow us to say that in fact
SN → f in L 2, not just to any function g. This will also tell us that L 2(T, µ)
is a Hilbert space.

Theorem 11.1. φn is a complete orthonormal system for L 2(T, µ).

We will in fact prove a stronger result, which is due to Fejer.

Theorem 11.2 (Fejer). If f is continuous on T , then there is a sequence of
functions

TN (x) =
N∑

n=−N
tne

inx

with TN (x) → f(x) uniformly for all x ∈ T as N → ∞. In particular, ||TN −
f || → 0.

Remark 11.3. Since T is compact, then the hypothesis that f is continuous
in fact means that f is uniformly continuous, i.e. for every ε > 0 there exists a
δ such that |f(x)− f(y)| < ε whenever |x− y| < δ.

Proof. We expand out, by hand, the partial sums:

Sn(f, x) =
n∑

k=−n

(
1

2π

∫ π

−π
f(x)e−ikx dx

)
eikx√

2π

=
1

2π

∫ π

−π
f(x)

( n∑
k=−n

eik(x0−x)
)
dx

=
1

2π

∫ x0−π

x0+π

f(x0 − y)Dn(y) d(x0 − y)

=
1

2π

∫ π

−π
f(x0 − t)Dn(t) dt,

where Dn(x0−x) =
∑n
k=−n e

ik(x0−x). We have a general form for this, and it is
called the Dirichlet kernel. Expanding out the Dirichlet kernel expression gives
us:

Dn(t) =
n∑

k=−n
eikt = e−int(1 + eit + · · ·+ e2int)

=

{
e−int(e(2n+1)it−1)

eit−1 if t 6= 0
2n+ 1 if t = 0.
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So when t 6= 0, then

Dn(t) =
e(n+ 1

2 )it − e−(n+ 1
2 )it

eit/2 − e−it/2
=

sin((n+ 1
2 )t)

sin( 1
2 t)

.

In particular,

Dn(t) ≤ 1
| sin(t/2)|

for all t 6= 0.

Notice that as n → ∞, Dn(t) tends to infinity at t = 0 and is finite at t 6= 0.
Also,

∫ π
−πDn(t) dt = 2π and

Sn(f, x0)− f(x0) =
1

2π

∫ π

−π
(f(x0 − t)− f(x0))Dn(t) dt.

But we have a problem: ∫ π

−π
|Dn(t)| dt ∼ c log(n),

which means that as n→∞, this integral tends to infinity, and so we can’t say
anything about the difference Sn(f, x0)− f(x0). This is where Fejer’s argument
comes in.

Instead of looking at the convergence of Sn, we want to sort of average over
these Sn’s and look at the convergence of the result. Let

σN (f, x0) =
1

N + 1

N∑
n=0

Sn(f, x0).

Then we have

σN (f, x0) =
1

N + 1

N∑
n=0

1
2π

∫ π

−π
f(x0 − t)Dn(t) dt

=
1

2π

∫ π

−π
f(x0 − t)κN (t) dt,

where

κN (t) =
1

N + 1

N∑
n=0

Dn(t).

This is called the Fejer kernel, and we can expand this by hand:

κN (t) =
1

N + 1

N∑
n=0

Dn(t) =
1

N + 1

N∑
n=0

e−int(e2(n+1)it − 1)
eit − 1

=
1

(N + 1)(eit − 1)

N∑
n=0

(ei(n+1)t − e−int) (∗)

=
1

N + 1

N∑
n=0

∑
|k|≤n

eikt =
1

N + 1
∑
|k|≤N

eikt
( ∑
N≥n≥|k|

1
)

=
1

N + 1
∑
|k|≤N

(N + 1− |k|)eikt.
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Summing (∗) directly, we have

1
(N + 1)(eit − 1)

(
eit(ei(N+1)t − 1)

eit − 1
− 1− e−i(N+1)t

1− e−it

)
=

1
(N + 1)(eit − 1)(1− e−it)

(ei(N+1)t − 2 + e−i(N+1)t)

=
1

N + 1

(
ei(N+1)t/2 − e−i(N+1)t/2

eit/2 − e−it/2

)2

=
1

N + 1

(
sin
( (N+1)t

2

)
eit/2 − e−it/2

)2

.

Notice that ∫ π

−π
κn(t) dt = 2π,

and that for any δ > 0,∫
π≥|t|≥δ

κn(t) dt ≤ 1
N + 1

∫
π≥|t|≥δ

1
(sin(t/2))2

dt =:
1

N + 1
c(δ).

From this, we have

σN (f, x0)− f(x0) =
1

2π

∫ π

−π
(f(x0 − t)− f(x0))κN (t) dt.

If |t| ≤ δ, then

σN (f, x0)− f(x0) ≤ ε

2π

∫
|t|≤δ

κN (t) dt ≤ ε,

and if |t| > δ, then

σN (f, x0)− f(x0) ≤ 2 max |f | c(δ)
2π(N + 1)

.

Therefore we have shown that for sufficiently large N , σN (f, x0)− f(x0) ≤ 2ε,
and this proves Fejer’s theorem.

Remark 11.4. The main idea in the proof of this theorem is that we can
improve convergence behavior by taking the sequence of averages. This is a
useful tool in other proofs as well.

From this, we know that if [a, b] ⊆ [−π, π], then the characteristic func-
tion χ[a,b] can be approximated by a suitable trigonometric polynomial TN =∑N
n=−N tne

−inx. So we may construct a sequence {TN} such that ||χ−TN || → 0
as N → ∞. So the characteristic function of a finite union of intervals can be
approximated by trigonometric polynomials.
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Now let f ∈ L 2 be a function that is orthogonal to all the φk = eikx√
2π

. We
would like to show that f = 0 almost everywhere. Let A ⊆ (−π, π) be the set
on which f ≥ 0. Then A is measurable and has finite measure. We can find a
trigonometric polynomial TN such that ||TN − χA|| < ε. Then necessarily

〈f, TN 〉 = 0

by assumption. On the other hand, we have

〈f, TN 〉 = 〈f, χA〉+ 〈f, TN − χA〉 ≤ 〈f, χA〉+ ||f || · ||Tn − χA||,

which means that 〈f, χA〉 = 0, and hence
∫
A
f dµ = 0, and so f = 0 almost

everywhere on A. This shows that φn is indeed a complete orthonormal system.

Proposition 11.5 (Parseval/Plancharel).

||f ||2 =
∫ π

−π
|f(x)|2 dx =

∞∑
k=−∞

∣∣∣∣ 1√
2π

∫ π

−π
f(x)e−ikx dx

∣∣∣∣2 =
∞∑

k=−∞
|cn(f)|2.

Using Plancharel’s theorem, we can prove identities like
∑∞
n=1

1
n2 = π2

6 .
This completes our discussion of classical Fourier analysis. The final topic of
the course will be Fourier transforms.
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